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Abstract

There is currently a great deal of interest in the use of nanoscale devices to emulate

the behaviors of neurons and synapses, and to facilitate brain-inspired computation.

Here it is shown that percolating networks of nanoparticles exhibit stochastic spiking

behavior that is strikingly similar to that observed in biological neurons. The spiking

rate can be controlled by the input stimulus, similar to ‘rate coding’ in biology, and the

distributions of times between events are log-normal, providing insights into the atomic-

scale spiking mechanism. The stochasticity of the spiking behavior is then used for true

random number generation and the high quality of the generated random bit-streams

is demonstrated, opening up promising routes towards integration of neuromorphic

computing with secure information processing.
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1 Introduction

Neuromorphic or ‘brain-like’ computing seeks to overcome the limitations of the conven-

tional Von Neumann architecture by physically emulating the basic building blocks of bi-

ological brains — that is neurons and synapses — at small circuit or device level.1,2 Such

an approach could potentially provide the capabilities of biological perception and cognitive

information processing within a compact and energy-efficient platform, thereby enabling,

for example, processing of data directly on-chip in so-called edge computing applications.3

Synaptic functions have been scalably and efficiently emulated using memristors,4 memtran-

sistors,5 multi-gated transistors,6 and phase-change memory devices.7 Emulation of spiking

neurons has traditionally relied on circuits comprising multiple transistors8–10 but attempts

to take advantage of the small size and low power consumption of emerging nano devices are

now underway. Recent demonstrations include: the ‘neuristor’, built using two nanoscale

Mott memristors;11,12 leaky integrate-and-fire neurons, based on memristors coupled with

either CMOS transistors,13 Mott insulators,14 or capacitors;15 and stochastic neurons using

phase-change materials.16 Other functions of biological neurons that have been tentatively

demonstrated include periodic spiking and oscillations11,17 and rate coding of stimuli.18 How-

ever, many challenges remain. In particular, it is important to develop individual devices

that capture the full range of dynamics of biological neurons.12 Ref. 16 so far appears to be

the only report of a single nano device which replicates the stochastic firing characteristics

of biological neurons.

Biological neurons exhibit inherently stochastic behavior.19–21 The source of stochastic-

ity can be attributed to numerous complex phenomena that take place at the molecular

level, such as stochastic gating of ion channels in neurons, chaotic motion of charge carriers

due to thermal noise, synaptic fluctuations, inter-neuron morphological variability, and the

effect of background noise.16,22,23 Stochasticity is important because it aids noise-tolerant

and energy-efficient signal coding and transmission,20 tunes the degree of synchrony be-

tween neurons, and enhances sensitivity to environmental stimuli.19,21 Stochastic behavior
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is at the heart of bio-inspired computation and, for example, ‘stochastic facilitation’21 al-

lows complex computational tasks to be performed that are too computationally intensive

for conventional hardware.23 These tasks include Bayesian inference,24 deep learning,25 and

non-deterministic polynomial-time (NP) hard problems such as intrinsic optimization26 and

Boolean satisfiability.27 Stochasticity has been exploited in a dot product engine28 and com-

binatorial optimization.29

Stochasticity is also an important factor in secure information processing and transmis-

sion.30 In particular, efficient random number generation is required for a wide range of appli-

cations such as encryption and cryptography,31 simulations,32 and stochastic computing.33

Pseudorandom number generators (PRNGs) are commonly available in standard software

packages, but are actually intrinsically deterministic.34,35 PRNGs are therefore usually not

suitable for security applications, where it is vital that a sequence of random numbers cannot

be reproduced. True random number generators (TRNGs) are devices that exploit intrinsic

stochasticity in physical phenomena to generate high quality random bit-streams31 that are

secure from external parties. As higlighted in Ref. 30, integration of TRNGs into emerg-

ing computing paradigms would enable new approaches to secure information processing

and might, for example, allow some tasks to be performed directly within memory, thereby

bypassing the von Neumann bottleneck.

Here we show that percolating networks of nanoparticles (PNNs)36,37 can be used to

generate stochastic spiking behavior that is similar to that of individual biological neurons.

The spiking behavior emerges when the devices are measured on fast timescales (1 - 10

µs). We show that the intervals between events have log-normal distributions, originating

from intrinsically probabilistic atomic-scale switching processes. We show that the atomic-

scale dynamics allow reproduction of some of the basic functionality of biological neurons:

stochasticity, rate coding of information, and serial correlations. Finally, we show that the

inherent stochasticity in our nanoparticle devices can be exploited for true random number

generation with high bit rates and bit-streams that pass standard benchmark tests without
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Figure 1: Percolating network of nanoparticles and atomic-scale switching process. (a)
Schematic showing multi-terminal device geometry (contacts shown in yellow) with deposited
PNN. Groups of connected particles are shown in different shades of blue. (b) Schematic of
a tunnel gap within the nanoparticle network showing formation of an atomic-scale filament.
The filament starts to form as a hillock (orange atoms) on one side of the tunnel gap due
to the potential difference across the gap. Once the filament is formed (red atoms), the new
Ohmic connection allows significantly higher current to flow through the filament, leading
to its eventual destruction. Note that the filament is atomic scale and the nanoparticles are
∼ 20 nm in size.36,38

the need for post-processing.

1.1 Percolating Networks of Nanoparticles

Complex networks of nanomaterials have recently emerged as promising systems for neuro-

morphic computing.36,37,39–43 In particular it has been shown that PNNs (Figure 1a) exhibit

complex patterns of correlated electrical signals that are similar to those of networks of bio-

logical neurons in the cortex.37 The origin of this behavior is that the percolating networks

contain many tunneling gaps (between groups of well-connected nanoparticles) which each

emulate biological neurons. Atomic-scale switching processes in each tunnel gap are illus-

trated in Figure 1b – note that the deposition process leads to voids between particles38,44

and that (in contrast to some other types of atomic switch45) it is believed that there is no

dielectric material in the gaps. The switching processes involve formation and destruction

of atomic-scale filaments44 in these gaps and capture some of the integrate and fire charac-

teristics of biological neurons.38 When one switch changes state, consequent changes in the
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distribution of voltages/currents through the network lead to other switching events, and

hence to avalanches of switching events. The observed avalanches of electrical signals are

consistent with critical states, which are associated with optimal information processing.36

The critical dynamics in fact result from the combination of integrate and fire dynamics

together with the scale-free topology of the percolating network.37,38

Previous work relied on measurement techniques that were limited to millisecond sam-

pling intervals36–38 and the behavior of the networks at shorter time scales has so far not

been investigated. Therefore questions such as whether correlated avalanching behavior con-

tinues to be observed at faster sampling intervals, or what might be the ultimate limits for

operation of neuromorphic devices based on these networks remain unanswered. Here we

show that the novel single ‘neuron’ spiking behavior that is the focus of this work emerges

at microsecond timescales.

2 Results and Analysis

Our percolating networks of nanoparticles were deposited on insulating substrates and con-

tacted by multiple electrodes, which were pre-fabricated using optical lithography techniques.

Sn nanoparticles were deposited until the onset of conduction (percolation threshold) was

reached, which ensures the necessary complex network of switching sites (tunnel gaps).36

Optical images of the devices and SEM images of the morphology of the nanoparticle net-

work are shown in Figure S1. The devices were measured with a high speed measurement

system that allows signals from up to 16 electrodes to be recorded at MHz sampling rates.

All results presented here are obtained using DC inputs. Details are provided in the Methods

section below. Figure 2a shows complex patterns of switching events in the current mea-

sured from one electrode of a typical device. The current varies around a constant mean

value and the devices exhibit the same behaviour (both qualitatively and quantitatively) over

periods of months.46 Figure 2b shows that the distribution of inter-event intervals (IEIs) is
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Figure 2: Spiking behavior in a single tunnel gap, stochasticity, and log-normal dynamics.
(a) Typical example from Device 1 of long term switching activity with complex patterns
of switching events occurring throughout the network. Applied DC voltage is 8V and sam-
pling interval is 10 µs. (b) Probability density function (PDF) of the inter-event intervals
calculated from the whole network activity shown in panel a. The additional peak (ar-
rowed) corresponds to the spiking behavior shown in panels c and e. The underlying power
law behavior is associated with correlated avalanches36,37 (see Figure S2). Light and dark
green triangles are PDFs obtained using linear and logarithmic bins, respectively. (c and e)
Zoomed in portions of panel a indicated by the orange and cyan arrows, showing examples
of spiking activity generated by single tunnel gaps and characterized by two distinct current
levels. The time scale is 25000 times smaller than the one in panel a. tU and tD represent
the time spent in the UP or DOWN states, respectively. In panel c (orange border) tU <<
tD while in panel e (cyan border) tU ∼ tD. (d and f) PDFs of the inter-event intervals for
the segments of data shown in panels c and e. Cyan/blue circles and pink/red diamonds
are PDFs obtained using linear/logarithmic bin sizes for tU and tD, respectively. tU and tD
follow log-normal distributions. Log-normal maximum likelihood (ML) fits are shown as the
gray and black lines.
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approximately a power law over more than six orders of magnitude in time, with a power

law exponent of ∼1.8 similar to that reported previously in two electrode devices at much

slower sampling rates37 (the arrowed feature is discussed below). More detailed analysis (see

Figure S2) shows that the avalanches of events are consistent with criticality, with similar

power-law size and duration distributions to those observed previously.36,38

Figures 2c and e show that it is possible to identify periods during which the changes

in current are the same for every event, with increases (decreases) in current corresponding

to formation (destruction) of the same atomic-scale filament (further examples are shown

in Figures S3 and S4) i.e. within the same tunnel gap. We emphasise that each different

spike train (for example Figures 2c and e) originates from a different tunnel gap. The key

new feature of the data is that on very short timescales the same switching events are often

observed repeatedly. Note however that the IEIs are not constant i.e. they are intrinsically

stochastic.

Figure S5a shows the distribution of the current measured in the two states of the switch

(UP and DOWN, corresponding to high and low currents respectively) and fits to the dis-

tributions are shown in Figures S5b and c. When the filament is absent a narrow normal

distribution of currents is observed, with the width of the distribution corresponding to the

measurement noise. When the filament is formed, the current has a broader distribution:

the current flowing is more variable due to stochastic variations in the filament structure on

the atomic-scale, as discussed in more detail in ‘Mechanism’ Section.

Depending on the lifetime of the filament the observed behavior can appear as either a

sequence of well-defined spikes or as a sequence of steps between two current levels. The

latter behavior appears similar to Random Telegraph Noise (RTN), but RTN is usually

associated with charge transport in 2-level systems and leads to exponential statistics which

are very different to those observed here.47 The times spent in each state (tU and tD) follow

log-normal distributions (Figures 2d and f). When spike-like behavior is observed (Figure

2c) the centers of the log-normal distributions of tU and tD are clearly different (Figure 2d),
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whereas they are similar during RTN-like behavior (Figure 2f). The difference between the

two cases is simply the difference in the average lifetime of the atomic filament, and so we

use the term ‘spiking’ to describe both. This spiking behavior is responsible for the deviation

from a pure power-law at short IEIs in the histogram in Figure 2b (arrowed) and was not

clearly resolved in previous measurements at slower sampling speeds.36,37 The log-normal

distributions obviously represent the stochastic behavior that is visible in Figures 2c and e.

As noted above, stochasticity is an important property of biological neurons, and indeed

log-normal behavior is sometimes observed for single neurons.48 Table S1 summarizes data

from multiple examples of spiking for many datasets, devices, and applied voltages. Each

dataset corresponds to a different spike train (for example Figures 2c and e) originating

from a different tunnel gap within a network. The observed tU and tD distributions are

always log-normal, but their average values (τU and τD, respectively, calculated from the

log-normal ML estimators) can both vary over several orders of magnitude – see discussion

in ‘Mechanism’ Section.

Figure 3a shows an example of a typical spike train observed over a long period at a

constant applied voltage, highlighting occasional long intervals between spikes. These occur

because log-normal distributions are heavy-tailed :51 relatively long intervals between events,

in fact up to two orders of magnitude longer than the mean of the distribution, are observed

quite often. Figure 3b shows qualitatively that there are correlations between successive

inter-spike-intervals (ISIs) i.e. that long (short) ISIs tend to follow other long (short) ISIs.

(Note that each ISI is the time between rising edges i.e. the sum tU + tD; ISI 6= IEI. Long

(short) ISIs are defined to be those that are longer (shorter) than the mean ISI, see Figure

S6.) Figures 3c and d make these correlations more quantitative by plotting the relationship

between successive ISIs for 25 different data segments (each with a different colour). See

caption for details. In Section II of the Supporting Information we explain that (i) these

serial correlations are important features of the behavior of biological neurons and (ii) the

observed positive serial correlations are driven by the modulating effect of slow changes in
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Figure 3: Stochasticity and serial correlations. (a) Current measured from Device 1 showing
irregular and stochastic spiking activity. (b) Patterns of short and long ISIs, ISIS and ISIL,
showing that long and short ISIs tend to be grouped together. This is indicative of the
existence of positive serial correlations which are often observed in the ISI sequences of
biological neurons.49 The mean ISI is used as a threshold to define ISIS and ISIL as shown in
Figure S6. (c) Return map50 of the consecutive ISIs for the same dataset. 25 different data
segments are shown using different colours. Note the logarithmic scales. A strong positive
serial correlation is clearly visible i.e. the return map shows that a long ISI tends to be
followed by another long ISI and correspondingly, a short ISI is followed by another short
ISI. The slope of the linear regression (dashed gray line, slope = 0.46) estimates the serial
correlation coefficient for sequential ISIs across the whole dataset. (d) Time evolution of
the return map for the 25 different data segments (dark blue to dark red) shown in panel c.
Each square panel contains 80 ISIs. The x and y scales of each square panel are identical to
those in panel c. Note that the fitted line in panel c represents the average serial correlation
for the whole dataset. Panel d shows that there are a number of contributions to the overall
correlation: (i) very strong serial correlations in some data segments (steep slopes such as
in panels 1, 6, and 22), (ii) weaker correlations (circular clusters of data points such as in
panels 11, 13, and 18) and (iii) variation of the position of the center of each cluster of data
points for different panels. The scatter in each panel is consistent with the stochasticity of
the observed spiking. The clustering of the data in the return maps suggests the existence
of faster and slower modes of spiking behavior.
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potential at other tunnel gaps in the network.

2.1 Control by Electrical Stimuli

The spiking behavior shown in Figure 2 is typically observed in the current measured at

a single electrode (i.e. it is either not observed simultaneously at other electrodes, or is

observed only weakly). This suggests that spiking originates from a tunnel gap which is

well-connected to that particular electrode. Long sequences of uninterrupted spikes are

more easily observed in samples that have been subjected to long periods of high voltage

stimulus, which can cause some other switching sites to be deactivated (high voltages (∼10V)

can cause irreversible local changes in morphology; a small increase in the size of a nanoscale

tunnel gap can render it inactive). This eliminates complex avalanches that partially mask

the spiking behavior, and hence facilitates detailed investigations of spiking and potential

applications. When competing processes are deactivated, we are able to tune the spiking

rate by controlling the applied voltage, as shown in Figure 4. When the voltage input to

the device is tuned we observe a change in behavior from spiking (higher voltage, V∼7.6V)

to RTN-like (V∼7.0-7.4V), to quiet (lower stimulus, V∼6.8V). Spiking is still stochastic

(with a log-normal distribution of tU and tD, Figure 4b) but the average spiking rate of

this individual ‘neuron’ is controllable. This shows that the PNNs can encode information

in the spiking rate (i.e. achieve ‘rate coding’) and have potential to be used as stochastic

neuristors.11,52

Figure 4a shows that as the applied voltage is increased the time spent in the UP state

is reduced and the number of spikes increases. In fact the rate of spiking increases approx-

imately exponentially with applied voltage (Figure 4c). This is because of an exponential

decrease in τU while τD remains approximately constant (Figure 4d – note that there is a

much weaker, but still exponential, decrease in τD). Recall that τU corresponds to the aver-

age time taken to break the atomic-scale filament shown in Figure 1b (and τD is the time to

form the filament). Hence the results in Figure 4 provide strong evidence that the rate at
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which atomic-scale filaments are broken is exponentially dependent on the applied voltage,

whereas the rate of formation of the filaments is substantially unaffected by voltage. (Note

that according to Ohm’s Law the current increases in proportion to voltage, so this in itself

does not demonstrate a voltage-driven rather than current-driven mechanism – see further

discussion below.) This exponential behavior is confirmed in Figure 4e where the slope of

the plot is related to the difference in energy, ∆EUD, between the atomic configurations in

the UP and DOWN states.47 More specifically the slope is ∆EUD/(eElocal), where Elocal is

the local electric field in the tunnel gap of interest. Elocal = βVapplied/d, where d is the size

of the gap and β captures the voltage dividing effect of the complex network. Unfortunately

in general neither β nor d are known, and so it is not possible to determine ∆EUD.

Figure S8 shows the variation of τU and τD for multiple examples of spiking and for

several devices. As for the voltage-dependent data discussed in the previous paragraph, it is

immediately apparent that τD is approximately constant while τU varies significantly (over

five orders of magnitude). The strong sample-to-sample and example-to-example variation

indicates that the time to break an atomic-scale filament depends on the local configuration

of the network i.e. the position of the tunnel gap within the complex fractal architecture.37

In contrast, the time to form the filament is much less sensitive to the local configuration.

These data provide important insights into the atomistic mechanism responsible for spiking,

as discussed in the next section.

We note finally that: (i) the main results of the analysis discussed above are independent

of the type of curve fitting: Figure S7 shows the results of fitting exponentials to the data of

Figure 4, as for a standard RTN analysis.47 Table S1 shows fitted parameters for all spiking

datasets analyzed – the trends are comparable for both the log-normal and exponential

analyses. (ii) At high electric fields the switching speed (time to form/break an atomic-

scale filament) is faster than 1µs, see Figure S3, similar to the switching speeds observed for

Ag/AgS atomic-scale switches in the high electric field regime.45
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Figure 4: Spiking activity controlled by voltage stimulus, i.e. ‘rate coding’. (a) Conduc-
tance of Device 3 measured at different applied voltages. The time spent in the UP state, tU ,
decreases with increasing applied voltage. Sampling interval is 10 µs. The range of the ver-
tical axis is 0.13 G0 for each panel. [Note that conductance is used here instead of current in
order to allow comparison of data obtained using different input voltages. Current increases
with voltage according to Ohm’s law.] (b) PDFs of the inter-event intervals of Device 3 at
an applied voltage of 7.6 V. Cyan/blue circles and pink/red diamonds are PDFs obtained
using linear/logarithmic bin sizes for tU and tD, respectively. Gray and black lines represent
the log-normal ML estimates of tU and tD, respectively. (c) Number of events as a function
of applied voltage during 15 s of spiking activity. Event count increases approximately ex-
ponentially with applied voltage. (d) Mean time τU (blue circles) and τD (red diamonds),
calculated from the log-normal ML estimators, as a function of applied voltage. τU decreases
with increasing applied voltage while τD appears approximately constant (there is a much
weaker, but still exponential, decrease). (e) Logarithm of the ratio between τU and τD as a
function of applied voltage. Note that this analysis is performed entirely using log-normal
ML estimators, in contrast with the standard approach which is to assume that data such
as that shown in panel b can be fitted with exponential functions.47 The standard form of
analysis is shown in Figure S7 for comparison.
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2.2 Mechanism

Log-normal statistics (LNS) can result from any generic process involving a cascade of mul-

tiplicative conditional probabilities.51 It has previously been shown that atomic hopping

processes, which are governed by exponential Boltzmann probabilities, can lead to LNS dur-

ing formation and destruction of nanoscale filaments.53–55 These models typically describe

movement of many atoms through an oxide matrix in order to form (comparatively large)

filaments, and therefore describe fundamentally different switching processes. Nevertheless,

we envisage that a similar hopping model could explain the motion of a small number of

atoms across multiple atomic sites56–58 near a tunnel gap – see schematic illustration in Fig-

ure 5a. In such a model the probability of formation of a filament would be a product of

exponential probabilities of hopping between sites

P (E) = exp(−(Ui − E)/kBT ) (1)

where Ui is the energy barrier for each hop and E is the energy supplied by the applied electric

field or current. Such products would directly result in LNS.51 However, a sequential hopping

model does not seem to be compatible with the observed reversibility and repeatability of

the switching process. Repeatability requires that the formation of subsequent filaments

would be governed by the same sequence of hopping steps, but it seems very unlikely that

once a filament has formed the displaced atoms would revert to their original positions (i.e.

that the hopping process in Figure 5a would be perfectly reversed).

The reversibility that is evident in the data (Figure 2) indicates that it is much more

likely that a single atom is responsible for spiking, with the atom jumping between two sites,

or two similar sites, as illustrated in Figure 5b. The LNS would then result directly from

a normal distribution of U (see Eq. 1), representing atomic-scale variations in the energy

barrier (or pinning energy) each time the atom changes position. The fitted parameters

shown in Table S1 support this interpretation since the widths of the distributions of tU and
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Figure 5: Schematics of two possible switching mechanisms that can lead to log-normal
statistics. (a) Sequential hopping of an atom from site to site. LNS result from the multi-
plicative probability of the atom moving from the initial to the final site. (b) Direct hopping
from an initial site to a nearby final site. LNS result from a distribution of pinning energies
in the two sites. The colours of the atoms (blue, orange, and red) correspond to the particles,
hillock, and the filaments shown in Figure 1. The moving / hopping atoms are shown in
gray.

tD (0.5 < σU < 1.7 and 0.3 < σD < 1.7) are the same order of magnitude for all examples

of spiking / RTN, for all samples, and for all applied voltages / measured currents. This

suggests that the distribution of pinning energies is similar in all cases, and that the same

pinning energies are important for both filament formation and filament breaking. The width

of the distribution of currents flowing in the UP state (see discussion of Figure S5 above) is

also consistent with this model as it suggests modest variability in the positions of the key

atoms in Figure 5b, and hence a variation in pinning energies.

The features described in the previous paragraph are broadly consistent with the model

of Ref. 56, although we emphasize again that further experiments are required in order to

allow a definitive conclusion as to whether atomic motion is driven by current or voltage.

The strongly (weakly) exponential variation of τU (τD) with applied voltage is consistent with

models in which the potential barriers for an atom to hop into (out of) the tunnel gap (Figure

5b) are highly asymmetric. In the present case it is clear that the barrier to hop out of the gap

(i.e. to leave the UP conductance state) is much smaller, and hence the hopping rate 1/τU is

modified more strongly by the applied voltage. This type of asymmetry is discussed in some

detail in Ref. 47, where it is also pointed out that the barrier heights may be affected by
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charge states and redox processes. Hence, while these results provide important clues to the

mechanism, detailed modeling is challenging – and made even more so by lack of knowledge

of the local electric fields and currents within our percolating structures. It would be highly

desirable in the future to study single tunnel junctions between tin particles, perhaps using

similar methods to those employed for recent studies of Au break junctions.57

2.3 True Random Number Generation

We now show that the intrinsically stochastic nature of the spiking process can be exploited

for true random number generation. A range of physical variables and nanoscale devices

have previously been employed in TRNGs, as summarized in Section III of the Supporting

Information. While impressive performance has been achieved, existing approaches suffer

from various drawbacks (such as lack of compatibility with CMOS technologies, scalability,

reliability, low bit rates and low technology readiness levels)60,61 and alternative technologies

are still required. In many cases additional post-processing steps are required to remove in-

trinsic bias in the underlying physical phenomena, i.e. in order to generate random numbers

of sufficient quality for applications.

Here, we exploit the stochastic inter-spike intervals demonstrated in Figures 2d and f by

converting them into random numbers. This approach provides significantly higher bit rates

than alternative methods which convert the measured output currents (high or low) directly

into bits (1s or 0s).62 Figure 6a shows a schematic of a circuit that has been designed for

this purpose, and Figure 6b shows the working principle. The current output of the device

is fed into a spike detector comprising a high-pass filter, a comparator, a delay line and an

AND gate. The output of the spike detector is an event train corresponding to the rising

edges of the spikes. This event train is used to reset a multi-bit counter operating at a

clock frequency set by an oscillator. (In our implementation the clock frequency is chosen

to match the sampling speed of the measurement device.) The counter produces a binary

number that encodes the time between spikes (tU + tD, middle panel of Figure 6b). Since
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Figure 6: True Random Number Generator based on PNN. (a) Circuit schematic of the
PNN-TRNG. The spiking output of the PNN is fed into a spike detector which generates an
event train in correspondence with each rising edge. The event train is then fed into a multi-
bit counter that operates at a frequency set by the oscillator and measures the time between
rising step edges. The m least significant bits (LSBs) from the counter output, which are the
most variable bits, are the inputs of a shift register which assembles the bits, generating the
bit-stream. (b) Example of random number generation using data from Device 2 measured
with a sampling interval of 1 µs. Each time between rising edges, tU + tD, is measured as a
multiple of the oscillator period and subsequently converted to a binary number from which
m LSBs are added to the bit-stream by the shift register. In this example 4 LSBs were
selected. (c) Visual representation of a portion of a bit-stream generated using the PNN-
TRNG. Each pixel represents a bit. White: ones, black: zeroes. (d) Results obtained from
the NIST Statistical Test Suite SP 800-22.59 The analyzed bit-stream was generated from
60 s of spiking activity obtained from Device 2 with a sampling interval of 1 µs, generating
∼1.8 Mbits. 12 NIST tests were applied, carefully following the recommended protocols –
see methods for details. Each test is considered passed, and the bit-stream is considered
indistinguishable from a random one, if the pass rate is at least 96/100 and if p-value >
0.0001. Due to the limited number of sequences, the p-value reported for the universal
test is the average of the p-values found for each sequence. The generated bit-stream from
the proposed PNN-TRNG passes all the applied tests without the use of post-processing
techniques.
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the most significant bits change infrequently only the m least significant bits (LSBs) are

retained,31,62 as shown in the lower panel of Figure 6b. The best choice of m depends on the

distribution of ISIs and generally needs to be tested experimentally. Finally, the output of

the counter is converted into a bit-stream by a shift register.

Figure 6c illustrates a section of a generated random bit-stream. No obvious pattern is

visible, suggesting that the bit-stream is at least qualitatively random. Detailed, quantitative

testing of the quality of the bit-stream is achieved using the National Institute of Standards

and Technology (NIST) Statistical Test Suite SP 800-22,59 which was developed for precisely

this purpose. The protocols suggested by NIST were followed carefully for each test. The

tests return a pass rate and a p-value, and are considered passed if the pass rate is greater

than 96/100 and if p-value > 0.0001. We found the best performance for m = 4, i.e. when

the number of LSBs is chosen to correspond to the relatively flat part of the ISI histograms.

This is consistent with previous reports that suggest that more uniform distributions are

advantageous.62 Note that the use of only the LSBs removes any possibility that serial

correlations (Figure 3) affect the bit-stream.

We first tested our TRNG on datasets in which spiking is very homogeneous and well-

resolved, measured with 10 µs sampling intervals. Figure S10 shows results obtained using

part of the data presented in Figure 2. The overall bit rate is 16 kbits s-1 and the length

of the generated bit-stream (800 kbits) is sufficient to apply 12 of 15 standard NIST tests.

The bit-stream passes all 12 tests. When we tested longer datasets measured with the same

sampling interval we found that they often failed the NIST frequency and cumulative sums

tests. This is because the sampling interval is too long to completely resolve the spiking

activity (the spike train is sub-sampled, see Figure S4b). More specifically, when the dataset

includes many short ISIs, they cause biasing of the proportion of 1s and 0s.

In order to circumvent the sub-sampling issue we next tested the output of our TRNG

using datasets which were measured using shorter (1 µs) sampling intervals. Figure 6d shows

the test results generated from 60 s of spiking activity (data from Figure 6b). The overall
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bit rate doubles to 30 kbits s-1, the length of the bit-stream increases to ∼1.8 Mbits, and

the bit-stream again passes all 12 of the 15 NIST tests for which sufficient data is available.

Interestingly, this dataset includes segments of data where simultaneous spike trains from

several tunnel gaps overlap (see Figure S9), and so Figure 6d shows that the output of

the TRNG is robust, even for less homogeneous spiking. Hence, effective random number

generation relies on high sampling speeds (to resolve the spikes) more than high homogeneity

of the spiking sequences. A next step is to further increase the length of the bit-stream, but

it would require approximately two orders of magnitude more data to attempt all 15 NIST

tests, and new methods would be needed to handle the enormous datasets. Implementation

of the TRNG in hardware would bypass these issues but would require major changes to

our measurement and data acquisition systems. Careful design of the hardware should allow

significant increases in clock speed and consequent improvements in the bit rate and length

of bit-stream. The bit rate of the RNG mainly depends on mean of the ISI distribution and

on the sampling interval. The bit rate could be improved significantly by moving to a faster

measurement system that allows the sampling interval to be decreased. A further step would

be to combine our device with a linear-feedback shift register (LFSR) which could increase

the bit rate to ∼ 100 Mbits s-1.31

Section III of the Supporting Information shows that the performance of our TRNG (bit

rate, number of NIST tests passed, length of the tested bit-stream) is competitive with, and in

many cases exceeds, that of most previously reported devices. In particular, Table S2 shows

that our TRNG achieves high performance in all four key metrics. We emphasize that our

TRNG passes all NIST tests for which there is sufficient data without post-processing. This

means that the original spiking sequence is free of bias and that additional post-processing

circuitry can be avoided. This is advantageous because post-processing is energy-intensive,

reduces the final bit rate, and increases the total area of the device.
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3 Conclusion

We have demonstrated that percolating networks of nanoparticles exhibit stochastic spiking

behavior that is qualitatively similar to that observed for biological neurons. Spiking in

our devices occurs on timescales that are about a thousand times faster than in the brain,

providing opportunities for high-speed brain-like processing. Stochasticity is well-captured

in histograms of inter-event intervals, and the observed log-normal distributions provide

new insights into the atomic-scale switching mechanisms responsible for spiking. The spik-

ing rate can be controlled via an input stimulus, similar to rate coding of information in

biological systems. The combination of spiking activity (at local sites) and information

processing capability (of the rest of the critical network)36 has interesting parallels with

biological recognition processes such as olfaction,63 providing intriguing opportunities for

development of novel neuromorphic systems. Finally, we showed that the stochastic behav-

ior can be exploited for true random number generation and that high quality bit-streams

can be generated, opening up opportunities for secure, brain-like information processing.

20



4 Methods

Device Fabrication

Our percolating devices are fabricated by simple nanoparticle deposition processes.44,46,64

Multi-contact metal electrodes were fabricated using photolithographic processes, thermal

evaporation, and lift-off techniques, on a Si wafer which has a 200 nm thick silicon nitride

passivation layer. The metal electrodes are made of 5 nm of NiCr adhesion layer and 45 nm

of Au. The electrodes are arranged around a circle of diameter of 600 µm. As described

in detail in Refs. 36,44,46 a beam of particles is deposited on the devices in an UHV en-

vironment using electrical feedthroughs to enable the device conductance to be monitored

during the deposition process. 7 nm Sn nanoparticles are deposited on the substrate and

coalesce to form structures with a characteristic grain size of around 20 nm. Deposition is

terminated at the onset of conduction, which corresponds to the percolation threshold.64,65

The deposition takes place in a controlled environment with a well-defined partial pressure

of air and humidity, as described in Ref. 46. This process leads to controlled coalescence

and fabrication of robust structures which function for many months, but which yet allow

atomic-scale switching processes to take place unhindered.46

Electrical Characterisation

Electrical measurements are carried out using a National Instruments multi-channel

data acquisition system (NI PXIe-1082, PXIe-6378 ADC/DAC) and two distinct custom-

developed sample mounting systems (SMS). One SMS has embedded trans-impedance am-

plifiers which transform the current measured through the device to measurable voltage

outputs. The other SMS has push-pins which are the interface between the device and the

external circuitry. In this case, series resistors are employed within the measurement circuit

to measure the output currents. Electrical stimuli are applied to four opposite electrodes of

the percolating device, while all other electrodes are grounded. DC measurements are used

for the statistical analysis of spikes because they facilitate the observation of spikes for long
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periods of time. Pulsed measurements are used to assess voltage dependent dynamics. The

measurements reported here are performed with sampling intervals of either 1 µs or 10 µs.

Data Analysis

As described in detail in Ref. 36 the data analysis methods used in this work are substan-

tially the same as those developed in the neuroscience community to analyze micro-electrode

array recordings from biological brain tissue. Events are defined as changes in the current

signal that exceed a threshold value. The data analysis is primarily performed in the MAT-

LAB programming environment. We follow the maximum likelihood (ML) approach of Refs.

66,67 to estimate power-law, log-normal, and exponential fitting parameters for the IEI

distributions and power-law fitting parameters for avalanche size and duration distributions.

Random Number Generation and NIST Randomness Tests

The working principle of the PNN-TRNG was analyzed in MATLAB on spike sequences

measured using the same electrical characterization techniques described above. The NIST

Statistical Test Suite was used to assess the randomness of the bit-stream.59 The bit-stream

is initially divided into sequences. Each test is then applied to each sequence and returns

a p-value. The sequence passes the test if the p-value is greater than the significance level

(α = 0.01 for cryptographic applications as suggested in the NIST documentation). The

statistical test suite returns a pass rate which is the proportion of how many sequences have

passed the test. The pass rate must be greater than the pass rate threshold. Moreover,

from the set of p-values found from testing the sequences, a second p-value is calculated to

assess the uniformity of the p-values of the sequences. The bit-stream fully passes the tests

of the NIST Statistical Tests Suite if and only if the pass rate is greater than the pass rate

threshold and the second p-value is greater than 0.0001. In particular, all tests were run on

100 sequences of 18300 bits, except the rank test which was run on 46 sequences of 39000

bits and the universal test which was run on four sequences of 450000 bits for data measured

from Device 2 with a sampling interval of 1 µs.
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4.1 Supporting Information

The Supporting Information is available free of charge on the ACS Publications website at

DOI: *******.

(Figure S1) Images of a PNN device; (Figure S2) Inter-event intervals, and avalanche and

criticality analyses; (Figure S3) Examples of spiking activity measured with 1 µs sampling

interval; (Figure S4) Examples of spiking activity measured with 10 µs sampling interval;

(Figure S5) Histograms of the measured current for the segment of data from Device 1 shown

in Figure 2a; (Figure S6) Histogram of the ISIs for the dataset used in Figure 3; (Figure S7)

Analysis of data from Figure 4 of the main text using a standard methodology for random

telegraph noise (RTN); (Table S1) Summary of the analyzed sequences of data from three

different devices; (Figure S8) Variation of the mean times in the UP and DOWN states. τU

(panel a) and τD (panel b) are plotted against the ratio τU/τD for all the spiking data of

different devices; (Figure S9) Examples of detected rising edges of spikes using the TRNG

circuit, showing robustness of the method; (Figure S10) True Random Number Generation

from data measured with a sampling interval of 10 µs. (Figure S11) Stochasticity and serial

correlations. Reproduction for the reader’s convenience of Figure 3 from the main text;

(Table S2) Comparison of TRNG performance with results from the literature.
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