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ABSTRACT 
 

COMBINING HEAT-PIPES HEAT EXCHANGER AND 
SOLAR ENERGY FOR COMFORT COOLING 

 

By 

Zulkarnaini Abdullah 

 
There are concerns over energy difficulties, resource exhaustion and environmental impacts. 

Among the substantial reasons for these concerns is the increase in the energy demand, to maintain 

the comfort levels and the time spent in buildings which contribute to the rise in energy 

consumption. The energy consumed for heating, ventilation and air conditioning is so significant 

that energy-saving and efficiency have become the main objective in every energy policy. As a 

result of the growing demand, there is always a great need for energy reduction in the heating and 

cooling processes. Thus, this research aimed to evaluate the potential of solar energy in energy-

saving applications. The first task involved modelling a room using an acrylic test-box with 

different opening configurations for temperature distribution collection. The second task was 

designing a ‘heat-pipes heat-exchanger’ to be attached to the test box to lower the air intake to the 

box. The third task involved operating a refrigerator that runs on plate photovoltaic solar panels 

without the need for grid electricity. It is an understandable fact that solar energy is no match 

against the grid electrical energy; however, a room's cooling system could benefit from the abilities 

of the heat pipes in transferring heat, thus resulting in a reduction of energy consumption. A 

refrigerator that runs on solar energy reduces energy consumption by cutting the dependency on 

non-renewable energy resources.  

The methods used were both experimental and computational. Regarding the experiments, the 

capabilities of the heat-pipes heat-exchanger in reducing temperature were tested with the test-box 

in five opening configurations. Three of the configurations were tested in Sydney's medium 

ambient temperature while the other two configurations and the solar energy refrigerator were 
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tested in Kuala Lumpur's high ambient temperature. The aim was to verify the solar energy's 

capability in operating a cooling system with optimal converted solar energy. Regarding 

computation, the commercial software CFD-ACE and ANSYS-Fluent were used. Various room 

air intake openings, locations, side edges and boundaries were replicated rigorously and verified. 

Additionally, the natural and forced ventilation that influences the airflow to the room has been 

considered. SOLARGIS software was applied to verify the annual energy consumption of the solar 

panels.  

The Computational Fluid Dynamics satisfactorily converge all the properties and the conditions 

using the RANS method to solve the velocity components, pressure and k-ɛ (epsilon) scheme. 

Numerical and graphical presentations with different plots, streamline data and curves were 

compared to predict the best room-airflow configurations. Based on the governing equations of 

fluid dynamics, namely the conservation of mass, momentum, and energy, the computational fluid 

dynamic solved the mathematical modelling. By the simulation, the heat-pipes heat-exchanger of 

R134a as a refrigeration medium recorded a 5 K of differences from the inlet evaporator end to 

the outlet condenser end, while with the experimental studies the difference is between 5 to 9 K.   

The main achievement obtained from the experiments is that the heat-pipes heat-exchanger was 

found capable of pre-cooling a room by up to 9 K. The best opening configuration showed that the 

cooling energy saving was in the range of 93 W/m3 to 140 W/m3 or about 25% to 33% of the 

room's required energy. The experiment using the solar energy refrigerator found that the 

application could achieve the desired temperature of 5°C with 31% savings of annual power 

consumption. An additional experiment was also performed for a refrigerator driven by solar and 

wind energy. The objective was to verify the energy-saving capability of wind turbines combined 

with solar energy. It was thus demonstrated that the installed wind turbine was capable of operating 

the refrigerator for 7 hours.  

The significance of the research is that the heat-pipes heat-exchanger reduces room temperature 

while solar energy reduces the dependence on grid electricity. Thus, the combined solar energy 

and passive cooling have a huge potential in reducing energy while maintaining comfort cooling. 

Thesis directed by Dr Ba Phuoc Huynh 

School of Mechanical and Mechatronic Engineering 
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