

Performance and Mechanism of Autogenous Self-healing in Cementitious Composites Materials

by Caihong Xue

Thesis submitted in fulfilment of the requirements for the degree of

DOCTOR OF PHILOSOPHY

under the supervision of

Principal Supervisor:Professor Vute SirivivatnanonCo-Supervisor:Professor Jianchun LiCo-Supervisor:Dr Marie Joshua TapasExternal Supervisor:Professor Kejin WangExternal Supervisor:Professor Caijun Shi

University of Technology Sydney Faculty of Engineering and Information Technology

Sep 2021

CERTIFICATE OF ORIGINAL AUTHORSHIP

I, *Caihong Xue*, declare that this thesis, is submitted in fulfilment of the requirements for the award of Doctor of Philosophy, in the School of Civil and Environmental Engineering, Faculty of Engineering and Information Technology at the University of Technology Sydney.

This thesis is wholly my own work unless otherwise referenced or acknowledged. In addition, I certify that all information sources and literature used are indicated in the thesis.

This document has not been submitted for qualifications at any other academic institution.

This research is supported by the Australian Government Research Training Program.

Signature: Production Note: Signature removed prior to publication.

Date: Sep 20, 2021

Acknowledgements

Completing the Ph.D journey is never a solitary effort, and as always, I am extremely grateful to many people and feeling really lucky to have them in my life. On the top of the list are my supervisors, Professor Vute Sirivivatnanon, Professor Jianchun Li, Dr Marie Joshua Tapas, Professor Kejin Wang and Professor Caijun Shi. More than anything, they supported me when I felt the most helpless, and that gave me the confidence to begin again, to follow my dreams and to be myself. I keep telling myself, if possible in the future, I want to be a supervisor like them to deliver all the kindness and help that I received from them to others, always considering the needs of students, spending time on student's work, giving the student freedom to do research in their own way and providing technical guidance for further improvement. Moreover, thanks for their guidance, comments and patience on my dissertation. Without out them, I will never get there.

I would also like to thank Professor Hadi Khabbaz for helping me go through the most difficult time.

I am also extremely thankful to Professor Arnaud Castel for the handwritten comments on my work, which inspired me to work hard on research. Likewise, I am thankful to Dr Paul Thomas for his detailed comments and explanation on test methods and results, allowing me to learn faster and efficiently.

I would like to thank UTS Mortar and Concrete lab, UTS Science, UTS Environmental Lab and UTS workshop for providing the facilities and equipment. I would also like to thank Mr Rami Haddad, Muller Hailu, Herbert Yuan, Mohammed. Johir, Scott. Graham and Miss Ann Yan for providing professional technical assistant. I would like to thank my friends from UTS for making my PhD life colourful and memorable. Thanks for accompanying me to finish the Sydney Marathon and enjoy the beauty of Australia.

I would like to thank my life friend in China for the trust and encouragement. Thanks for always being there for me.

I am extremely grateful to my mother, for her unconditional love and support. Finally, the little girl is no longer a student.

Lastly, I would like to thank China Scholarship Council (CSC) and UTS for providing financial support for my study.

List of Publications

- Effect of chloride ingress on self-healing recovery of smart cementitious composite incorporating crystalline admixture and MgO expansive agent, *Cement and Concrete Research*, vol. 139.
- Numerical investigation on interface crack initiation and propagation behaviour of self-healing cementitious materials, *Cement and Concrete Research*, vol. 122.
- Self-healing efficiency and crack closure of smart cementitious composite with crystalline admixture and structural polyurethane, *Construction and Building Materials*, vol. 260.

- Novel experimental and numerical investigation on bonding behaviour of crack interface in smart self-healing concrete, *Smart Materials and Structures*, vol. 29.
- Effect of incompatibility between healing agent and cement matrix on self-healing performance of intelligent cementitious composite, *Smart Materials and Structures*, vol. 29.

- A review study on encapsulation based self-healing for cementitious materials, Structural Concrete, vol. 20.
- Self-healing performance of cementitious composite in marine environments-A prospect in Australia *Concrete in Australia*, vol. 46.

Table of Contents

Certificate of Original Authorshipi
Acknowledgementsii
List of Publicationsiv
List of Figuresx
List of Tablesxv
List of Abbreviationsxvi
Abstractxxvi
1. Introduction
1.1. Objectives
1.2. Significance of the research
2. Literature review
2.1. Introduction
2.2. Self-healing cementitious composite materials (SHCCMs)7
2.2.1. Autogenous self-healing
2.2.2. Autonomous self-healing12
2.2.3. Methods for enhancing autogenous self-healing13
2.3. Cracking and self-healing on properties of cementitious composites
2.3.1. Cracking and crack closure measurement
2.3.2. Mechanical properties
2.3.3. Durability
2.4. Characterization of self-healing products
2.5. Summary
3. Mechanical properties recovery assessment for autogenous self-healing in water61
3.1. Introduction
3.2. Experimental investigation
3.2.1. Raw materials and specimen fabrication63
3.2.2. Crack inducing and self-healing exposure64

3.2.3. Mechanical properties recovery assessment	66
3.2.4. Interface between self-healing products and crack surface	72
3.3. Experimental results and discussion	72
3.3.1. Flexural capacity recovery	73
3.3.2. Compressive properties recovery	75
3.3.3. Interface between self-healing products and crack surface	
3.4. Conclusions	
4. Performance and mechanism of autogenous self-healing in water	and NaCl
solutions	
4.1 Introduction	85
4.2 Experiment investigation	86
4.2.1 Raw materials and specimen preparation	86
4.2.2. Crack inducing and self-healing exposure	
4.2.3. Self-healing performance	
4.2.4 Characterization of self-healing products and pastes	92
4.3. Experimental results	
4.3.1. Crack closure ratio	
4.3.2. Recovery of flexural properties	96
4.3.3. Characterization of self-healing products and pastes	
4.4. Discussion on self-healing mechanism under chloride attack	111
4.4.1. Effects of unhydrated cement particles	111
4.4.2. Effects of crystalline admixtures	112
4.4.3. Effects of the MgO-type expansive binder	114
4.4.4. Effect of chloride on the self-healing reaction	115
4.5. Conclusions	117
5. Influence of autogenous self-healing on chloride penetration in NaCl solution	ons and sea
water	
5.1 Introduction	120
5.2 Experimental investigation	120
5.2.1 Raw materials and specimen preparation	120
5.2.2. Crack inducting and self-healing exposure	
J.2.2. Crack inducting and sen-incaring exposure	121

5.2.3. Self-healing performance assessment	124
5.2.4. Chloride ingress, elemental profile and phase alteration in matrix .	
5.2.5. Self-healing products formed in sea water	129
5.3. Experimental results	130
5.3.1. Self-healing performance assessment	130
5.3.2. Chloride ingress, elemental profile and microstructure alterat	tion in the
matrix	137
5.3.3. Self-healing products formed in sea water	147
5.4. Effects of self-healing on the chloride penetration	155
5.4.1. In sea water	155
5.4.2. In sodium chloride solutions	157
5.4.3. Chloride penetration affected by wet/dry cycles	157
5.5. Conclusions	160
6. The hydration and leaching behaviour of SHCCMs affected by CAs	163
6.1. Introduction	
6.2. Experimental investigation	
6.2.1. Materials and specimen preparation	
6.2.2. Effects of CAs on physical properties and heat flow	166
6.2.3. Effects of CAs on leaching and pH	166
6.2.4. Effects of CAs on hydration products	167
6.3. Experimental results and discussion	167
6.3.1. Setting time, workability and compressive strength	167
6.3.2. Hydration heat	170
6.3.3. Leaching and pH	
6.3.4. Hydration products	
6.4. Conclusions	
7. Conclusions and future work	195
7.1. The assessment of self-healing on mechanical properties recovery	195
7.2. The interaction between self-healing and chloride penetration	197
7.3. The self-healing mechanism of SHCCMs with CAs	198
7.4. Recommendations for future work	

Appendices	
Appendix A	
Reference	

List of Figures

Fig. 2.1 Microcracks used to track the autogenous self-healing due to continued hydration
in the CO ₂ -free environment9
Fig. 2.2 Autogenous self-healing process due to carbonation
Fig. 2.3 Crack closure of cement paste and Ca(OH) ₂ activated GGBFS paste in water. 14
Fig. 2.4 Effects of calcium sulfoaluminate-based expansive additive (CSA) or/and
crystalline additives (CAs) on the crack closure16
Fig. 2.5 Self-healed crack in specimens with CSA17
Fig. 2.6 SEM image of hydration products of concere with CAs20
Fig. 2.7 Caclulation of the crack area
Fig. 2.8 BSE imaging and EDS analysis of a self-healed crack (200 μ m) submerged in
seawater for 28 days. Area that are "yellow" of the EDS images representing calcium,
"blue" representing magnesium and "violet" representing silicate
Fig. 2.9 Crack volume change measured by µCT26
Fig. 2.10 Uniaxial tensile tests
Fig. 2.11 Splitting tensile test set-up for inducing a singe crack
Fig. 2.12 The flexural stress-crack opening displacement curves of deflection-hardening
HPFRCCs with fibers distributed parallel to the axis of the beams
Fig. 2.13 Typical load-displacement curve of the pull-out test
Fig. 2.14 Effect of COD on the water permeability
Fig. 2.15 Setup for measuring the gas permeability of cementitious composite materials.
Fig. 2.16 The gas permeability of cracked cylinders associated with the damge of elastic
modulus45

Fig. 2.17 Effect of crack width created by splitting tensile loading on the increase of gas
permeability
Fig. 2.18 Effects of cracks on chloride profiles measured by EPMA51
Fig. 2.19 Cracks on carbonation-induced corrosion
Fig. 2.20 SEM-EDS points analysis of self-healing products of cement due to further
hydration
Fig. 2.21 SEM-EDS analysis of self-healing products formed in ECC with CSA
Fig. 3.1 Morphology and XRD pattern of the used crystalline admixture admixture64
Fig. 3.2 Three-points bending test setup with the crack opening displacement control
using an extensometer
Fig. 3.3 Pre-cracking and reloading of mortar prisms using three-points bending under
different loading levels
Fig. 3.4 Schematic diagram of SDI and PDI from the stiffness damage tests
Fig. 3.5 Cyclic compressive loading/unloading procedure for self-healing performance
assessment
Fig. 3.6 The flexural load-crack opening displacement curves of the steel rebar reinforced
prisms before cracking and after self-healing74
Fig. 3.7 Effects of loading/unloading cycles on the compressive properties77
Fig. 3.8 The effect of loading/unloading cycles and self-healing on the stress-strain curves.
Fig. 3.9 Effects of cracking and self-healing on the compressive properties
Fig. 3.10 Autogenous self-healing products in surface cracks
Fig. 3.11 Autogenous self-healing products fomed in internal cracks and pores
Fig. 4.1 Self-healing observation

Fig. 4.2 Flexural load and crack opening displacement curves of the fiber-reinforced91
Fig. 4.3 Crack closure ratio of self-healing in different chloride environments
Fig. 4.4 Self-healed cracks under different environmental conditions
Fig. 4.5 Effects of chloride penetration from NaCl solutions on the flexural properties of
the cracked and uncracked specimens97
Fig. 4.6 The flexural load and crack opening displacement curves of the original and the
self-healed cracked specimens
Fig. 4.7 Morphology of self-healed cracks and elemental compositions at different spots
(CMA90 in Cl-2)
Fig. 4.8 XRD analysis on the self-healing products and cement pastes under different
Fig. 4.9 FTIR curves of self-healing products
Fig. 4.10 FTIR curves of cement pastes after self-healing
Fig. 4.11 Quantification of self-healing products based on the TG/DTG curves 108
Fig. 4.12 Characterization of cement pastes exposed to different solutions
Fig. 4.13 Microstructure of the self-healed crack in C100 exposed to water
Fig. 4.14 Morphology of self-healing products of CA100 exposed to distilled water (the
marked yellow line was the approximate boundary)
Fig. 4.15 Self-healing mechanism of cementitious composite with CAs and MgO: (a)
unhyrated cement (UHC), CAs and unhydrated MgO grains (UMGs) exposed to the crack
solution; (b) various ions diffusion to crack solution to saturation; (c) crystals formation;
and (d) carbonation of crystals114
Fig. 4.16 Self-healing products contributed by the hydration and carbonation of MgO (the
marked yellow line was the approximate boundary)

Fig. 4.17 Comparison on Ca/Si and Al/Si of the self-healing products of C100 and CA100,
the CH and C-S-H in C100 and CA100, exposed to the 0.545M NaCl solution
Fig. 5.1 Splitting tensile test setup with DIC
Fig. 5.2 Crack closing measurement by 3D laser scanning
Fig. 5.3 P_{split} -COD curves of the original, cracked and self-healed cementitious
composites
Fig. 5.4 Sample preparation for microstructural analysis
Fig. 5.5 Crack closure ratio of cracked specimens exposed to different solutions 131
Fig. 5.6 Self-healed cracks in CMA90 after three months exposure in different solutions.
Fig. 5.7 Self-healing on splitting tensile properties
Fig. 5.8 Self-healing on water absorption
Fig. 5.9 Effects of self-healing on the chloride penetration
Fig. 5.10 The elemental profiles of the matrix exposed to sea water and Cl-2141
Fig. 5.11 TGA for different mortar after 3 months of wet/dry cycles in water, sea water,
Cl-1 solution and Cl-2 solution
Fig. 5.12 Effects of the exposure environments on the phase alteration in the mortar
matrix
Fig. 5.13 SEM-EDS mapping of the self-healed cracks
Fig. 5.14 SEM-EDS points analysis results of healing products of CMA90152
Fig. 5.15 Quantification of healing products formed in different solutions
Fig. 5.16 Morphology of the self-healing products formed in natural sea water
Fig. 5.17 The change of the micrtostucture in the matrix exposed to the saline solutions.

Fig. 5.18 Expansion of specimens after exposure to different solutions
Fig. 6.1 XRD of two CAs
Fig. 6.2 DTG curves of the original CAs powder165
Fig. 6.3 Effects of CAs on the setting time of pastes
Fig. 6.4 Mortar workability and compressive strength
Fig. 6.5 Hydration-related heat evaluation of pastes with CA-α
Fig. 6.6 Hydration-related heat evaluation of pastes with CA-β172
Fig. 6.7 Leaching of ions and pH values of pastes with CA- α . The values marked as
"calculated" for the concentration of Na and K were calculated from oxides (Na2O and
K ₂ O) in the raw materials
Fig. 6.8 Leaching assessment and pH values of pastes with CA-β179
Fig. 6.9 XRD pattern of hydration products of pastes with CA- α at 7 d and 28 d; U: U-
phase, E:ettringite; P: portlandite; T: thenardite; C:calcite; A; alite; B: Belite; Q;quartz;
CSH: Calcium-Silicate-Hydrates; MH: brucite; Hc: hemicarboaluminate;
Mc:monocarboaluminate and G: gypsum
Fig. 6.10 XRD pattern of hydration products of pastes with CA- β at 7 d and 28 d 183
Fig. 6.11 TG and DTG curves of hydration products of pastes with CA- α at 7 d and 28 d.
Fig. 6.12 DTG curves of hydration products of pastes with CA- β at 7d and 28 d 186
Fig. 6.13 Mass percentage of Ca(OH) ₂ and CaCO ₃
Fig. 6.14 SEM-EDS analysis of hydration products of Ca100191
Fig. 6.15 SEM-EDS analysis of hydration products of Cβ100192

List of Tables

Table 3.1 Chemical compositions of cement and crystalline admixture	64
Table 3.2 Mix proportions of mortars	64
Table 3.3 Loaing/unloading cycles performed on mortar cubes to induce cracks	75
Table 3.4 The effect of self-healing on the compressive properties recovery	80
Table 4.1 Oxides in the MgO powder	87
Table 4.2 Physical properties of polyvinyl alcohol (PVA) fiber	87
Table 4.3 Mix design of self-healing cementitious composites	87
Table 4.4 Concentration of chloride in solutions (mol/L)	88
Table 5.1 Mix proportions	.121
Table 5.2 Elemental composition of exposure solutions and 7-day pore solution (mme	ol/L)
	.123
Table 5.3 Numbers of specimens for the different post-conditioning states	.123
Table 6.1 Oxides in raw materials	.164
Table 6.2 Mix proportions	.166
Table 6.3 The Na ₂ O content and the expected Na concentration in filtrate	.177

List of Abbreviations

AE	Acoustic Emission Analysis
ASTM	American Society for Testing and Materials
BSE	Backscattered Electron
BN	Expansive Bentonite
СТ	X-ray computed tomography
CA-a	Notation for one of the used crystalline admixtures
CA-β	Notation for one of the used crystalline admixtures
Cl-1	The 0.545 mol/L sodium chloride solution
Cl-2	The 2 mol/L sodium chloride solution
DIC	Digital Image Correlation
DTT	Uniaxial Direct Tensile Test
DTG	Derivative Thermogravimetry
EGC	Engineered Geopolymer Composites
ECC	Engineered cementitious composites
EDS	Energy Dispersive-X-ray Analysis
EPMA	Electron Probe Micro-Analysis
FRC	Fiber Reinforced Concrete
FTIR	Fourier Transform Infrared Spectroscopy

GP	General Purpures Cement
GGBFS	Ground Granulate Blast Furnace Slag
HPFRC	High Performance Fiber Reinforced Concrete
HPFRCC	High Performance Fibre Reinforced Cementitious Composites
HPC	High Performance Concrete
HMCs	Hydrated Magnesium Carbonates
ICP-MS	Inductively Coupled Plasma Mass Spectrometry
IC	Ion Chromatography
L	Lime
LVDTs	Linear Variable Displacement Transducers
NMR	Nuclear Magnetic Resonance
NSC	Normal Strength Concrete
ОМ	Optical Microscope
RCPT	Rapid Chloride Permeability Test
RMC	Magnesium-based Concrete
PLC	Portland Limestone Cement
PVA	Polyvinyl Alcohol
SDT	Stiffness Damage Test
SCMs	Supplementary cementitious materials

SHCCMs	Self-healing cementitious composites materials
SF	Silica fume
Т	Temperature
TEM	Transmission Electron Microscopy
TG	Thermogravimetry
TGA	Thermogravimetry Analysis
TRF	Transverse Resonant Frequency
UHC	Unhydrated Cement Particles
UHPC	Ultra-High-Performance-Concrete
UMGs	Unhydrated MgO Grains
w/d	Wet/dry cycles
W	Wetting
XRD	X-ray Diffraction
XRF	X-ray Fluorescence

Cement chemistry

Al ₂ O ₃	Aluminium oxide
AH3	Aluminium hydroxide (Al(OH)3)
AFm	Aluminate ferrite monosulfate
AFt	Al ₂ O ₃ -Fe ₂ O ₃ -trisulfate

В	Brucite
С	Calcite
Ca ²⁺	Calcium ions
C-A-S-H	Calcium aluminium silicon hydrate
CAs	Crystalline additives
C4AF	Tetracalcium aluminoferrite
CaO	Calcium oxide
Cc	Calcium carbonates (CaCO ₃)
СН	Calcium hydroxide (Ca(OH)2)
CO3 ²⁻	Carbonate
CO ₂	Carbon dioxide
CSA	Sulfoaluminate-based expansive additive
C_2S	Belite
C ₃ S	Alite
C-S-H	Calcium silicate hydrates
Cl	Chloride
Cl	Chloride ions
E	Ettringite
Fs	Friedel's salt

G	Gypsum
Нс	Hemicarboaluminate
HNO ₃	Nitric acid
K	Potassium
K ₂ O	Potassium oxide
Mc	Monocarboaluminate
Mg	Magnesium
MgO	Magnesium oxide
MH	Brucite (Mg(OH) ₂)
M-S-H	Magnesium Silicate Hydrate
Ms	Monosulfoaluminate
МК	Metakaolin
Na	Sodium
Na ₂ CO ₃	Sodium Carbonates
NaHCO ₃	Sodium bicarbonate
Na ₂ O	Sodium oxide
Na2SO4-H2O	Sodium sulfate salt
Na ₂ SO ₄	Sodium sulfate
Na ₂ SO ₄ ·10H ₂ O	Mirabilite

Р	Portlandite
Q	Quartz (SiO ₂)
S	Sulfur
SO ₃	Sulfur trioxide
SiO ₂	Sulfur oxide
SO4 ²⁻	Sulfate
Т	Thenardite (Na ₂ SO ₄)

Roman symbols (lowercase)

а	Area of the specimen
С	Crack closing ratio
d	Density of the water
fpeak_virgin	Peak flexural strength of the virgin specimen
$f_{peak_self-healed}$	Peak flexural strength of the self-healed specimen
f_c	Compressive strength
$f_{c_original}$	Compressive strength of the original specimen
$fc_cracked$	Compressive strength of the cracked specimen
fc_{self} -healed	Compressive strength of the self-healed specimen
mi	Mass change in grams
t	Self-healing duration

Wi	Width of a crack before self-healing
Wt	Width of the crack after self-healing

Roman symbols (uppercase)

Ai	Area of crack mouth before self-healing
At	Area of crack mouth after self-healing
Eoriginal	Elastic modulus of the original specimen
Ecracked	Elastic modulus of the cracked specimen
ERI	Compressive elastic modulus recovery index
Ι	Slope of the best fit line for water absorption
IDaRUPV	Stiffness/damage recovery measured by UPV
ISR	Index of flexural strength recovery
ISRpre-peak	ISR for pre-peak cracked specimens
ISR _{post-peak}	ISR for post-peak cracked specimens
COD	Crack Opening Displacement
Kcracked	Gas permeability coefficient of the cracked specimen
Kself-healed	Gas permeability coefficient of the self-healed specimen
K flexural_self-healed	Slope of <i>P</i> _{flexural} - <i>COD</i> for the self-healed specimen
$K_{\mathit{flexural_cracked}}$	Slope of <i>P</i> _{flexural} - <i>COD</i> for the cracked specimen
$K_{flexural_original}$	Slope of <i>P</i> _{flexural} -COD for the original specimen

K_{split_self} -healed	Slope of <i>P_{split}-COD</i> for the self-healed specimen
$K_{split_cracked}$	Slope of <i>P_{split}-COD</i> for the cracked specimen
$K_{split_original}$	Slope of <i>P_{split}-COD</i> for the original specimen
Psplit	Splitting tensile load
$P_{split_unloading}$	Unloading splitting tensile load
$P_{split_max_principal}$	Principle peak splitting tensile load of the original specimen
$P_{split_max_secondary}$	Secondary peak splitting tensile load of the original specimen
$P_{split_max_self-healed}$	Maximum splitting tensile load of the self-healed specimen
$P_{split_cracking_original}$	Splitting tensile cracking load of the original specimen
$P_{split_cracking_self_healed}$	Splitting tensile cracking load of the self-healed specimen
PRIsplitting	Splitting tensile load capacity recovery
P_{self} -healed	Water permeability of the self-healed specimen
Pcracked	Water permeability of the cracked specimen
$P_{flexural_max_original}$	Maximum flexural load of the original specimen
$P_{flexural_unloading}$	Unloading flexural load
$P_{flexural_max_cracked}$	Maximum flexural load of the cracked specimen
PDI	Plastic damage index
PRI	Plastic damage recovery index
PRIflexural	Recovery of the flexural load capacity

R_p	Relative water permeability
Si	Initial water sorptivity
$S_{i,wet/dry,self-healed}$	Initial sorptivity of the self-healed specimen
$S_{i,wet/dry,original}$	Initial sorptivity of the original specimen
Ss	Secondary water sorptivity
$S_{s,wet/dry,uncracked}$	Secondary sorptivity of the self-healed specimen
$S_{s,wet/dry,original}$	Secondary sorptivity of the original specimen
SDI	Stiffness damage index
SDIcracked	Stiffness damage index of the cracked specimen
SDIself-healed	Stiffness damage index of the self-healed specimen
SDIoriginal	Stiffness damage index of the original specimen
SDIstrength	Compressive strength reduction index
SRIc_stiffness	Compressive stiffness reduction recovery index
SRIc_strength	Compressive strength recovery index
$SRI_{flexural, stiffness}$	Flexural stiffness recovery index
SRI splitting, stiffness	Splitting tensile stiffness recovery
UPVself-healed	Ultrasonic pulse velocity of the self-healed specimen
UPV cracked	Ultrasonic pulse velocity of the cracked specimen
UPVvirgin	Ultrasonic pulse velocity of the virgin specimen

Creek symbols

Compressive stress

 σ_c

σ_N	Nominal flexural stress
σ_{N_loss}	Nominal flexural strength loss due to cracking
$\sigma_{N_Inherent}$	Inherent nominal flexural strength regain
$\sigma_{N_unloading_virgin}$	Unloading nominal flexural strength of virgin specimen
$\sigma_{N_unloading_cracking}$	Unloading nominal flexural strength during cracking
η_{gas}	Recovery of the gas permeability of the cracked specimen

Abstract

The mechanical properties and durability of concrete structures can be seriously impaired by cracks. The need to reduce the risk of cracking and repair the damage caused by concrete cracks led to the development of self-healing cementitious composite materials (SHCCMs). SHCCMs are able to heal cracks without human intervention and can generally be classified into either autogenous self-healing or autonomous self-healing. In comparison with autonomous self-healing, autogenous self-healing is more cost effective and easier to implement in full-scale application, while it is limited to healing crack widths of about 100-150 µm.

Supplementary cementitious materials (SCMs), expansive minerals and crystalline admixtures (CAs) are used to promote the autogenous self-healing of cementitious composite materials and develop SHCCMs. However, the absence of standardized test procedure and performance assessment criteria for self-healing resulted in disagreement with regard to the effectiveness of stimulated autogenous self-healing in concrete. The benefit of SHCCMs to durability of cracked concrete in chloride solutions and marine environments is not well understood. Moreover, in order to tailor self-healing reactions of SHCCMs for better performance, it is necessary to understand the mechanisms of stimulated autogenous self-healing. Currently, these issues are hindering the application and development of SHCCMs.

In this study, the methodology for evaluating the influence of autogenous self-healing on the mechanical properties and durability performance of concrete was developed and validated. Cracked specimens with and without CAs were exposed to water, sodium chloride solutions and seawater to facilitate self-healing. Afterwards, the effect of selfhealing on the compressive, flexural and splitting tensile properties, water absorptivity as well as chloride penetration of cracked materials was assessed. The mineralogy of selfhealing products was also characterized to reveal the mechanism of autogenous selfhealing. Furthermore, the influence of CAs on the hydration and leaching behaviour of cement was investigated, in order to explore factors that can help improve the autogenous self-healing of cementitious composites materials.

With regards to mechanical properties, autogenous self-healing improves the stiffness but barely affects the load capacity of cracked specimens under compressive, flexural and splitting tensile loading. Indexes that are related to stiffness are recommended for selfhealing performance assessment. The results also highlight that exposure environments affect self-healing mechanisms (reaction) and subsequently, self-healing performance. The rate of crack closure is fastest in seawater followed by NaCl solutions and water, which results in the lower chloride penetration into self-healed cracked specimens from seawater than NaCl solution. The rapid precipitation of Mg(OH)₂ in cracks dominates the self-healing in seawater. Compared to water, NaCl solutions accelerate self-healing by promoting the precipitation of CaCO₃ in cracks. This suggests that a faster rate of self-healing helps improve the durability of cracked structures more than the type of products that form during self-healing. Moreover, the hydration and leaching behaviour of cement incorporating CAs indicates that a higher pH of the pore solution and a reasonable degree of carbonation could benefit the self-healing of cementitious composite materials.