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Abstract

The rapid development of high-throughput next-generation sequencing

(NGS) platforms has produced massive sets of genomic reads under low

costs for a wide range of biomedical applications (e.g., de novo genome

assembly, read alignment, resequencing, and Single-nucleotide polymorphism

discovery). A serious concern over these datasets is that machine-made

sequencing data su↵ers from lots of random errors (such as substitutions,

insertions and deletions). To the best of our knowledge, all the existing

methods su↵er limitations. This work aims to rectify as many errors as

possible by designing strategies adapted to specific cases. Three novel error

correction algorithms are designed to providing high-quality sequencing data.

The first method is to use an instance-based strategy to correct errors,

as described in Chapter 3. This novel instance-based error correction

method is able to provide high quality reads for any given instance case

and implemented as a tool named InsEC. It is designed to correct errors

in reads related to instance cases (e.g., a set of genes or a part of the

genome sequence. The nature of data characteristics and fine-grand features

are considered to gain better correction performance. In our method,

the instance-based strategy makes it possible to make use of data traits

only related to an instance, which guarantees that we can approach the

ground truth of the instance case and then achieve better error correction

performance. In the instance extraction step, all reads related to a given

instance are extracted by using read mapping strategies. In the correction

step, we take advantage of alignment processes and correct errors according

xv



Abstract

to the alignment. Besides, statistical models are used to avoid induced errors

as well. Intensive experiments are conducted with other state-of-the-art

methods on both simulated and real datasets. The results demonstrate

the superiority of our method, which achieves the best error correction

performance (e.g., precision, recall and gain rate in average) and further

assembly results (e.g., N50, the length of contig and contig quality).

Chapter 4 develops the first method for miRNA read error correction.

Existing error correction methods do not work for miRNA sequencing data

attributed to miRNAs’ length and per-read-coverage properties distinct from

DNA or mRNA sequencing reads. Although the error rate can be low at

0.1%, precise rectification of these errors is critically important because

isoform variation analysis at single-base resolution such as novel isomiR

discovery, editing events understanding, di↵erential expression analysis, or

tissue-specific isoform identification is very sensitive to base positions and

copy counts of the reads. We present a novel lattice structure combining

kmers, (k-1)mers and (k+1)mers to address this problem. Moreover, the

method is particularly e↵ective for correcting indel errors. Extensive tests on

datasets having known ground truth of errors demonstrate that the method is

able to remove almost all of the errors, without introducing any new error, to

improve the data quality from every-50-reads containing one error to every-

1300-reads containing one error. Studies on wet-lab miRNA sequencing

datasets show that the errors are often rectified at the 5’ ends and the

seed regions of the reads. Note that there are remarkable changes after

the correction in miRNA isoform abundance, the volume of singleton reads,

overall entropy, isomiR families, tissue-specific miRNAs, and rare-miRNA

quantities.

Chapter 5 introduces a novel method for small RNA error correction

which supports substitution, insertion and deletion error rectification.

Compared with the miRNA error correction method, this method is more

robust by supporting all kinds of small RNA sequencing (read length from 20

to 200 nucleotides). Furthermore, we improve the three-layer lattice structure

xvi



Abstract

and combine it by reads with the same length, length plus one and length

minus one, which dramatically increases the method’s e�ciency. Finally,

we consider RNA’s isoform and propose to do correction proportionally to

make a fine correction. Specifically, in the correction phase, we do not

correct all potential erroneous copies to the top one candidate; Instead, we

divide corrections into top 3 candidates proportionally to remain all possible

recovery. With this improvement, the method achieves high error correction

performance, and its precision, recall and gain rate are superior to all other

existing error correction methods. Extensive experiments on simulation and

raw sequencing data prove our method’s ability. Thus, our error correction

method does help improve data quality and is necessary for all downstream

analyses.
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