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Abstract

The rapid development of high-throughput next-generation sequencing

(NGS) platforms has produced massive sets of genomic reads under low

costs for a wide range of biomedical applications (e.g., de novo genome

assembly, read alignment, resequencing, and Single-nucleotide polymorphism

discovery). A serious concern over these datasets is that machine-made

sequencing data su↵ers from lots of random errors (such as substitutions,

insertions and deletions). To the best of our knowledge, all the existing

methods su↵er limitations. This work aims to rectify as many errors as

possible by designing strategies adapted to specific cases. Three novel error

correction algorithms are designed to providing high-quality sequencing data.

The first method is to use an instance-based strategy to correct errors,

as described in Chapter 3. This novel instance-based error correction

method is able to provide high quality reads for any given instance case

and implemented as a tool named InsEC. It is designed to correct errors

in reads related to instance cases (e.g., a set of genes or a part of the

genome sequence. The nature of data characteristics and fine-grand features

are considered to gain better correction performance. In our method,

the instance-based strategy makes it possible to make use of data traits

only related to an instance, which guarantees that we can approach the

ground truth of the instance case and then achieve better error correction

performance. In the instance extraction step, all reads related to a given

instance are extracted by using read mapping strategies. In the correction

step, we take advantage of alignment processes and correct errors according

xv



Abstract

to the alignment. Besides, statistical models are used to avoid induced errors

as well. Intensive experiments are conducted with other state-of-the-art

methods on both simulated and real datasets. The results demonstrate

the superiority of our method, which achieves the best error correction

performance (e.g., precision, recall and gain rate in average) and further

assembly results (e.g., N50, the length of contig and contig quality).

Chapter 4 develops the first method for miRNA read error correction.

Existing error correction methods do not work for miRNA sequencing data

attributed to miRNAs’ length and per-read-coverage properties distinct from

DNA or mRNA sequencing reads. Although the error rate can be low at

0.1%, precise rectification of these errors is critically important because

isoform variation analysis at single-base resolution such as novel isomiR

discovery, editing events understanding, di↵erential expression analysis, or

tissue-specific isoform identification is very sensitive to base positions and

copy counts of the reads. We present a novel lattice structure combining

kmers, (k-1)mers and (k+1)mers to address this problem. Moreover, the

method is particularly e↵ective for correcting indel errors. Extensive tests on

datasets having known ground truth of errors demonstrate that the method is

able to remove almost all of the errors, without introducing any new error, to

improve the data quality from every-50-reads containing one error to every-

1300-reads containing one error. Studies on wet-lab miRNA sequencing

datasets show that the errors are often rectified at the 5’ ends and the

seed regions of the reads. Note that there are remarkable changes after

the correction in miRNA isoform abundance, the volume of singleton reads,

overall entropy, isomiR families, tissue-specific miRNAs, and rare-miRNA

quantities.

Chapter 5 introduces a novel method for small RNA error correction

which supports substitution, insertion and deletion error rectification.

Compared with the miRNA error correction method, this method is more

robust by supporting all kinds of small RNA sequencing (read length from 20

to 200 nucleotides). Furthermore, we improve the three-layer lattice structure

xvi



Abstract

and combine it by reads with the same length, length plus one and length

minus one, which dramatically increases the method’s e�ciency. Finally,

we consider RNA’s isoform and propose to do correction proportionally to

make a fine correction. Specifically, in the correction phase, we do not

correct all potential erroneous copies to the top one candidate; Instead, we

divide corrections into top 3 candidates proportionally to remain all possible

recovery. With this improvement, the method achieves high error correction

performance, and its precision, recall and gain rate are superior to all other

existing error correction methods. Extensive experiments on simulation and

raw sequencing data prove our method’s ability. Thus, our error correction

method does help improve data quality and is necessary for all downstream

analyses.

xvii





Chapter 1

Introduction

This chapter describes the background, research motivations, research

objectives, research contributions and structure of the thesis. In Section

1.1, the backgrounds of genomic sequencing data, error correction strategies

as well as some significant applications are presented. Section 1.2 introduces

the motivations in this research work. The corresponding research objectives

and contributions of each motivation are specified in Section 1.3. Finally, the

structure of this thesis is detailed in Section 1.4.

1.1 Background

Rapid development of highthroughput next-generation sequencing (NGS)

platforms has produced massive sets of genomic reads under low costs for

a wide range of biomedical applications (Salzberg, Phillippy, Zimin, Puiu,

Magoc, Koren, Treangen, Schatz, Delcher, Roberts et al. 2012, Frazer 2012,

Beerenwinkel & Zagordi 2011, Schirmer, Sloan & Quince 2012, Slatko,

Gardner & Ausubel 2018, Chandran 2018). Accessibility of NGS data

attracts amount of researches to explore secrets behind the genome, including

de novo genome assembly (Salzberg et al. 2012), identifying functional

elements in genomes (Frazer 2012), finding variations in populations

(Beerenwinkel & Zagordi 2011) and genomics analysis (Schirmer et al. 2012).

1



Chapter 1. Introduction

A serious concern over these data sets is that there are lots of random errors

(such as substitutions, insertions and deletions) existing in the sequences of

these reads. To avoid possible negative e↵ects on the downstream analysis

caused by the sequencing errors, correction algorithms have been intensively

studied and have become available to rectify the errors before the raw data

is utilized for downstream analysis. Therefore, this thesis aims to propose

high-e�cient error correction methods to provide precise and convincing

sequencing data for further genomic research.

1.1.1 Genomic Sequencing Data

Next-generation sequencing technology has seen significant improvements

in data characteristics and costs. The length of sequence data, the

number of data and the way data generated distinctly vary from the

first-generation sequencing technology to the third-generation sequencing

technology (Metzker 2010). Since the Sanger DNA sequencing technology

(the first-generation sequencing technology) developed in 1997, the third-

generation sequencing technology increases the length of reads from less then

100 nucleotide bases to more than 100,000 nucleotide bases, while the second-

generation sequencing technology dramatically changes the number of data

to millions in a single machine run. Comparisons of the first, second and

third generation technology are shown in Table 1.1.1.

With the development of sequencing technology, more NGS sequencers

have been launched into market. For examples, Illumina, Oxford Nanopores,

PacBio and Roche sequencing platforms are widely used (Kamps, Brandão,

Bosch, Paulussen, Xanthoulea, Blok & Romano 2017). Di↵erent platforms

generate read with di↵erent length. According to the length of sequencing

read, we divided sequencers into two catagories (short-read sequencers and

long-read sequencers). Illumina, as representive of short-read sequencers,

generates read usually shorter than 300bp with cheap price. Ion Torrent is

another example of short-read sequencers. While costly long-read sequencers

consist of PacBio and Roche, which use single-molecule real-time (SMRT)

2



Chapter 1. Introduction

technology and produce reads with longer length (e.g. 2.5 kb). Long-read

sequencers go with a relatively higher error rate compared with short-read

sequencers. Comparisons of the first, second and third generation technology

are shown in Table 1.1.1. Among the existing sequencing platforms, the

most ubiquitous Illumina platforms have advantages that high-throughput

and low-cost. Thus, the error correction methods in this thesis are designed

for short-read generated by Illumina platforms.

High-throughput sequencers generate a number of sequences per run. A

sequence is also called a read that consists of nucleotides Adenine, Cytosine,

Guanine and Thymine denoted by alphabet A, C, G, and T, respectively.

Unfortunately, reads from the sequencing machine contain errors that may

be produced by several factors. Errors can be induced in every phrase

such as library preparation, sample preparation, genome content collection,

experimental design, and sequencing machine running (Yamamoto 2021).

There are three main types of errors from sequence data: substitutions

errors (subs), insertions, and deletions errors (indels). Note that error rates

of subs and indels vary from di↵erent sequencing platforms. For example,

the Illumina, a widely used platform, generates high-throughput data with

a relatively short read length from 100bp to 300bp and up to 2% error

rates (Minoche, Dohm & Himmelbauer 2011). Most of the errors from the

Illumina sequencer are subs, while from the Pacific Biosciences sequencer

primary error type is indels. Moreover, longer reads from Pacific Biosciences

sequencer have a higher error rate of more than 15% (Hackl, Hedrich,

Schultz & Förster 2014). Poor quality of reads limits the performance of

the downstream analysis. Therefore, high-quality sequencing reads with less

errors are required and error correction is designed to improve the quality of

the sequence data.

1.1.2 Error Correction Strategy

To avoid possible negative e↵ects on the downstream analysis caused by the

sequencing errors, correction algorithms have been intensively studied and

3



Chapter 1. Introduction
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Chapter 1. Introduction

have become available to rectify the errors before the raw data is utilized for

downstream analysis. The existing error correction methods can be divided

into three categories according to their correction strategies.

Kmer based error correction strategy

Kmer is defined as a sequence string that is composed of k continue

bases from a read. For a read, the number of kmer di↵ers from the

value of k. For example, there is string ATCGAT, and k is set as

4. Then 4-mers here is ATCG, TCGA, and CGAT. To collected all

kmer from reads dataset, a set of sequence string would be obtained,

which is defined as a kmer spectrum. Specifically, if we only have

one read (TAGCTA) in a dataset, the 4-mer spectrum is a string set

including three di↵erent kmer (TAGC, AGCT and GCTA). The key

idea of these methods is to use the frequencies of all kmer strings and

a global frequency threshold to define solid and weak kmers. The error

correction process is to transform each weak kmer into a solid kmer

according to some heuristics (e.g., the minimum edit distance between

a weak and a sold kmer), thereby correcting erroneous reads.

Multialignment-based error correction strategy

Compared to the kmer spectrum methods, the idea of multiple

alignment methods is more intuitive. Firstly, reads are grouped based

on whether they share some kmers. Reads in each group are then

concatenated to form a long consensus contig, which is assumed error

free. Then, these consensuses are used as references to correct the

mismatches in every read. More specificly, multiple alignment-based

methods have three steps: read indexing, multiple alignment, and

read correction. In read indexing step, all kmers from sequencing

reads are indexed through construct a hash table. And then, for

each read, kmer sets include reads which share at least one kmer with

the given read. Then the Needleman-Wunsch algorithm (Needleman

& Wunsch 1970) is used for multiple alignments in each kmer set.

5
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After the alignment, every base in reads obtain a quality score, and

nucleotides with the minimum score are selected as the consensus bases.

Meanwhile each kmer sets obtain a consensus sequence for the following

correction. Finally, the consensus is regarded as a reference to guide

read correction.

1.1.3 Applications of Sequencing Data

Thanks to the rapid development of Next-Generation Sequencing (NGS)

technology, we are able to collect massive read data with lower cost.

Accessibility of NGS data attracts amount of researches to explore secrets

behind genome and all of the researches are demanding high-quality reads

with less errors, including de novo genome assembly (Salzberg et al. 2012),

identifying functional elements in genomes (Frazer 2012), finding variations in

populations (Beerenwinkel & Zagordi 2011) and genomics analysis (Schirmer

et al. 2012) ). Among these applications, the most fundamental and

important one is read assembly and read alignment.

The most famous read assembly project is the human genomic project,

which approach the whole order of human genomic sequencing from

raw sequencing data, also called de novo assembly. Another important

application is read alignment research is used widely in genomic analysis.

Read alignment is the fundational of read comparation, which plays

important roles in genetic disease research. Studies of genes related to the

diseases are used in many domains (e.g. SNP calling (Li, Li, Fang, Yang,

Wang, Kristiansen & Wang 2009), genotyping (DePristo, Banks, Poplin,

Garimella, Maguire, Hartl, Philippakis, Del Angel, Rivas, Hanna et al. 2011),

cancer treatment (Cainap, Balacescu, Cainap & Pop 2021) and taxonomic

assignation). For instance, in breast cancer studies (Findlay, Daza, Martin,

Zhang, Leith, Gasperini, Janizek, Huang, Starita & Shendure 2018), tumour

suppressor gene, BRCA1, attracts lots of interests. Single-nucleotide variants

(SNVs) in exons are the encode functionally critical domains of BRCA1.

Detecting precise SNVs is fundamental of discovering significance of variants

6
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as well clinically actionable genes (Millot, Carvalho, Caputo, Vreeswijk,

Brown, Webb, Rouleau, Neuhausen, Hansen, Galli et al. 2012). Sequencing

read data are used in SNVs detection and SNPs discovery (Chopra, Burow,

Farmer, Mudge, Simpson, Wilkins, Baring, Puppala, Chamberlin & Burow

2015) as well. Except that, in mutation and protein study, sequencing data

plays important role.

1.2 Research Motivations

The rapidly increasing number of genomic reads generated by the whole

genome sequencing (WGS) platforms contain random errors (such as

substitutions, insertions and deletions). Error correction algorithms have

been developed, aiming to tick o↵ these widely distributed errors to ensure

the downstream analysis with quality enhanced raw data. Almost all WGS

analysis will benefits from high quality sequencing reads. All of these

applications need high-quality read data to more convincing conclusion.

So far, an increasing number of researches already have been working on

error correction on read data. However there are still some challenge to

overcome. Firstly, due to the nature of the existing sequencing technology,

it generates sequencing data non-uniformly. Sequencing coverage varies a lot

from di↵erent parts of genome. For low-coverage region, there is no enough

knowledge to correct read errors. Secondly, reads are generated randomly and

then errors are also distributed non-uniformly. There are many factors (e.g.

experiment environment, temperature and CG content) a↵ecting appearance

of errors in reads. Error ratio varies from a part of genome sequence to

another parts as well. Some reads may su↵er high error rates, which make

it harder to detect errors in these kind of reads. Thirdly, repetitive regions

exist in genome sequences. Reads from repetitive regions are likely to share

the same nucleotide sequence, thus tending to be similar with each other.

The similarity of reads from di↵erent repetitive regions causes di�culties in

error correction. These kind of reads tend to be corrected falsely and cause

7
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more induced errors. All of the above challenge make it still hard to provide

high-quality reads when we do error correction on whole sequencing data.

Thus, we aim to develp novel methods to improve correction performance

for specific application scenarios. For example, most of them take a global

approach and only make use of generic genome-wide patterns to rectify errors

in read. In some particular cases, global correction is unnecessary sometimes,

especially, when single nucleotide polymorphism (SNP) studies are focus on

specific disease genes or pathways, where the paramount requirement is to

ensure the relevant reads, instead of the whole genome, are error-free.

Meanwhile, most of error correction methods are designed for DNA

sequences and a few designed for RNA sequences. Recently, small RNA

research gets more and more attention and the accuracy of small RNA

sequences is vital for related analysis. For instance, sequencing of miRNAs

(a special type of small RNA molecules containing about 22 nucleotide

bases) has been widely used to examine tissue-specific expression patterns,

to identify isomiRs (mature miRNA variants) and to discover previously

uncharacterized miRNAs (Yeung, Co, Tsuruga, Yeung, Kwan, Leung, Li,

Lu, Kwan, Wong et al. 2016, Xiao & MacRae 2019, Giraldez, Spengler,

Etheridge, Godoy, Barczak, Srinivasan, De Ho↵, Tanriverdi, Courtright,

Lu et al. 2018, Tan, Chan, Molnar, Sarkar, Alexieva, Isa, Robinson,

Zhang, Ellis, Langford et al. 2014, Trontti, Väänänen, Sipilä, Greco &

Hovatta 2018, Fernandez-Valverde, Taft & Mattick 2010). As key regulators

in various biological processes, miRNA dysregulation is implicated in many

diseases for example cancer and autoimmune disorders (Meng, Liu, Lü,

Zhao, Deng, Wang, Qiao, Zhang, Zhen, Lu et al. 2017, Liu, Lei, He, Pan,

Xiao & Tao 2018, Telonis, Magee, Loher, Chervoneva, Londin & Rigoutsos

2017, Dutta, Chinnapaiyan & Unwalla 2019, Dai, Li, Fan, Tan, Wang &

Jin 2019). Numerous studies also rea�rm that miRNA regulatory functions

are involved in post-transcriptional gene silencing (PTGS), transcriptional

gene silencing (TGS), and transcriptional gene activation (TGA) (Pisignano,

Napoli, Magistri, Mapelli, Pastori, Di Marco, Civenni, Albino, Enriquez,

8
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Allegrini et al. 2017, Yang, Shao, Bofill-De Ros, Lian, Villanueva, Dai &

Gu 2020), in which miRNAs bind to nascent RNA transcripts, gene promoter

regions or enhancer regions and exert further e↵ects via epigenetic pathways

(Liu et al. 2018, Liu, Wang, Huang, Sun & Chen 2019). Thus, single-

base errors are very sensitive for uncovering miRNA’isoforms (isomiRs)

and alternative splicing, which is one of the most frontier research areas

in this field (Liao, Li, Wang, Li & Zou 2018, Tan et al. 2014, Liu, Lai

& Guo 2020, Bilanges, Posor & Vanhaesebroeck 2019, Sänger, Bender,

Rostowski, Golbik, Lilie, Schmidt, Behrens & Friedrich 2020, Pillman,

Goodall, Bracken & Gantier 2019, Hoefer 2020). Specific error correction

methods designed for this kind of small RNA are required.

1.3 Research Objectives and Contributions

To address above research motivations, this thesis focuses on 3 research

problems: 1) error correction for instance cases (e.g. reads of disease-

associated genes), 2) error correction for microRNA sequencing reads, and

3) error correction for total small RNA sequencing reads. The research

objective of this thesis is to contribute to high-quality sequencing data by

approving novel error correction approaches that could generate accurate and

reliable sequencing data for convincing downstream analysis . The specific

objectives of above research problems are summarized as follows (O1 to O3).

O1: To develop a novel instance-based error correction method for short

reads of disease-associated genes, to provide accurate sequencing reads

for fine downstream analysis.

O2: To develop the first error correction method designed for microRNA

reads through considering microRNA’s characteristics and to provide

single-base resolution for ultrafine microRNA research.

O3: To develop the first error correction method for small RNA sequencing

read supporting both subs (substitution errors) and indels (insertiong

9
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and deletion errors) corretion.

To complete these objectives, we have proposed 3 novel methods as

presented in Chapter 3, Chapter 4 and Chapter 5, respectively. Our

contributions are elaborated as follows (C1 to C3).

C1: Error correction for short reads using a novel instance-based

method

The contributions include :

1) We proposed a novel instance-based approach for highly accurate

error correction, which focuses on short reads especially related to

disease genes.

2) Our strategies exploit local sequence features and statistics directly

related to those genes, thereby being capable of high-performance

correction related to any given instance.

3) We conducted extensive experiments in comparison with state-of-

the-art methods on both simulated and real datasets of lung cancer

associated genes (including single-end and paired-end reads). The

results demonstrated the superiority of our method with the best

performance on precision, recall and gain rate, as well as on sequence

assembly results (e.g., N50, the length of contig and contig quality).

C2: Error correction method designed for microRNA sequencing

reads

Our contributions in this research are summarized :

1) We presented an error rectification method for miRNA sequencing

reads (named miREC), which is the first tool to address the problem of

miRNA sequencing errors.

2) The novel strategy of our method is the use of a 3-layer (k-1)mer-

kmer-(k+1)mer lattice structure to maintain the frequency di↵erences of

the kmers. These superset-subset frequency di↵erences are very e↵ective

to detect the errors especially the indel errors. The lattice structure is

also a moving structure where k is set continuously from a small number

10
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to a big number 23 or 25 for a full coverage of error correction. 3)

Results on datasets having known ground truth of errors demonstrated

that the method is able to remove almost all of the errors, without

introducing any new error, to improve the data quality from every-50-

reads containing one error to every-1300-reads containing one error.

4) Extensive tests on both simulated and wet-lab (experimentally

catalogued) miRNA sequencing datasets showed that miREC can excel

performance in all of precision, recall and gain.

C3: Error correction method for small RNA supporting

substitutions and indels correction

The contributions in this research include :

1) We proposed the first algorithm to solve the problem of correcting

errors in all types of small RNA sequencing reads, supporting

substitutions and indels correction. The novel idea of the algorithm is

a 3-layer read lattice structure and proportional correction strategy.

2)The algorithm achieved outstanding and robust correction

performance; It detected and corrected almost all of the errors

including the indel errors; More specifically, the average recall rate is

99.86%; the average precision is 99.9% and the average gain rate is

99.81%.

3) Identified significant changes in small RNA abundance and whole

set entropy after error correction on wet-lab small RNA sequencing

reads.

1.4 Thesis Structure

The structure of this thesis is illustrated in Figure 1.1 and briefly introduced

as follows:

Chapter 1 introduces the background of this thesis, the research

motivations and the corresponding research objectives as well as

contributions. Chapter 2 presents the related work of this research,

11
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Figure 1.1: Thesis structure.
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Chapter 1. Introduction

including the classification of the existing error correction methods, related

evaluation metrics and applications. Chapter 3 to Chapter 5 detail the

proposed methods for instance-based error correction, miRNA and small

RNA error correction, respectively. Details of experimental evaluation,

comparison and analysis are also included. Chapter 6 concludes this thesis

and provides discussions of future work.
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Related Work and Literature

Review

This chapter describes the related work and literature review of the work

in this thesis. Section 2.1 reviews the relevant work on sequencing read

error correction and its classification. Then, the state-of-the-art methods

for error corretion methods are presented in Section 2.2. Following this, the

error correction evaluation metrics are introduced in Section 2.3. Finally, we

briefly summarize the contents in this chapter.

2.1 Error Correction Classification

According to the development of sequencing technology, we catalogue error

correction methods based on data characteristics. Also we can catalogue

methods according to their error correction strategies. A summarized table

is shown in Table 2.2.3.

2.1.1 Classification According to Data characteristics

The sequencing technology innovated two times from the Sanger sequencing

technology (the first-generation sequencing), the high-throughput sequencing

technology (the second-generation sequencing) and the third sequencing
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technology. Thanks to the development of sequencing technology, amount

of genome sequence data is easily to collected. All these sequencing data

contains errors and error correction methods are needed for providing high-

quality sequencing data. Di↵erent sequencing technology generates reads

with di↵erent length. Specificly, the second-generation sequencing technology

(High-throughput sequencing technology) generates short sequencing reads,

while the third-generation sequencing technology generates long sequenging

reads.

Thus, according to lenght of read, we can divided error correction methods

into two catalogues (error correction methods for short reads and error

correction methods for long reads). Short-read error correction methods

includes three types according to its strategies and more details are shown

in section 2.1.2. Long-read error correction methods are two types. One is

self correction method and the other is hybird error correction method. Self

correction means only long reads are used when correction, while hybird

correction means short reads and long reads are used together for error

correction.

2.1.2 Classification According to Correction Strategies

According to the correction strategies, the existing error correction methods

are divided into three catagories. One is the kmer based error correction

methods including BFC (Li 2015), BLESS (Heo, Wu, Chen, Ma & Hwu

2014), Lighter (Song, Florea & Langmead 2014), Blue (Greenfield, Duesing,

Papanicolaou & Bauer 2014), ACE (Sheikhizadeh & de Ridder 2015), Reptile

(Yang, Dorman & Aluru 2010), Musket (Liu, Schröder & Schmidt 2012),

RACER (Ilie & Molnar 2013). The other is the multi-alignment based error

correction methods including Coral (Salmela & Schröder 2011), ECHO (Kao,

Chan & Song 2011), MEC (Zhao, Chen, Li, Jiang, Wong & Li 2017) and

Karect (Allam, Kalnis & Solovyev 2015). Last is graph-based correction

method.
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2.2 The Existing Error Correction Methods

In this section, we will introduce three types of the existing error correction

methods according to their strategies.

2.2.1 The Kmer Based Methods

In kmer based methods, kmer is defined as a string composed of k continue

bases from a read. A representative kmer-based method is BFC (Li 2015).

Firstly, methods extract kmers from read datasets and then build index

information for each kmer. Secondly, a threshold is set to divide all kmers

into two sets, according to prior knowledge (like the frequency of kmers).

kmer in a set whose value is lower than the threshold are defined as weak

kmer; while kmer in the other set whose value is higher than the threshold

are recognized as solid kmer. Finally each weak kmer will be transformed

to solid kmers by referring to the solid one with pre-designed rules (e.g., the

minimum edit distance between a weak and a sold kmer).

For example, Reptile (Yang et al. 2010), proposed in 2010, use Hamming

distance to infer that whether a kmer contains errors. Hamming distance is

the number of di↵erence between two strings. When rectifing errors Reptile

also take contextual information from neighboring kmers into account. Only

if hamming distance of kmers are less than a fixed threshold, they are

identified as weak kmers and needed to be corrected. Reptile is implemented

in c plus plus program language. Another method named Musket (Liu

et al. 2012) use three strategies to rectify errors. Firstly, all kmers are

collected from read data and then the number of each kmer is counted by

using a hash structure with a master-slave model. Secondly, the voting

strategies are used to choose true base information and weak kmers are

transformed into solid kmers. Compared with the above methods, RACER

(Ilie & Molnar 2013) focuse more on methods’ e�ciency (such as faster speed

and less memory). Every read are encoded by 2-bit way storing with a

hash table structure to save memory and increase speed of algorithm. From
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both end of reads, eight counters are used to count the number of di↵erent

nucleotides. There is a threshold fixing to decide whether a base is a correct

or not. According to pre-results, Racer corrects errors in reads. Lighter (Song

et al. 2014) is di↵erent from previous methods which need to count kmers. In

Lighter, counting kmers process are replaced by randomly sampling kmers.

After that, samples are stored in a bloom filter for subsequent tests. All

positions of reads are tested to find a subset of kmers which are stored in

the second bloom filter. Compared with the solid kmers, Lighter turns weak

kmers into solid kmer and the error-free reads are finally obtained. Searching

for an e�cient solution, Lim et al. propose the Trowel method based on a

data structure which can access easily and support massively parallelization

(Lim, Müller, Hagmann, Henz, Kim & Weigel 2014). Di↵erent from some

kmer spectrum methods which use kmer’s frequencies to identify solid parts

and weak parts, Trowl detects solid kmer only by the quality value of bases.

The selected kmers are called bricks which indexes as keys. BLESS (Heo

et al. 2014) corrects reads error by counting frequencies of each kmer. It

applies DSK(Disk Streaming of kmer) and KMC(kmer counter) to do error

correction. Through a Bloom filter, weak kmer are converted to solid kmer.

A threshold should be set to recognized weak kmer from the solid one. That

means the value of the threshold can a↵ect the result of error correction.

In kmer based methods, the value of K plays an important role for error

correction performance, which limits the robustness of the methods. So how

to set k value and how to design rules for dividing solid and weak kmers

are vital for kmer based error correction methods (Akogwu, Wang, Zhang &

Gong 2016).

2.2.2 The Alignment Based Methods

Compared to kmer based methods, multiple alignment methods do not rely

too much on the selection of k-value. The idea behind multiple alignment

methods is more intuitional. Firstly, reads are grouped based on whether

they share the same segment of reads. The aim of this step is to obtain
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a longer read by concatenating reads which share overlap parts. Through

concatenating overlap parts, a convincing longer read, called consensus,

is obtained as error-free reference. Finally, these consensuses are used as

reference sequences to correct remnant reads.

The multiple sequence alignment strategy is first used to correct reads

errors in Coral (Salmela & Schröder 2011). Unlike the existing EC (Error

Correction) tools, the Coral computes bases distant for errors by alignment.

There are three steps in Coral methods: indexing the reads, forming multiple

alignments and correction of reads. In the first step, kmers from all reads

are indexed through construct a hash table. In the second step, for each

read, kmer sets defined as reads which share at least one kmer with the given

read. Then the Needleman-Wunsch algorithm (Needleman & Wunsch 1970)

are used for multiple alignments in each kmer sets. After alignment, every

base in reads has a quality score and nucleotides with the minimum score

are selected as the consensus bases. Finishing the alignment step, each kmer

sets obtain a consensus sequence for the following correction. In the final

step, the consensus is regarded as a reference to guide read correction. Coral

is able to handle a wide range of sequencing data and its performance is

superior to previous error correction methods.

The Karect (Allam et al. 2015) is also based on multi-alignment idea,

increasing performance of the error correction a lot. Karect take advantage

of heuristic strategy to extract a set of reads. multiple sequence alignment is

conducted on every read set and the results of multiple sequence alignment

are stored in a graph structure, known as POG (partial order graph).

According to the graph structure, the erroneous bases are easy to be

identified. Besides that the insertion and deletion errors also can be rectified

by Karect. Another MEC (Zhao et al. 2017) method uses the MapReduce

technique to correct error correction, which is time-saving and high-e�ciency.

MEC selects reads sharing with the same kmers in the same group. And

then it computes a log likelihood of every base in every read of each group.

Accorfing to the likelihood score, MEC corrects errors in reads.
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In multiple alignment methods, the influence of parameter decreases and

k parameter is almost free from the consideration, but high time and memory

consuming limits its application especially in large datasets.

2.2.3 The su�x array Based Methods

The su�x array/tree based methods are aimed to explore the beneficial

nature of the su�x tree structures. This type of methods use reads data to

generalize a su�x tree and then traverses the su�x tree structure. Finally,

through analyzing nodes of the tree to detect errors in reads. Compared with

multiple sequence alignment based methods, the su�x array based methods

avoid the computation of the alignment process and only traverse a space-

e�cient tree structure to complete error correction.

SHREC (Schröder, Schröder, Puglisi, Sinha & Schmidt 2009) first uses

a generalized su�x tree to store reads data and corrects erroneous reads

by traversing the su�x tree structure. In the beginning, SHREC extracts

all reads information to build the su�x tree. all su�x strings of each read

are represented by a path and each leaves nodes in the su�x tree means

termination of a su�x string. According to the number of edges followed

by a node, weight of the node is computed for constructed a weighted su�x

tree. Finally, SHREC selects an imbalanced node to locate the error and for

further error correction.

Following the SHREC method, the author proposes Hybird-SHREC

method based on SHREC method (Salmela 2010). By this methods, all kinds

of error types can be identified and corrected. It also supports di↵erent kinds

of reads data, including a mixed set of reads which is produced by several

sequencing platforms. Compared with the SHREC method, the hybrid-

SHREC show a better performance with high sensitivity and high specificity.

Ilie et.al proposes a High Throughput Error correction algorithm named

HiTEX which uses a thorough statistical analysis of the su�x array built

on the string of all reads and their reverse complemets (Ilie et al. 2010). To

avoid the limations in SHREC methods that it requires several parameter
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sets to find the optimizal value of the accuracy, HiTEC are more robust.

Due to the main idea of HiTEC which is based on statistical analysis, it can

be suitable for many situations no matter what the read length is or what

the coverage level is.

2.3 Error Correction Evaluation metrics

To comprehensively evaluate our error correction methods, we not only focus

on error correction performance but also examine performance of further

assembly.

2.3.1 Statistical Error Correction Performance

To access the accuracy of error correction methods, we deduct the following

three statistics. There are some pre-definitions as follows: true positives

(TP) correspond to corrected errors; true negatives (TN) correspond to

initially correct bases left untouched; false positives (FP) correspond to newly

introduced errors; false negatives (FN) cor respond to unidentified errors.

Precision: TP/(TP+FP), shows the fraction of truly corrected bases

among all changed bases.

Recall: TP/(TP+FN), shows the fraction of truly corrected bases

among all bases which are supposed to be corrected.

Gain: (TP-FP)/(TP+FN), shows the fraction of removing errors

without inducing additional errors.

2.3.2 Statistical Assembly Performance

To access the impact of error correction methods on further assembly, an

assembler (e.g. SPAdes (Bankevich, Nurk, Antipov, Gurevich, Dvorkin,

Kulikov, Lesin, Nikolenko, Pham, Prjibelski et al. 2012)) is used to assemble

reads before and after error correction. And then the assemble results are
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compared directly. Note that other assembly tools are also available to use

and need to run without built-in error correction.

For simulated datasets, the ground truth read data are assembled by

SPAdes as well for evaluation. The assembly results are evaluated by

QUAST (Gurevich, Saveliev, Vyahhi & Tesler 2013), a quality assessent

tools for genome assemblies. Detailed reports include the number of contigs,

largest contigs, total length, CG percentage and N50. Contigs is continuous

nucleotide sequences obtained from assembly process. N50 is defined as the

minimum contig length needed to cover 50% of genome.

2.4 Summary

In this chapter, the literature is reviewed with respect to the research

motivations of error correction methods. More precisely, relevant studies

are divided into three types according to their strategies. Most of all the

existing methods are described, followed by evaluation metrics.
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Instance-based Error

Correction for Short

Sequencing reads

3.1 Introduction

The rapid development of high-throughput next-generation sequencing

(NGS) platforms has produced massive sets of genomic reads under low costs

for a wide range of biomedical applications (Salzberg et al. 2012, Frazer 2012,

Beerenwinkel & Zagordi 2011, Schirmer et al. 2012). Serious concern over

these datasets is that there are lots of random errors (such as substitutions,

insertions and deletions) existing in these reads. The most popular Illumina

platforms generate sequencing data with 0.5-2.5% error rates (Laehnemann,

Borkhardt & McHardy 2015). Substitutions are the major error type in the

short sequencing reads, while insertions and deletions are the major error

types in the long sequencing reads.

To avoid possible negative e↵ects on the downstream analysis caused by

the sequencing errors, correction algorithms have been previously studied and

many tools (Limasset, Flot & Peterlongo 2020, Sheikhizadeh & de Ridder

2015, Song et al. 2014, Li 2015, Allam et al. 2015, Heo et al. 2014, Greenfield
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et al. 2014, Salmela & Schröder 2011, Kao et al. 2011) have become available

to rectify errors in the raw data. These methods take a global approach to

rectify all possible errors using genome-wide patterns and statistics. Because

the correction is operated on the whole set of reads (usually millions or

billions in number), the algorithm complexity is high and the correction

performance is not perfect; sometimes even a lot of new errors are introduced

into the reads by these global approaches. These challenges are attributed

to several reasons. Firstly, the sequencing depth is non-uniform — the

sequencing coverage varies remarkably from one part to another in the

genome. The resulting conflicts between the kmer statistics from the low-

coverage regions and those from the high-coverage regions have significantly

hindered the global approach to conduct e↵ective error removal — Some

genes may get under-corrected while some other genes get over-corrected.

Secondly, genome fragmentation for read generation is random and the errors

are distributed non-uniformly. Thirdly, repetitive regions exist in the genome

sequences. Reads from the repetitive regions are likely to share the same

nucleotide sequence, or highly similar to each other (Liu, Zhang, Zou &

Zeng 2020). Errors in these reads tend to be corrected falsely by the global

approaches and many new errors are introduced.

It is sometimes unnecessary to conduct global correction. Instead, highly-

accurate instance-based error correction for short reads of specific genes is

more important. For example when SNP (Li et al. 2009) or genotyping

properties (DePristo et al. 2011) are of great importance, then only specific

genes or pathways involved in the disease mechanism or a special segment

of loci in the genome would be focused on. In these important situations,

the paramount requirement is to ensure the relevant reads, instead of the

whole genome, are error free after the correction step. As in a recent breast

cancer study (Findlay et al. 2018), the tumour suppressor gene BRCA1 and

particularly the single-nucleotide variants (SNVs) in this gene’s exons are

focused on understanding the functionally critical domains of BRCA1 and

the related clinically actionable genes (Millot et al. 2012). It is vital to
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provide error-free reads related to these specific genes (Chopra et al. 2015)

for the precise detection of SNVs and accurate discovery of SNPs. As

another example in the mutation and protein research area, error correction is

important because one or two DNA base mutations in the coding region of a

gene may lead to functionally di↵erent amino acids (Bashir, Ragab, Khabour,

Khassawneh, Alfaqih & Momani 2018, Wang, Freedman, Liu, Moorman,

Hyslop, George, Lee, Patierno & Wei 2017, Fung, Zhou, Joyce, Trent, Yuan,

Grandis, Weissfeld, Romkes, Weeks & Eglo↵ 2015), and more likely when

the open reading frame mechanism is considered. These mutations are called

point mutations, and more than 31,000 such mutations in the human genome

are associated with genetic diseases (Ravindran 2019). The reads related to

such a gene without error correction or with under-correction may mislead

the conclusion about the functional properties of the proteins. The existing

global error correction is not the best choice for this.

In this work, we propose to use an instance-based approach to make error

correction for the reads of a disease-associated gene. The method is also

applicable to the reads of multiple disease genes, or a set of genes related

to a phenotype, or an unknown-function region in the genome, or even any

nucleotide sequence of interests. The method, named InsEC, aims to rectify

the errors in the instance reads with a very high accuracy and to reduce the

number of introduced new errors to a minimum. The global approaches su↵er

from the issue of non-uniform sequencing depths occurred in error correction.

However, when the instance-based approach is taken for the error correction

in a subset of reads, this issue can be significantly moderated. Comparing

with the global approaches which may have neglected the local features of

the instance reads, our instance-based approach has the advantage that the

patterns and statistics can be exhaustively explored to rectify the errors, and

can be conservatively combined to reduce the number of introduced errors.

InsEC has two steps. The first step is for read extraction, which collects

all reads relevant to a given gene. The second step is for correction, which

exploits the local sequence features in the extracted read sets It uses local
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alignments to quantify erroneous probability of each base in the reads for an

accurate correction.

In fact, global approaches can be turned into instance-based approaches

if the whole set of reads is narrowed down to the subset of reads of

a specific gene as input data. These global approaches include kmer

based error correction methods such as BFC (Li 2015), BLESS (Heo

et al. 2014), Lighter (Song et al. 2014), Blue (Greenfield et al. 2014), and

ACE (Sheikhizadeh & de Ridder 2015). The key idea of these methods is

to use the frequencies of all kmer strings and a global frequency threshold

to define solid and weak kmers. The error correction process is to transform

each weak kmer into a solid kmer according to some heuristics (e.g., the

minimum edit distance between a weak and a sold kmer). Because the

sequencing depths are non-uniform across the genome, some globally weak

kmers are actually solid kmers in a local region. Thus it is a wrong correction

to transform these local solid kmers. Compared with the global kmer based

methods, the global multiple alignment methods, including Coral (Salmela

& Schröder 2011), ECHO (Kao et al. 2011) and Karect (Allam et al. 2015),

do not rely too much on the selection of kmers. Firstly, reads are grouped

based on whether they share some kmers. Then reads in each group are

concatenated to form a long consensus contig, which is assumed error-free.

Then, these consensuses are used as references to correct the mismatches in

every read. But, the kmer grouping can intensify the issue of non-uniform

sequencing depths in the contigs, i.e., the error-free assumption on the contigs

is too strong and biased.

Our instance-based approach InsEC does not need to define solid or

weak kmers in the correction step, and thus it can avoid the issue of non-

uniform sequencing depths in the global approaches. Although similarly

as the multiple sequence alignment methods to implement the alignment

process, our InsEC quantifies error probabilities conservatively column-by-

column and row-by-row in the alignment array to avoid introducing new

errors.
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The performance of InsEC is evaluated on the error correction itself as

well as on the quality of the resulted assemblies. Extensive experiments

demonstrated that our method has superior precision, recall and gain rates

over all state-of-the-art error correction methods when tested on reads

datasets of lung cancer associated genes. The quality of the assemblies of

the reads also become improved after our error correction. We obtained

longer and less number of contigs, and the contigs are closer to the ground

truth in the simulated datasets. In our SNP case studies, we found that

some corrections can happen at the current lung cancer SNP database,

implying that instance-based error correction is crucially important for SNP

and mutation analysis.

3.2 Methods

A read r is a genomic sequence denoted by r = r1r2 · · · rn, ri 2 ⌃ =

{A,C,G,N,T} , where A, C, G and T stand for the nucleotides Adenine,

Cytosine, Guanine and Thymine respectively, and the character N stands

for uncertain nucleotide; and n is the length of r (e.g., n = 100 or 200).

Usually, the length of all of the reads from one wet-lab experiment (short

read sequencing) is exactly the same. The sequencing errors can be randomly

distributed anywhere in r.

Computation required by InsEC consists of two main tasks. One task

is to draw relevant reads to a given gene from a WGS sequencing dataset.

Through read extraction, a gene-related read dataset is constructed for error

correction. The second task is to precisely correct errors on the gene-related

subset of reads using fine-grained alignment patterns and statistics.

3.2.1 Reads extraction

Let S be a set of human genomic reads generated by Illumina whole genome

sequencing platforms, and let Ig be a reference sequence of our interested gene

g. But the reference sequence Ig is assumed not error-free. We extract reads
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from S which are relevant to the gene sequence Ig for the correction of possible

errors in these reads. This subset of reads is denoted by subset(S, Ig). We

also assume that the ground truth of gene sequence can vary from di↵erent

individual samples because of single-nucleotide polymorphism. So the ground

truth of gene g, denoted by Tg, should have di↵erent nucleotide bases with

the reference gene sequence Ig. Under the above two assumptions, reads

having a Hamming distance with Ig (i.e., with noise tolerance) are required

to move from S to form subset(S, Ig). The Hamming distance threshold is

set as 95 so as to have complete relevance of subset(S, Ig) to Tg as much as

possible. In this work, we use BWA-MEM (Li 2013) for the read mapping

with Hamming distance tolerance. BWA-MEM is a widely-used alignment

tool, highly e�cient to align short reads against a nucleotide sequence, and

it allows mismatches and gaps, which means the extracted subsets of reads

may contain insertion and deletion (indel) errors as well. These indel errors

are handled at the multiple sequence alignment stage. Insertions are directly

removed and the deletions are recovered by the alignment mechanism.

We note that this reads extraction step is very similar to the reads

extraction step used in variant calling studies (Van der Auwera, Carneiro,

Hartl, Poplin, Del Angel, Levy-Moonshine, Jordan, Shakir, Roazen, Thibault

et al. 2013, DePristo et al. 2011). But the purpose and assumptions are

polarly di↵erent. The purpose of variant calling studies is to identify

variations between genomes and the reference genome is assumed to be error-

free. But the purpose of our study is to make corrections for the possible

errors in the extracted reads, and the reference genome is assumed to be not

error-free. Variant calling studies do not have any attempt to correct the

possible errors in the extracted reads. Our error-corrected reads can be used

for potentially better variant calling analysis.

In the reads extraction step, we actually extend the sequence Ig at both

ends with 50 nucleotide bases, to guarantee that some reads crossing the

boundary of Ig can be extracted as well. Through the extension of the gene

sequence and the noise-tolerant mapping process, more reads are extracted as
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far as possible. We note that a few reads mapped to the nucleotide sequence

Ig with high mapping scores may belong to other genes (the repetitive areas).

So in a further step, we double-check whether a read should be collected in

subset(S, Ig).

3.2.2 Error correction step

After subset(S, Ig) is formed, we align all the reads in subset(S, Ig) according

to their positions in Ig, and place them one by one in each row in an increasing

order of their start position. This sorted organization of subset(S, Ig) is called

an alignment array. The alignment array is traversed column-by-column for

error correction. Intuitionally, if a base has a very low type frequency in

the column, this base (i.e., an outlier) is very likely to be erroneous. The

key idea is to detect dominance information in the columns according to the

nucleotide type distribution and to locate error bases in the rows according

to their error-aware probabilities.

Suppose only four nucleotide types (i.e., A, C, G, and T) are in the reads.

For a column of bases in the alignment array, there are four possible cases

for the nucleotide type distribution:

One-type dominance. All or almost all of the bases have the same

nucleotide type. For example, 99% of the bases in the column are

nucleotide type ‘A’; all the other bases (‘C’, ‘G’, or ‘T’) constitute the

remaining 1% of the bases. These 1% of the bases are outlier bases or

erroneous bases.

Two-type dominance. All or almost all of the bases are split into two

main nucleotide types.

Three-type dominance. All or almost all of the bases are split into three

main nucleotide types.

Four-type dominance. All of the bases are split into four main

nucleotide types.
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We say a column is dominated by one or more types of bases if the total

count of the other types of bases is 0, 1, 2, or 3; or the total percentage of the

other types of bases is less than 2% when the total number of bases in the

column is 100 or more. These thresholds can be adjusted according to data

characteristics.

The respective error correction is as follows:

Correction for one-type dominance. Suppose the dominant type of

bases is X, then change all other type(s) of base(s) to X for correction;

Correction for two-type dominance. Suppose the two dominant types

of bases are X and Y , then change all other type(s) of base(s) to X

and Y proportional to the percentages of X and Y ;

Correction for three-type dominance. Suppose the three dominant

types of bases are X, Y and Z, then change all other bases to X,

Y and Z proportional to the percentages of X and Y and Z;

Correction for four-type dominance. No correction is needed.

Let f(X) denote the percentage ofX in the column, namely the frequency

of X. Some examples of the base distribution and error correction are: (i)

f(A) = 99%, f(T ) = 0.5%, f(G) = 0.5% (dominated by one type), change

all the Ts and Gs to A; (ii) f(T ) = 40%, f(G) = 58%, f(A) = 0.8%,

f(C) = 1.2% (dominated by two types), change all the As and Cs to T and

G in the ratio 40:58; f(T ) = 40%, f(G) = 58%, f(A) = 2% (dominated by

two types), change all the As to T and G in the ratio 40:58; (iii) f(T ) = 40%,

f(G) = 41%, f(A) = 18%, f(C) = 1.0% (dominated by three types), change

all the Cs to T and G and A in the ratio 40:41:18; f(T ) = 40%, f(G) = 41%,

f(A) = 19% (dominated by three types), no change; and (iv) f(T ) = 25%,

f(G) = 40%, f(A) = 30%, f(C) = 5% (dominated by four types), no change.

If the minor types of the bases have the same frequency at multiple

columns, for a conservative correction, we set priorities to change those bases
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at the columns with a less number of dominant types. The order is: one-

type dominance is prior to two-type dominance which is prior to three-type

dominance. The priority value of base V is set as 0.1 if V is at a one-type

dominance column, denoted by p(V ) = 0.1; set as 0.2 if V is at a two-type

dominance column, denoted by p(V ) = 0.2; and set as 0.3 if V is at a three-

type dominance column, denoted by p(V ) = 0.3.

We then traverse the alignment array row-by-row to make the

conservative error correction. For each row, we rank all the bases r1r2 · · · rn,
according to their base type frequency together with their dominance value

(i.e., f(ri) + p(ri)), into an increasing order. Since Illumina sequencing data

(used in this work) has an error rate around 0.5% to 2%, the first two per cent

of bases in a row are considered as errors. Then these bases are confirmed

to change. Before changes, we check the number of dominant types in the

column. If there are more than one potential dominant type to correct, we

consider its neighbor columns as well. We give a high priority to corrections

which is followed by dominant types with large number of bases.

Note that in the situation of two-type or three-type dominance, some of

the reads in subset(S, Ig) are not relevant to gene g. They may come from

another gene with a repetitive region of g. This issue is not solvable by the

reads extraction step; it is only identifiable in the alignment step. In this

work, if more than one of bases’ probability in the top two per cent bases is

larger than the threshold, we assume the read are more likely from the other

part of the genome sequence I, instead of from the sequence of the gene Ig.

These reads are labeled ’out’ and deleted from subset(S, Ig) for the contig

construction of gene g. An example of the correction is shown in Figure 3.1.

The pseudo code of the correction algorithm is shown in Algorithm 3.1.

3.3 Experiments and Results

We compare the error correction performance of InsEC with instantialized

state-of-the-art tools Bcool (Limasset et al. 2020), BFC (Li 2015) and
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Algorithm 3.1 Error Correction

Input: An extracted read set R = {R1
, R

2
, · · · , Rm}, their corresponding

alignment position {ui}mi=1 and threshold �

Output: A corrected read set S 0 and an updated nucleotide sequence H

Function Error Correction (R, {ui}mi=1 ,�)

begin
q  max(ui)

H  empty array . *[r]Store the updated nucleotide sequence

for j = 1 to (q + n� 1) do
(c, d)  (0, 0)

for i = 1 to m do

if ui  j  (ui + n� 1) then
f(j, ri(j�ui+1))  f(j, ri(j�ui+1)) + 1

c  c+ 1

H(j)  argmax
x2{A,G,T,C}

(f(j, x))

foreach x 2 {A, T, C,G} do

if f(j, x) > 0 then
d  d+ 1

foreach x 2 {A, T, C,G} do
f(j, x)  f(j, x)/c+ d ⇤ 0.1

S 0  ; . *[r]Store the corrected reads for i = 1 to m do

for j = 1 to n do
t(j)  f(ui + j � 1, rij)

[B, I]  sort(t(1...n)) . *[r]ascending order; B is sorted array and I

is an index array; the k-th smallest is t(I(k)) if B(3) > � then
r
i
I(1)  H(I(1) + ui � 1)

r
i
I(2)  H(I(2) + ui � 1)

Append R
i to S 0

return S 0, H
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Coral (Salmela & Schröder 2011). Bcool is the latest method published

in year 2020; BFC and Coral are two classical error correction methods,

representing the kmer based methods and the multi-alignment error

correction methods respectively. Our experiments are conducted on both

simulated and real sequencing data. The ground truth of the genome

sequence is not available for the real datasets, so the simulated datasets are

used as a supplement to the real data experiments. With the ground truth

provided by the simulated datasets, we are able to evaluate error correction

and further assembly performance objectively for all of the methods. Our

InsEC method is designed for error correction on disease-causing genes,

so seven genes related to lung cancers are selected to illustrate method

performance in the following experiments.

3.3.1 Sequencing Read Datasets

Illumina sequencing datasets are available at the Sequence Read

Archive (SRA) (https://www.ncbi.nlm.nih.gov/sra/); and the simulated

Illumina sequencing data can be produced by ART (Huang, Li, Myers &

Marth 2011) which is a benchmark tool for the generation of simulated

short reads. The real dataset used in this work is ERR174310, which

contains paired-end human whole genome deep sequencing reads generated

by Illumina HiSeq 2000. We denote this dataset as D0. The two simulated

sequencing datasets (denoted by D1 and D2) have the same read length and

the same sequencing platform as ERR174310. D1 is a single-end dataset, and

D2 is a paired-end dataset, both generated with reference to the standard

sequence of human chromosome one.

The genome annotations are obtained from the NCBI (National Center for

Biotechnology Information) (https://www.ncbi.nlm.nih.gov/genome/),

including gene name, gene ID and gene positions. More details of these

datasets are shown in Table 3.1. The seven genes related to lung cancer

in this study are ILR6R, IL10, ATF3, GRIK3, MYCL, PRDX1, and ENO1.

All of these genes are located at chromosome one. The nucleotide sequences
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of the genes are available at the NCBI gene database (https://www.ncbi.

nlm.nih.gov/gene/). The length of these genes ranges from 4,892 to 238,602

bases. See more details of these genes in Table 3.2.

Table 3.1: Description of the datasets

Dataset
Real dataset Simulated dataset

D0 D1 D2

Read length 100 100 100

Total reads 586, 941, 413 23, 046, 123 23, 048, 001

Type of reads paired-end single-end paired-end

Accession No. ERR174310 Simu-Single Simu-Pair

Reference Human Genome Chromosome.1 Chromosome.1

Notes : The latest version of human genome, GRCh38.P13, is used in our

experiments as of September 2019.

3.3.2 Evaluation Metrics

The performance is evaluated not only on the error correction but also on

the read assembly before and after the error correction.

Metrics for Correction Performance

To assess the accuracy of the correction methods, we use the following three

metrics, Precision (TP/(TP+FP)), Recall (TP/(TP+FN)), Gain ((TP-

FP)/(TP+FN)). More details are shown in Section 2.3.1.

Metrics for Assembly Performance

To assess the impact of error correction on the assembly results, we compare

InsEC with other state-of-the-art methods by standard assembly assessment

metrics. We choose SPAdes (Bankevich et al. 2012) to assembly read data
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Table 3.2: Genes related to lung cancer on human chromosome one

Gene ID Gene Name Gene length Gene function

Gene1 (g1) IL6R 64257 protein coding

Gene2 (g2) IL10 4892 protein coding

Gene3 (g3) ATF3 55443 protein coding

Gene4 (g4) GRIK3 238602 protein coding

Gene5 (g5) MYCL 6830 protein coding

Gene6 (g6) PRDX1 12011 protein coding

Gene7 (g7) ENO1 18250 protein coding

Notes : The details of genes are from the genome annotation of the latest

version GRCh38.P13

before and after error correction, except that the error-free datasets are

assembled for the performance assessment as well. To assess our method

more specificlly, each nucleotide in the gene sequence updated by InsEC is

compared with its in gene reference. On simulated dataset, the ground truth

of gene sequence is available, so the more similar the updated sequence with

the referferce is, the better performance of assembly is.

Assembly results comparison: The assembly results are evaluated by

QUAST (Gurevich et al. 2013), a quality assessent tools for genome

assemblies. Detailed reports include the number of contigs, the largest

contigs and N50. A contig is a continuous nucleotide sequences

obtained from the assembly process. N50 is defined as the minimum

contig length needed to cover 50% of genome.

The Reference vs the corrected sequence: The nucleotide of gene

sequences, updated by our method, are compared with the reference

sequence of genes base-by-base. The less di↵erence between the two

sequences is, the better assembly performance is.
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3.3.3 Performance Evaluation

For each g of the seven lung cancer disease-associated genes, we constructed

subset(D1, Ig) and subset(D2, Ig), and conducted instance-based error

correction by InsEC. Strictly on these two subsets of reads, we also apply

three state-of-the-art global correction methods Bcool (Limasset et al. 2020),

BFC (Li 2015) and Coral (Salmela & Schröder 2011) to rectify errors for a

fair comparison. This is exactly so called “global approaches can be turned

into instance-based approaches” as stated in Introduction. The overall error

correction performance by InsEC, Coral, BFC and Bcool on the seven lung

cancer disease genes are presented in Table 3.3.

Our method InsEC achieved the best precision, recall and gain rate on

all of the datasets. In particular, the average precision, recall and gain

rate by our method are much superior respectively by 3.13%, 21.9% and

24.44% to the latest method Bcool on the single-end datasets, and much

superior respectively by 4.14%, 2.99% and 7.2% on the paired-end datasets.

More importantly, our method improved the gain rates a lot, implying more

number of bases are rectified and less number of errors are induced compared

with the existing methods. In detail, InsEC improved the gain rates ranging

from 9.57% to 24.44% on the single-end datasets, and improved the gain

rates ranging from 6.98% to 7.71% on the paired-end datasets. It is noted

that the other methods are sensitive to data types. All of the other methods

perform better on pair-end datasets than single-end datasets, especially the

gain rate improved from 3.28% to 18.31%. While our method InsEC shows

good robustness on both single-end and pair-end datasets, achieving the gain

rate at 97.55% and 98.62% respectively.

All the experiments were conducted on a computing cluster running Red

Hat Enterprise Linux 6.7 (64 bit) with Intel Xeon E5-2695 v3 and 128 GB

RAM. We use the Linux/Unix time command to record the system time and

memory usage. The average running time (seconds) of InsEC, Coral, BFC

and Bcool is 3.2s, 1.55s, 1.02s and 18.92s and the average memory usage

(kbytes) is 503,271kb, 419,156kb, 1,109,266kb and 527,268kb respectively.
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Table 3.3: Performance comparison of instance-based error corrections

On single-end reads On paired-end reads

Ins EC Coral BFC Bcool Ins EC Coral BFC Bcool

P
re
ci
si
on

(%
)

g1 98.42 95.95 91.91 93.01 99.49 94.46 90.96 89.82

g2 100 99.65 100 94.70 100 97.39 100 98.18

g3 99.64 92.19 93.90 95.48 99.85 93.49 94.10 97.97

g4 99.93 94.86 97.34 96.30 99.97 95.19 98.18 98.00

g5 100 100 100 98.68 100 90.16 95.00 96.02

g6 98.56 93.36 91.64 87.73 99.27 92.30 95.35 91.49

g7 100 99.25 99.87 93.79 100 98.57 96.02 95.81

AVE 99.51 96.47 96.38 94.24 99.80 94.51 95.66 95.33

R
ec
al
l
(%

)

g1 95.06 91.06 78.64 79.38 96.78 93.92 95.04 86.78

g2 97.26 95.65 71.91 89.63 99.32 97.39 95.93 96.42

g3 98.07 97.07 76.00 89.23 98.48 97.92 95.49 92.75

g4 97.16 96.97 78.19 91.25 97.82 97.05 97.75 93.85

g5 99.34 61.84 69.74 98.03 99.78 90.16 94.44 95.73

g6 99.60 96.44 76.91 79.34 99.69 97.20 96.65 81.10

g7 99.72 96.81 71.52 86.53 99.87 98.41 95.48 89.78

AVE 98.03 90.83 76.13 87.63 98.82 96.01 95.83 90.91

G
ai
n
(%

)

g1 93.54 87.95 71.72 79.38 96.29 89.66 85.60 86.78

g2 97.26 95.64 71.91 89.63 99.32 95.71 95.93 96.42

g3 97.71 89.56 71.06 89.23 98.34 92.15 89.50 92.75

g4 97.09 92.76 76.06 91.25 97.79 93.29 95.94 93.85

g5 99.34 61.84 69.74 98.03 99.78 81.04 89.47 95.73

g6 98.15 91.32 69.90 79.34 98.96 91.23 91.94 81.10

g7 99.72 96.79 71.43 86.53 99.87 98.39 91.52 89.78

AVE 97.55 87.98 73.11 87.63 98.62 91.64 91.42 90.91

Notes : AVE indicates the average score over the seven genes. Bold font

indicates the best result in the row.
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Our InsEC ranks the second in running time and memory usage.

The global approaches improved when focusing on disease-

associated genes

To show the significance of instance-based error correction for the reads

related to disease-causing genes, we compare the error correction performance

on the whole sequencing datasets with those on the gene-related subsets of

reads. After running error correction on the whole datasets D1 and D2, those

reads relevant to the given gene g are extracted for performance assessment

and comparison. The methods are specially denoted as Bcool g, BFC g and

Coral g in this situation. The overall error correction performance for lung

cancer-associated genes is presented in Table 3.4.

These global error correction methods got improved when directly applied

to the subsets of reads related to the gene-associated genes, namely the

gain rates by Coral, BFC, and BCOOL are better than their global versions

(labeled with g), increasing the performance from 2.56% to 7.61%.

Performance of read assembly after error correction

To see whether the error correction has impact on the quality of the

assemblies, we compare on the number of contigs, the longest contigs and

N50 before and after the error correction of D1 and D2. We also construct

the assemblies from the error-free read sets (the ground truth is available

for the simulated datasets). The best error correction method is expected to

have the most similar assembly results to those from the error-free dataset.

The di↵erences in the assembly results between the error-free datasets and

corrected datasets after error correction by all the methods are listed in

Table 3.5. There are no di↵erences in assembly results for the other four

genes, so their results are not listed in table.

The assembly results get improved after the error correction. In

particular, there is an increasing trend at the length of contigs after the error

correction, and a decreasing trend at the number of contigs. Compared with
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Table 3.5: Assembly results compared with the ground truth

Single-end reads

g1 g3 g4

NO. Lar. N50 NO. Lar. N50 NO. Lar. N50

Truth 6 24854 11363 3 27822 27822 3 187434 187434

Raw -1 3170 -1316 0 50 13879 -2 37224 37224

InsEC 0 0 0 0 0 0 0 -13 -13

Coral 2 -11485 0 0 -50 -13879 1 15 15

Corel I 4 -28181 -41672 1 -13824 -13824 0 -186 -186

BFC -1 3170 -1316 0 50 13879 0 34 34

BFC I -2 0 0 0 50 50 0 34 34

Bcool -1 3198 -1316 0 50 13879 -2 52585 52585

Bcool I -1 0 0 0 -6 -6 -1 52505 52505

Paired-end reads

g1 g3 g4

NO. Lar. N50 NO. Lar. N50 NO. Lar. N50

Truth 3 40458 40458 2 27893 27893 6 134849 134849

Raw -4 13097 27287 0 63 63 -3 15530 15530

InsEC -1 0 0 0 0 0 0 13 13

Coral 0 0 0 0 91 91 -2 302 302

Corel I 2 -23894 -23894 1 -27650 -27650 2 -23329 -23329

BFC 0 0 0 0 91 91 -2 783 783

BFC I -2 0 0 0 69 69 -2 813 813

Bcool 0 0 0 0 91 91 -3 15565 15565

Bcool I 0 63 63 0 63 63 -2 64126 70640

Notes : Truth row indicates the assembly results of the error-free read data.

Other rows show the di↵erence value where value in Truth row minus the

current row. NO. indicates the number of contigs. Lar. Indicates the largest

length of contigs.
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the other error correction methods, InsEC has the most similar assembly

results to those from the error-free datasets for 5 of the 6 cases; on the

remaining one, the result of our method has only one di↵erence in the number

of contigs. Furthermore, we achieved the identical assembly results as those

from the error-free datasets g1, g3 and paired-end g3.

The contig quality are shown in Table 3.6, where the numbers of base

di↵erences between the contigs from our corrected reads and those from the

reference sequences are presented.

Table 3.6: The contigs from corrected reads vs the reference sequence

Contig Q g1 g2 g3 g4 g5 g6 g7

Single-end D1 6/64258 M 5/55444 7/238603 M 2/12012 M

Paired-end D2 6/64258 M 5/55444 6/238603 M M M

Notes : The sign ‘M’ indicates the contig assembled from the corrected reads

by our method and the reference sequence are identical. 6/64258 indicates

there are 6 di↵erent bases in 64258 bases, and similarly for other number

combinations.

Most of the contigs assembled from the corrected reads by our method are

identical to the reference sequences (see the sign ‘M’); while the remaining

assemblies have only tiny di↵erences from the reference sequences (e.g., only

7 or 6 base di↵erences over a length of 238,603 bases).

Case studies: error correction at mutation-prone regions in the

lung cancer associated genes

On the real sequencing reads dataset D0, we have performed instance-

based error correction for the reads relevant to EGFR and KARS which

are two genes highly associated with lung cancer (El-Telbany & Ma 2012).

Some of our corrections happened at the mutation-prone regions of EGFR.

These point mutations or mutation combinations are known (Marchetti,
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Martella, Felicioni, Barassi, Salvatore, Chella, Camplese, Iarussi, Mucilli,

Mezzetti et al. 2005) to make lung carcinomas more responsive to treatments

with tyrosine kinase inhibitors. These mutations are usually at least one

base di↵erent from a reference sequence, also referred to ’variant calling’.

One of the corrections changes A to G at the SNP:rs1476431328 position,

located at chr7:55205427. Due to this base correction from A to G, the

corresponding amino acid is changed from Asparagine (AAC) to Serine

(AGC). If this base is not corrected, the amino acid Asparagine instead of

the correct amino acid Serine would be focused in the downstream analysis

which may lead to di↵erent conclusions about the functions of the protein.

This is quite possible because Asparagine and Serine pose their own distinct

biophysical properties. Another of our corrections is at SNP:rs781609053

which changes nucleotide T to C. Correspondingly, the amino acid would

be changed from Methionine (ATG) to Threonine(ACG). Furthermore a

correction was performed at SNP:775317295 which changes nucleotide C

to T, implying that the amino acid Proline (CCA) should be changed to

Leucine (CTA). The e↵ects of mutations lead to di↵erent structures of its

coding proteins, thereby a↵ecting its functions (Marks, Colwell, Sheridan,

Hopf, Pagnani, Zecchina & Sander 2011), which is shown in Figure 3.2, where

we use SWISS-MODEL (Waterhouse, Bertoni, Bienert, Studer, Tauriello,

Gumienny, Heer, de Beer, Rempfer, Bordoli et al. 2018) to model the

structure of coding protein according to its amino acids sequence. The

amplification of gene KARS primarily decides the growth and survival of

lung cancer cell lines (Lutterbach, Zeng, Davis, Hatch, Hang, Kohl, Gibbs

& Pan 2007). For the reads in D0 that are relevant to KARS, some of

our instance-based error corrections also occurred at its SNP positions.

The correction from A to G at SNP:rs35225896 changes the corresponding

amino acid from Isoleucine (ATA) to Methionine (ATG). Highly accurate

sequences near this position should be ensured, as mutations at this position

0In Figure 3.2, the mutation bases and changed amino acids are highlighted by green

and blue color. The predicted structure of coding proteins are shown in the right side.
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Figure 3.2: Two examples of point mutations in case studies.

are closely related to hereditary cancer-predisposing syndrome, supported

by clinical significance and publications (https://www.ncbi.nlm.nih.gov/

snp/rs35225896). Error corrections at non-coding regions are important as

well. For instance, our correction at SNP:rs11762213 changes the nucleotide

from G to A. Though such corrections at non-coding regions do not e↵ect

type of amino acids, SNP:rs11762213 is recognized as a predictor of adverse

outcomes in clear cell renal cell carcinoma (Hakimi, Ostrovnaya, Jacobsen,

Susztak, Coleman, Russo, Winer, Mano, Sankin, Motzer et al. 2016). Thus,

high-quality corrections at mutation-prone regions (coding and non-coding

regions) are very important for downstream SNP and mutation studies.

3.4 Summary

Our approach (named InsEC) is contrast to the existing error correction

methods which all take a global approach to make a genome-wide error

correction. Genome-wide error correction is not good enough especially when
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the study is focused on disease genes or pathways. InsEC’s correction step

adequately exploits fine-grained local patterns so as to rectify those errors

which were unable to be corrected by the global approach. The reason is that

the instance-based approach can significantly moderate the global approach’s

issue on the non-uniform sequencing depth. We have conducted extensive

experiments on simulated single-end and paired-end reads. The performance

evaluation confirms that InsEC has much superior precision, recall and gain

rate over the state-of-the-art methods on various sets of reads related to lung

cancer genes. InsEC can also provide an assembled nucleotide sequence of the

corrected reads which is closer to the ground truth than the other methods

on the simulated datasets. Our SNP case studies on the real paired-end

reads show that the error correction can happen at the mutation-prone bases

stored at the current SNP databases, implying that highly accurate instance

based approach is particularly useful for SNP and mutation investigations.

In this work, we have proposed a novel approach for short reads error

correction. The method is an instance-based approach, or a local approach, to

rectify all possible errors in the reads relevant to a disease gene, or a subset of

disease-associated genes. Our novel idea is to exploit local sequence features

and statistics directly related to these genes. Two main steps can collects

reads relevant to a given gene from a WGS dataset through a noise-tolerant

mapping technique and take advantage of alignment processes and rectify

errors according to fine-grained patterns and statistics. InsEC achieves good

performance on both single-end and pair-end datasets, and can also provide

an assembled nucleotide sequence for gene sequence studies. This study

successfully serves as read preprocess tools to provide high-quality data for

targeted genes or genome region research.

Availability

The data material and code are all available at the github link (https:

//github.com/XuanrZhang/InsEC.git).
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Chapter 4

Error Correction Method for

MicroRNA Sequencing Reads

4.1 Introduction

With rapid developments of sequencing technology, high-throughput

platforms have inexpensively produced huge amounts of genomic reads at

unprecedented speed (Goodwin, McPherson & McCombie 2016), for example

by whole genome sequencing, total RNA sequencing, mRNA sequencing

and small RNA sequencing. Recently, sequencing of miRNAs (a special

type of small RNA molecules containing about 22 nucleotide bases) has

been widely used to examine tissue-specific expression patterns, to identify

isomiRs (mature miRNA variants) and to discover previously uncharacterized

miRNAs (Yeung et al. 2016, Xiao & MacRae 2019, Giraldez et al. 2018, Tan

et al. 2014, Trontti et al. 2018, Fernandez-Valverde et al. 2010). As key

regulators in various biological processes, miRNA dysregulation is implicated

in many diseases for example cancer and autoimmune disorders (Meng

et al. 2017, Liu et al. 2018, Telonis et al. 2017, Dutta et al. 2019, Dai

et al. 2019). Numerous studies also rea�rm that miRNA regulatory functions

are involved in post-transcriptional gene silencing (PTGS), transcriptional

gene silencing (TGS), and transcriptional gene activation (TGA) (Pisignano
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et al. 2017, Yang et al. 2020), in which miRNAs bind to nascent RNA

transcripts, gene promoter regions or enhancer regions and exert further

e↵ects via epigenetic pathways (Liu et al. 2018, Liu et al. 2019).

Fine-granulated analysis of miRNA reads at single-base resolution for

uncovering their isoforms (isomiRs) and alternative splicing is one of the most

frontier research areas in this field (Liao et al. 2018, Tan et al. 2014, Liu, Lai

& Guo 2020, Bilanges et al. 2019, Sänger et al. 2020, Pillman et al. 2019,

Hoefer 2020). IsomiRs vary in size and base content, due to the alternative

and imprecise cleavage of Drosha and Dicer, or the turnover of miRNAs

(Neilsen, Goodall & Bracken 2012, Hoefer 2020). IsomiRs have been classified

into four categories: 5’ trimmed isomiRs, 3’ trimmed isomiRs, 3’ addition

isomiRs, and polymorphic isomiRs (Lan, Peng, McGowan, Hutvagner &

Li 2018). 5’/3’ trimmed or addition isomiRs are defined as those miRNA

sequences which have one or more bases trimmed or added respectively at

the 5’ or 3’ end from the canonical miRNAs, while polymorphic isomiRs

usually have substitution mutations, causing one or more bases di↵erent

from the canonical miRNA. For such broad range of miRNAome analysis,

super high-quality sequencing data is demanded because the definitions are

very sensitive to the base positions—one base di↵erence can lead to entirely

di↵erent read categorization.

High-throughput sequencing technology produces short reads containing

approximately 1% erroneous bases (Salk, Schmitt & Loeb 2018, Goodwin

et al. 2016, Laehnemann, Borkhardt & McHardy 2016) such as aberrations

of substitutions, base insertions, or deletions (indels). A previous study

reported that the error percentage of most Illumina reads is approximately

0.5% at best (Mardis 2013). These randomly distributed errors or even

erroneous bases at only one position can cause lowered copy numbers for

miRNA reads, and thus a↵ect the calculation of miRNA expression levels

and di↵erential folds (Bartel 2004, Chekulaeva & Filipowicz 2009, Yu,

Pillman, Neilsen, Toubia, Lawrence, Tsykin, Gantier, Callen, Goodall &

Bracken 2017, Telonis & Rigoutsos 2018, van der Kwast, Woudenberg, Quax
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& Nossent 2020). Suppose an miRNA isoform has 100 copies expressed

in a diseased cell, if there are substitution errors happened in 5 copies

of them during the sequencing, 3 deletion errors in the other copies, and

two insertion errors as well, then the total copy number would be counted

as 90 which is away from the ground truth. Further, the data may lead

to wrong identification of isomiRs without correction of these errors. For

example, an miRNA isoform containing the deletion errors would be wrongly

identified as a 5’ trimmed isoform of a canonical miRNA; If the errors

occur at the seed region of an miRNA (conserved region of miRNAs),

its target specificity analysis would be a↵ected, potentially increasing

the number of target transcripts (Cloonan, Wani, Xu, Gu, Lea, Heater,

Barbacioru, Steptoe, Martin, Nourbakhsh et al. 2011, Mullany, Herrick, Wol↵

& Slattery 2016, Neilsen et al. 2012). Although current research adopts

“abandon ambiguity reads or noise reads” to avoid misinterpreting erroneous

sequence variants (ESVs) as isomiRs, the approach inevitably losses a part of

the precious raw data (Guo & Chen 2014, Ebhardt, Tsang, Dai, Liu, Bostan

& Fahlman 2009). It is demanded to develop sophisticated algorithms to

rectify these aberrations for truth-closer analysis of miRNA reads in the

wide range of applications.

None of the existing error correction methods suits well for miRNA

sequencing data, since they have not considered the unique characteristics of

miRNA reads (short length and varying per read coverage). Besides, most of

the methods, designed for DNA or mRNA sequencing reads, only focus on the

correction of substitution errors and do not support indels error correction.

So far, these methods have taken two streams of di↵erent correction ideas.

The first one is a kmer-based error correction idea, represented by BCOOL

(Limasset et al. 2020), BFC (Li 2015), ACE (Sheikhizadeh & de Ridder 2015),

and BLESS (Heo et al. 2014). The step is to examine the frequencies of

kmers to distinguish between solid and weak kmers according to a fixed

global frequency threshold. Then the solid kmers (assumed as error-free)

are referred as templates to rectify weak kmers (assumed error-containing)
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to obtain correct reads. The second one is a multi-alignment based error

correction approach, represented by coral (Salmela & Schröder 2011), ECHO

(Kao et al. 2011), and Karect (Allam et al. 2015). These methods usually

group those reads sharing the same kmer and then concatenate such a group

of reads to form a long consensus contig. The contig is assumed error-free

to correct erroneous bases. There are also a few methods designed for RNA

sequencing reads error correction, for example Seecer (Le, Schulz, McCauley,

Hinman & Bar-Joseph 2013) and Rcorrector (Song & Florea 2015). These

approaches do not work for miRNA sequencing data error correction. For

example, the consensus idea is not applicable to miRNA data because each

read already encompasses one entire miRNA sequence. Our study did verify

that the existing methods tend to significantly under-correct the errors and

are prone of introducing tremendous number of new errors.

We present an error RECtification method for miRNA sequencing reads

(named miREC), which is the first tool to address the problem of miRNA

sequencing errors. Unlike the existing methods which have the primary goal

of correcting substitution errors, our miREC concentrates more on insertion

and deletion errors for excellent correction performance. The novel step of our

method is the use of a 3-layer (k-1)mer-kmer-(k+1)mer lattice structure to

maintain the frequency di↵erences of the kmers (Figure 4.1). These superset-

subset frequency di↵erences are very e↵ective to detect the errors especially

the indel errors. The lattice structure is also a moving structure where k is

set continuously from a small number to a big number 23 or 25 for a full

coverage of error correction. Extensive tests on both simulated and wet-lab

(experimentally catalogued) miRNA sequencing datasets show that miREC

can excel performance in all of precision, recall and gain.

4.2 Methods

An miRNA sequencing read r is a sequence r1r2 · · · rn, ri 2 ⌃ =

{A,C,G,N,T} , where A, C, G and T stand for the nucleotide bases Adenine,
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Cytosine, Guanine and Thymine respectively, and the character N stands for

a uncertain nucleotide; n is the length of r. Usually, the length n of an

miRNA read ranges from 15 to 28 in a dataset, but each read encompasses

one entire miRNA. A kmer substringk is a contiguous subsequence in a read

r.

4.2.1 A 3-layer Kmer Lattice Structure

Given an miRNA sequencing read multi-set RS and a setting k, the copy

count (or frequency) of a distinct read r in RS is the total number of

its copies in RS, and the copy count (or frequency) of a distinct kmer in

RS is the total number of its copies in RS. KMC3 (Kokot, D lugosz &

Deorowicz 2017) is used by this work as a kmer counter for these calculations.

Consider a kmer substringk, this kmer’s k-neighborhood is defined as the set

of kmers H(k, substringk) containing all possible distinct kmers of RS that

each have only one base di↵erence from substringk. Similarly, substringk’s

(k-1)-neighborhood is defined as the set of (k-1)mers H((k� 1), substringk)

containing all possible distinct (k-1)mers of RS each of which is an immediate

subset of substringk, and substringk’s (k+1)-neighborhood is defined as

the set of (k+1)mers H((k + 1), substringk) containing all possible distinct

(k+1)mers of RS each of which is an immediate superset of substringk.

For example, when the kmer is given as GTC and assume that all its

proper supersets and subsets exist in RS, then its (k+1)-neighborhood

H(4, GTC) = {AGTC, TGTC, CGTC, GGTC, GATC, GTTC, GCTC,

GGTC, GTAC, GTTC, GTCC, GTGC, GTCA, GTCT, GTCC, GTCG}.
Its (k-1)-neighborhood H(2, GTC) = {TC, GC, GT}. These three

neighborhoods of kmer substringk can be combined and it is called a 3-layer

kmer lattice structure of substringk. A schematic example of this lattice

structure is shown in Figure 4.1. 1

1The red * symbol represents a nucleotide A, G, T, or C.
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Figure 4.1: A 3-layer kmer lattice structure.

4.2.2 Error Correction Steps

The first step of the algorithm is to rectify substitution errors in RS. The

algorithm traverses all of the distinct kmers. If a kmer substringk has a

frequency lower than a threshold ⌧ (a small integer like 1, 2, or 3) and there

exist at least one kmer in substringk’s k-neighborhood H(k, substringk)

whose frequency is larger than ⌧ , we conjecture that substringk contains

a substitution error. We choose the kmer with the highest frequency in

H(k, substringk) as template to rectify the erroneous base in substringk. In

the case where more than one kmer neighbors have the same high frequency,

we choose the smallest kmer according to the alphabetical order as the

template. After the change in substringk, those reads in RS containing

the original substringk are changed accordingly; some of them may become

identical with other reads in RS. We introduce a double-checking technique

to decide whether we eventually accept the correction — we double-check

the updated frequencies of the distinct reads in the updated RS. Only when

the corrected reads become identical with a read having a frequency higher

than ⌧ , we confirm the correction; Otherwise, we abandon the modification.

With this double-checking strategy, we can avoid the issue of over-correction.

The second step is to rectify indel errors in the updated RS after the

correction of substitution errors. The procedure is similar to correcting the
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substitution errors. But the concept is fundamentally di↵erent. We traverse

all of the distinct kmers in the updated RS. If a kmer substringk has a

frequency lower than a threshold ⌧ and there exist at least one kmer in

substringk’s (k-1)-neighborhood H((k � 1), substringk) whose frequency is

larger than ⌧ , we conjecture that substringk contains an insertion error.

On the other hand, if there exists at least one kmer in substringk’s (k+1)-

neighborhood H((k + 1), substringk) whose frequency is larger than ⌧ ,

we conjecture that substringk contains a deletion error. We choose the

kmer with the highest frequency in H((k � 1), substringk) or in H((k +

1), substringk) as template to rectify the insertion error in substringk or

to add the deleted base into substringk. After the change in substringk,

those reads in RS containing the original substringk are changed accordingly;

some of them may become identical with other reads in RS. Again we use

the double-checking strategy to decide whether we eventually accept the

correction. We iterate these two steps by setting k from k1 (usually 8) to

kend (usually 20 or 25). Setting a start k as 8 is because of that we find

low-frequency kmers (e.g., frequency equal to 1) at this k but we cannot find

such low-frequency (< ⌧) kmers for k = 7. Starting from k = 8, we correct

substitution errors first, then we perform the indel error correction, till k

reaches kend. Our method is named miREC built from a 3-layer kmer lattice

structure for e↵ective correction of miRNA sequencing errors especially those

insertion and deletion errors. The pseudo code of our algorithm is shown in

Algorithm 4.1.

Our miREC has been implemented as a software prototype. It provides

several parameters for users to specify their tasks. Three most useful settings

are: the error types, the frequency threshold ⌧ , and the kmer range [k1, kend].

miREC has two running modes: one is for the substitution error correction

only, the other is for the correction of both indel and substitution errors.

Based on our experience, the frequency threshold ⌧ is best recommended as

5 by default, and the kmer range parameter is set as [8, 15]. The higher

frequency ⌧ is set, the bigger number of bases might be considered as errors.

52



Chapter 4. Error Correction Method for MicroRNA Sequencing Reads

Algorithm 4.1 miRNA Sequencing Reads Error Correction

Input: A read set RS =
�
r
1
, r

2
, · · · , rn

 
, a frequency border ⌧ , a k value region

(k1, kend)

Output: A corrected read set S

Function Error Correction (RS, (k1, kend), ⌧)
begin

Hr[1 . . .m]  hash table . *[r]read info Ha[1 . . .m], Hb[1 . . .m], Hc[1 . . .m]  
hash table . *[r]kmer info; H.[i] is an array; Each element of H.[i] is a tuple

composed of sequence and its frequency for k = k1 to kend do

Ha[1 . . .m] to KMC3(RS, k)
Hb[1 . . .m] to KMC3(RS, k � 1)

Hc[1 . . .m] to KMC3(RS, k + 1)

for i = 1 to n do

(s, f)  Count(ri)

Append (s, f) to Hr[s].f

Ckmer  ; . *[r]the kmer with highest frequency for i = 1 to n do

foreach kmer 2 r
i
do

if Ha[kmer].f < ⌧ then

Ckmer  FindNeighbor(Ha)

Cr  Replacekmer(Ckmer, r
i)

if Hr[Cr].f > ⌧ then

r
i  Cr

for i = 1 to n do

foreach kmer 2 r
i
do

if Ha[kmer].f < ⌧ then

Ckmer  FindNeighbor(Hc, Hc)

Cr  Replacekmer(Ckmer, r
i)

if Hr[Cr].f > ⌧ then

r
i  Cr

S  RS return S
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Thus, users should be cautious about using a too large frequency threshold

to avoid over-correction.

Every iterative step of miREC with the increasing length of kmer each

time by 1 in the range [k1, kend] actually corrects di↵erent amounts of errors.

As shown in Figure 4.2, after five consecutive lengths of k are iterated,

about 99.61% of substitution errors, 88.77% of insertion errors and 94.63% of

deletion errors can be corrected on average over 12 wet-lab salmon datasets

(Table 2) if k1 is set as 8. With more loops of correction, more erroneous

bases are detected and corrected. As each iterative loop consumes the same

order of time complexity, users are suggested to narrow the kmer range (by

setting kend smaller) to shorten the program running time while correcting

almost all of the errors for those miRNA sequencing datasets of huge size.

Figure 4.2: The numbers of corrected bases vary at di↵erent lengths of kmers.

The source codes of miREC are publicly available online at https://

github.com/XuanrZhang/miREC.

4.3 Experiments and Results

In this section, we introduce data materials and related experiments used

to verify our method’s error correction ability. Our experiments includes
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five parts. The first part is about the correction performance on the 8

simulated datasets; the second part is about correction performance on

the wet-lab miRNA sequencing datasets after a small number of artificial

errors are injected; the third part is about copy abundance recovery, entropy

change and rectification site summary on the recently published salmon fish

miRNA sequencing datasets after error correction; the fourth part provides

detailed case studies on the change of isomiR families, tissue-specific isoforms,

di↵erentially expressed biomarkers and rare-miRNA quantity enhancement

after the error correction on some of the wet-lab datasets, including the

human miRNA sequencing datasets. The fifth part presents our verification

results on sequencing reads datasets of 963 miRXplore Universal Reference

miRNAs (three replicates) and their spike-in at eukaryotic cells.

4.3.1 Sequencing Read Datasets

To evaluate the performance of error correction methods, simulated datasets

are required and the ground truth of the errors should be known. We

introduce a novel process to generate simulated datasets that would have a

close nature to wet-lab miRNA sequencing reads. We have two considerations

in the process. One is to computationally replicate lab-verified miRNA

sequences as templates to form the basic sequences of the simulated datasets,

then we duplicate these basic sequences such that the copy counts of them

follow a real distribution from a wet-lab dataset of miRNA sequencing reads.

In fact, we replicated the mature miRNA sequences in miRBase (Kozomara,

Birgaoanu & Gri�ths-Jones 2019) as the templates, and made the copy

count distribution of these template sequences to follow the distribution

drawn from a typical miRNA dataset under accession number SRR866573.

In other words, the sequences in our simulated datasets are not random

sequences (they are real lab-verified miRNA sequences); their copy count

distribution is not random either. Then we injected random errors into

the simulated datasets under an error rate of 0.1% per base (Laehnemann

et al. 2016). Specifically, we randomly selected two reads from every 100
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reads in the dataset; then for each selected read, we injected an erroneous

base (substitution, deletion or insertion) randomly at any position of the

read. We recorded all of these randomly and purposely injected errors for

performance evaluation.

Considering that some existing methods only support substitution error

correction, we synthesized 8 simulated datasets: four datasets containing

substitution errors only (denoted as D sub1, D sub2, D sub3 and D sub4),

and four datasets containing a mixture of 80% substitution and 20% indel

errors (denoted as D mix1, D mix2, D mix3 and D mix4). More details of

the simulated datasets are shown in Table 4.1.

Table 4.1: Description of our simulated datasets

ID Total erroneous bases Per read error rate

S
im

u
la
te
d
D
at
as
et
s

su
b
s
on

ly

D sub1 3071 3.03%

D sub2 3022 2.98%

D sub3 2973 2.93%

D sub4 3124 3.08%

m
ix

er
ro
rs

D mix1 1602,213,211 2.00%

D mix2 1618,188,206 1.98%

D mix3 1598,184,177 1.93%

D mix4 1625,226,217 2.04%

Notes : ‘ sub’ means datasets contain substitution errors only

and ‘ mix’ means datasets contain both substitution and

indel errors. Total erroneous bases list substitution, insertion

and deletion errors respectively.

Wet-lab miRNA sequencing datasets for our performance evaluation

are all downloaded from the Sequence Read Archive (SRA) (https://

www.ncbi.nlm.nih.gov/sra/) under the accession numbers SRP022967,

SRP296813 and SRP288246. These datasets have been originally studied for

topics related to salmon fish miRNAs (Woldemariam, Agafonov, Høyheim,
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Houston, Taggart & Andreassen 2019, Andreassen, Worren & Høyheim

2013), human beta cells, or Alzheimer’s disease.

Table 4.2: Description of twelve wet-lab salmon miRNA sequencing datasets

and four human miRNA datasets.

Tissue Total reads Unique reads Accession ID

Liver 1,446,902 64,593 SRR866573

Liver 1,647,133 75,273 SRR866579

Spleen 8,597,057 295,940 SRR866583

Spleen 2,236,013 89,165 SRR866587

Kidney 10,065,660 243,430 SRR866589

Head kidney 7,375,957 246,444 SRR866590

Heart 2,812,993 118,366 SRR866605

Brain 6,331,448 132,558 SRR866611

Intestine 12,428,822 197,094 SRR866612

White muscle 5,972,384 142,444 SRR866613

Gills 6,240,735 132,038 SRR866614

One day old individual 18,041,561 172,048 SRR866615

human beta cells datasets

In low glucose 63,008,516 5,803,166 SRR13208981

In high glucose 33,444,257 1,856,318 SRR13208980

human brain datasets

Sample of aged 75 11,849,807 635,169 SRR12881030

Sample of aged 94 17,250,812 361,039 SRR12881018

This work used 12 salmon miRNA sequencing datasets which were

acquired from particular salmon tissues, including liver, spleen, kidney, heart,

brain, etc; and used two human beta-cell miRNA sequencing datasets which

are about miRNA expression comparison between those cells incubated with

a solution of low glucose (2 mM) and those with a high glucose (20 mM)

in extracellular vesicles. The two other human miRNA sequencing datasets
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analyzed here are about brain samples related to post-mortem Alzheimer’s

disease. One is from a male patient aged 75, the other is from a male

patient aged 94. All the reads in the above datasets contain the sequences of

adaptors; we used the cutadapt tool (Martin 2011) to remove the adaptors

before our error correction. More details of these cleaned datasets are shown

in Table 4.2.

To rigorously evaluate the error correction performance, we also randomly

and purposely inject a small number of errors into these wet-lab datasets,

rather than the simulated datasets, to see whether our algorithm can detect

and correct these errors with ground truth, together with other errors without

ground truth. Only when all of these artificial errors in the real-life miRNA

sequencing reads can be detected and corrected, the corrections on the other

bases (without ground truth) can be highly trustable. This small number

of artificial errors constitutes only 0.5% of total corrections in each dataset

to avoid changing the original nature of the data. We have done these for

three salmon datasets (liver, heart and spleen tissues), and one human brain

miRNA dataset from the male patient aged 75. For each of these datasets,

we randomly injected small numbers of errors twice.

4.3.2 Evaluation Metrics

As the ground truth of the errors in the simulated datasets are known, we can

use recall, precision and gain to compare the correction performance between

di↵erent methods. On the wet-lab miRNA sequencing datasets, we measure

the copy count changes of the reads, the entropy changes of the whole set

of reads, and locations of the rectifications to understand the importance of

error correction. There is no recall or precision performance on the wet-lab

miRNA sequencing datasets, because the ground truth of error distributions

is unknown.
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Performance evaluation metrics on the simulated miRNA

sequencing datasets

To assess the accuracy of the correction methods, we use the following three

metrics, Precision (TP/(TP+FP)), Recall (TP/(TP+FN)), Gain ((TP-

FP)/(TP+FN)). More details are shown in Section 2.3.1.

Metrics used for performance evaluation on wet-lab miRNA

sequencing datasets

We examine the changes of miRNA copy counts and dataset entropy changes

before and after error correction for multiple salmon fish miRNA sequencing

datasets. Besides, we also summarize the position information of the

corrections in the reads to record the proportion of corrections in the seed

region. The concept of entropy was first introduced by a physicist Rudolf

clausius (Clausius 1879), to measure a system’s thermal energy per unit

temperature. The amount of entropy is also a measure of the molecular

disorder or randomness of a system. Here, we regard our sequencing read

dataset as a system, and use the concept of entropy to define dataset entropy.

For dataset entropy, we combine all low-frequency reads which are more likely

to contain errors, to interpret the quality of datasets. More specificly, we

define the miRNA count, dataset entropy and errors in the seed region as

follows.

miRNA count: the copy count of miRNA appearing in the datasets,

which is corresponding to miRNA expression level or miRNA

abundance.

Dataset entropy: �
nP

i=1
pi · log pi, where pi is the proportion of reads

whose frequency is small than i. We calculate the entropy for low-

frequency reads and sum up to interpret the degree of disorder in

the read dataset. When the entropy turns to be small, it means the

certainty of the miRNA expression becomes higher.
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Errors in seed region: erroneous bases in the seed region, which is a

conserved sub-sequence of miRNA (mostly situated at positions 2-8).

Precise bases in the seed region are vital since the seed sequence must be

perfectly complementary with its target mRNA to make the miRNAs

function.

4.3.3 Performance Evaluation

Our analysis and results are presented in four main parts. The first part is

about the correction performance on the 8 simulated datasets; the second

part is about correction performance on the wet-lab miRNA sequencing

datasets after a small number of random errors are injected; the third part is

about expression abundance recovery, entropy change and rectification site

summary on the recently published salmon fish miRNA sequencing datasets

after error correction; the fourth part provides detailed case studies on the

change of isomiR families, tissue-specific isoforms, di↵erentially expressed

biomarkers and rare-miRNA quantity enhancement after the error correction

on some of the wet-lab datasets, including the human miRNA sequencing

datasets.

Gain, recall and precision performance on the simulated miRNA

sequencing datasets

The correction performance of our miREC is presented in Table 4.3 in

comparison with algorithms Karect (Allam et al. 2015), Coral (Salmela

& Schröder 2011), BFC (Li 2015), Rcorrector (Song & Florea 2015) and

Bcool (Limasset et al. 2020). Coral and Karect are multi-alignment based

error correction methods. BFC is a representative of the kmer based error

correction methods. BFC requires a prior-setting of the k parameter; the

best k in this work is 21 (namely, under other k settings, BFC did not exceed

the performance of when k = 21). Karect is one of a few correction tools

which supports the correction of indel errors. Rcorrector, a RNA reads error

correction method, has a performance higher than another RNA correction
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method Seecer (Le et al. 2013). Rcorrector also needs to set the k parameter

and the best k in this work is 17. Even using the optimal k settings, only

a few bases can be corrected by Rcorrector. A very recent error correction

algorithm Bcool (Limasset et al. 2020), which uses a de Bruijn graph as

the platform to correct errors, could not detect any errors in the simulated

datasets. This surprising performance is not included in the table.

Our method miREC has excelled in the correction performance:

It did not introduce any new error, namely, it achieved the same gain

and recall rates on all of the 8 datasets;

It detected and corrected almost all of the errors including the indel

errors; the recall rate ranges between 96.0% - 97.9%; the precision

ranges between 98.6% - 99.5%;

It improved the overall data quality remarkably: (1) from every 50

reads containing one error to every 1300 reads containing one error for

the four error-mixed datasets; and (2) improved the data quality from

every 30 reads containing one error to every 1650 reads containing one

error for the four substitution-only datasets.

The average recall and gain rate of miREC are much superior to Karect

(the second-best method) respectively by 3.28% and 3.66% on the four

substitution-only datasets, and by 19.44% and 28.7% on the four error-

mixed datasets. Specifically, the average recall rates of miREC are 97.83%

and 96.12% on the four D sub datasets and on the four D mix datasets

respectively, which are 16.25%, 87.96% and 3.28% (on the D sub datasets)

and 27.86%, 87.21% and 19.44% (on the D mix datasets) better than BFC,

Coral and Karect. This implies that there are lots of errors un-detected

by these baseline methods meanwhile these introduced a lot of new errors

(gains and recall not equal). The multi-alignment method performed worst

on these miRNA datasets. A possible reason is that the alignment strategy

could not di↵erentiate miRNA reads well due to the short length of miRNAs.
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Rcorrector had a very low recall and gain performance as well, that means

most of the errors were not detected by the method.

The performance of miREC is robust across all the 8 datasets including

the four mixed-error datasets, in contrast to the baseline methods which

exhibited a poor performance on the detection and correction of the indel

errors. The gain rate of BFC drops from 80.83% (on the four D sub datasets)

to only 67.07%(on the four D mix datasets), and the gain of Coral drops from

5.27% to 1.79%. It suggests that the performance of these methods on the

substitution error correction was interrupted and a↵ected by the addition of

the indel errors into the datasets. As real-life wet-lab sequencing reads more

or less company with a small amount of indel errors, our miREC provides

an unalterable advantage over the baseline methods for the correction of all

types of aberrations.

Correction performance on wet-lab miRNA sequencing datasets

injected with small numbers of random known errors

We made 27 random base modifications (total 21 substitutions, 3 insertions

and 3 deletions) at the salmon liver miRNA sequencing dataset (SRR866573).

These random modifications introduced/injected 18 genuine errors into the

dataset, where a random base modification is not considered as a genuine

error if its correspondingly modified read becomes identical with another

read having a high frequency (i.e., copy count > 5).

Our algorithm corrected all of these 18 genuine errors

(100% recall). For example, the read @SRR866573.64765

(TGCGGACCAGGGGAATCCGACT) had a random deletion at position

5, becoming TGCGACCAGGGGAATCCGACT; our miREC detected

this error and restored it to its original base. As another example,

the read @SRR866573.212344 (AAGCTGCCAGCTGAAGAACTG)

had a random substitution from C to G at position 8, becoming

AAGCTGCGAGCTGAAGAACTG; our miREC corrected it successfully.

The read @SRR866573.1103128 (AAGCGGGCCCCCAAACTTCTGT)
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had a random insertion of G at position 16, becoming

AAGCGGGCCCCCAAAGCTTCTGT; again, our miREC successfully

detected this error and corrected it. For the remaining 9 randomly

injected base modifications, they did not cause genuine errors because each

of their reads was transformed into another read that has a high copy

count in the same dataset. For example, the read @SRR866573.360151

(ATGACCTATGAATTGACAGCCT) had a random substitution from T

to C at position 21 (the last position). With this modification, the read

becomes another read ATGACCTATGAATTGACAGCCC which has 156

copies. This modification was unable to be restored to its original base

because every kmer in ATGACCTATGAATTGACAGCCC was highly

frequent (at least 156 copies), namely, containing no error. Note that

this modification should not be restored to ensure no over-correction

would happen in practice, otherwise the correction would be guilty. For

performance comparison, the second-best method Karect was applied to the

same error-injected salmon liver dataset, but it corrected only 5 of the 18

genuine errors.

We repeated this test with another round of random base modifications

at SRR866573 (total 28 modifications including 20 substitutions, 6 insertions

and 2 deletions). Our miREC detected and corrected all of the 20 genuine

errors (100% recall again). In comparison, Karect corrected only 9 of them.

Similarly, our miREC corrected all of the genuine errors caused by small

numbers of random base modifications at other wet-lab miRNA sequencing

datasets (40 substitutions, 3 insertions and 6 deletions; or second round 45

substitutions, 7 insertions and 7 deletions at the salmon heart dataset. 38

substitutions, 4 insertions and 4 deletions; or second round 43 substitutions,

6 insertions and 6 deletions at the salmon spleen dataset). However, Karect

corrected only 8 of the 27 genuine errors or only 8 of the 35 errors on these

two error-injected salmon heart datasets, and had similar performance on

the two error-injected salmon spleen datasets.

On the two human brain datasets, our miREC achieved the same perfect
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performance (100% recall) to correct all of the genuine errors caused by small

numbers of random base modifications (about 300 base modifications which

had resulted in 130 and 120 genuine errors). However, Karect could only

fix 12 or 20 genuine errors in these two datasets. Our source codes for the

random error injection into wet-lab miRNA sequencing datasets and more

detailed correction results are available at github link https://github.com/

XuanrZhang/miREC.

Changes in isoform abundance, whole set entropy and base

positions after error correction at the salmon fish miRNA

sequencing reads

The perfect recall performance on the small numbers of errors injected into

wet-lab miRNA sequencing datasets and the excellent gain performance

on the simulated datasets are strong combined evidence to convince our

correction results on wet-lab datasets where the ground truth of errors are

not available. The salmon liver miRNA sequencing dataset (SRR866573)

has a total of 900, 814 reads, containing 32, 972 distinct reads before error

correction. After error correction by our miREC, there are only 27, 299

distinct reads some of which gained plenty of abundance. In other words,

most of the error-contained reads were corrected and turned to be identical

with some other reads, making the abundance merging meanwhile the

disappearance of the originally error-contained reads. See Figure 4.3 for

an average percentages of the distinct miRNAs over the 12 datasets that

have a high- or low-level abundance recovery. There are around 47.3% of

the distinct miRNAs whose copy counts have increased by more than 10%

after the corrections, in particular, about 5.5% of the distinct miRNAs have

obtained above 50% abundance increase. These corrections are useful to draw

more reliable conclusions about miRNA discovery or isomiR classification or

tissue-specific biomarker discovery (case studies presented later).

The abundance recovery of the miRNA isoforms after error rectification in

a dataset implies that the numbers of distinct reads are decreased as reported
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above. We present Figure 4.4 to illustrate the overall entropy change of every

entire dataset before and after the error correction to quantify this point.

On average the entropy of the 12 datasets is shrank by 15.11% when the

parameter k of miREC ranges from 8 to 20, and the entropy score decreased

by 14.51% when k ranges from 8 to 25. These entropy declines (with slight

variance) in the 12 datasets theoretically mean that the certainty of the

miRNA expression level is greatly improved. In other words, our miREC can

enhance the data quality in the perspective of a lower entropy or a higher

certainty.

Figure 4.3: Proportions of unique-read count are changed compared with

uncorrected data in average of 12 salmon datasets. (a) The miREC runs

with continuous k value from 8 to 20. (b) The miREC runs with continuous

k value from 8 to 25.
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Figure 4.4: Dataset entropy changes before and after the error correction

by miREC on the 12 salmon miRNA datasets. (a) when the continuous k

settings from 8 to 20; (b) when the continuous k settings from 8 to 25.

Figure 4.5: The distributions of correction positions.
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We found that the aberrations could occur at every base position of the

miRNAs. But, one-third of the errors are detected and corrected at the seed

region of the miRNAs (Figure 4.5). These corrections at the seed region

provide great benefits for miRNAs’ target prediction analysis. There are

also a high percentage of the indel or substitution corrections at position 1

which is a base position very sensitive to the definition of trimmed or addition

isomiRs.

4.3.4 Case Studies

In this section, we demonstrate case studies related to isomiR families, tissue-

specific miRNAs and rare-miRNA quantity recovery. We show examples of

miRNAs whose copy counts have changed a lot after error correction. We also

show examples of tissue-specific miRNAs after error correction, and describe

the change in the ranking lists of di↵erentially expressed miRNAs.

Case study 1: big abundance recovery.

In the salmon heart dataset, a read TTGGTCCCCTTCAACCAGCTGTAAT

(mapped to miR-133a-1 in miRBase (Kozomara et al. 2019)) had 10 copies.

Our miREC detected 13 erroneous reads related to this miRNA. Eight

substitution errors happened at position 24 base A (sequenced to G or T),

and five happened at position 25 base T (sequenced to A or G). After

our correction, the abundance level of miR-133a-1 increased from 10 to

23, a 130% expression recovery. Other two miRNAs (ssa-miR-133a-3p

and ssa-miR-133a-5p) from the same miRNA family also recovered their

expression abundance. See the copy counts and change details in Table

4.4. We note that currently annotated functions of miR-133a-1 are related

to conventional central osteosarcoma and heart conduction disease (Stelzer,

Rosen, Plaschkes, Zimmerman, Twik, Fishilevich, Stein, Nudel, Lieder,

Mazor et al. 2016, Andreassen et al. 2013). With the refined expression

understanding, its functions can be re-examined more deeply.
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Another example in Table 4.5, read ATCCCGGACGAGCCCCCAA, had

18 copies and its abundance increased to 31 after miREC correction. The

aberrations include four deletion errors at position 1 (base A deleted), four

substitution errors at position 19 base A (sequenced to C) and two insertion

errors at position 1 and 2 (base A inserted). This error distribution implies

that the sequencing mistakes can occur at multiple base positions with

multiple times; and that our miREC is capable of correctly detecting these

errors and performing accurate corrections.

For comparison, we tested the second-best method Karect on this salmon

heart dataset to see whether the same mistakes could be corrected. Take

the cases in Table 4.4 as example, only three erroneous reads of the first

read TTGGTCCCCTTCAACCAGCTGTAAT were detected by Karect (we

detected 13); none of the erroneous reads of the other two reads in the table

were detected. Only one of the four related erroneous bases was corrected

by Karect, while all of the related erroneous bases were corrected by our

method.

Case study 2: miRNA isoforms and editing events.

Editing events and isoform variations at the cleavage sites can cause slight

but important di↵erence in many miRNA sequences (Mart́ı, Pantano, Bañez-

Coronel, Llorens, Miñones-Moyano, Porta, Sumoy, Ferrer & Estivill 2010).

In the salmon fish heart miRNA sequencing dataset (SRR866605), canonical

miRNA read ATCCCGGACGAGCCCCCAA co-exists with five isoforms

having copy counts 9, 1489, 16, 4 or 4; There are also three singleton reads

having an editing distance with this canonical miRNA (Table 4.5). Our

miREC grouped all of these reads and detected some of them as erroneous

reads. After error correction, the abundance of the canonical miRNA

increased from 18 copies to 31; the first three isoforms’ abundance increased

from 9 to 17, from 16 to 20 and from 1489 to 1513. The abundance recovery

of the canonical miRNA is owned to the erroneous base correction of the 11

reads listed in the last five rows of Table 4.5.
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The performance by the Karect method shows that only one of the eleven

erroneous reads was corrected. Only the first and second miRNA sequence

(Table 4.5) have di↵erent read counts after Karect’s correction. The copy

count of the first read was increased by 1 and the copy count of the second

read was increased by 20, missing lots of corrections. A more interesting part

of the error correction is that the 11 erroneous reads of the canonical miRNA

contain not only substitutions, but deletion and insertion errors distributed

at multiple base positions. In particular, more than one third of erroneous

bases happened at the seed region, important for gene target binding analysis.

Case study 3: upside down change in di↵erential expression

analysis.

Analysis on tissue-specific uniquely expressed or top-ranked di↵erentially

expressed miRNAs in a specific tissue or at a disease stage is very sensitive to

the sequencing data quality (Telonis et al. 2017). Some uniquely expressed

miRNAs can be identified only after error correction.

In our di↵erential expression analysis between the salmon heart and

brain tissues (SRR866605 vs SRR866611), we found that 5, 675 miRNA did

not co-exist in the two datasets, and the number of common miRNAs was

reduced from 16, 443 to 10, 768 after error correction. For example, a read

TGAGGTAGTTGGTTGTATGGTG (mapped to ssa-let-7d-5p in miRBase),

had 4 copies in the heart dataset and 26 copies in the brain dataset before

correction, while the number of its copies changed to zero in the heart

dataset and changed to 30 in the brain dataset after error correction. Two

more examples: A read CTTTCAGTCGGATGTTTGCACCA (mapped to

ssa-miR-30d-3p in miRBase) had 152 copies in the heart dataset and 2

copies in the brain data before correction, while its quantity was changed

to 155 in the heart dataset and to zero in the brain dataset. Another

read TTGCATAGTCACAAAAATGATC (mapped to ssa-miR-153a-3p in

miRBase) had 3 copies in the heart dataset and 14, 434 copies in the brain

dataset before correction, while the quantity dropped to zero in the heart
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Table 4.6: Rank changes of the top-10 common miRNAs in salmon

heart and brain tissues after error correction

miRNA sequence After rank Before rank

TCTTTGGTTATCTAGCTGTATG 1 2

TCTTTGGTTATCTAGCTGTAT 2 3

TTTGTTCGTTCGGCTCGCGTT 3 5

TCTTTGGTTATCTAGCTGTA 4 8

TTGCATAGTCACAAAAGTGATC 5 6

TCTTTGGTTATCTAGCTGTATGA 6 7

TGGAAGACTAGTGATTTTGTTG 7 10

TAAAGCTAGAGAACCGAATGTA 8 11

TAAGGCACGCGGTGAATGCC 9 12

ATGGCACTGGTAGAATTCACT 10 13

Notes : After rank indicates the rank after error correction, while

Before rank indicates the rank before error correction

dataset but increased to 14, 498 in the brain dataset after error correction.

Top-rank di↵erentially expressed miRNAs can become low-ranked ones,

and vice versa after error correction. The reason is that the expression

folds of miRNAs between two tissue types or between two disease stages

are sensitive to the copy counts after erroneous reads are corrected in

the two classes. We compared the expression folds of common miRNAs

between the salmon heart tissue and brain tissue before and after our error

correction. Table 4.6 presents the list of 10 miRNAs whose expression

folds between the two tissues are top-ranked after the error correction,

in comparison with their ranking positions before the error correction.

The two ranking lists are quite di↵erent. For example, the rank of ssa-

miR-9a-5p (TCTTTGGTTATCTAGCTGTA) is reverted from rank 8 to 4.

Furthermore, the originally top-ranked number-1, number-4 and number-

9 miRNAs are all dropped below rank-10 after error correction. In
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detail, the original top-one miRNA (TCTTTGGTTATCTAGCTGTATGT )

had 16, 776 copies in the brain tissue. However, the corrected top-one miRNA

is TCTTTGGTTATCTAGCTGTATG, whose copy count is 48, 092 in the

brain tissue after error correction. It is interesting to note that:

The two miRNAs only have one base di↵erence at the 3’ end. The

corrected top-one miRNA after error correction has one base trimmed

at the 3’ end, compared to the original top-one ranked miRNA. The

two miRNAs can be recognized as 3’ end trimmed/addition isoforms

each other.

The original top-ranked miRNA and the corrected top-one miRNA

have a huge abundance di↵erence (31316 copies = 48092 � 16776) in

the brain tissue. One is extremely high-level expressed; the other is

median-level expressed. This suggests that we would concentrate on

wrong top-ranked miRNA biomarkers if the sequencing reads had not

been cleaned by the error correction algorithms.

New top-ranked tissue-specific miRNAs (or called no-presence miRNAs

or tissue- and disease-subtype dependent miRNAs by (Telonis et al. 2017))

were found in the heart tissue (SRR866605) after error correction when the

liver tissue (SRR866579) was compared. Table 4.7 presents two rankings

of top-15 miRNAs specifically expressed in the heart tissue before and

after error correction. Without our correction, the top-1, top-10 and top-

13 tissue-specific miRNAs in salmon heart would be not detected because

erroneous reads which are identical with these reads also exist in the liver

tissue. Moreover, after our error correction, the quantity of the top-

ranked miRNAs increases. These recovered expression levels and accurate

abundance measurement would make more convincing conclusions in the

down stream analysis.
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Case study 4: Class-specific miRNAs and rare-miRNA analysis for

human miRNA sequencing datasets.

Ranking positions of class-specific miRNAs and rare miRNA quantity

recovery analysis are also conducted for human miRNA sequencing datasets

(acquired from beta cells and brain samples). The human beta cells were

incubated with solution of low glucose or high glucose. It’s expected to

reveal novel di↵erentially expressed miRNAs between these two classes.

We found that the number of distinct reads decreased by 8.85% from

5,803,166 to 5,289,466 in the low glucose solution cell, and reduced by 12.44%

from 1,856,318 to 1,625,453 in the high glucose solution cell after error

correction. For the top-ranked di↵erentially expressed miRNAs between the

two datasets, only slight rank changes were observed (Table 4.8). Some of

the top-ranked miRNAs were just swapped ranking positions within top 10

after error correction. The copy counts of these top-ranked miRNAs all had

small increases after the error correction. Note that these changes on glucose-

level specific miRNAs in human beta cells after error correction is not as big

as those changes made in the salmon heart-head tissue pair comparison by

our error correction. However, such big changes on age-specific miRNAs

in brain samples can be observed again when we compared between miRNA

Figure 4.6: A rare miRNA in the Alzheimer’s disease patient aged 94 showing

significant copy count change after error correction.
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sequencing reads of an Alzheimer’s disease patient aged 75 and a patient aged

94. The number of distinct miRNA reads decreased by 33.6% from 361,039

to 239,667 in the patient aged 75, and decreased by 16.1% from 635,169 to

532,708 in the patient aged 94, after error correction. Table 4.9 provides two

rankings of top-10 age-specific miRNAs expressed only in the patient aged

94 before and after correction. New top-ranked age-specific miRNAs were

identified in the patient aged 94. Without our error correction, top-1, 2, 3,

4, 6, 8 and 10 age-specific miRNAs would not be detected because erroneous

reads which are identical with these reads also exist in the patient aged 75,

with copy counts 3, 2, 2, 3, 4, 2 and 4 respectively.

Discovery of rare miRNAs is of strong interests. We examined the copy

counts of low-expression miRNAs (or rare miRNAs) before and after error

correction in the Alzheimer’s disease patient aged 94. Note that all these

rare miRNAs here are defined to have no expression in the patient aged 75.

Table 4.10 shows top-10 copy count greatly-changed rare miRNAs before and

after error correction. It suggests that the copy counts of these rare miRNAs

were all enhanced by about 2 or 3 folds after error correction.

Figure 4.6 depicts how the quantity of a rare miRNA is enhanced from

14 copies to 23 in the correction process. The corrections were involved

with four types of erroneous reads: four reads with a deletion error (labeled

in blue), two reads with an insertion error (labeled in green), one read

with a substitution error from A to G at position 11 and two reads with

a substitution error from A to T at position 20 (labeled in orange). Our

miREC can detect all of these erroneous reads and corrected them to recover

this rare miRNA’s quantity.

Verification results on the sequencing reads of the 963 miRXplore

Universal Reference miRNAs (pure control and spike-in)

Our algorithm was tested on the sequencing reads of an equimolar mixture

of synthetic miRNAs from the miRXplore Universal Reference that consists

of 963 miRNAs from human, mouse, rat and viral sources (three replicate
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samples miRXploreUR rep1-3 corresponding to GSE139936.GSM4149813,

GSE139936.GSM4149814 and GSE139936.GSM4149815 (Hu, Yim, Ma,

Huber, Davis, Bacusmo, Vermeulen, Zhou, Begley, DeMott et al. 2021)).

The test was to verify

whether our detected erroneous reads can be each corrected into one of

the 963 miRNA sequences, and

whether any new sequences are introduced into the read dataset after

the correction.

An ideal performance should be: every error-corrected read is turned to be an

exact copy of one of the 963 miRNA sequences, and previously non-existing

reads are never created by the correction step.

Table 4.10: Copy count enhancement of 10 rare miRNAs after error

correction in the human brain dataset related to an Alzheimer’s disease

patient aged 94

miRNA Sequence
read count read count

Before After

TCATTGGTTATCTAGCTGTATGC 6 18

TAGAACTTCGTCGAGTACGCTC 9 26

AAAAGCTGGGTTGAGAGGGCGTGA 6 17

AGCAGGACGGTGGCCATGGA 8 22

TGAGGCAGTAGGTTGTGTGGTTAT 6 16

TCCAGCATCAGTGATTTTGTTGT 6 16

TCACAGACAGCCGGTCTCTTTT 6 16

GTTGGTCCGAGTGTTGTGGGC 6 16

TCCCCGGCATCTCCACCAT 9 23

AGGAGATGGAATAGGAGCTTGA 8 20

Notes : After indicates after error correction, while Before

indicates before error correction
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The correction performance by miREC in comparison with Karect (the

best literature method (Allam et al. 2015)) are shown in Table 4.11.

On the sequencing dataset named D18-6962 1 of GSE139936.GSM4149813,

our algorithm detected a total of 43362 errors. After correction, the

correspondingly rectified reads were each exactly matched with one of

the 963 miRNA sequences. The total read count of the 963 miRNAs

was therefore increased by about 19.59% (see Supplementary file S1 for

details). During this correction step, previously non-existing reads were never

generated/created. In fact, the number of distinct reads was decreased from

259867 to 212093. On the other hand, almost all (99.22%) of the remaining

unchanged 231792 distinct reads were not considered as the erroneous reads

of the 963 miRNAs by our algorithm. This is reasonable because each of them

has a minimum editing distance of 2 or bigger with any of the 963 miRNA

sequences. These remaining reads also have an extremely low counts such as

1, 2 or 3. They can be considered as noisy reads which may be caused by

the library preparation noise or contaminates.

Karect detected total 127642 errors, but only 18225 of them were

corrected into the sequencing reads of the 963 miRNAs, increasing their

read counts by 8.22% in total. Meanwhile, the other base modifications have

introduced a pool of 37678 new sequences which did not exist in the dataset

before Karect’s correction.

From these comparisons, we note that our algorithm miREC has corrected

almost all of those reads which should be rectified and that miREC has never

introduced previously non-existing reads. This is true for all other datasets

listed in Table 4.11. However, Karect introduced large pools of new reads

which have never existed in the original reads set; also Karect corrected less

than half of those reads which should be rectified.

On a spike-in sample of the 963 miRNAs at human cells (GSE159434.D19-

10246.assembled.fastq (Hu, Yim, Huber, Bacusmo, Ma, DeMott, Levine,

de Crécy-Lagard, Dedon & Cao 2019)), our algorithm detected 89301

erroneous reads of the 963 miRNAs. After correction, their read counts
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increased by 15.66% in total. The algorithm did not generate any previously

non-existing reads, but decreased the number of distinct reads by 45189,

greatly diminishing the uncerternty/entropy of the data set. On the other

hand, Karect detected and corrected 15885 erroneous reads of the 963

miRNAs, making their read counts increased by 7.62% in total. However,

Karect created 14462 new reads which were non-existing previously.

These comparative results on both the control and spike-in sample

demonstrate that our modified reads are genuine correction and that

our algorithms do not generate any previous non-existing reads after the

correction process.

4.4 Summary

In this work, we have proposed an miRNA sequencing error correction

method named miREC, which is the first tool to address the error correction

problem in the area. The novelty of the method is a 3-layer kmer-(k+1)mer-

(k-1)mer lattice structure to hold the kmer’s supersets and subsets’ frequency

di↵erences which underline the locations of the errors and the correcting

templates. Our miREC has showed excellent performance to rectify not only

substitution errors but also indel errors at both simulated and real miRNA

sequencing datasets. The experiments conducted with di↵erent running

parameters showed that the miREC is insensitive to datasets and it has

good robustness to guarantee high-quality correction performance. With the

precise aberration correction and free of new error introduction, we are able

to conduct ultrafine analysis on miRNA sequencing data at the single base

resolution. The method is immediately applicable to miRNA sequencing

datasets from the fields of plant biology and cancer biology which are worth

future investigation in detail.
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Availability

The data material and code are all available at the github link (https:

//github.com/XuanrZhang/miREC.git).
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Chapter 5

Extended Error Correction

Method for Small RNA

Sequencing Reads

5.1 Introduction

Small RNAs are non-coding RNA molecules with short lengths (usually

smaller than 200 nucleotides), mainly including microRNA, siRNA (small

interfering RNA), piRNA (piwi-interacting RNA), snoRNA (small nucleolar

RNA), tRNA-derived small RNA (tsRNA), srRNA (small rDNA-derived

RNA) and rasiRNA (repeat associated small interfering RNA). All of these

small RNA play important roles in molecular function. For example,

miRNAs, as a very famous category in the small RNA family functions

in RNA silencing and post-transcriptional regulation of gene expression

(Bartel 2018). miRNAs function via base-pairing with complementary

sequences within mRNA molecules (Bartel 2009). As a result, these mRNA

molecules are silenced. miRNAs resemble the small interfering RNAs

(siRNAs) of the RNA interference (RNAi) pathway, except miRNAs derive

from regions of RNA transcripts that fold back on themselves to form short

hairpins, whereas siRNAs derive from longer regions of double-stranded
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RNA (Bartel 2004). Some studies show that piRNA and rasiRNA have

been identified in the mentioned process and contribute to the RNAi (RNA

interference) (Gunawardane, Saito, Nishida, Miyoshi, Kawamura, Nagami,

Siomi & Siomi 2007). Small RNA related research, sequencing and analysis

attract more and more attention especialy in human diseases (e.g. breast

cancers) (Wu, Lu, Li, Lu, Guo & Ge 2011).

Small RNA sequencing (RNA-seq) technique makes related research

available. Firstly, small RNA species are isolated and then RNA-seq can

query thousands of small RNA with unprecedented sensitivity and dynamic

range. With small RNA-Seq we can discover novel miRNAs and other small

non-coding RNAs and examine the di↵erential expression of all small RNAs

in any sample. We can characterize variations such as isomiRs with single-

base resolution and analyze any small RNA or miRNA without prior sequence

or secondary structure information. However, sequencing data generated

by machine goes with sequencing errors. Even though, the error rate can

be low at 0.1% per base, erroneous bases in datasets still can cause wrong

conclusion, especially in variation detection and isomiRs which is just single-

base di↵erences. Thus, high-quality and error-free small RNA sequences are

required to correct for better investigations on small RNA editing events,

small RNA isomiRs, di↵erential expression of all small RNAs and novel

small RNA discovery. With more convincing sequencing data, we can obtain

a better understanding of how cells are regulated or misregulated under

pathological conditions, thereby proposing better solution for RNA-related

disease treatment.

Our method introduces a novel method for small RNA error correction

which supports substitution, insertion and deletion error rectification.

Compared with the miRNA error correction method, this method is more

robust by supporting all kinds of small RNA sequencing (read length from

20 to 200 nucleotides). Furthermore, we improve the 3-layer lattice structure

and combine it by reads with the same length n, length (n+1) one and length

(n� 1) one, which dramatically increases the method’s e�ciency. Finally, to
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make a fine correction, we propose to do proportional correction. Specifically,

in the correction phase, we do not correct all potential erroneous copies to

the top one candidate; Instead, we divide corrections into top 3 candidates

proportionally to remain all possible recovery. With this improvement, the

method achieves high error correction performance.

5.2 Methods

An small RNA sequencing read r is a sequence r1r2 · · · rn, ri 2 ⌃ =

{A,C,G,N,T} , where A, C, G and T stand for the nucleotide bases

Adenine, Cytosine, Guanine and Thymine respectively, and the character

N stands for a uncertain nucleotide; n is the length of r. Usually, the

length n of an small RNA read ranges from 20 to 200 in a dataset, and

each read encompasses entire small RNA nucleotide info. Our method,

SRNAEC (Small RNA Error Correction), uses a 3-layer lattice structure to

select convincing candidates and combines proportional correction strategy

to achieve optimal rectification.

5.2.1 A 3-layer Read Lattice Structure

Given an small RNA sequencing read multi-set S and a setting k, the copy

count (or frequency) of a distinct read r in S is the total number of its copies

in S. Consider a read r with length n, this r’s neighborhood is defined as

the set of reads H(n, r) containing all possible distinct reads of S that each

have only one base di↵erence from the r. Similarly, r’s (n� 1)-neighborhood

is defined as the set of read with length (n� 1), H((n� 1), r) containing all

possible distinct reads with (n�1) length of S each of which is an immediate

subset of the read, r, and r’s (n + 1)-neighborhood is defined as the set of

reads with length (n+1), H((n+1), r) containing all possible distinct reads

with length (n+ 1) of S each of which is an immediate superset of the r.

For example, if a small RNA read with length n(n = 3) is given as

GTC and assume that all its proper supersets and subsets exist in S, then

87



Chapter 5. Extended Error Correction Method for Small RNA Sequencing
Reads

its (n + 1)-neighborhood H(4, GTC) = {AGTC, TGTC, CGTC, GGTC,

GATC, GTTC, GCTC, GGTC, GTAC, GTTC, GTCC, GTGC, GTCA,

GTCT, GTCC, GTCG}. Its (n� 1)-neighborhood H(2, GTC) = {TC, GC,

GT}. These three neighborhoods of the read r can be combined and it is

called a 3-layer read lattice structure of r. By considering 3-layer reads, our

method can support insertion and deletion error correction at the same time.

Note that in real cases, the length of small RNA read usually range from 20

to 200 nt. A schematic example of this lattice structure is shown in Figure

5.1. 1

Figure 5.1: A 3-layer read lattice structure.

5.2.2 Proportional Correction

After erroneous read detection, related 3-layer lattice structures are

constructed to guide corrections. Unlike previous correction methods, we

do not correct the same erroneous reads to the top voted candidate instead

of proportional corrections.

Our algorithm traverses all of distinct reads and compares it frequency

with a threshold ⌧ . If a read’s frequency is lower then ⌧ , the read is more

likely to contain errors. For each of these read, all potential candidate reads

are sorted by their frequencies and the top three candidates are selected for

1The red * symbol represents a nucleotide A, G, T, or C.
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further proportional correcitons. Note that only reads with frequency larger

than ⌧ are able to be sorted. For every distinct erroneous read, we correct it

di↵erently according to their copy numbers.

If the copy number of a erroneous read is one, proportional correction

can not be triggered and the erroneous read is corrected to the top one

potential candidates.

If the number of potential candidate reads is one, proportional

correction can not be triggered and all erroneous reads are corrected to

the only one potential candidate.

If the copy number of a erroneous read and the number of potential

candidate reads are both greater than one, proportional correction can

be triggered. For each of the top three candidates, we calculate the

proportion of its frequency in the total frequency of them, and then

divide all erroneous read proportionally into the top three candidates.

With proportional correction strategy, over-correction for a specific small

RNA read can be avoided and read quantity recovery can cover more reads

including high frequency reads as well as their low frequency isoforms or

family members. The pseudo code of our algorithm is shown in Algorithm

5.1.

Our SRNAEC has been implemented as a software prototype. It is very

easy to use and only one parameter (the frequency threshold ⌧) might need to

tune when you run it. Based on practical experience, the frequency threshold

⌧ is best recommended as 5 by default. The higher frequency ⌧ is set, the

bigger number of bases might be considered as errors. Thus, users should be

cautious about using a too large frequency threshold to avoid over-correction.

The SRNAEC also supports multi-threads to optima computing ability and

achieve high-e�ciency correction performance.

89



Chapter 5. Extended Error Correction Method for Small RNA Sequencing
Reads

Algorithm 5.1 Small RNA Sequencing Read Error Correction

Input: A read set RS = {r1, r2, · · · , rn}, a frequency border ⌧

Output: A corrected read set

Function Error Correction (RS, ⌧)
begin

H[1 . . .m]  hash table . *[r]kmer info; H[i] is an array; Each element

of H[i] is a tuple composed of sequence, its frequency and id array

Cread . *[r]An two dimentional array store read and its frequency

Candidates . *[r]An array store candidate reads

foreach r 2 RS do

if H[r].f < ⌧ then
Cread  FindNeighbor(r);

foreach read 2 Cread do
tmp  H[r].f ⇤ Proportion(read);

while tmp � 1 do
Candidates  Add(read);

tmp��;

for i = 1 to H[r].f do
RS[H[r].id[i]]  Candidates[i];

Function FindNeighbor

foreach read 2 Neighbor(r) do

if H[read].f > ⌧ then
Reads  Add(read);

Sort(Reads) by its frequency;

return Reads

return RS
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5.3 Experiments and Results

5.3.1 Read Datasets

To evaluate the performance of error correction methods, simulated datasets

are required and the ground truth of the errors should be known. We

conducted our method on both simulated datasets and wet-lab raw

sequencing read datasets.

Simulated datasets

Since there is no available small RNA read simulation tool for using, we

introduce a novel process to generate simulated datasets that would have

a close nature to wet-lab small RNA sequencing reads. We have two

considerations in the process. One is to computationally replicate lab-

verified small RNA sequences as templates to form the basic sequences of

the simulated datasets, then we duplicate these basic sequences such that the

copy counts of them follow a real distribution from a wet-lab dataset of small

RNA sequencing reads. In fact, we replicated the small non-coding RNA

sequences in DASHR 2.0 (Kuksa, Amlie-Wolf, Katanić, Valladares, Wang

& Leung 2019) as the templates, which includes miRNA, piRNA, siRNA,

snoRNA, tsRNA and srRNA, and made the copy count distribution of these

template sequences to follow the distribution drawn from a typical smallRNA

dataset under accession number SRR6317802. In other words, the sequences

in our simulated datasets are not random sequences (they are real lab-verified

small RNA sequences); their copy count distribution is not random either.

Then we injected random errors into the simulated datasets under an error

rate of 0.2% per base (Laehnemann et al. 2016). we randomly injected an

erroneous base (substitution, deletion or insertion) at any position of the

read. We recorded all of these randomly and purposely injected errors for

performance evaluation.

Followed mentioned steps, we synthesized 4 simulated datasets with subs

and indels error (denoted as D1, D2, D3 and D4). More details of the
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Table 5.1: Description of used datasets

ID Total Total Per read

Reads erroneous bases error rate

D
at
as
et
s

si
m
u

D1 2,620,163 261,449 0.263%

D2 2,620,163 262,457 0.263%

D3 2,620,163 262,734 0.264%

D4 2,620,163 262,499 0.270%

D5 2,620,163 523083 0.527%

D6 2,620,163 524407 0.529%

D7 2,620,163 524868 0.529%

D8 2,620,163 523284 0.528%

ra
w

Accession ID Total reads sample tissue -

SRR6317801 31,103,535 flower -

SRR6317802 21,831,615 flower -

SRR6317805 30,924,779 pod -

SRR6317806 30,862,811 pod -
Notes : ‘simu’ means simulation datasets and ‘raw’ means raw

sequencing datasets.

simulated datasets are shown in Table 5.1.

Wet-lab sequencing datasets

Wet-lab small RNA sequencing datasets for our performance evaluation

are all downloaded from the Sequence Read Archive (SRA) (https://

www.ncbi.nlm.nih.gov/sra/) under the accession numbers SRR6317801,

SRR6317802, SRR6317805 and SRR6317806. These datasets have

been originally studied for topics related to small RNA of lupinus

luteus (Glazinska, Kulasek, Glinkowski, Wysocka & Kosiński 2020). They

are all small RNA sequence data from lupinus luteus pod and Lupinus luteus

flower. More details of these datasets are shown in Table 5.1.
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Wet-lab sequencing datasets with a few known errors

To rigorously evaluate the error correction performance, we also randomly

and purposely inject a small number of errors into these wet-lab datasets,

rather than the simulated datasets, to see whether our algorithm can detect

and correct these errors with ground truth, together with other errors without

ground truth. Only when all of these artificial errors in the real-life small

RNA sequencing reads can be detected and corrected, the corrections on the

other bases (without ground truth) can be highly trustable.

This small number of artificial errors constitutes only 0.3% of total

corrections in each dataset to avoid changing the original nature of the data.

We have done these for all wet-lab sequencing datasets, we randomly injected

small numbers of errors twice referring to steps in simulation datasets. More

details of wet-lab datasets with injected errors are in the Table 5.2.

5.3.2 Evaluation Metrics

As the ground truth of the errors in the simulated datasets are known, we

can use recall, precision and gain to compare the correction performance

between di↵erent methods. On the wet-lab small RNA sequencing datasets,

we measure the copy count changes of the reads, the entropy changes of

the whole set of reads, and locations of the rectifications to understand the

importance of error correction. There is no recall or precision performance

on the wet-lab small RNA sequencing datasets, because the ground truth of

error distributions is unknown.

Performance evaluation metrics on the simulated sequencing

datasets

To assess the accuracy of the correction methods, we use the following three

metrics, Precision (TP/(TP+FP)), Recall (TP/(TP+FN)), Gain ((TP-

FP)/(TP+FN)). More details are shown in Section 2.3.1.
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Metrics used for performance evaluation on wet-lab small RNA

sequencing datasets

We examine the changes of small RNA copy counts and dataset entropy

changes before and after error correction for multiple salmon fish small RNA

sequencing datasets. Besides, we also summarize the position information

of the corrections in the reads to record the proportion of corrections in

the seed region. The concept of entropy was first introduced by a physicist

Rudolf clausius (Clausius 1879), to measure a system’s thermal energy per

unit temperature. The amount of entropy is also a measure of the molecular

disorder or randomness of a system. Here, we regard our sequencing read

dataset as a system, and use the concept of entropy to define dataset entropy.

For dataset entropy, we combine all low-frequency reads which are more likely

to contain errors, to interpret the quality of datasets. More specificly, we

define the small RNA count, dataset entropy and errors in the seed region

as follows.

small RNA count: the copy count of small RNA appearing in the

datasets, which is corresponding to small RNA expression level or small

RNA abundance.

Dataset entropy: �
nP

i=1
pi · log pi, where pi is the proportion of reads

whose frequency is small than i. We calculate the entropy for low-

frequency reads and sum up to interpret the degree of disorder in

the read dataset. When the entropy turns to be small, it means the

certainty of the small RNA expression becomes higher.

5.3.3 Performance Evaluation

Our analysis and results are presented in three main parts. The first part is

about the correction performance on the 4 simulated datasets; the second

part is about correction performance on the wet-lab miRNA sequencing

datasets after a small number of random errors are injected; the third part
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is about expression abundance recovery, entropy change on the recently

published small miRNA sequencing datasets after error correction and related

case studies.

Correction performance on simulation datasets

The correction performance of our SRNAEC is presented in Table 5.3 in

comparison with algorithms Karect (Allam et al. 2015), Coral (Salmela &

Schröder 2011), and BFC (Li 2015). Coral and Karect are multi-alignment

based error correction methods. BFC is a representative of the kmer based

error correction methods. BFC requires a prior-setting of the k parameter;

the best k in this work is 21 (namely, under other k settings, BFC did not

exceed the performance of when k = 21). Karect is one of a few correction

tools which supports the correction of indel errors.

Our method SRNAEC has excelled in the correction performance:

It did not introduce any new error, namely, it achieved the highest gain

and recall rates on all simulated datasets;

It detected and corrected almost all of the errors including the indel

errors; the recall rate ranges between 99.85% - 99.86%; the precision

ranges between 99.90% - 99.91%; the gain rate ranges between 99.79%

- 99.82%;

The average recall and gain rate of SRNAEC are much superior to Karect

(the second-best method) respectively by 51.85% and 11.82% on all datasets.

Specifically, the average recall rates of SRNAEC are 99.86%, which are

33.34%, 50.36% and 51.75% better than BFC, Coral and Karect. This implies

that there are lots of errors undetected by these baseline methods meanwhile

these introduced a lot of new errors. The kmer based method BFC performed

worst on these datasets. More details are in the Table 5.3

The performance of SRNAEC is robust across all datasets. Futher

experiments on real-life wet-lab sequencing datasets also prove that.
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Correction performance on wet-lab miRNA sequencing datasets

injected with small numbers of random known errors

To competenvise evaluation correction performance on real datasets, we

propose an error injection strategy to inject a few known errors and labled

these erroneous reads. Through examine correction performance on these

reads, correction performance on the whole datasets can be supported.

As we mentioned in Section 5.3.1, we injected 0.3 percent of known errors

of four wet-lab sequencing datasets R1 to R4, specifically 9330, 6419,9270

and 9244 errors in them. These random modifications introduced/injected

errors into the datasets, where a random base modification is not considered

as a genuine error if its correspondingly modified read becomes identical with

another read having a high frequency (i.e., copy count > 5). There are 7265,

3726, 6886, and 7328 genuine errors in R1 to R4 datasets. Referring to the

results in Table 5.4, We can see that our algorithm corrected 81.85 per cent

of all genuine errors, the second best method, the karect only correct 47.92

per cent of these genuine errors, in average.

From the table 5.5, we can see the number of unique reads decrease

1, 451, 722 in average and the entropy of datasets decrease almost 12% in

average. These entropy declines in the datasets theoretically mean that the

certainty of the small RNA expression level is greatly improved. In other

words, our method can enhance the data quality in the perspective of a

lower entropy or a higher certainty.

5.4 Summary

In this chapter, we developed SRNAEC, a small RNA sequencing error

correction method, by constructing the 3-layer read lattice structure, which

achieve high-e�ciency error correction. Proportional correction strategy is

used to guarantee all small RNA’s quantity recovery. Parallel computing

is implemented in the approach to accelerate the correction process.

Experimental results evaluating on both simulated and raw sequencing
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datasets have achieved outstanding correction performance, and it is much

superior to performances of the state-of-the-art methods: Karect, Coral and

BFC.

Availability

The data material and code are all available at the github link (https:

//github.com/XuanrZhang/SRNAEC.git).
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Chapter 6

Conclusion and Future Work

6.1 Conclusion

This thesis has mainly addressed three research problems on genomic

sequencing data error correction, namely error correction for instance cases,

error correction for microRNA sequencing reads and error correction for small

RNA sequencing reads. The proposed methods for solving these problems are

detailed in Chapters 3-5. In the following content, the results and findings

of each research problem are summarized.

In Chapter 3, we proposed an instance-based strategy to correct errors.

It provides high-quality reads for any given instance case and is implemented

as a tool named InsEC. It is designed to correct errors in reads related

to instance cases (e.g., a set of genes or a part of the genome sequence.

The instance-based strategy makes it possible to make use of data traits

only related to an instance, which guarantees that we can approach the

ground truth of the instance case and then achieve better error correction

performance. In the instance extraction step, all reads related to a given

instance are extracted by using read mapping strategies. In the correction

step, we take advantage of alignment processes and correct errors according

to the alignment. Besides, statistical models are used to avoid induced errors

as well. Intensive experiments are conducted with other state-of-the-art
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methods on both simulated and real datasets. The results demonstrate

the superiority of our method, which achieves the best error correction

performance (e.g., precision, recall, and gain rate in average) and further

assembly results (e.g., N50, the length of contig, and contig quality).

Chapter 4 developed the first method for miRNA read error correction.

Existing error correction methods do not work for miRNA sequencing data

attributed to miRNAs’ length and per-read-coverage properties distinct from

DNA or mRNA sequencing reads. Although the error rate can be low

at 0.1%, precise rectification of these errors is critically essential because

isoform variation analysis at single-base resolution such as novel isomiR

discovery, editing events understanding, di↵erential expression analysis, or

tissue-specific isoform identification is very sensitive to base positions and

copy counts of the reads. We present a novel lattice structure combining

kmers, (k-1)mers, and (k+1)mers to address this problem. Moreover, the

method is particularly e↵ective for the correction of indel errors. Extensive

tests on datasets having known ground truth of errors demonstrate that the

method is able to remove almost all of the errors, without introducing any

new error, to improve the data quality from every-50-reads containing one

error to every-1300-reads containing one error. Studies on wet-lab miRNA

sequencing datasets show that the errors are often rectified at the 5’ ends

and the seed regions of the reads and that there are remarkable changes after

the correction in miRNA isoform abundance, the volume of singleton reads,

overall entropy, isomiR families, tissue-specific miRNAs, and rare-miRNA

quantities.

Chapter 5 introduces a novel method for minor RNA error correction

which supports substitution, insertion, and deletion error rectification.

Compared with the miRNA error correction method, this method is more

robust by supporting all kinds of small RNA sequencing (read length

from 20 nt to 200 nt). Furthermore, we improve the three-layer lattice

structure and combine it by reads with the same length, length plus one,

and length minus one, which dramatically increases the method’s e�ciency.
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Finally, to make a fine correction, we consider RNA’s isoform and propose

correction proportionally. Specifically, in the correction phase, we do not

correct all potential erroneous copies to the top one candidate; Instead, we

divide corrections into top 3 candidates proportionally to remain all possible

recovery. With this improvement, the method achieves high error correction

performance, and its precision, recall, and gain rate are superior to all other

existing error correction methods. Extensive experiments on simulation and

raw sequencing data prove our method’s ability. Thus, our error correction

method does help improve data quality and necessary for all downstream

analyses.

6.2 Summary of Important Results

The main contributions of the instance-based error correction method

are listed.

We proposed the first instance-based algorithm to solve the problem

of short read error correction related to any instance case (e.g., a

set of genes or a part of the genome sequence). The novel idea of

the algorithm is concentration on data traits only related to specific

instances.

The algorithm achieves the best performance compared with the state-

of-the-art methods not only in correction but also further assembly

results.

The main contributions of the microRNA error correction method

are listed.

We proposed the first algorithm to solve the problem of correcting

errors (substitutions and indels) in microRNA sequencing reads. The

novel idea of the algorithm is a 3-layer kmer lattice structure.

The algorithm did not introduce any new error; It detected and

corrected almost all of the errors, including the indel errors; the recall
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rate ranges between 96.0% - 97.9%; the precision ranges between 98.6%

- 99.5%;

Identified significant changes in isoform abundance, whole set entropy

and base positions after error correction on salmon fish miRNA

sequencing reads; and studied class-specific miRNAs and rare miRNAs

on human brain and beta cells miRNA sequencing datasets after our

error correction.

The main contributions of the extended error correction method

are listed.

We proposed the first algorithm to solve the problem of correcting errors

in all types of small RNA sequencing reads, supporting substitutions

and indels correction. The novel idea of the algorithm is a 3-layer read

lattice structure and proportional correction strategy;

The algorithm achieved outstanding and robust correction

performance; It detected and corrected almost all of the errors

including the indel errors; More specifically, the average recall rate is

99.86%; the average precision is 99.9% and the average gain rate is

99.81%;

Identified significant changes in small RNA abundance and whole set

entropy after error correction on wet-lab small RNA sequencing reads;

6.3 Perspectives and Future Research

In addition to the encouraging results and findings, there are still some

problems as well as challenges need to be addressed in the future.

First, in Chapter 3, the parallel implement version can be extended on

the previous InsEC version. Also, some high-frequency used downstream

analysis tools can be combined with the InsEC for comprehensive use. With

the wide application of the third-generation sequencing technology, long
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reads are generated and they su↵er from high error rate. It would be

interesting to take advantage of the second-generation technology to help

long reads correction. Furthermore, combining high-quality long read data

can dramatically improve the precision of genome assembly.

Secondly, in Chapter 4 and Chapter 5, further analysis pipelines of

small RNA analysis can be combined and conduct more case studies to

convincing correction performance. In future work, we will achieve a more

comprehensive tool and can easily suit to all correction requirements.
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