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Abstract 1 

Purpose: This study aimed to independently validate a wearable inertial sensor designed to 2 
monitor training and performance metrics in swimmers. 3 

Methods: Four male (21 ± 4 y, one national, three international) and six female (22 ± 3 y, one 4 
national, five international) swimmers completed 15 training sessions in an outdoor 50-m pool. 5 
Swimmers were fitted with a wearable device (TritonWear®, nine-axis inertial measurement 6 
unit with tri-axial accelerometer, gyroscope, and magnetometer), placed under the swim cap 7 
on top of the occipital protuberance. Video footage was captured for each session to establish 8 
criterion values. Absolute error, standardised effect and Pearson’s correlation coefficient were 9 
used to determine the validity of the wearable device against video footage for total swim 10 
distance, total stroke count, mean stroke count, and mean velocity. Fisher’s exact test was used 11 
to analyse the accuracy of stroke type identification. 12 

Results: Total swim distance was underestimated by the device relative to video analysis. 13 
Absolute error was consistently higher for total and mean stroke count, and mean velocity, 14 
relative to video analysis. Across all sessions, the device incorrectly detected total time spent 15 
in backstroke, breaststroke, butterfly, and freestyle by 51 ± 15%. The device did not detect time 16 
spent in drill. Intraclass correlation coefficient results demonstrated excellent intra-rater 17 
reliability between repeated measures across all swimming metrics. 18 

Conclusions: The wearable device investigated in this study does not accurately measure 19 
distance, stroke count, and velocity swimming metrics, or detect stroke type. Its use as a 20 
training monitoring tool in swimming is limited. 21 

As accepted for publication in International Journal of Sports Physiology and Performance, ©Human Kinetics
DOI: https://doi.org/10.1123/ijspp.2020-0887.



2 

Introduction 22 

Athlete training load is routinely monitored by coaches and sport scientists to understand 23 
individual responses to the training stimuli, and to inform training prescription.1 Training 24 
monitoring is additionally used to assess fatigue and recovery status, and to reduce the risk of 25 
developing non-functional overreaching, injury, and illness.1 An array of monitoring devices 26 
and methods are available to assess the external (e.g., global positioning systems; GPS) and 27 
internal (e.g., rating of perceived exertion) load experienced by an athlete during training.2 28 

External load (i.e., objective assessment of work performed) measures are commonly used to 29 
inform training prescription.1,2 Accelerometer and GPS-based analysis of athletic performance 30 
are common in numerous land-based sports to assess external load.1,3 However, the use of such 31 
devices within the aquatic environment presents many challenges, including the need for 32 
airtight sealing of sensors and ports, ambiguous validity of device positioning, and requirement 33 
for a reliable method to mount the device on the athlete.4 Assessment of an athlete’s external 34 
load allows objective quantification of movement (i.e., position, time, speed, and direction) 35 
during training.3 Traditionally, video analysis is used within swimming as the gold standard 36 
criterion,5 to quantitatively measure various swimming metrics (e.g., stroke count, velocity, 37 
and technical proficiency).4,6 However, video analysis is laborious, does not allow real-time 38 
feedback, and is limited by turbulence and parallax error at the water-air interface.4,6 Recent 39 
advancements in wearable technologies have sought to overcome these limitations, however 40 
further validation of the swimmer metrics is required.2,3,5-7 41 

Previous research suggests there is a wearable device that is capable of measuring swim 42 
training and performance metrics.5 However, this study only assessed the validity of freestyle 43 
and breaststroke over a distance of 100 m, in a 25 m pool. Considering swimmers are typically 44 
required to complete a range of swim strokes (and modified strokes) over much longer 45 
distances, the ecological validity of these findings are limited. Therefore, the purpose of this 46 
study was to independently validate a swim training wearable sensor against video analysis, in 47 
a real training environment. 48 

Methods 49 

Subjects 50 

Four male (21 ± 4 y, one national-level, three international-level) and six female (22 ± 3 y, one 51 
national-level, five international-level) swimmers participated in the study. Inclusion criteria 52 
required minimum five swim and two gym sessions per week, and currently competing at the 53 
national or international level. Written informed consent was obtained from all swimmers, and 54 
ethics approval was granted by the University of Technology Sydney Ethics Committee. 55 

Design Methodology 56 

The accuracy of a swim training monitoring device (TritonWear®, v1.2.3, 50 Hz, Ontario, 57 
Canada), containing a nine-axis inertial measurement unit with a tri-axial accelerometer, 58 
gyroscope, and magnetometer, was compared to video analysis. 59 

The device was positioned under the swim cap, on top of each swimmer’s occipital 60 
protuberance, in accordance with the manufacturer’s recommendations.5 Video footage was 61 
captured (Sony FS7 MII 4K 25 Hz, Minato, Tokyo) by placing the camera at a high vantage 62 
point, inside a building office on the side of the pool. Raw lap-by-lap footage for each session 63 
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were analysed by the principle researcher using a performance analysis software package 64 
(Dartfish 10, 360-S, 2018, Switzerland).3 65 

One of the most important limiting factors in the present study was the lack of timestamp in 66 
the device, meaning a running time between laps was not available for analysis. Therefore lap-67 
by-lap comparison between the device and video analysis were not possible. A global 68 
measurement (i.e., total and mean) was subsequently used to examine the deviation of the 69 
device relative to video analysis. The swimming metrics analysed included total swim distance, 70 
total and mean stroke count, mean velocity, and stroke type. 71 

Stroke types were coded into backstroke, breaststroke, butterfly, and freestyle. ‘Drill’ was 72 
included as an additional stroke identifier to denote activity completed during the warm up or 73 
active recovery (e.g., kick), when a swimmer did not use the same stroke type across a full lap, 74 
or when swimmers completed drills (e.g., 15 m efforts). Lap start was defined as when the 75 
swimmer pushed off the wall or dove into the pool, with lap end as the time of wall touch or 76 
tumble turn. 77 

This study was conducted over 15 training days and included a total of 18 swim sessions (12 78 
aerobic, 6 speed) in an Olympic-sized outdoor 50 m pool. Swimmers were separated by event 79 
classification to sprint (i.e., 50 to 200 m) or distance (i.e., ≥ 400 m). Training was prescribed 80 
within these classifications according to their regular swimming sessions. 81 

Due to issues with video capture, only 15 of the 18 swimming sessions were included in the 82 
analysis process (10 aerobic, 5 speed). As a result of missed sessions by three swimmers, a 83 
total of 146 out of 150 individual swim sessions were available for comparison between the 84 
device and video. 85 

Statistical Analysis 86 

Validity data are presented as mean ± standard deviation (SD) for all variables. Absolute error 87 
was used to assess the overall difference of the device relative to video analysis, and 88 
standardised effect (i.e., mean difference/pooled SD) determined the size of this difference (i.e., 89 
0.2 to 0.5 = ‘small’, 0.5 to 0.8 = ‘medium’, > 0.8 = ‘large’) with 95% confidence intervals.890 
Pearson’s correlation coefficient examined the strength of the relationship between methods. 91 

Fisher’s Exact Test determined the percentage count frequencies across all stroke types, for 92 
both the device and video. Repeat reliability analysis was completed for one swimming session, 93 
across the 10 swimmers, with one month separating analyses. Log-transformed intraclass 94 
correlation coefficient (ICC) based on a multiple measurements, absolute agreement, 2-way 95 
mixed-effects model,9 and typical error as a coefficient of variation (CV, %) with 95% 96 
confidence limits were calculated to determine intra-rater video analysis reliability for total 97 
swim distance, total and mean stroke count, mean velocity, and stroke type. 98 

Results 99 

High overall error was evident in the device across all swimming metrics (Table 1). The error 100 
led to consistent overestimation relative to the video analysis for total and mean stroke count, 101 
and mean velocity. Conversely, the device underestimated total swim distance relative to the 102 
video analysis. 103 
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The device incorrectly detected total time spent in backstroke, breaststroke, butterfly, and 104 
freestyle by 51 ± 15% across all sessions (p < 0.01 for all strokes), with drill not identified 105 
(Figure 1). ICC intra-rater reliability was excellent between repeated measures for all 106 
swimming metrics (Table 2). The higher CV evident for backstroke and breaststroke are likely 107 
due to swimmers’ lane positioning influencing the observer’s capacity to differentiate between 108 
stroke cycles. 109 

Discussion 110 

This technical report demonstrates the wearable device assessed in the current study, does not 111 
accurately measure total swim distance, total and mean stroke count, mean velocity, or stroke 112 
type. 113 

Across all sessions, the device incorrectly detected stroke type. The differences in stroke type 114 
detection could be explained through device placement. Previous research has demonstrated 115 
that wrist-based accelerometry has superior accuracy in detecting stroke type compared to 116 
devices worn on the head, or upper and lower back.10 Specifically, freestyle and backstroke are 117 
best detected by wrist-worn devices due to the alternative mechanics allowing distinct 118 
differentiation of the strokes, whereas head-worn devices are better equipped to detect the body 119 
positioning and cyclical mechanics associated with breaststroke and butterfly, due to the 120 
exaggerated head movements associated with these strokes.3 Therefore, device placement on 121 
the posterior head, as used in the present study, may have reduced the ability of the unit to 122 
accurately recognise stroke type. Currently, there remains no consensus regarding device 123 
placement,4 which is likely to explain the variance in results in comparison to previous 124 
findings. The device’s inability to identify and report time spent in drill activities is likely an 125 
additional contributing factor to the large discrepancies in stroke type detection and 126 
misclassification, relative to video analysis. Future studies must therefore assess which 127 
position, or combination of positions (e.g., wrist-based and head-worn), offers the most valid 128 
and reliable measure for stroke type identification. 129 

The present results demonstrated consistent overestimation for total and mean stroke count 130 
from the device relative to video analysis. Indeed, the magnitude of the differences in these 131 
metrics were large, therefore limiting the practical use of these measures. These results are in 132 
contrast to previous research which reported the device was a valid measure of stroke count 133 
across 100 m for breaststroke and freestyle.5 Consistent with stroke type identification, device 134 
placement and stroke misclassification may have also influenced stroke count recognition. For 135 
example, anecdotal observations noted the device would incorrectly code the stroke type if the 136 
swimmer had an exaggerated underwater kick. This stroke type misclassification may be a 137 
contributing factor to the difference in mean stroke count. 138 

Accurate monitoring of swim distances and speeds are fundamental measures for swim training 139 
quantification.11,12 The present findings revealed moderate and large errors of the device in 140 
total swim distance and mean velocity, respectively, relative to the video. Further improvement 141 
in device measurement properties is required before use in practice. Accordingly, it is 142 
recommended that future studies examine device firmware or algorithm upgrades as they 143 
become available, alongside assessment of other wearable devices for swimmers, to further 144 
measure the accuracy of the identified swimming metrics, in conjunction with additional 145 
variables (e.g., stroke rate). 146 
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Practical Applications 147 

• Swimmers, coaches, and sport scientists require precise data to monitor individual148 
training responses. The use of the device in the current form to accurately monitor149 
swimmer’s training load is therefore limited until further developments in device150 
algorithms or positioning occurs.151 

152 

Conclusions 153 

The inability of the device to accurately measure session distance, stroke count, and velocity, 154 
and to detect stroke type limit its application to monitor swimmers’ training until further device 155 
improvements are available and independently validated. These findings are of importance to 156 
sport scientists and coaches who require accurate data to inform training prescription. 157 
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Figure 1. Percentage counts for total stroke type across all swimming sessions, as identified 
with the device and video analysis. 
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Table 1. Validity of the device (TritonWear®) relative to video analysis. Data are presented as mean ± SD, Pearson’s correlation, absolute error, and standardised 
effect (95% confidence intervals) for the swimming metrics across all 10 participant sessions (n=146). 

Variable Video Device Pearson’s 
Correlation 

Absolute 
Error Standardised Effect 

Total Swim Distance (km) 4.3 ± 0.9 3.7 ± 0.9 0.91 0.68 ± 0.39 0.70, medium (0.48-0.92) 

Total Stroke Count (n) 2348 ± 619 2415 ± 708 0.93 174 ± 209 0.26, small (0.18-0.35) 

Mean Stroke Count (n) 26 ± 5 33 ± 4 0.70 7 ± 3 1.26, large (0.86-1.66) 

Mean Velocity (m/s) 1.2 ± 0.1 1.3 ± 0.1 0.24 0.11 ± .08 1.27, large (0.86-1.67) 
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Table 2. Intra-rater reliability for video analysis. Data are presented as log-transformed intraclass 
correlation coefficient (ICC), and typical error as a coefficient of variation (CV, %) across all 10 
participants within one swimming session, for total swim distance, total and mean stroke count, mean 
velocity, and stroke type identification (i.e., backstroke, breaststroke, butterfly, freestyle, and drill). 

Variable ICC CV (%) 

Total Swim Distance (km) 1.00 0.00 

Total Stroke Count (n) 1.00 0.9 

Mean Stroke Count (n) 1.00 0.9 

Mean Velocity (m/s) 1.00 0.2 

Backstroke (n) 0.96 12.9 

Breaststroke (n) 0.97 11.1 

Butterfly (n) 0.95 4.8 

Freestyle (n) 0.99 1.6 

Drill (n) 0.95 4.8 
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