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ABSTRACT 

Seagrasses provide irreplaceable ecosystem services, yet in the Anthropocene, they are 

increasingly under threat from coastal development and climate impacts. Efforts to 

mitigate threats to seagrasses have led to investment and research into their distribution, 

ecological drivers and bioindicators of health. In the Great Barrier Reef (GBR), work 

continues to translate our mechanistic understanding of marine plants into impactful 

management of acute disturbances and chronic stressors. These applied outcomes have 

primarily focused on shallow seagrass communities, synthesising results and deriving 

relationships to be used by managers and regulators.     

 

The goal of this thesis is to build our understanding of the dynamics and underlying 

drivers of GBR deep-water seagrasses for their better management and the communities 

they support. To achieve this, I (i) studied the seasonal patterns of deep-water 

seagrasses, characterising environmental parameters linked with growth and 

senescence; (ii) evaluated light and temperature as drivers of seagrass abundance and 

determined light thresholds for the dominant Halophila species; (iii) quantified seed 

banks over time and space, evaluating the role of seed stratification on germination; and 

(iv) investigated what role endogenous cues play in the phenology of a Halophila 

species.  

 

Deep-water Halophila species did not all follow the same growth patterns. Only 

Halophila decipiens had a true annual pattern, completing its life cycle in one growing 

season and depositing seeds for the subsequent year’s renewal. Deep-water GBR 

seagrasses grow near their physiological limits with small light reductions potentially 
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leading to meadow-scale loss, and yet their physiological limits also vary among 

species. Limiting light led to decreased shoot density for both H. decipiens and H. 

spinulosa over different timeframes, yet neither were affected by increases in 

temperature irrespective of compounding low light stress. Variations in meadow 

reproductive output and seed banks critically structure deep-water meadows and 

underscore species-specific responses to environmental perturbations. Endogenous cues 

responsible for life stage transitions in terrestrial plants had not been studied before in 

seagrasses. The metabolomic profile, including key hormones, within the life stages of 

the H. decipiens growing cycle provided the first study linking metabolomic regulation 

with seagrass growth and development and underpins the ecological findings in this 

thesis. 

 

This thesis contributes critical information on growth strategies that drive spatial and 

seasonal dynamics of tropical deep-water Halophila communities. It provides new 

insights and a gateway to explore emerging lines of research including greater use of 

‘omics’ technology and integrating terrestrial plant research to further improve deep-

water seagrass management.
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