ADVANCED ELECTRODE MATERIALS FOR LITHIUM- AND POTASSIUM-BASED ENERGY STORAGE DEVICES

A thesis presented for the award of the degree of

Doctor of Philosophy

from

University of Technology Sydney

By

Shuoqing Zhao, B. Eng., M. Sc.

September, 2021

CERTIFICATE OF ORIGINAL AUTHORSHIP

I, Shuoqing Zhao, declare that this thesis, is submitted in fulfilment of the requirements for the

award of Doctor of Philosophy, in the Faculty of Science at the University of Technology

Sydney.

This thesis is wholly my own work unless otherwise reference or acknowledgement. In addition,

I certify that all information sources and literature used are indicated in the thesis.

This document has not been submitted for qualifications at any other academic institution.

This research is supported by the Australian Government Research Training Program.

Shuoqing Zhao

Production Note:

Signature removed prior to publication.

Sydney, Australia

September 2021

I

ACKNOWLEDGEMENTS

It has been four years since I was enrolled as a Ph.D. candidate in University of Technology Sydney (UTS) for the autumn of 2017. Due to the impact of COVID-19, up until now, I am still stranded in China and cannot return to Australia to get together with my friends. It is a really difficult and painful period, during which I have suffered from depression and the tragic loss. However, I should also embrace to this special experience and really appreciate the valuable help from my family members, friends and UTS.

Firstly, I express sincere thanks to my supervisor, Professor Guoxiu Wang, for his encouragement, invaluable suggestions and selfless assistance throughout my Ph.D. study at UTS.

Secondly, many thanks to my co-supervisor Dr. Bing Sun and Dr. Jane Yao for their kind help and support, which smoothly assisted my work in laboratory as well as my daily life in Sydney.

I would like to acknowledge my colleagues at UTS, Dr. Hao Liu, Dr. Dawei Su, Dr. Jinqiang Zhang, Dr. Yufei Zhao, Dr. Dong Zhou, Dr. Pan Xiong, Dr. Liubing Dong, Dr. Huajun Tian, Dr. Xin Guo, Dr. Weizhai Bao, Dr. Tuhin Sahu, Dr. Kang Yan, Dr. Xingxing Yu, Dr. Yi Chen, Dr. Xiaochun Gao, Mr. Fan Zhang, Mr. Tianyi Wang, Miss Ziqi Guo, Miss Pauline Jaumaux, Mr. Javad Safaei, Miss Yuhan Xie. Their kind collaboration and assistance were helpful.

Also, I want to thank my friends, Mr. Feng Liu, Mr. Tiexin Li and Dr. Jianjia Zhang, we shared a lot of happy memories in Sydney.

In addition, I appreciate the administrative and technical support from Miss Elizabeth Gurung Tamang, Dr. Ronald Shimmon, Dr. Linda Xiao, Miss Katie McBean, Mr. Geoff McCredie and Mr. Herbert Yuan, Mr. Iurii Bodachivskyi.

The financial support from Australian Rail Manufacturing Cooperative Research Centre (RMCRC) and UTS (International Research Scholarship) helped me completing my Ph.D. study, which is highly acknowledged.

Last but not the least, I would like to thank my family members for their wholly warm support throughout my life.

STATEMENT OF FORMAT

This is the statement indicating that seven published works are included in this doctoral thesis. Three review papers are referred to 1.2, 1.3, 1.4, 1.5 and 1.7 in the introduction. Four original published works are referred to chapter 3, chapter 4, chapter 5 and chapter 6. The related publications in this thesis are listed as follows:

- 1. Title: Reaction Mechanisms of Layered Lithium-Rich Cathode Materials for High-Energy Lithium-Ion Batteries. Authors: Shuoqing Zhao, Kang Yan, Jinqiang Zhang, Bing Sun and Guoxiu Wang. Journal: *Angew. Chem. Int. Ed.*, 2020, 202000262. DOI: 10.1002/anie.202000262. This work is referred to 1.2, 1.3 and 1.4 in the introduction.
- 2. Title: Towards High-energy-density Lithium-ion Batteries: Strategies for Developing High-capacity Lithium-rich Cathode Materials. Authors: Shuoqing Zhao, Ziqi Guo, Kang Yan, Shuwei Wan, Fengrong He, Bing Sun and Guoxiu Wang. Journal: *Energy Stor. Mater.*, 2021, 34, 716-734. DOI: 10.1016/j.ensm.2020.11.008. This work is referred to 1.5 in the introduction.
- 3. Title: The Rise of Prussian Blue Analogs: Challenges and Opportunities for High-Performance Cathode Materials in Potassium-Ion Batteries. Authors: Shuoqing Zhao, Ziqi Guo, Kang Yan, Xin Guo, Shuwei Wan, Fengrong He, Bing Sun and Guoxiu Wang. Journal: *Small Structures*, 2020, 2000054. DOI: 10.1002/sstr.202000054. This work is referred to 1.7 in the introduction.

- 4. Title: Aegis of Lithium-Rich Cathode Materials via Heterostructured LiAlF4 Coating for High-Performance Lithium-Ion Batteries. Authors: Shuoqing Zhao, Bing Sun, Kang Yan, Jinqiang Zhang, Chengyin Wang and Guoxiu Wang. Journal: *ACS Appl. Mater. Interfaces*, 2018, 10 (39), 33260-33268. DOI: 10.1021/acsami.8b11471. This work is referred to Chapter 3.
- 5. Title: Construction of Hierarchical K_{1.39}Mn₃O₆ Spheres via AlF₃ Coating for High-Performance Potassium-Ion Batteries. Authors: Shuoqing Zhao, Kang Yan, Paul Munroe, Bing Sun and Guoxiu Wang. Journal: *Adv. Energy Mater.*, 2019, 9 (10), 1803757. DOI: 10.1002/aenm.201803757. This work is referred to Chapter 4.
- 6. Title: K₂Ti₂O₅@C Microspheres with Enhanced K⁺ Intercalation Pseudocapacitance Ensuring Fast Potassium Storage and Long-Term Cycling Stability. Authors: Shuoqing Zhao, Liubing Dong, Bing Sun, Kang Yan, Jinqiang Zhang, Shuwei Wan, Fengrong He, Paul Munroe, Peter H. L. Notten and Guoxiu Wang. Journal: *Small*, 2020, 16 (4), 1803757. DOI: 1906131. This work is referred to Chapter 5.
- 7. Title: Phosphorus and Oxygen Dual-doped Porous Carbon Spheres with Enhanced Reaction Kinetics as Anode Materials for High-performance Potassium-ion Hybrid Capacitors. Authors: Shuoqing Zhao, Kang Yan, Jiayu Liang, Qinghong Yuan, Jinqiang Zhang, Bing Sun, Paul Munroe and Guoxiu Wang. Journal: *Adv. Funct. Mater.*, 2021, 2102060. DOI: 10.1002/adfm.202102060. This work is referred to Chapter 6.

RESEARCH PUBLICATIONS

- 1. **Zhao, S.**; Yan, K.; Zhang, J.; Sun, B.*; Wang, G.*, Reaction Mechanisms of Layered Lithium-Rich Cathode Materials for High-Energy Lithium-Ion Batteries. *Angewandte Chemie International Edition* **2021**, 60 (5), 2208-2220.
- 2. **Zhao, S.**; Yan, K.; Liang, J.; Yuan, Q.; Zhang, J.; Sun, B.*; Munroe, P.; Wang, G.*, Phosphorus and Oxygen Dual-doped Porous Carbon Spheres with Enhanced Reaction Kinetics as Anode Materials for High-performance Potassium-ion Hybrid Capacitors. *Advanced Functional Materials* **2021**, 2102060, DOI: 10.1002/adfm.202102060.
- 3. **Zhao, S.**; Guo, Z.; Yan, K.; Wan, S.; He, F.; Sun, B.*; Wang, G.*, Towards high-energy-density lithium-ion batteries: Strategies for developing high-capacity lithium-rich cathode materials. *Energy Storage Materials* **2021**, 34, 716-734.
- 4. **Zhao, S.**; Guo, Z.; Yang, J.; Wang, C.; Sun, B.*; Wang, G.*, Nanoengineering of Advanced Carbon Materials for Sodium-Ion Batteries. *Small* **2021**, 2007431.
- 5. **Zhao, S.**; Guo, Z.; Yan, K.; Guo, X.; Wan, S.; He, F.; Sun, B.*; Wang, G.*, The Rise of Prussian Blue Analogs: Challenges and Opportunities for High-Performance Cathode Materials in Potassium-Ion Batteries. *Small Structures* **2021**, 2 (1), 2000054.
- 6. **Zhao, S.**; Dong, L.; Sun, B.*; Yan, K.; Zhang, J.; Wan, S.; He, F.; Munroe, P.; Notten, P. H. L.; Wang, G.*, K₂Ti₂O₅@C Microspheres with Enhanced K⁺ Intercalation Pseudocapacitance Ensuring Fast Potassium Storage and Long-Term Cycling Stability. *Small* **2020**, 16 (4), 1906131.
- 7. **Zhao, S.**; Yan, K.; Munroe, P.; Sun, B.*; Wang, G.*, Construction of Hierarchical K_{1.39}Mn₃O₆ Spheres via AlF₃ Coating for High-Performance Potassium-Ion Batteries. *Advanced Energy Materials* **2019**, 9 (10), 1803757.
- 8. **Zhao, S.**; Sun, B.*; Yan, K.; Zhang, J.; Wang, C.; Wang, G.*, Aegis of Lithium-Rich Cathode Materials via Heterostructured LiAlF₄ Coating for High-Performance Lithium-Ion Batteries. *ACS Applied Materials & Interfaces* **2018**, 10 (39), 33260-33268.
- 9. Yan, K.; **Zhao, S.**; Zhang, J.; Safaei, J.; Yu, X.; Wang, T.; Wang, S.; Sun, B.*; Wang, G.*, Dendrite-Free Sodium Metal Batteries Enabled by the Release of Contact Strain on Flexible and Sodiophilic Matrix. *Nano Letters* **2020**, 20 (8), 6112-6119.
- 10. Guo, Z.; **Zhao, S.**; Li, T.; Su, D.*; Guo, S.; Wang, G.*, Recent Advances in Rechargeable Magnesium-Based Batteries for High-Efficiency Energy Storage. *Advanced Energy Materials* **2020**, 10 (21), 1903591.
- 11. Yan, K.; Wang, J.; **Zhao, S.**; Zhou, D.; Sun, B.*; Cui, Y.*; Wang, G.*, Temperature-Dependent Nucleation and Growth of Dendrite-Free Lithium Metal Anodes. *Angewandte Chemie International Edition* **2019**, 58 (33), 11364-11368.
- 12. Tian, H.; Wang, T.; Zhang, F.; Zhao, S.; Wan, S.; He, F.; Wang, G.*, Tunable porous carbon spheres for high-performance rechargeable batteries. *Journal of Materials Chemistry A* **2018**, 6 (27), 12816-12841.

TABLE OF CONTENTS

CERTIFICATE OF ORIGINAL AUTHORSHIP	I
ACKNOWLEDGEMENTS	II
STATEMENT OF FORMAT	IV
RESEARCH PUBLICATIONS	VI
TABLE OF CONTENTS	VII
LIST OF FIGURES	XIII
LIST OF TABLES	XXXI
ABSTRACT	XXXII
INTRODUCTION	XXXIV
CHAPTER 1 LITERATURE REVIEW	1
1.1 Lithium-ion batteries	1
1.2 Lithium-rich cathode materials	2
1.3 Structure and chemical composition of LLRM cathode materials	6
1.4. Reaction mechanisms of LLRM cathode materials	7
1.4.1 Prevailing reaction mechanisms	8
1.4.2 Anionic redox reaction mechanism	9
1.4.3 Cationic redox reaction mechanisms	15
1.5 Strategies for improving electrochemical properties of LRCMs	23
1.5.1 Surface engineering	24

1.5.2 Elemental doping	36
1.5.4 Composition optimization	42
1.5.5 Structure engineering	52
1.5.6 Electrolyte additives	55
1.5.7 Other strategies	60
1.6 Potassium-ion batteries	61
1.7 Electrode materials for potassium-ion batteries	62
1.7.1 Cathode materials for potassium-ion batteries	63
1.7.2 Anode materials for potassium-ion batteries	74
CHAPTER 2 EXPERIMENT AND METHODOLOGY	80
2.1 Overview	80
2.2 Chemical reagents	81
2.3 Preparation methods	83
2.3.1 Solid state calcination	83
2.3.2 Chemical co-deposition	83
2.3.3 Chemical vapor deposition	84
2.3.4 Spray drying	84
2.4 Material characterization	85
2.4.1 Scanning electron microscopy	85
2.4.2 Transmission electron microscope	85
2.4.3 X-ray diffraction	86

2.4.4 Raman spectroscopy	86
2.4.5 Thermogravimetric analysis	87
2.4.6 X-ray photoelectron spectroscopy	87
2.4.7 N ₂ sorption/desorption	88
2.5 Electrochemical measurements	88
2.5.1 Electrode preparation	88
2.5.2 Cyclic voltammetry	89
2.5.3 Galvanostatic charge/discharge	89
2.5.4 Electrochemical impedance spectroscopy	90
2.5.5 Galvanostatic intermittent titration technique	90
2.6 Density functional theory calculation	91
CHAPTER 3 AEGIS OF LITHIUM-RICH CATHODE MATERIALS VIA	
HETEROSTRUCTURED LiAIF4 COATING FOR HIGH-PERFORMANCE LITHIUM-I	ON
BATTERIES	92
3.1 Introduction	92
3.2 Experimental section	94
3.2.1 Synthesis of Li _{1.2} Ni _{0.2} Mn _{0.6} O ₂ (LNMO) microspheres	94
3.2.2. Synthesis of AlF ₃ and LiAlF ₄ -Coated Li _{1.2} Ni _{0.2} Mn _{0.6} O ₂ (LNMO)	
microspheres	95
3.2.3. Materials characterization	95
3.2.4. Electrochemical measurements	96

3.3 Results and discussion	97
3.4 Summary	127
CHAPTER 4 CONSTRUCTION OF HIERARCHICAL K _{1.39} Mn ₃ O ₆ SPHERES VIA	AlF ₃
COATING FOR HIGH-PERFORMANCE POTASSIUM-ION BATTERIES	128
4.1 Introduction	128
4.2 Experimental section	131
4.2.1 Synthesis of AlF ₃ coated K _{1.39} Mn ₃ O ₆ (AlF ₃ @KMO) microspheres	131
4.2.2. Materials characterization	132
4.2.3. Electrochemical measurements	133
4.3 Results and discussion	134
4.4 Summary	163
CHAPTER 5 K ₂ Ti ₂ O ₅ @C MICROSPHERES WITH ENHANCED K ⁺ INTERCALA	TION
PSEUDOCAPACITANCE ENSURING FAST POTASSIUM STORAGE AND LON	[G-
TERM CYCLING STABILITY	165
5.1 Introduction	165
5.2 Experimental section	168
5.2.1 Synthesis of K ₂ Ti ₂ O ₅ microspheres (S-KTO)	168
5.2.2 Synthesis of carbon-coated K ₂ Ti ₂ O ₅ @C microspheres (S-KTO@C)	168
5.2.3 Synthesis of bulk K ₂ Ti ₂ O ₅ materials (B-KTO)	168
5.2.4 Materials characterization	169
5.2.5 Electrochemical measurements	169

5.2.6 In situ XRD measurements	171
5.3 Results and discussion	171
5.4 Summary	205
CHAPTER 6 PHOSPHORUS AND OXYGEN DUAL-DOPED POROUS CAF	RBON
SPHERES WITH ENHANCED REACTION KINETICS AS ANODE MATER	LIALS FOR
HIGH-PERFORMANCE POTASSIUM-ION HYBRID CAPACITORS	206
6.1 Introduction	206
6.2 Experimental section	209
6.2.1 Synthesis of MnCO ₃ microspheres	209
6.2.2 Synthesis of porous carbon sphere (PCS)	210
6.2.3 Synthesis of oxygen/phosphorus dual-doped porous carbon sphe	ere (P/O-PCS)
	210
6.2.4 Materials characterization	210
6.2.5 Electrochemical measurements	211
6.2.6 In situ Raman measurements	214
6.2.7 DFT calculations	214
6.3 Results and discussion	215
6.4 Summary	255
CHAPTER 7 CONCLUSIONS	256
7.1 General conclusion	256

7.2 Aegis of lithium-rich cathode materials via heterostructured LiAlF ₄ coating for l	high-
performance lithium-ion batteries	257
7.3 Construction of hierarchical K _{1.39} Mn ₃ O ₆ spheres via AlF ₃ coating for high-	
performance potassium-ion batteries	257
7.4 K ₂ Ti ₂ O ₅ @C microspheres with enhanced K ⁺ intercalation pseudocapacitance	
ensuring fast potassium storage and long-term cycling stability	258
7.5 Phosphorus and oxygen dual-doped porous carbon spheres with enhanced reacti	on
kinetics as anode materials for high-performance potassium-ion hybrid capacitors	259
7.6 Outlook and perspectives	259
Appendix A: Abbreviations/Symbols	263
Appendix B: Scholarship & Awards	264
Appendix C: Conferences	265
REFERENCES	266

LIST OF FIGURES

Figure 1.1 Benchmarking LLRM cathode materials (0.5Li ₂ MnO ₃ •0.5LiNi _{0.8} Mn _{0.1} Co _{0.1} O ₂ , Li-
$rich\ NMC)\ against\ LiFePO_4\ and\ classical\ layered\ oxide\ cathode\ materials\ (LiNi_{0.8}Co_{0.1}Mn_{0.1}O_2,$
NCM 811). (a) Radar plot compares LiFePO ₄ , NCM 811 and Li-rich NMC according to six
critical criterions that are crucial for practical applications. ²¹⁻²² (b) Specific energy according to
the weight of cathode materials (coupling with graphite anodes). (c) Average cost, (d) tap
density and (e) thermal stability of three electrode materials. The data in (e) are determined by
thermogravimetric analysis (TGA). (f) Cycling stability and (g) rate capability of three
electrode materials based on previous publication. ²³⁻³²
Figure 1.2 Key steps for the development of the reaction mechanisms of LLRM cathode
materials. ³³⁻⁵¹ 5
$\textbf{Figure 1.3} \ \text{Crystal structure models of (a) rhombohedral LiMO}_2 \ \text{and (b) monoclinic Li}_2 MnO_3$
Figure 1.3 Crystal structure models of (a) rhombohedral LiMO ₂ and (b) monoclinic Li ₂ MnO ₃ seen from the [100] crystallographic direction. Unit cell and atomic arrangement of (c) trigonal
seen from the [100] crystallographic direction. Unit cell and atomic arrangement of (c) trigonal
seen from the [100] crystallographic direction. Unit cell and atomic arrangement of (c) trigonal LiMO ₂ and (d) monoclinic Li ₂ MnO ₃
seen from the [100] crystallographic direction. Unit cell and atomic arrangement of (c) trigonal LiMO ₂ and (d) monoclinic Li ₂ MnO ₃
seen from the [100] crystallographic direction. Unit cell and atomic arrangement of (c) trigonal LiMO ₂ and (d) monoclinic Li ₂ MnO ₃
seen from the [100] crystallographic direction. Unit cell and atomic arrangement of (c) trigonal LiMO ₂ and (d) monoclinic Li ₂ MnO ₃

projection is labelled with different color lines in the image. (c) Schematic diagrams of the
different formation mechanism of spinel grains in $R = 3m \text{ LiMO}_2$ and $C2/m \text{ Li}_2\text{MO}_3$ upon cycling.
The nucleation of spinel crystal domains has been confirmed in different crystal orientation. ⁷⁷
Figure 1.6 (a) Hard X-ray photoelectron spectroscopy (HAXPES) results of O1s photoelectron
spectra during the first and second cycles. ⁴⁶ (b) A comparison of LiMO ₂ and Li ₂ MO ₃ crystal
structures and relevant band structures. ²¹
Figure 1.7 (a) HAADF-STEM images, chemical maps, and plots of Mn and Ni atomic
concentration obtained from STEM-EELS results. ⁴¹ (b) Atomic resolution Z-contrast image of
the surface region and (c) X-ray energy dispersive spectroscopy (XEDS) images of a
$Li_{1.2}Ni_{0.2}Mn_{0.6}O_2 \ nanoparticle. \ ^{84} (d) \ STEM-HAADF \ image \ of cycled \ Li_{1.2}Ni_{0.2}Mn_{0.6}O_2 \ with \ the \ nanoparticle. \ ^{84} (d) \ STEM-HAADF \ image \ of \ cycled \ Li_{1.2}Ni_{0.2}Mn_{0.6}O_2 \ with \ the \ nanoparticle. \ ^{84} (d) \ STEM-HAADF \ image \ of \ cycled \ Li_{1.2}Ni_{0.2}Mn_{0.6}O_2 \ with \ the \ nanoparticle. \ ^{84} (d) \ STEM-HAADF \ image \ of \ cycled \ Li_{1.2}Ni_{0.2}Mn_{0.6}O_2 \ with \ the \ nanoparticle. \ ^{84} (d) \ STEM-HAADF \ image \ of \ cycled \ Li_{1.2}Ni_{0.2}Mn_{0.6}O_2 \ with \ the \ nanoparticle. \ ^{84} (d) \ STEM-HAADF \ image \ of \ cycled \ Li_{1.2}Ni_{0.2}Mn_{0.6}O_2 \ with \ the \ nanoparticle. \ ^{84} (d) \ STEM-HAADF \ image \ of \ cycled \ Li_{1.2}Ni_{0.2}Mn_{0.6}O_2 \ with \ the \ nanoparticle. \ ^{84} (d) \ STEM-HAADF \ image \ of \ cycled \ Li_{1.2}Ni_{0.2}Mn_{0.6}O_2 \ with \ the \ nanoparticle. \ ^{84} (d) \ STEM-HAADF \ image \ of \ cycled \ Li_{1.2}Ni_{0.2}Mn_{0.6}O_2 \ with \ nanoparticle. \ ^{84} (d) \ STEM-HAADF \ image \ of \ cycled \ Li_{1.2}Ni_{0.2}Mn_{0.6}O_2 \ with \ nanoparticle.$
spinel structure and the I41 structure in SRL. (e) Schematic illustration of the SRL evolution
after cycling. 90
Figure 1.8 (a) K-edge XAS of various elements in Li _{1.2} Ni _{0.15} Co _{0.1} Mn _{0.55} O ₂ recorded at the
discharge stage after cycling. (b) The contribution to the discharge capacity from different redox
couples at different cycles. (c) An illustration of the relationship between the Fermi level and
electronic structure. The evolution of redox couples shifts the Fermi level higher upon the
original state and lower the open-circuit voltage. ⁴⁷
Figure 1.9 (a) The hypothesized Li _{1/2} MnO ₃ crystal structure after activation, where red, green
and purple representing O, Li and Mn, respectively. (b, c) Comparison of the hypothesized
Li _{1/2} MnO ₃ and Li ₂ MnO ₃ structures. The circles and triangles stand for the octahedral (Oct) and

tetrahedral (Tet) sites, respectively. (d) Alternative charge mechanisms in LLRM cathode
materials. The Mn ⁴⁺ /Mn ⁷⁺ oxidation followed by the formation of trapped oxygen molecules or
peroxide ions. ⁵¹
Figure 1.10 Strategies for improvement of layered LRCMs. 24
Figure 1.11 (a) Scheme of the AlF ₃ coating strategy and its working mechanism during
cycling. 104 (b) The phase transformation of heterostructured Li ₄ M ₅ O ₁₂ @LBO@LRCM during
cycling. ¹⁰⁷ (c–e) TEM images of NH ₄ F and Al ₂ O ₃ co-coated LRCM. ¹⁰⁹ 29
Figure 1.12 The interfacial reaction of (a) pristine and (b) GSR LRCMs before and after the
fully first charge. The pre-activated surface layer helps to form a thin CEI layer on the particles'
surface. 130 (c) Illustration of urea treatment on the Li ₂ MnO ₃ -like cathode material. 132 35
Figure 1.13 (a) The annular bright-field (ABF) image and the energy-dispersive X-ray (EDX)
mapping of Nb-doped Li _{1.2} Mn _{0.54} Ni _{0.13} Co _{0.13} O ₂ . The images reflect the elemental distribution
near the surface. (b) The Mn L _{2,3} edge spectra of the Nb-doped cathode material in the TEY
and FLY modes at different charge/discharge states upon the first cycle. (c) The high-angle
annular dark-field (HAADF) images of Nb-doped LLCM near the subsurface area after 20
cycles (left) and 100 cycles (right). 141 (d) XRD patterns of uncoated and Zr-doped cathode
materials after 0, 20 and 100 cycles. ¹⁴²
Figure 1.14 (a) Phase transformation of the pristine and co-doped LRCMs upon cycling. 145
HAADF-STEM images of the (b) pristine and (c) Cd and S-doped cathode materials. 146 41
Figure 1.15 (a) X-ray energy dispersive spectroscopy (XEDS) mappings of cathode materials
synthesized by different methods. (b) STEM images, atomic model and intensity plot of the HA

cathode material. (c) The HAADF image and the atomic model of Li-Ti mixed structure. (d)
47
Figure 1.16 (a) In situ XRD patterns and the corresponding charge-discharge profile of the
$Li_{1.13}Ti_{0.57}Fe_{0.3}S_2$ cathode during the first cycle. ¹⁶⁹ (b) Schematic and STEM-HAADF lattice
images of the Li-gradient region from the lithium-rich (lithium substitution in M layer) bulk to
the lithium-poor (M substitution in lithium layer) surface. 171
Figure 1.17 (a-c) HRTEM images of the pristine and spinel/layered heterostructured cathode
materials. (d) Schematic diagram of the spinel/layered heterostructure. 172 (c) TEM images of
LRCM nanobricks from the (e, g) frontal view and (f, h) lateral view, respectively. 173 (e) The
difference of lithium diffusion kinetics in 3D cube-maze-like and microsphere-like LRCMs. 174
54
Figure 1.18 Galvanostatic charge-discharge curves for cells containing (a) Gen 2 electrolyte
Figure 1.18 Galvanostatic charge-discharge curves for cells containing (a) Gen 2 electrolyte
Figure 1.18 Galvanostatic charge-discharge curves for cells containing (a) Gen 2 electrolyte and (b) Gen 2 electrolyte with 2wt% LiDFOB additive. (c) Scheme of the functioning
Figure 1.18 Galvanostatic charge-discharge curves for cells containing (a) Gen 2 electrolyte and (b) Gen 2 electrolyte with 2wt% LiDFOB additive. C) Scheme of the functioning mechanism of TPFPB. The addition of TPFPB in electrolyte significantly reduces formation of
Figure 1.18 Galvanostatic charge-discharge curves for cells containing (a) Gen 2 electrolyte and (b) Gen 2 electrolyte with 2wt% LiDFOB additive. (c) Scheme of the functioning mechanism of TPFPB. The addition of TPFPB in electrolyte significantly reduces formation of a thick passivation layer. (d) long-term cycling performances of LRCMs with and without
Figure 1.18 Galvanostatic charge-discharge curves for cells containing (a) Gen 2 electrolyte and (b) Gen 2 electrolyte with 2wt% LiDFOB additive. Co Scheme of the functioning mechanism of TPFPB. The addition of TPFPB in electrolyte significantly reduces formation of a thick passivation layer. (d) long-term cycling performances of LRCMs with and without TPFPB. The addition of TPFPB.
Figure 1.18 Galvanostatic charge-discharge curves for cells containing (a) Gen 2 electrolyte and (b) Gen 2 electrolyte with 2wt% LiDFOB additive. 176 (c) Scheme of the functioning mechanism of TPFPB. The addition of TPFPB in electrolyte significantly reduces formation of a thick passivation layer. (d) long-term cycling performances of LRCMs with and without TPFPB. 178

database (June 22, 2020). (c) Radar plot comparing electrochemical performances of PBAs in
LIBs, SIBs and PIBs according to six key characteristics
Figure 1.20 (a) The recent research process of PBA cathode materials in PIBs. (b) Schematic
illustration of structural transformation among BG, PB and PW. (c) Spin states of N-
coordinated (left) and C-coordinated (right) TMs in PBAs. (d) Crystal structure of a defect and
water-free Fe ₄ [Fe(CN) ₆] ₃ model and possible intercalation sites for K ⁺
Figure 1.21 (a) Schematic illustrations of layered oxides crystal structures of P2- P3- and O3-,
K_xMO_2 . 246 (b) Galvanostatic charge-discharge profiles of $KCrO_2$ in a K half-cell. 247
Figure 1.22 (a) Phase transformation of $K_3V_2(PO_4)_2F_3$ during K^+ intercalation and
deintercalation. ²¹⁷ 72
Figure 1.23 (a) illustration of potassium storage mechanism in poly(anthraquinonyl sulfide)
(PAQS). (b) Charge-discharge profiles of PAQS for the initial three cycles. ²²⁴ (c) illustration
of potassium storage mechanism in perylene-3,4,9,10-tetracarboxylic dianhydride (PTCDA). ²¹⁹
74
Figure 1.24 Structure diagrams of different potassium graphite intercalation compounds (stage
3-1). ²⁵⁵
Figure 1.25 In situ synchrotron XRD results and of ex situ SAED patterns Sb ₂ S ₃ at different
charge and discharge state. ²⁶⁶
Figure 1.26 (a) Theoretical specific and volumetric capacities of various anode materials for
LIBs, SIBs and PIBs. (b) Volume expansion upon alloying reactions with different alkaline
metals (Li, Na and K) as a function of x. ²⁰⁶

Figure 2.1 Framework of the experiment and methodology
Figure 3.1 Schematic illustration of the synthesis process for pristine LNMO, LNMO@AlF ₃
and LNMO@LiAlF ₄ 98
Figure 3.2 (a) Low-magnification and (b) high-magnification SEM images of nickel and
manganese carbonate precursors. 99
Figure 3.3 (a-c) Low-magnification and (d-f) high-magnification SEM images of LNMO
obtained after calcinated at (a, d) 800 °C, (b, e) 850 °C and (c, f) 900 °C
Figure 3.4 (a-c) Low-magnification and (d-f) high-magnification SEM images of LNMO
obtained after calcinated at (a, d) 950 °C, (b, e) 1000 °C and (c, f) 1050 °C 101
Figure 3.5 XRD patterns of LNMO obtained from different calcination temperatures 102
Figure 3.6 (a) Cycling performance at 0.1 C and (b) rate performance of LNMO obtained from
different calcination temperatures
Figure 3.7 (a) XRD patterns of LNMO, LNMO@AlF3 and LNMO@LiAlF4. SEM images of
(b, e) LNMO, (c, f) LNMO@AlF3 and (d, g) LNMO@LiAlF4 at different magnifications. 106
Figure 3.8 HRTEM images of the as-synthesized (a) LNMO, (b) LNMO@AlF3 and (c)
LNMO@LiAlF ₄ 107
Figure 3.9 (a) TEM image of LNMO@AlF ₃ . (b-f) The corresponding EDS element mappings
of LNMO@AlF ₃ . (b) F, (c) Mn, (d) Ni, (e) Al and (f) O
Figure 3.10 (a) TEM images of LNMO@LiAlF4. (b-f) The corresponding EDS element
mappings of LNMO@LiAlF4. (b) F. (c) Mn. (d) Ni. (e) Al and (f) O

Figure 3.11 (a) XPS survey and (b-d) high-resolution spectra of (b) Ni2p, (c) Mn2p, and (d)
O1s
Figure 3.12 XPS spectra and fitting results of LNMO, LNMO@AlF ₃ and LNMO@LiAlF ₄ : (a)
Li1s, (b) Al2p and (c) F1s
Figure 3.13 Galvanostatic charge/discharge voltage profiles of (a) LNMO, (b) LNMO@AlF ₃
and (c) LNMO@LiAlF4 at different cycles. Voltage profiles of LNMO, LNMO@AlF3 and
LNMO@LiAlF4 as a function of Li content with corresponding charge/discharge curves for the
(d) first and (e) second cycles
Figure 3.14 (a) Cycling performances of LNMO, LNMO@AlF3 and LNMO@LiAlF4
electrodes at 0.1 C in the voltage range of 2.0-4.8 V. (b) Rate performance of LNMO,
LNMO@AlF3 and LNMO@LiAlF4 electrodes at various current densities from 0.1 C to 5 C.
(c) The long-term stability test of LNMO, LNMO@AlF3 and LNMO@LiAlF4 electrodes at 5
C for 3000 cycles
Figure 3.15 SEM images of LNMO electrodes (a, b) before and (c, d) after 100 cycles 118
Figure 3.16 SEM images of LNMO@AlF3 electrodes (a, b) before and (c, d) after 100 cycles.
119
Figure 3.17 SEM images of LNMO@LiAlF ₄ electrodes (a, b) before and (c, d) after 100 cycles.
Figure 3.18 Average operating voltage vs. cycle number of LNMO, LNMO@AlF3 and
I NMO@LiA1E4

Figure 3.19 Voltage profiles of (a) LNMO, (b) LNMO@AlF ₃ and (c) LNMO@LiAlF ₄ a
different current densities
Figure 3.20 CV curves of (a) LNMO, (b) LNMO@AlF ₃ and (c) LNMO@LiAlF ₄ at the scar
rate of 0.1 mV s ⁻¹ . (d) The corresponding CV curves at the 3 rd cycle
Figure 3.21 (a) Nyquist plots of the prepared electrodes from 100 kHz to 10 mHz after
discharge to 2.0 V in the first cycle. The corresponding (b) linear fitting results of the Warburg
impedance and (c) equivalent circuit
Figure 3.22 (a) Nyquist plots of fresh electrodes. (b-d) Nyquist plots of (b) LNMO, (c
LNMO@AlF ₃ and (d) LNMO@LiAlF ₄ electrodes at different measured temperatures 125
Figure 4.1 (a) Schematic illustration of the synthesis process of AlF ₃ @S-KMO. (b, c) SEM
images and (d) HRTEM image of S-KMO. (e, f) SEM images and (g) HRTEM image o
AlF ₃ @S-KMO. (h) TEM-EDS elemental maps for Al, F, K, and Mn in AlF ₃ @S-KMO 130
Figure 4.2 (a, b) SEM images of the MnCO ₃ microspheres
Figure 4.3 XRD pattern of the MnCO ₃ microspheres.
Figure 4.4 XRD pattern of the Mn ₂ O ₃ microspheres
Figure 4.5 (a, b) SEM images of the Mn ₂ O ₃ microspheres
Figure 4.6 TEM image of the Mn ₂ O ₃ microsphere
Figure 4.7 TEM image of S-KMO.
Figure 4.8 (a, b) SEM images of B-KMO
Figure 4.9 (a) XRD patterns of B-KMO, S-KMO and AlF ₃ @S-KMO. (b) Raman spectra of S
KMO and AlF ₃ @S-KMO. (c-f) XPS survey and high-resolution spectra of (d) K 2p, (e) Mn 2p

and (f) O1s of S-KMO and AlF ₃ @S-KMO. (g-i) High-resolution XPS spectra of Al 2p, Al 2s
and F 1s in AlF ₃ @S-KMO.
Figure 4.10 Cyclic voltammetry of cells with (a) S-KMO electrode and (b) AlF ₃ @S-KMO
electrode between 1.5 and 4 V (vs. K^+/K) at a scan rate of 0.1 mV s ⁻¹ . Galvanostatic charge and
discharge voltage profiles of cells with (c) S-KMO electrode and (d) AlF ₃ @S-KMO electrode
under a current density of 10 mA g ⁻¹ . (e) Rate performances of cells with B-KMO, S-KMO and
AlF ₃ @S-KMO electrodes at different current densities. (f) Cycling performance of cells with
B-KMO, S-KMO and AlF ₃ @S-KMO electrodes at 50 mA g ⁻¹ before and after refreshing the
potassium metal anodes and electrolyte
Figure 4.11 Cyclic voltammetry of B-KMO between 1.5 and 4 V vs. K ⁺ /K at a scan rate of 0.1
$mV s^{-1}$
Figure 4.12 Galvanostatic charge/discharge voltage profiles of the B-KMO electrode at a
current density of 10 mA g ⁻¹ 148
Figure 4.13 SEM images of S-KMO electrodes at different magnifications. (a, b) before and
(c, d) after 50 cycles
Figure 4.14 SEM images of AlF ₃ @ S-KMO electrodes at different magnifications. (a, b) before
and (c, d) after 50 cycles
Figure 4.15 Ex situ XRD results of (a) S-KMO electrodes and (b) AlF3@S-KMO electrodes
before and after 1^{st} , 2^{nd} , 5^{th} , 10^{th} , 20^{th} and 50^{th} cycles. The cells were cycled at 50 mA g^{-1} 152 me^{-1}
Figure 4.16 Cycling performances of S-KMO and AlF ₃ @S-KMO electrodes at 45 °C 153

Figure 4.17 Galvanostatic intermittent titration technique (GITT) results for the (a) S-KMO
electrode and (b) AlF ₃ @S-KMO electrode measured at a constant current density of 10 mA g^{-1} .
(c) Charge reaction resistances and (d) discharge reaction resistances of B-KMO, S-KMO and
AlF ₃ @S-KMO electrodes. The corresponding calculated diffusion coefficients of K ⁺ (e)
insertion and (f) extraction vs. specific capacity
Figure 4.18 GITT profiles of the cell with B-KMO electrode at the current density of 10 mA
g ⁻¹ 157
Figure 4.19 (a-c) Linear fitting results of the potential versus $\tau^{1/2}$ relationship
Figure 4.20 Electrochemical impedance spectra (EIS) of the cells with (a) B-KMO, (b) S-KMO
and (c) AlF ₃ @S-KMO electrodes after the first and fifth cycles
Figure 4.21 Ex situ XRD patterns of (a) S-KMO electrodes and (b) AlF ₃ @S-KMO electrodes
at different charge and discharge stages in the first two cycles. The cells were cycled at 10 mA
g^{-1}
Figure 4.22 Enlarged images of ex situ XRD patterns of the a) S-KMO and b) AlF ₃ @S-KMO
electrodes through the first two cycles at a current density of 10 mA g ⁻¹
Figure 4.23 Relationship between the lattice spacing and the corresponding XRD diffraction
peak position at various voltage states of S-KMO and AlF ₃ @S-KMO electrodes163
Figure 5.1 (a) Schematic illustration of the preparation process for S-KTO@C. (b, c) SEM
images and (d) TEM images of S-KTO. The inset shows the lattice spacing of the S-KTO
material. (e, f) SEM images and (g) TEM image of S-KTO@C
Figure 5.2 (a_c) SEM images of S_KTO precursors

Figure 5.3 Low-magnification SEM images of (a) S-KTO and (b) S-KTO@C microspheres.
Figure 5.4 Low-magnification TEM images of (a) S-KTO and (b) S-KTO@C microspheres.
Figure 5.5 SAED patterns of (a) S-KTO and (b) S-KTO@C materials
Figure 5.6 (a) TEM-EDS elemental maps for (b) C, (c) K, (d) O, and (e) Ti in the S-KTO@C
material
Figure 5.7 (a) XRD patterns, (b) TGA curves and (c) Raman spectra of S-KTO and S-KTO@C.
(d-f) High-resolution XPS spectra of Ti 2p, O1s, K 2p and C 1s of S-KTO (lower) and S-
KTO@C (upper)
Figure 5.8 XPS spectra of the S-KTO and S-KTO@C materials
Figure 5.9 Nitrogen adsorption-desorption isotherms of the (a) S-KTO and (b) S-KTO@C
materials
Figure 5.10 (a) XRD pattern and (b) SEM image of B-KTO
Figure 5.11 Galvanostatic charge and discharge voltage profiles of cells with (a) S-KTO and
(b) S-KTO@C electrodes between 0.01 and 3 V (vs. K ⁺ /K) at a current density of 0.1 C. (c)
Cycling performance of S-KTO, S-KTO@C and B-KTO electrodes at a current density of 0.1
C for 100 cycles. (d) Rate performances of cells with S-KTO, S-KTO@C and B-KTO
electrodes at various current densities. (e) Long-term cycling performance of cells with S-KTO,
S-KTO@C and B-KTO electrodes at a current density of 1 C for 1000 cycles. (f) <i>In situ</i> XRD

contour plots of a S-KTO@C electrode at a current density of 0.1 C. (g, h) The change of lattice
spacings, corresponding to the (001) and (003) peaks vs. time
Figure 5.12 Electrochemical performances of the B-KTO sample: (a) CV curves and (b) GCD
profiles under a current density of 0.1 C between 0.01 and 3 V ($\nu s.~K^+/K$)
Figure 5.13 Electrochemical impedance spectra (EIS) of the cells with (a) B-KTO, (b) S-KTO
and (c) S-KTO@C electrodes after the first (yellow) and 100th (green) cycle
Figure 5.14 Ex situ XRD results of (a) S-KTO and (b) S-KTO@C electrodes before (green)
and after (yellow) 100 cycles. The cells were cycled at 0.1 C
Figure 5.15 SEM images of (a) S-KTO and (b) S-KTO@C electrodes after 100 (dis)charge
cycles
Figure 5.16 Ex situ XPS results of (a) Ti 2p and (b) C 1s for S-KTO@C electrodes at different
charge/discharge states. The cells were (dis)charged at 0.1C
Figure 5.17 In situ XRD patterns of a S-KTO@C Swagelok cell cycled at 0.1 C
Figure 5.18 Galvanostatic intermittent titration technique (GITT) results for (a) S-KTO and (b)
S-KTO@C electrodes measured at a 0.1 C. (c) Charge reaction resistances and (d) discharge
reaction resistances of S-KTO, S-KTO@C and B-KTO electrodes
Figure 5.19 GITT profiles of the cell with a B-KTO electrode at a current density of 0.1 C.
Figure 5.20 CV curves of K-half cells with (a) S-KTO and (b) S-KTO@C electrodes between
0.01 and 3 V (vs. K^+/K) at a scan rate of 0.1 mV s^{-1} . Quantitative analysis of the CV curves
between the total current (black lines) and the surface capacitive current (pink regions) at a scan

rate of 0.1 mV s^{-1} of (c) S-KTO and (d) S-KTO@C electrodes. The capacitive contribution
histograms of the (e) S-KTO and (f) S-KTO@C electrodes at different scan rates
Figure 5.21 CV curves of (a) S-KTO and (b) S-KTO@C electrodes at different scan rates.199
Figure 5.22 b-value analysis using the relationship between the (a) cathodic and (b) anodic
peak currents versus scan rates
Figure 5.23 (a) Schematic illustration of a S-KTO@C//AC PIHC. (b) CV curves of the
fabricated PIHC device at different scan rates. (c) GCD curves and (d) rate capability of the
PIHC at different current densities. (e) Ragone plots in comparison with other works, including
lithium-ion hybrid capacitors, sodium-ion hybrid capacitors, potassium-ion hybrid capacitors
and zinc-ion hybrid capacitors. (f) Long-term cycling stability of the PIHC device at 5 A $\rm g^{-1}$
for 3000 cycles
Figure 5.1 (a) The nitrogen adsorption/desorption isotherms and (b) corresponding pore size
distribution of the employed AC
Figure 5.25 (a) CV curves of K-half cells with the AC electrode between 1.8 and 4.2 V (vs.
$K^{+}\!/K)$ at different scan rates. (b, c) Rate performances and relevant galvanostatic charge and
discharge voltage profiles of cells with the AC electrode at various current densities. (d) Cycling
performance of cells with the AC electrode at a current density of 0.1 A g ⁻¹ for 100 cycles.
Figure 5.26 (a) CV curves and (b) galvanostatic charge and discharge voltage profiles of PIHCs

Figure 5.27 GCD curves of an AC//AC symmetric supercapacitor at different current densities.
Figure 6.1 (a) The synthesis process of the P/O-PCS material. (b-d) SEM and TEM images of
as-prepared P/O-PCS. (e) XRD patterns, (f) Raman spectra and (g) XPS spectra of PCS and
P/O-PCS
Figure 6.2 (a-c) SEM images of MnCO ₃ precursors
Figure 6.3 (a-c) SEM images of MnO@carbon composites
Figure 6.4 (a-c) SEM images of PCS materials. 220
Figure 6.5 (a, b) Low-magnification and (c, d) high-magnification TEM images of PCS221
Figure 6.6 SAED patterns of (a) PCS and (b) P/O-PCS materials
Figure 6.7 (a) TEM-EDS elemental maps for (b) C, (c) O and (d) P in the P/O-PCS material.
Figure 6.8 Nitrogen adsorption-desorption isotherms of (a) PCS and (b) P/O-PCS materials.
Pore size distribution for the (c) PCS and (d) P/O-PCS materials
Figure 6.9 High-resolution XPS spectra of (a) C, (b) O and (c) P for PCS and P/O-PCS
materials
Figure 6.10 Galvanostatic charge and discharge voltage profiles of (a) PCS and (b) P/O-PCS
electrodes between 0.01 and 3 V (vs. K^+/K) at a current density of 0.1 A g^{-1} . (c) Cycle life of
PCS and P/O-PCS electrodes at 0.1 A g ⁻¹ for 100 cycles. (d) Rate capability of PCS and P/O-
PCS electrodes at various current densities (0.1 A g ⁻¹ – 20 A g ⁻¹). (e) Long-term cycling stability
of PCS and P/O-PCS electrodes at 20 A g ⁻¹ for 10000 cycles

Figure 6.11 CV curves of (a) PCS and (c) P/O-PCS electrodes at a scan rate of 0.1 mV s ⁻¹
between 0.01 and 3 V (vs. K^+/K). The CV profiles of (b) PCS and (d) P/O-PCS after the fourth
cycle
Figure 6.12 SEM images of (a, b) PCS and (c, d) P/O-PCS electrodes at different
magnifications before and after 300 cycles.
Figure 6.13 Electrochemical impedance spectra (EIS) of the cells with PCS and P/O-PCS
electrodes after the 300 th cycle.
Figure 6.14 GCD profiles of (a) PCS and (b) P/O-PCS electrodes under different current
densities between 0.01 and 3 V (vs. K ⁺ /K).
Figure 6.15 Comparison of rate capability of P/O-PCS with the reported anode materials for
potassium-based energy storage devices. 396, 427, 432-436
Figure 6.16 Comparisons of cycle number versus corresponding capacity retention of various
anode materials for potassium-based energy storage devices. 396, 411, 415, 421, 424, 432, 435, 437-440. 234
Figure 6.17 CV curves of (a) PCS and (b) P/O-PCS electrodes at different scan rates between
0.01 and 3 V (vs. K ⁺ /K)
Figure 6.18 b-value analysis using the relationship between the peak currents and scan rates:
(a, b) carbon-derived redox peaks in PCS and P/O-PCS, (c) P-based redox peaks in P/O-PCS.
Figure 6.19 CV curves and surface-controlled capacitive contributions of (a) PCS and (b) P/O-
PCS electrodes shown in the orange regions (0.1 mV/s). The capacitive contribution histograms
of (c) PCS and (d) P/O-PCS electrodes at scan rates from 0.1 to 5 mV/s

Figure 6.20 Current step diagram of (a) PCS and (b) P/O-PCS at 0.6 V versus K ⁺ /K in the first
depotassiation process. 238
Figure 6.21 Galvanostatic intermittent titration technique results for (a) PCS and (b) P/O@PCS
electrodes measured at 20 mA g ⁻¹ . (c) Charge and (d) discharge reaction resistances of PCS and
(b) P/O@PCS. The variation of diffusion coefficients for PCS and P/O@PCS upon (e)
potassiation and (f) depotassiation. 239
Figure 6.22 In situ Raman spectra of (a) PCS and (b) P/O-PCS electrodes in the first
electrochemical cycle from bottom to top. (c) Scheme of the P/O dual doping strategy with
respect to the potassium storage mechanism
Figure 6.23 In situ Raman patterns and relevant GCD profiles of (a) PCS and (b) P/O-PCS
electrodes cycled at 0.2 A g ⁻¹ .
Figure 6.24 Ex situ XPS analysis of (a) PCS and (b) P/O-PCS electrodes before and after the
first full cycle. (c) High-resolution spectra of P _{2p} characteristic peaks after cycling. The cells
were cycled at 0.1 A g ⁻¹
Figure 6.25 High-resolution XPS spectra of (a, b) C _{1s} , (c, d) S _{2p} and (e, f) F _{1s} characteristic
peaks for PCS and P/O-PCS before and after cycling. The cells were cycled at 0.1 A g ⁻¹ 245
Figure 6.26 (a) The activation energies of PCS and P/O-PCS electrodes obtained from the
temperature-dependent EIS test. The temperature-dependent EIS measurements of (b) PCS and
(c) P/O-PCS electrodes
Figure 6.27 Theoretical calculations of K atom adsorption and diffusion in different
configurations. The optimized geometry of K atom adsorption on (a) Pure-G, and defective

sites of (b) SV-G, (c) DV-G, (d) POH-G, (e) P(OH) ₂ -G as well as the corresponding adsorption
energy (E_{ads}). The optimized geometry of K atom adsorption on (f) Pure-G, and non-defective
sites of (g) SV-G, (h) DV-G, (i) POH-G, (j) P(OH)2-G as well as the corresponding adsorption
energy ($E_{ads-far}$). The light blue numbers ($1\rightarrow 3$) represent migration path of K atom in different
configurations. (k) The density of states (DOS) of different configurations. (l) the adsorption
energies and diffusion barriers of K atom in different configurations
Figure 6.28 (a-e) The charge density difference (CDD) analysis of different configurations.
Figure 6.29 (a) Schematic illustration of the as-prepared P/O-PCS//AC device. Electrochemical
performances of the P/O-PCS//AC device. (b) CV curves of the P/O-PCS//AC at different scan
rates. (c) Rate performance of the as-prepared P/O-PCS//AC (0.05 to 10 A g ⁻¹). (d) Ragone
plots of different hybrid capacitors according to previous works. ^{374, 399, 403-404, 407, 432, 438, 443-445}
(e) Long-term cycle performance of the P/O-PCS//AC device at 5 A $\rm g^{-1}$ up to 30000 cycles. The
inset displays the illuminated LED arrays powered by our fabricated P/O-PCS//AC device.
Figure 6.30 Electrochemical performances of the AC cathode in K-half cells. (a) Galvanostatic
charge and discharge voltage profiles of the AC cathode within the potential range from 1.8 to
4.2 V (vs. K ⁺ /K) at a current density of 0.1 A g ⁻¹ . (b) Cycling performance of the AC cathode
at a current density of 0.1 A g ⁻¹ for 100 cycles. (c) Rate performance of the AC cathode at
various current densities. (d) Ragone plots of P/O-PCS//AC with different mass ratios of anode
to cathode

Figure 6.31 CV curves of the P/O-PCS anode and the AC cathode in half cells (top) and	PIHC
(bottom) at 0.5 mV s ⁻¹ .	254
Figure 6.32 GCD curves of a P/O-PCS//AC PIHC at different current densities	254

LIST OF TABLES

Table 1.1 Different types of surface coating strategies. 30
Table 1.2 Comparison of different surface coating strategies in term of their advantages and
disadvantages
Table 1.3 Different types of elemental doping strategies. 42
Table 1.4 Different types of electrolyte additives species. 59
Table 3.1 Electrochemical impedance spectra fitting values of three cathodes before and after
the first cycle.
Table 3.2 Diffusion coefficients D _{Li} of LNMO, LNMO@AlF ₃ and LNMO@LiAlF ₄ at different
measured temperatures
Table 4.1 The comparison of different layered TMOs for KIBs cathodes
Table 4.1 The comparison of different layered TMOs for KIBs cathodes

ABSTRACT

With the growing demand for high-energy-density lithium-ion batteries, layered lithium-rich cathode materials with high specific capacity and low cost have been widely regarded as one of the most attractive candidates for next-generation lithium-ion batteries. However, issues such as voltage decay, capacity loss and sluggish reaction kinetics have hindered their further commercialization for decades. Herein, we propose a heterostructured LiAlF4 coating strategy to overcome those obstacles. The as-developed lithium-rich cathode material shows a high reversible capacity and ultralong cycling stability. The enhanced performances can be attributed to the introduction of the lithium-ion-conductive nanolayer and the generation of nonbonding On- species in the active material lattice, which enable rapid and effective lithium ions transport and diffusion.

Considering the increasing cost and uneven distribution of lithium resources, potassium-ion batteries are attracting great interest for emerging large-scale energy storage, owing to their advantages such as low cost and high operational voltage. Herein, the synthesis of hierarchical K_{1,39}Mn₃O₆ microspheres as cathode materials for potassium-ion batteries is reported. Additionally, an effective AlF₃ surface coating strategy is applied to further improve the electrochemical performance of K_{1,39}Mn₃O₆ microspheres. The as-synthesized AlF₃ coated K_{1,39}Mn₃O₆ microspheres show a high reversible capacity, excellent rate capability, and cycling stability. *Ex situ* X-ray diffraction measurements reveal that the irreversible structure evolution can be significantly mitigated via surface modification.

As for anode materials, it is reported on carbon-coated K₂Ti₂O₅ microspheres (S-KTO@C) synthesized through a facile spray drying method. Taking advantages of both the porous microstructure and carbon coating, S-KTO@C shows excellent rate capability and cycling stability as an anode material for PIBs. As a proof of concept, a potassium-ion hybrid capacitor shows a high energy density, high power density, and excellent capacity retention.

Phosphorus/oxygen dual-doped porous carbon spheres, which possess expanded interlayer distances, abundant redox active sites and oxygen-rich defects, were also prepared in this thesis. The as-developed anode material shows superior electrochemical performances. *In situ* Raman spectroscopy and density functional theory calculations further confirm that the formation of P-C and P-O/P-OH bonds not only improves structural stability, but also contributes to a rapid surface-controlled potassium adsorption process. A potassium-ion hybrid capacitor was assembled by a dual-doped porous carbon sphere anode and an activated carbon cathode, which holds great promise as next-generation energy storage devices.