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A B S T R A C T

Ordinal imbalanced datasets are pervasive in real world applications but remain challenging to analyse as they
require specific methods to account for the ordering information and imbalanced classes. Failure to account
for both those characteristics can substantially impact the model predictive performance. However, existing
methods tend to focus either on ordinality or imbalance, rather than addressing both simultaneously. The few
approaches that do account for both characteristics are not always easy to implement for non-advanced analysts
and simpler approaches are needed to facilitate appropriate data processing. Here, we developed a general
approach using some of the most popular machine learning algorithms to ensure appropriate processing of
ordinal imbalanced datasets and to optimize the predictions of all classes. After transforming the multi-class
ordinal problem into a well-known binary problem, we implemented several different resampling methods
in a decision-tree classifier. We then used a stacked generalization algorithm to combine the classifiers to
improve model predictive performance. To test our approach, we used two ordinal imbalanced datasets on
student performance and wine quality. Individual resampling techniques tended to improve the accuracy of
minority classes, while simultaneously increasing the number of false positives in those classes. This resulted in
a decrease, sometimes substantial, in accuracy of other classes. The stacking model offered a good compromise
between improvement in accuracy of minority classes and mitigation of reduced accuracy in other classes.
Our approach provided useful insights into modelling strategies that should be favoured for implementation
in production that involve these common datasets, depending on the end-user interests.
. Introduction

Machine learning applications typically involve using historical and
urrent data to detect trends and behaviours and to forecast events
nto the future. Generally collected through surveys and questionnaires,
hese data often present a natural order between classes. This charac-
eristic makes the analysis of ordinal data challenging because class
alues are treated as a set of unordered categories by common machine
earning classification algorithms. This mistreatment can lead to a loss
f valuable information about the categories order, and potentially to
oor prediction accuracy. To avoid this issue, Frank and Hall (2001)
eveloped a simple approach to reduce an ordinal classification task
o the well-known binary problem, preserving inherent ordering infor-
ation without modifying the underlying learning scheme. However,

ntegrating order information is not the only challenge in analysing
rdinal data as they also typically present a strong imbalance between
lasses, where some classes are significantly more frequent than others.

The code (and data) in this article has been certified as Reproducible by Code Ocean: (https://codeocean.com/). More information on the Reproducibility
adge Initiative is available at https://www.elsevier.com/physical-sciences-and-engineering/computer-science/journals.
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The development of approaches dealing with class imbalances and
class ordinality are still rarely explored simultaneously despite the
prevalence of imbalanced ordinal data across a wide range of fields,
including ecology, agriculture, medicine, and social science (Kim, Kim,
& Namkoong, 2016).

Conventional classification methods tend to be biased towards ma-
jority classes of imbalanced data, reducing predictive performance of
minority classes (He & Garcia, 2009). However, rare events are often
highly relevant to end users (e.g., fraud detection, disease diagnosis, an-
ticipation of catastrophic events, etc.), and reliable model performance
in predicting minority classes is therefore particularly critical. Because
of this, classification of imbalanced datasets has attracted increasing at-
tention in the last few years and several methods have been developed
to tackle this issue (e.g., sampling strategies, cost-sensitive algorithms,
hybrid/ensemble methods) (Ali, Shamsuddin, & Ralescu, 2013; Chawla,
2009; Chawla, Cieslak, Hall, & Joshi, 2008; Galar, Fernandez, Bar-
renechea, Bustince, & Herrera, 2011). Resampling techniques are the
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most widely used approach because of their simplicity to understand
and implement. These techniques work at the data level by modifying
the number of instances in majority and minority classes to balance
the data distribution independently of the learning algorithm (Leevy,
Khoshgoftaar, Bauder, & Seliya, 2018). No single resampling tech-
nique works best for all classification problems (Kuhn, Johnson, et al.,
2013; Loyola-González, Martínez-Trinidad, Carrasco-Ochoa, & García-
Borroto, 2016), as their effectiveness depends on the level of imbalance
in the data and the nature of the classifier used (García, Sánchez, &
Mollineda, 2010). Furthermore, implementing resampling techniques
may not necessarily improve prediction accuracy, as different types of
resampling methods may improve predictive performance for a subset
of classes under specific conditions, but may be unable to cover the
entire space of the problem.

Stacked generalization, or stacking, has been increasingly used to
combine several learning algorithms (called base-models) to solve the
same problem (Wolpert, 1992). The idea behind this ensemble ma-
chine learning algorithm is that combining multiple models together
can produce a more powerful model that achieves better predictive
performance than the base-models alone. Stacking has been successfully
used in both supervised and unsupervised problems and is often found
at the top rankings of many machine learning competitions. Typically,
base models consist of a heterogeneous collection of model types
(e.g., decision trees, linear regression, support vector machine) so that
the predictions produced by those models present a certain level of
diversity (Witten & Frank, 2005). However, stacking different config-
urations of the same model type (e.g., various resampling techniques)
has rarely been explored.

Imbalanced classification problems also complicate the evaluation
of predictive performance. Popular classification metrics, like accuracy
or classification error, assume a balanced class distribution and may be
misleading when data are imbalanced (Huang & Ling, 2005; Loyola-
González et al., 2016). Decision-tree classifiers for example, are built
through recursive partitioning procedure that minimize the overall
error regardless of the class distribution. Because of this, decision trees
may report high overall accuracy while misclassifying most objects
from the minority class. In that case, model accuracy mainly reflects
the predictive performance in the majority class. A simple solution to
accurately reflect model performance in minority and majority classes
is to calculate the metric per class. Precision and recall derived from
the confusion matrix provide additional use as evaluation metrics as
they focus on a single class and provide information about the type of
errors made in case of misclassification.

Although ordinal datasets, class imbalance, and stacking have been
well studied in the literature individually, the combined problem has
received little attention (but see Kerwin & Bastian, 2021 for an appli-
cation on the binary classification). Ordinal imbalanced datasets are
pervasive in data science and the pitfalls of mishandling classification
prediction accuracy are numerous. In this study, we investigated a
simple approach to improve the prediction of classes in ordinal im-
balanced datasets. We used two real-world datasets from two major
fields of machine learning applications: education and agriculture. The
first dataset contained information about student performance and
was used to predict the grade obtained by the students in the final
evaluation of the year. The second dataset contained data about the
physicochemical properties of wine samples and was used to predict
wine quality. Classes in both datasets were ordered and imbalanced.
First, we transformed the datasets to train decision-tree models while
retaining the ordering information between classes. Then, we tested
and compared the model predictive performance of several resampling
techniques that balanced the class sample sizes in the dataset. Finally,
we compared the performance of different stacking combinations of

resampling methods implemented in the same learning algorithm.

2

2. Material and methods

2.1. Data sources

We used two ordinal imbalanced datasets that have been widely
described in the literature: the student performance dataset and the
wine quality dataset. Both datasets are publicly available on the UCI
machine learning repository (Dua & Graff, 2017).

The student performance dataset contains data collected in Portugal
on 659 students during the 2005–2006 school year. The objective of the
analysis was to predict the grade obtained by the students in the third
and final evaluation of the year. The 32 predicting variables included
in the dataset described the demographic, social, and school related
environment of each student. A full description of the data is available
in Cortez and Silva (2008). All nominal features were encoded into a
set of binary variables. Following a common honours grading system
associated with the 20-point grading scale of the response variable,
students were grouped in six levels: (1) 18 to 20: Highly honourable;
(2) 16 to 17.99: Highest honours; (3) 14 to 15.99: High honours (4) 12
to 13.99: Satisfactory (5) 10 to 11.99: Sufficient and (6) 0 to 9.99: Fail.
Most students were classified as levels 4 and 5 (Fig. 1).

The wine quality dataset contains 11 variables related to the physic-
ochemical properties of 4,898 samples of the white variant of Vinho
Verde, a wine produced in the northwest region of Portugal. Each sam-
ple was also evaluated by sensory assessors that graded the wine quality
in a scale ranging from 0 (very bad) to 10 (very good). The number
of samples assigned to each quality grade was highly imbalanced and
no samples were assigned the grades 0, 1, 2 and 10 (Fig. 2). A full
description of the data is available in Cortez, Cerdeira, Almeida, Matos,
and Reis (2009).

2.2. Binary decomposition

Analyses of the student performance and wine quality datasets
followed the same general approach but were conducted separately.
We applied the method described by Frank and Hall (2001) to make
use of the ordering information contained in the response variables,
while using a decision tree learner as the classifier (Fig. 3). First,
student grades and wine quality grades were transformed into a set
of binary classes (e.g., grade >1: yes or no; grade >2: yes or no, etc.)
nd a new dataset was derived by combining the new binary class
ith the predictor variables. A decision tree learner was then run on
ach dataset separately and probabilities for each binary class were
stimated. Finally, probabilities for original grades were calculated
rom the probability estimates of each binary class (e.g., Pr(grade = 2)

= Pr(grade>1) – Pr(grade>2)). The predicted class was the one with the
maximum associated probability. In this study, Random Forests was
used as the decision tree classifier. However, the use of different
classifier (XGBoost, Neural net, etc.) is possible.

A test set containing 20% of observations from the original dataset
was put aside before model training. The training set was randomly
split into 3 folds to conduct cross-validation and hyper-parameter
tuning. Because the focus of this study was not to identify the best
predictors of student performance or wine quality, we did not conduct
feature selection on the predictors contained in the datasets.

The analysis was conducted in R 4.0.1 (R Core Team, 2021) and
the ‘Ranger’ package (Wright & Ziegler, 0000) was used for training
the random forests models.

2.3. Sampling methods

The class distribution in both datasets was imbalanced (Figs. 1
and 2). We implemented and tested several data sampling methods
to balance the distribution of the classes and improve the predictive
performance of the model. Many different sampling techniques exist
but we choose to focus on some of the most popular and easiest to
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Fig. 1. Students frequency per grading class.
Fig. 2. Wine samples frequency per quality class.
implement. However, the approach described in this study can be modi-
fied to implement different sampling methods. The sampling techniques
tested were:

• The over-sampling method: randomly duplicate examples from
the minority class. By replicating copies of the minority class
examples, this method may increase the risk of overfitting.

• The under-sampling method: randomly delete samples from the
majority class. One major limitation of this method is that a vast
amount of data may be discarded and the subsequent information
loss can result in a decrease in model performance.

• The combined method: randomly resample the training set by
deleting instances from the majority class and duplicating obser-
vations from the minority class.

• The SMOTE method (Chawla, Bowyer, Hall, & Kegelmeyer, 2002):
new instances of the minority class are artificially generated using
the nearest neighbours of existing points. A line is drawn between
neighbouring instances and a point along that line is picked as a
3

new record for the minority class. Observations from the majority
class are simultaneously randomly under-sampled leading to more
even sample sizes between classes.

The selected sampling method was applied during the cross-
validation process on the training set only. Results were compared to
the ones obtained from a model without a sampling method applied.
We used the ovun.sample function from the R package ‘ROSE’ (Lunar-
don, Menardi, & Torelli, 2014) to conduct the over, under and com-
bined sampling of the dataset while the ‘smotefamily’ package (Siris-
eriwan, 2019) was used to perform the SMOTE sampling.

2.4. Stacking

Stacking (or stacked generalization) is an ensemble algorithm that
combines the predictions from multiple machine learning models fitted
on the same dataset (Wolpert, 1992). The architecture of a stacking
model involves two or more base models and a meta-model that
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Fig. 3. Modelling framework from data pre-processing to classification.
ombines the predictions of all the base models (Figs. 4 and 5). The
ase models used in our study were random forest models including
ifferent sampling techniques (see Sections 2.2 and 2.3 for details).
he predictions from those random forest models were then used as
he input for the meta-model. Two different types of predictions were
ested as input: (i) the predicted grades (Fig. 4) and (ii) the probability
alues (Fig. 5). When quality grades were used as the input, the meta-
earner was an ordinal logistic regression. In the case of the probability
alues, we used a logistic regression as the meta-model. These meta-
earners were chosen so that the ordering information included in the
esponse variables was preserved. All combination of base models were
ested (see appendix A) and only the model with the best predictive
erformance (see Section 2.5 below) were presented in the results.

Ordinal logistic regressions were built using the R package ‘ordi-
al’ (Christensen, 2019), while logistic regressions were built using the
lm function.

.5. Measures of model predictive performance

In the case of ordinal imbalance data, evaluation metrics calculated
cross all classes may not be fully robust as they mainly reflect the
odel performance in the majority classes. To accurately reflect the
redictive performance of the model in all classes, each metric was also
eported per class.

We evaluated the model predictive performance by calculating the
ercentage of correct classification (PCC), which is the number of
4

instances correctly identified divided by the total number of observa-
tions in the class of interest. Considered on its own, this measure may
be misleading, so precision and recall were also calculated. Precision
measures the percentage of relevant predictions made by the model,
defined as the number of true positives (i.e., a sample that was correctly
classified by the model) divided by the sum of true positives and
false positives (i.e., a sample that was wrongly classified into the class
of interest). This metric is particularly important in studies where
false positives should be minimized (e.g., in spam detection studies,
important emails should not be wrongly classified as spam). Recall,
on the other hand, measures the ability of a model to find all the
data points of interest within a dataset. It is calculated by dividing
the number of true positives by the sum of the true positives and false
negatives (i.e., a sample not assigned by the model to its correct class).
This measure is critical in studies like disease diagnosis where it is
paramount to correctly identify all sick patients. A perfect classifier has
both precision and recall equal to 100%. We presented in the results the
models with the highest average PCC, precision, and recall.

Another commonly used estimator of the predictive performance of
an ordinal classifier is the magnitude of the error between predictions
and actuals. MAE (mean absolute error) and the RMSE (root mean
squared error) increase with the difference between the actual and
predicted classes, meaning that misclassifications are not estimated as
equally costly. Since the errors are squared in the calculation of the
RMSE, the RMSE penalizes large prediction errors more than the MAE.
However, MAE is easier to interpret than RMSE. We calculated both
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Fig. 4. Overview of the stacking framework with ordinal logistic regression as meta-learner.
AE and RMSE. We did not discuss these values in the manuscript but
eported them in the Appendix B.

. Results

.1. Student performance

.1.1. Comparison of sampling models
The SMOTE model was the only sampling model that improved the

verage PCC compared to the no sampling model (75.38% vs. 73.85%
espectively). No model achieved optimal predictive performance for
ll grade classes (Fig. 6). The PCC of the minority class 1 was constant
cross all models (66.67%), except in the under-sampling model where
t reached 100%.

The combined sampling model had the highest PCC in the classes
, 4, and 6 (Fig. 6). This was explained by a lower number of false
egatives in those classes (i.e., less students were wrongly assigned
o other classes; higher recall). However, this gain in PCC was also
ssociated with an increase in the number of false positives (i.e., more
tudents from other classes were wrongly classified in classes 2, 4, and
; lower precision). This decrease in precision of the classes 2, 4, and
led to a significant drop in PCC and recall (i.e., higher number of

alse negatives) in the classes 3 and 5, confirming that a significant
umber of students from those classes were wrongly assigned to the
5

classes 2, 4, and 6 (Fig. 6). The same tendency was observed in the
over-sampling and under-sampling models. Higher PCC in the minority
grade classes was consistently associated with a higher recall (i.e., less
false negatives) but lower precision (i.e., more false positives). This led
to a decrease in PCC and recall (i.e., increase of false negatives) in the
other classes, with students being wrongly classified into the minority
classes. This was particularly noticeable in the under-sampling model.
This model was the only one showing an increase in PCC and recall
in minority class 1 (Fig. 6). The PCC of class 6 was also substantially
higher in this model. However, this gain in PCC came at the cost of the
PCC and recall of classes 3 and 5, which dropped to an extreme 0% for
class 3 (compared to 52.94% in the no sampling model) and 39.02%
for class 5 (compared to 95.12% in the no sampling model).

The SMOTE model was the only sampling model that did not show
a decrease in average precision and recall compared to the no sampling
model. PCC of classes 4 and 6 were higher in the SMOTE model than in
the no sampling one. This gain in PCC was again due to a lower number
of false negatives; but contrary to the other sampling models, precision
remained high (i.e., number of false positives did not increase). The
PCC of classes 2 and 5 were lower than in the no sampling model while
it was similar for the rest of the classes.

3.1.2. Stacking model
The stacking model with the best average PCC, precision, and recall

combined the no sampling model, the combined sampling model, the
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Fig. 5. Overview of the stacking approach with logistic regression as meta-learner.
under-sampling model, and the SMOTE model as base models. The
grade classes predicted from each of those models were used as the
input into the ordinal logistic regression (see Appendix A).

The stacking model had the highest average precision and recall of
all models, and its average PCC was equal to the PCC of the SMOTE
model. The PCC per class was higher or equal to the one obtained in
the SMOTE model, except for class 5 (90.24% in the stacking model
compared to 92.64% in the smote model). The PCC of class 1 remained
the same (66.67%) in the stacking model as in most other sampling
models.

The stacking model had a lower PCC in minority classes 2 and 6
than the combined sampling, over-sampling, or under-sampling models
(Fig. 6). However, the precision of those classes was higher in the
stacking model, indicating a limited number a false positives. The drop
in PCC in classes 3 and 5 was also more limited in the stacking model.

3.2. Wine quality

3.2.1. Comparison of sampling models
The model with the highest average PCC (68.47%) was the model

that did not implement any sampling method (Fig. 7), and no model
achieved optimal predictive performance for all grade classes. The
implementation of sampling methods in the model tended to improve
the PCC of classes 4, 7, and 8, except in the case of the under-sampling
model (Fig. 7). Like the analysis of student performance, the gain in
PCC in those classes came at the cost of the PCC and recall in other
classes. More specifically, a higher PCC in the classes 4, 7, and 8 was
associated with higher recall but lower precision (i.e., higher number of
samples wrongly classified) into the classes 4, 7, and 8. This led to the
6

increase of false negatives in classes 5 and/or 6, and in turn a drop in
their PCC (Fig. 7). The highest PCC for classes 4, 7, and 8 was achieved
in the combined sampling model.

The under-sampling model was the only model that predicted mi-
nority classes 3 and 9 with a high PCC (Fig. 7). However, the increase
of false positives in those classes was substantial and the drop in PCC of
other classes too high for this model to be considered useful. The PCC
of class 9 was null in all the other models. PCC of class 3 was also null
or very low (12.5% in the SMOTE model) in all other models (Fig. 7).

3.2.2. Stacking model
The stacking model with the highest average PCC, precision, and

recall combined the no sampling model and the combined sampling
model as base models (see Appendix A). The probability values from
each model were used as the input into a logistic regression model to
predict the wine quality grade of each wine sample.

The stacking model had the best average PCC and precision of all the
models tested (Fig. 7). Compared to the no sampling model (second best
average model), the stacking model had a better PCC in all the classes
except the majority class 6. The loss of PCC in class 6 was limited in
the stacking model compared to the other sampling models (Fig. 7). The
PCC of class 9, the highest quality grade, remained null in the stacking
model.

Except for the under-sampling model, all the sampling models had
a higher or similar PCC in the good quality wine classes (7 and 8) than
the stacking model (Fig. 7). However, the precision associated to those
classes was much lower in the sampling models than in the stacking
one. This indicated that the sampling models wrongly classified a high
number a wine samples into the good quality classes, while the stacking
model tended to have a higher number of false negatives. The PCC of
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Fig. 6. Percentage of correct classification, precision and recall for the model without resampling method, the models with combined, over and under resampling method and the
best stacking model for the student performance dataset.
the worse quality wine class remained very low (12.5%) in the stacking
model. The PCC was equal to the PCC obtained in the SMOTE model
but the precision in the stacking model was much higher (100% vs.
33.33%).

4. Discussion

Ordinal imbalanced data are prevalent in real-world applications,
but their analysis requires the use of specific methods to account for
the ordering information and to balance the class distribution (Kim
et al., 2016). In this paper, we investigated a novel and simple approach
to optimize the class predictions in two ordinal imbalanced datasets.
We used a stacked generalization for classification after integrating the
ordering information and the most popular sampling methods into a
decision-tree model.

The individual sampling techniques we tested were not optimal at
predicting all grade classes. Prediction accuracy for minority classes
were generally improved when resampling methods were implemented
in the random forests. However, it was also consistently associated
with a decrease in the percentage of correct classification (PCC) of
other classes. This was due to a lower precision (i.e., increase of
false positives) in the minority classes, which led to a lower recall
(i.e., increase of false negatives) in other classes. Costs associated with
the improvement of the minority class accuracy was also reported in
binary classification problems by García et al. (2010), who noticed that
resampling methods increased the true positive rate in minority class
but simultaneously decreased the true negative rate. Those costs were
limited in the stacking model that tended to optimize PCC, precision,
and recall in all classes. Therefore, the gain in accuracy of minority
classes was lower than in some of the resampling models, but the loss of
precision in minority classes and decrease in PCC and recall in majority
classes was minimized, providing a good overall compromise.
7

The choice of predictive model ultimately depends upon end-user
interest in specific classes. In the wine quality analysis, the stacking
model optimized the predictive performance of all quality classes. How-
ever, viticulturists and wine producers are most likely to be interested
in predicting which samples produce the best wine quality. None of
the models were able to accurately predict the best wine quality class,
except for the under-sampling model which was uninformative because
of the massive loss of precision in the minority class. For the second-
best wine quality class (i.e., class 8), two different strategies could
be adopted. First, it may be decided to choose a predictive model
that limits the risks of wrongly classify samples as good quality ones
(i.e., limiting the number of false positives) despite a slightly higher risk
of misclassifying good samples in lower quality categories (i.e., higher
number of false negatives). In this case, the stacking model is the
appropriate choice as it provided the highest precision in class 8 and a
PCC only slightly lower than the highest one obtained by the combined
resampling model. An alternative strategy may be to limit the risk
of misclassifying a good sample in lower categories (i.e., limiting the
number of false negatives) as much as possible, even if it leads to
classifying lower quality samples in the high categories (i.e., higher
number of false positives). This strategy would favour the use of the
combined sampling model.

In the student performance analysis, the SMOTE model had very
similar results to the stacking model. The only important differences
were between class 2, which had higher PCC, precision, and recall in
the stacking model, and class 5, which was marginally better predicted
by the SMOTE model. Like the wine quality analysis, the choice of
models ultimately depend on end-user interests and objectives. Both
stacking and SMOTE models would be an appropriate choice if the
study aim was to predict the students in each category with the highest
possible PCC, precision, and recall. Schools may also have a particular

interest in predicting which students will fail, or at risk of failing, the
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Fig. 7. Percentage of correct classification, precision and recall for the model without resampling method, the models with combined, over and under resampling method and the
best stacking model for the wine quality dataset.
final evaluation of the year (classes 6 and 5 respectively), to provide
those students with tutoring support system (Cortez & Silva, 2008). The
primary goal may be to reduce the risk of missing students of interest,
even if that means selecting students that are not actually in need of
support. In that case, the combined model that limits the number of
false negatives predicted in classes 6 would be favoured. In contrast,
some schools may choose to favour models that limit the number of
false positives predicted. This may be the strategy of a school that
cannot afford to support students that are not in need, due to limited
resources, even if that means missing a few students of interest. In that
case, the SMOTE or stacking models may be more appropriate.

Most sampling methods were unable to make accurate predictions
when the number of instances in a class was too low. For example, the
PCC for the best wine quality class (i.e., class 9, which only contained 5
samples) was null in most models. The under-sampling model was the
only one that classified samples into class 9 with a perfect accuracy, but
this came at the cost of substantial loss of accuracy in other classes. If
the focus of analysis is to predict the best wine quality samples, with
no interest in other wine quality categories, then an under-sampling
model would be an appropriate choice. However, particular attention
should be paid to the per class precision and recall obtained by this
model. The precision of the best wine quality class was almost null
(1.16%, very high number of false positives), and the recall in all other
classes was also extremely low. This indicates that the model assigned
the top wine quality class to most samples from the dataset. Such a
model would be uninformative to most end-users. A minimum number
of instances per class is required to make reliable predictions. In the
case of a class with a too small sample size, it may be more pragmatic
to group samples from these classes into adjacent classes. Our findings

highlight the importance and utility of considering additional metrics

8

like precision and recall when evaluating the predictive performance of
a model.

Ordinal imbalanced data are challenging to analyse and require
methods that simultaneously account for the order information and
imbalance between classes. We applied a general approach that ensured
the appropriate processing of ordinal imbalanced data and optimized
classes prediction in student performance and wine quality. Individ-
ual resampling methods produced different results and while they
improved the accuracy of minority classes, associated costs in preci-
sion and accuracy of other classes were sometimes substantial. Using
stacking to combine several resampling techniques, a good compro-
mise between the accuracy improvement of minority classes and the
minimization of associated costs in other classes was achieved. How-
ever, individual resampling techniques may still be favoured over the
stacking model, depending on the end-user interests in specific classes.
Generally, stacking models tended to limit the number of false positives
produced by the model and may therefore not be the appropriate choice
in studies favouring false positives over false negatives. Computational
time and amount of data available are also important elements to
consider when choosing the type of predictive model to implement in
production. Stacking models can be computationally expensive to run
and also require a subset of the dataset to be put aside for final testing.
These data cannot be used for the training of base models, which may
be an issue in ordinal datasets with categories of very small sample
sizes, especially if cross-validation is conducted during the training
process. Therefore, the choice of whether to implement a stacking
model in production need to be weighed against the predictive gains
and associated computational costs. Overall, our approach provided
useful transparency and insight into modelling results and can be used
to facilitate the choice of an appropriate model for overcoming the

inherent challenges that ordinal imbalanced data create.
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