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Summary

The explosive growth of various computer vision technologies generates a tremen-
dous amount of visual data online every day. In addition to bringing convenience
and revolutionizing our daily life, image data also reveals a wide range of sensi-
tive information and poses unprecedented privacy leakage risks. Particular, in the
case of photos contain human faces, people can easily access those face images on
social media without any consent, and the misuse of personal information could
cause serious privacy violation to individuals. Therefore, it is essential to consider
sanitizing people’s identity information when using images containing human faces.
As a result, there has been rapid development in the area of facial anonymization,
also called image de-identification. However, due to the emergence of numerous
Deep-Learning based attacks, traditional anonymization methods such as blurring
and Mosaic are weak and ineffective to protect individual’s privacy in face images.
To respond to this challenge, this paper proposes a novel de-identification method
that utilizes a deep neural network. The proposed framework encompasses two mod-
ules: Encoder network and Generator network. The Encoder transforms a face image
into a high-semantic latent vector of codes, which will be de-identified according
to the differential privacy criterion. The Generator leverages the unconditional Gen-
erative Adversarial Network (GAN) to synthesize high-quality images based on the
modified latent codes from the Encoder. Extensive experimental results indicate that
our proposed model can protect image privacy while keeping the processed image
visual realistic.
KEYWORDS:
Image Privacy, Face De-Identification, Face Anonymization, Generative Adversarial Network, Latent
Space Manipulation

1 INTRODUCTION

With the wide deployment of devices equipped with cameras, our society has witnessed a rapid increase in using and generating
visual data. These data are used by people as a new form of daily communication and play a crucial role in developing advanced
computer vision technologies, such as face recognition, image detection, etc. However, a great amount of sensitive information,
such as human faces and/or plate numbers, are contained in the visual data. Directly sharing and using these images inadvertently
pose a serious risk of privacy violation.
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Government regulations such as the General Data Protection Regulations (GDPR) has went into effect by the European Union.
According to GDPR, every person in the images dataset needs to consent to the use of his/her images. This regulation challenges
the conventional way of research in computer vision because obtaining everyone’s permission in a large-scale images dataset is
nearly impossible. Fortunately, according to GDPR, if the image data does not reveal any specific person’s identity information,
it will be free to use without any consent. Moreover, most computer vision applications do not rely on images’ identity features.
For instance, image segmentation and object detection only need to detect, instead of identifying certain people in an image.
Therefore, to achieve a balanced trade-off between privacy protection and practical application, it is necessary to sanitize

images’ identity information while keeping the processed images real-looking.
However, for face images, anonymizing identity information to satisfy the requirement of GDPR while retaining its utility is

a challenging task. Traditional anonymization techniques are mainly based on obfuscation, such as Mosaic or Blur, which are
inadequate for removing privacy-sensitive information but substantially alter/destroy the original face [15]. Given a face image,
an ideal de-identification method should be able to preserve the appearance features of the original image and just remove its
identity characteristics. Consequently, the processed images would still look realistic to human observers and AI-based computer
vision tools, such as face detectors, emotion classifiers, but people in those images cannot be identified. To be more specific, we
formulate the following criterion to regulate the de-identification methods:

• Anonymization: The anonymization techniques should have the ability to remove privacy-sensitive information in the
input images and reduce the identification possibility of the processed images by vision methods or human observers;

• Realistic: The processed image dataset should keep similar distribution with the original, and each image among the
dataset should keep high visual quality;

• Usability: The complexity of the Anonymization process should be kept as low as possible;
• Configurable: The method should support an adjustable protection mechanism, which offers various levels of

Anonymization according to users’ requirement.
To satisfy the above-mentioned properties, we propose a novel privacy protection framework enforcing de-identification in

latent space. Our network builds upon the unconditional GAN to produce realistic images. Unlike the conventional GAN-based
image generation controlled by a random noise vector, we adopt an encoder-decoder architecture to create an operable and high-
semantic latent space to implement the anonymization processing step. Besides, an Identity-Level loss function is introduced
during the network’s training process to regularize the network in latent space so as to provide different de-identification effects
from less private to more private. Therefore, the proposed method provides configurable image anonymization.
More specifically, the anonymization process of the proposed method first encodes input image into latent space as latent

codes, and then generates a de-identified version of the latent codes according to the privacy requirement. Finally, the Decoder
uses the modified latent codes to generate the anonymized image. Different from manipulation in pixel space, the proposed
image processing in latent space has the following advantgaes: (1) manipulation in the latent space are more accurate so it can
appropriately alter original images’ characteristics and features, thus preserving output image’s quality and utility; (2) the entire
anonymization process is unsupervised, which does not require complicated pre-processing and annotations of face areas; (3)
unlike de-identification by directly altering pixels, latent space manipulation can provide rigorous privacy protection because
the face information is compressed in the tractable latent vectors.
In summary, the major contributions of our works in this paper are summarized as follows:
• We present a novel face images privacy protection framework that implements de-identification of face images via editing

images’ identity-related features in the latent space;
• We design a dedicated and adjustable privacy-related loss function to regularize the network’s training process;
• We validate that our framework outperforms both traditional protection techniques, such as blur andMosaic, and the state-

of-the-art methods, such as CIAGAN [17] and DeepPrivacy [11], regarding privacy protection as well as visual quality
and utility preservation. In addition, we evaluate the impact of the privacy regularization parameter on the performance
of our proposed method.
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2 RELATEDWORKS

2.1 Generative Adversarial Networks (GANs)
GAN is one of the most popular techniques in computer vision communities, which have significantly advanced image synthesis.
Proposed in Goodfellow et al. [8]’s breakthrough work, the fundamental architecture of GANs is known as a combination of
Discriminator and Generator. The Generator learns how to synthesize images similar to training images, while the Discriminator
tries to distinguish real training images from fake synthesized images from Generator. Two networks are trained simultaneously
by an adversarial process. The Generator becomes better at producing realistic images while the Discriminator becomes better
at distinguishing fake images. The training achieves an equilibrium when the Discriminator can no longer detect the real images
from the fake ones.
With the rapid evolution of GANs, it now has a broad diversity of application cases, from general image generation[13, 27,

3] to text-to-photo generation[28]. Benefits from those numerous contributions, GAN has become a powerful tool in computer
vision. Ren et al.[20] first employ GANs to anonymization task by altering pixels value in the original image to hide the iden-
tity of the individuals. This work comes with a significant limitation that is the generated faces are still, in general, identifiable
by humans observer. Hukkelas et al.[11] and Maximov et al. [17] employ Conditional GAN to perform de-identification. By
using pre-annotations, their models could locate privacy-sensitive areas then replace these areas’ styles with different identi-
fication to generate anonymization images. Although their works provide appealing results, both of them require complicated
pre-processing and annotations. Besides, they cannot also implement different levels anonymization.
In contrast, this paper leverages unconditional GAN to remove privacy information while preserving output’s visual quality

and utility. One of the majority motivations is that the unconditional GANs’ latent space can be directly editted in the image
generation process. Especially, the state-of-the-art GAN: StyleGAN [12], which is equipped with the styles-based Generator,
has demonstrated a high semantic latent spaceW, carrying useful information such as gender, age group, color of hair/eyes, etc.
Therefore, we can encode the image into the StyleGAN’s latent space, perform privacy alternation, and then reconstruct images
using the modified latent codes to obtain high-fidelity images.

2.2 Image Privacy Protection
Until recently, there exists a limited number of research works on anonymize face images. Typically, the current standard tech-
niques of image privacy protection, such as Mosaic and Blur, are approved ineffective and inapplicable to satisfy the emerging
protection requirement. These methods protect images’ privacy by directly perturbing images’ Regions of Interest (ROIs) pixel
values. This type of method can obfuscate corresponding sensitive information, which incurs conspicuous haziness in processed
images, leading to significant utility loss [23]. Moreover, the techniques mentioned above have demonstrated significant vul-
nerabilities in face of the advanced convolution-based re-identification attacks [19]. MacPherson et al. [18] presented faces
obfuscated by the aforementioned techniques can be re-identified up to 96% by utilizing body or scenes features from images.
Consequently, more sophisticated and novel concepts have adopted to enhance processed images’ privacy and utility. For

instance, Hui-Po et al. [24], and Tao et al. [14] obfuscated images’ sensitive information by manipulating face attributes. The
rationale of those methods is that facial attributes, such as hairstyle or eyes’ colour, could be an essential reference for faces’ iden-
tities. Therefore, changing these features, i.e., transform black eyes to blue eyes, seems reasonable to anonymization. Although
such approaches render faithful processed images, they heavily rely on pre-defined attributes, which are impractical in the gen-
eral situation. Fan [6] imposed calibrated Differential Privacy (DP) noises into the image’s SVD features to achieve provable
protection, which guarantees indistinguishability among visually similar images. Nevertheless, this method applies overly strong
obfuscation in processed images which result in heave utility loss. Wen et al. [26] also adopts disturbance to obfuscate privacy-
sensitive information, but separate images features into identity and non-identity, and then added noise to the identity vectors to
protect image privacy.

3 IMAGE PRIVACY EMBEDDING FRAMEWORK

3.1 Network Architecture
The complete architecture of our image privacy embedding framework is illustrated in Fig. 1. It adopts an encoder-decoder archi-
tecture.We build our model on the one proposed by Richardson et al. [21], which aims to reconstruct input images. Nevertheless,
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FIGURE1The framework of our proposedmethod. The Encoder consists of a Feature Pyramid network and Privacy Embedding
Layers. The Generator utilizes StyleGAN2’s generator network. Feature Pyramid network first converts input image into three
levels feature maps in latent space. Then, Privacy Embedding layers implement manipulation on feature maps to generate privacy
enforced latent code. Finally, Generator employs latent code to synthesize the output image.

the objectives of our works are not only generating images that resemble the original ones, but also limiting the amount of pri-
vate information revealed in the generated images. Therefore, we perform several alterations. First, the Encoder leverages the
Feature Pyramid network to project input images to spatial feature maps in the latent space. Second, it employs Privacy Embed-
ding layers to implement semantic manipulation on feature maps to produce the privacy-anonymization latent codes. Third, the
affine transform generates parameters for the fixed and pre-trained Generator network regarding these latent codes to synthesize
the de-identification version of input images. The entire image-to-image translation is an end-to-end style that starts from input
pixels to latent space feature maps, followed by modified latent codes, then end at output pixels. Hence, different from the state-
of-the-art anonymization techniques: CIAGAN and DeepPrivacy, the proposed framework achieves image de-identification in
the latent space instead of the pixel space.

3.1.1 Encoder
The primary objective of Encoder is to generate latent vectors with respect to the input images and to perform de-identification
editing on such vectors. There are two challenges to realize the goal: (1) How to project the image into the latent space accurately;
and (2) How to anonymize image in the latent space semantically.
For the first challenge, a simple solution is to directly extract the same dimension vectors with respect to the Generator from the

last layer of the Encoder network. However, such an approach presents a substantial bottleneck limiting the reconstruction fidelity
and latent space’s semantic richness [1, 2]. We attribute this limitation to the absence of original image’s spatial information
in the latent spaces. This is mainly because low dimension style vectors can not full reflect the original image’s high-level
features especially the pixels’ relation in images. Without spatial information, the input image’s semantics are compressed in
an entangled manner, making it difficult for further manipulation and reconstruction. Therefore, our Encoder adopts a Feature
Pyramid Network (FPN) as the mapping network to produce latent space with spatial dimensions. FPN projects the input images
into three levels of feature maps, representing coarse, medium and fine details of the input image [21]. This property allows
Encoder produces high semantic and fidelity latent space, which enable further manipulation and reconstruction.
For the second challenge, we employ a trainable Privacy Embedding Network (PEN) to transform the feature maps into latent

codes for future de-identification manipulation. The PEN adopts fully convolutional layers’ architecture followed by LeakyReLU
activations to best comprehend and interpolate the spatial information of feature maps. Each PEN corresponds to one Latent code
vector. The specific layer number of each PEN is aligned with the feature maps’ hierarchical scales to guarantee to generate the
same dimension latent codes. Feature Pyramid Network and Privacy Embedding Network are jointly trained to protect sensitive
information in latent space.
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3.1.2 Generator
The Generator generates an output image utilizing latent codes extracted by Encoder. Motivated by the state-of-the-art visual
synthesis quality and high semantic latent space, we employ a pre-trained StyleGAN2’s generator network as our Generator.
StyleGAN2 is equipped with re-designed generator architecture, which provides disentangled latent spaceW and editing capa-
bilities to synthesize images. To better utilize the representative power of StyleGAN2, followed by common practice [21], we
use the extended latent spaceW+, which composed of the concatenation of 18 vectors w, each with a dimension of 512 for each
input layer of StyleGAN2, to control image generation.
Consequently, the latent codes, aligned with the hierarchical representation, are fed to Generated through an affine transform

to generate the output image. The complete data translation of our framework is an end-to-end image-to-image translation. More
specifically, we denote the Encoder’s latent space encoding and manipulation process as F ∶ ℝm×n → ℝ18×512, where the input
image x maps to a 18 × 512-dimension codes. The Generator’s reconstruction transform is denoted as F−1 ∶ ℝ18×512 → ℝm×n.

3.2 Training and Losses

FIGURE 2 The training and protection scheme of our framework. Green arrows refer to data flows from the input image to the
generated image. Dashed red lines indicate loss functions. Besides, the trapezoid with a red dash outline indicates a trainable
network, while black full line trapezoids represent fixed and pre-trained networks.

Fig. 2 left part illustrates the training scheme of our framework. We use E andG to denote our Encoder and Generator. Since
the Generator network is built upon the representative power of pre-trained StyleGAN2’s generator [12]; therefore, only the
Encoder is updated during the training to achieve image anonymization. Besides, the entire training scheme does not require
any pre-annotations. Encoder implements all image manipulation operations on images’ latent space instead of Generator on the
pixel level. To semantically guided the training, we utilize a weighted combined loss function, which consists of three dedicated
sub-loss functions for different objectives:
Pixel-Level Loss: 2 loss is adopted to enforce the reconstructed images x̂ = G(E(x)) to pixel-wise resemble input images x,

2 (x) = ‖x − x̂‖2 , (1)
where E(⋅) denotes Encoder network, G(⋅) denotes Generator network, x and x̂ are original and corresponded processed image.
Perceptual-Level Loss: In addition to preserving perceptual quality, we leverage the Learned Perceptual Image Patch Similarity
(LPIPS) [29] loss to encourage the reconstructed images perceptually similar with the originals,

LPIPS (x) = ‖L (x) − L (x̂)‖2 , (2)
where L(⋅) represents the perceptual features extractor.
Identity-Level Loss: To limit the amount of private information presented in the reconstructed images, we regularize the
cosine similarity between the input and reconstructed images’ identity feature vectors. Specifically, by employing the pre-trained
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ArcFace network [5], we obtain the identity features vector of images. Then, we set up a privacy regularizer � ∈ [0, 1] to
restrict the similarity between input and reconstructed images’ identity features to reduce the privacy information exposed in
the reconstructed images. Formally, the identity loss function is written by:

ID (x) = |� − Cos (Arc (x) − Arc (x̂))| , (3)
where Cos(⋅) denotes cosine similarity and Arc(⋅) denotes pre-trained ArcFace network. Besides, accompany with the privacy
regularizer �’s, the identity-level loss will impose a different level of privacy protection effects. As Cos (Arc (x) − Arc (x̂)) = 1
indicates highest similarity between x and x̂, a smaller � will enforce larger distance in identities and therefore better privacy
protection.
The overall weighted sum loss function is defined as:

 (x) = �12 (x) + �2LPIPS (x) + �3ID (x) , (4)
where �1, �2, �3 are constant weighting corresponded loss.

3.3 Protection Stage
The right-hand-side part of Fig. 2 illustrates the protection scheme of our framework. With our model trained to minimize
loss function Eq. (4), the network enables de-identification of the input images. During this stage, both Encoder and Generator
are fixed. Therefore, the input image is encoded into latent space, and then processed by the proposed privacy-enhancement
mechanism, resulting in an output a privacy-preserving latent code. The Generator will then synthesize a de-identification image
according to the privacy-preserving latent code. The Latent Codes part is omitted in Fig. 2 for brevity.

3.4 Attack Model
We consider a robust threat model to validate our framework’s privacy protection capability in a worst-case scenario. The
adversary’s objective is to learn personal identity by accessing images and then using the extracted identity information to match
other people’s images illegally. For example, an adversary can utilize the face on Google street view to search corresponding
individual social network accounts or other personal images published on the Internet to further illegally surveil people. We
assume that the adversary can acquire all processed images shared in online social networks but have no access to the original
images (which represent corresponding personal images without processed by privacy-enhancement methods). Besides, the
adversary is capable of utilizing state-of-the-art face recognition methods to launch identification attacks.
To quantify this risk, we calculate the Identity Similarity between the original and processed images,

Id Similarity = Cos (F (x) − F (x̂)) , (5)
where F (⋅) represents identity features extractor which based on pre-trained facial recognition networks.
Specifically, the higher Identity Similarity between the original and processed images indicates a higher possibility of success

illegal identification by the adversary, and hence a lower privacy-level, and vice versa. Therefore, the objective of image privacy
protection techniques is to reduce their output image’s Identity Similarity compared with that of the input one. Given by the
dedicated Identity-Level loss, our framework provides adjustable control over the processed images’ Identity Similarity with
the original images. Hence, our framework could effectively defence the re-identify attack, despite the state-of-the-art facial
recognition model.

4 EXPERIMENT

In this section, we implement extensive and comprehensive experiments to evaluate our framework’s effectiveness of identity
anonymization. The proposed method is compared with both classic and state-of-the-art anonymization methods on various
faces image datasets. The experiment results indicate that the proposed method acquires the best performance regarding various
qualitative and quantitative evaluation metrics. Besides, we also present a set of comparisons to reflect how privacy regularizer
� affects the anonymization performance of our method. The datasets, baselines and evaluation metrics will introduce in the
following:
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Datasets. The experiments are conducted on two public well-known faces image datasets to exhibit the performance of the
proposed image de-identification framework.

• CelebA [16]: the dataset consists of 202599 face images with various features, such as age, gender and race. For a fair
comparison, we use the aligned version where each image centred on a point in-between person’s eyes and then resized
to 256×256 resolution. Only 20k images are randomly selected to train the proposed model for saving time.

• Flickr-Faces-HQ [7]: This dataset is composed of 70k high-quality PNG images with 1024×1024 resolution and also
provides considerable coverage in terms of personal age, ethnicity, image background, accessories, etc. To reduce training
complexity and time, we randomly selected 10k image from this dataset. Every selected image are aligned and cropped
to the cetral point, then resized to a resolution of 256×256.

Comparative studies. We compare two classic anonymization methods and two state-of-the-art learning-based techniques.
• Classic Methods: We use Mosaic and Blur to compare them with our method. Both of them are current mainstream and

most commonly used image privacy-enhanced techniques which well represent the traditional methods.
• Learning-Based Method: We select DeepPrivacy [11] and CIAGAN [17] as benchmark schemes. We adopt the official

codes and pre-trained models given by the authors. These two methods are selected because they satisfy our proposed
de-identification criterion and achieved better performance compared with the other existing learning-based methods.

4.1 Evaluation Metrics
To quantitatively evaluate and compare the interested schemes, we employ the following metrics to assess their performance in
the aspects of visual quality, privacy protection and utility.

4.1.1 Visual Quality Metrics
Three different evaluation metrics are employed to measure the visual quality of the de-identification images:

• MSE: This metric calculates the pixel-wise Mean Square Error (MSE) between the input and anonymous images to
compare different outputs visual quality at the pixel-level. A lower MSE value indicates a higher similarity between the
original and the de-identification images, implying better visual quality preservation.

• SSIM [25]: Rather than directly comparing the images pixel by pixel, we use Structural Similarity (SSIM) to mea-
sure the perceptual difference between the input and processed images incorporating Luminance, Contrast and Structure.
Therefore, a lower SSIM indicates better images’ visual quality preservation from the human perceptual perspective.

• FID [9]:Different from the previous metrics which measure pair-wise image similarity, Frechet Inception Distance (FID)
calculates the Fréchet distance between the input and processed image datasets’ multidimensional Gaussian distributions
 (�,Σ) using the Inception v3 [22] features to quantify their quality similarity. A lower FID represents better quality
preservation.

4.1.2 Privacy Metrics
The objective of the privacy metrics is to evaluate the performance of privacy protection. There are two different privacy metrics
used in our experiments.

• Identity Similarity: According to Eq. (5), we define Identity Similarity as below. This metric calculates the cosine sim-
ilarity of the original and anonymized images’ identity feature vectors to quantify the effectiveness of privacy protection.
As the ArcFace model is employed in our encoder’s loss function, we leverage another state-of-the-art Facial Recognition
network’s pre-trained model, CurricularFace [10], to extract the images’ identity features.

Id Similarity = Cos (CF (x) − CF (x̂)) ,

where CF (⋅) denotes pre-trained CurricularFace-based identity feature extractor. A lower Identity Similarity value
between the original and processed images indicates a higher level of de-identification. Averaging the Identity Similar-
ity among 10k random identities from the FFHQ dataset, we obtain an empirical threshold � value: 0.19. Hence, in the
following experiments, an image pair with an Identity Similarity lower than 0.19 will be regarded as different identities.
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• De-Identity Rate: Besides the Id_Similarity, we present another evaluation metric: De-Identify Rate = ŷ∕y, where ŷ
is the number of image pairs that can be recognized by the pre-trained CurricularFace as different identities, and y is the
total number of images pairs in the experiment. This metric is used to measure the ratio of the anonymized images that
have completely removed the original identity characteristics.

4.1.3 Utility Metric
The processed images using the anonymization methods should maintain a high utility in practical identity-agnostic computer
vision tasks, such as face detection. To quantitatively compare the studied methods in terms of utility preservation, we perform
face detection using the standard Dlib-ml library’s HOG-based face detector [4] on their processed images. We measure the
percentage of detected faces to evaluate the performance of each anonymization method, with 1.0 representing perfect utility
preservation.

4.2 Impact of Privacy Regularizer
We now discuss the impact of the privacy regularizer � on the visual quality, utility and privacy. Recall that � is incorporated in
the identity loss function to regulate the input and processed images’ identity similarity. A lower � leads to a higher variation,
and hence more potent privacy protection on the processed images, and vice versa. We train our framework by varying � from
0.0 to 1.0 with an interval of 0.1 to construct different models. Then, we calculate the defined metrics over different models to
evaluate the impact of � on the performance.

4.2.1 Visual Quality Evaluation
First, we show the experiment results of visual quality. As illustrated in Fig. 3, the trend of the quality metrics is consistent with
each other. The processed images’ quality increases with the decrease of the required privacy protection level. This phenomenon
indicates that altering the image’s identity features will also reduce the quality of the reconstructed images. However, according
to quantitative results, the quality reduction is not obvious, which verifies that our method can generate sufficiently high-quality
images while providing privacy protection.

FIGURE 3 The utility metrics corresponding to � from 0 to 1.
.

4.2.2 Privacy Protection Evaluation
The quantitative results of privacy protection are shown in Fig. 4. With the relaxation of privacy regularizer, the average of
Id_Similarity continues to rise, and the De_Identify Rate declines, which shows that a smaller privacy regularizer provides
a higher privacy protection level, and vice versa. Moreover, there is an "elbow" point appearing at around � = 0.2 on the
De_Identify Rate curve, where the privacy protection level on the processed images starts drops rapidly. Besides, the privacy
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protection becomes negligible at � = 0.4 when facing the re-identification attacks using the state-of-the-art facial recognition
models.

FIGURE 4Average Id_Similarity andDe_Identify rate along
with privacy regularizer � increase from 0 to 1.

FIGURE 5 Detection Rate along with privacy regularizer �
increase from 0 to 1.

4.2.3 Utility Performance Evaluation
We show in Fig. 5 the results of utility with respect to the range of privacy regularizer. The detection rates remain at almost 0.99
with various privacy regularizers, demonstrating that our method achieves a nearly perfect score in preserving utility. Besides,
it also proves that some computer vision tasks, such as face detection, are identity-agnostic, which do not rely on people’s
identity information. Therefore, the proposed anonymization techniques could be employed to protect the privacy in the publicly
available large-scale face image datasets while preserving their utility in computer vision tasks.

4.2.4 Qualitative Comparison:
Furthermore, we visualize several samples with different � in Fig. 6 to conduct a qualitative comparison. As � decreases,
the visual identity of the processed image significantly changes comparing with that of the original one, while most of the
non-identity features are retained to generate a high fidelity for the processed images.

4.3 Comparison with Classic Methods
In this subsection, We present comparison experiments between our method and the mainstream image anonymization tech-
niques, i.e., blurring and mosaic. For the sake of fairness, all methods will be calibrated to reach a comparable value in terms of a
performance metric value, and then we will apply the other performance metrics to evaluate their performance. The experiments
in this section are conducted using the FFHQ dataset.

4.3.1 Visual Quality Evaluation
We first evaluate the visual quality of the anonymized images. Our model and two benchmark methods are fine-tuned to make
their privacy metric values reach the following numerical range [0.1, 0.2, 0.4], which represents a variety of privacy protection
levels in the order of strength. Then, we evaluate the aforementioned visual quality metrics. The results are summarized in
Tables 1, 2 and 3. As shown in these tables, our framework outperforms the blur and mosaic techniques in every category of
performance metrics at all of the investigated privacy protection levels. These results show that for a given privacy protection
level, our method can generate a higher utility compared with the conventional techqniues.

4.3.2 Privacy Protection Evaluation
In this subsection, we evaluate the privacy protection performance of our method. Similar to the evaluation of visual quality, we
calibrate the interested methods to achieve a similar SSIM value for fair comparison. From the experimental results, we find that
our framework can achieve a relatively stable SSIM value at around 0.65, with different sets of parameters (more details will be
discussed in the latter part of this section). In the following, we only evaluate the privacy protection level under an SSIM of 0.65.
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FIGURE 6 Qualitative comparison of different privacy regularizer �. With a lower regularization parameter, the processed
image’s identity similarity significantly different from the original. Besides, corresponding to discover in De-identify Rate curve,
we note that images output by models whose � higher than 0.4 still reserve very similar visual identity with the original. Only
images processed by models whose � lower than 0.2 have relatively large difference with the original.

TABLE 1 Quality metrics at identity sim-
ilarity around 0.1.

MSE↓ SSIM↑ FID↓
Blur 0.12 0.50 158.23

Mosaic 0.42 0.40 130.71
Ours 0.04 0.63 48.51

TABLE 2 Quality metrics at identity sim-
ilarity around 0.2.

MSE↓ SSIM↑ FID↓
Blur 0.05 0.60 98.65

Mosaic 0.10+ 0.46 119.99
Ours 0.03 0.66 47.52

TABLE 3 Quality metrics at identity sim-
ilarity around 0.4.

MSE↓ SSIM↑ FID↓
Blur 0.03 0.65 65.82

Mosaic 0.05 0.54 108.03
Ours 0.03 0.69 46.33

TABLE 4 Identity Similarity at same SSIM value (0.65).

MethodsPrivacy Identity Similarity↓
Blur 0.38+-0.11

Mosaic 0.87+-0.04
Ours 0.16+-0.08

TABLE 5 Detection Rate at same SSIM value (0.65).

MethodsUtility Detection Rate↑
Blur 0.4575

Mosaic 0.9818
Ours 0.9999

Table 4 shows that our method can significantly reduce the identity similarity between the input and processed images
comparing with the benchmark techniques, which indicates that our method can provide a higher privacy protection level.

4.3.3 Utility Performance Evaluation
Next, we present the evaluation results of utility. We calculate the detection rate of each method when the Identity Similarity
reaches [0.1, 0.2, 0.4] and the SSIM is around 0.65, respectively. The results are reported in Fig.7 and Table 5.
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FIGURE 7 Detection Rate at Identity Similarity on [0.1, 0.2, 0.4].

As shown in Fig. 7, our anonymized images consistently achieve 100% detection rates under various privacy metric values.
This result indicates that the proposed method could perfectly maintain image utility in the face detection task. On the contrary,
the mosaiced and blurred images have much lower detection rates, indicating that these anonymization techniques incur heavy
utility loss in detection tasks. Table 5 shows that the mosaic and blur techniques will inevitably cause utility loss even under the
same visual quality, while our method shows perfect utility preservation.

4.3.4 Qualitative Comparison
Apart from the above quantitative comparison, we also illustrate several original and processed images in Fig. 8 with SSIM=0.65
to qualitatively exhibit the privacy protection. Regardless of the relatively high SSIM value, the blur and mosaic technique lead
to noticeable perturbation on images, which will significantly compromise their applications in practice. In contrast, our method
semantically modifies the ROIs of the images, while maintain the fidelity in the processed images.

FIGURE 8 Qualitative comparison between our method and classic anonymization techniques under SSIM values: 0.65, from
left to right: Original, Ours, Blur andMosaic.

.



12 AUTHOR ONE ET AL

4.4 Comparison with the state-of-the-art Methods
This section compares our method with the state-of-the-art de-identification methods, i.e., DeepPrivacy [11] and CIAGAN [17],
which are both trained and tested on the CelebA dataset. Thus, we also apply our framework to the CelebA dataset for fairness
comparison.
Both the reference works cannot adjust the privacy protection levels. Hence, we calculate their outputs’ Identity Similarity

to be 0.1 and 0.2, respectively. Then we fine-tune our model to achieve the same Identity Similarity and conduct a comparative
experiments. Table 6 lists the quantitative comparison results. In terms of the visual quality metrics, CIAGAN achieves an
impressive performance on FID by obtaining a score of 12.72. Our method is slightly inferior to CIAGAN by achieving an FID
score of 31.11. Although FID is usually employed as an important metric to evaluate the output quality of GANs, it is calculated
based on the distribution of generated images, which cannot fully capture the quality of a single image. Besides, our method
outperforms CIAGAN and DeepPrivacy in the other Visual Quality metrics of MSE and SSIM. It shows that our network could
generate anonymous images with comparable visual quality.
Fig. 9 illustrates more perceptual comparison results. From this figure, we can see that our model produces more visually-

realistic anonymous faces that preserve more characteristics of the original identity. In contrast, the process images from
CIAGAN look different to the source images, because of the direct change of the original ID. However, when the fake Identi-
fication does not share the same gender, age or makeup, CIAGAN tends to produce extremely unrealistic images (e.g., row 3,
column 5 in Fig. 9). Besides, distortions and artifacts often occur on their processed images. The processed images from Deep-
Privacy could relatively well keep the facial pose and outline, nevertheless it adds fuzziness on the face area. In addition, both
CIAGAN and DeepPrivacy share another significant flaw, i.e., these two techniques rely on facial landmark detection to provide
pre-annotation and require to feed their networks with face-removing images, making it difficult to deploy them in real-world
applications. On the contrary, our approach does not have these issues and can provide adjustable privacy protection.

TABLE 6 Quality metrics at Identity Similarity around 0.2.

MSE↓ SSIM↑ FID↓ DR↑
CIAGAN 0.07+-0.02 0.65+-0.07 12.72 0.9939

Ours(Id=0.2) 0.02+-0.00 0.73+-0.08 31.11 0.9989
DeepPrivacy 0.09+-0.04 0.61+-0.09 25.94 0.9976
Ours(Id=0.1) 0.02+-0.00 0.72+-0.08 33.41 0.9976

4.5 Discussions
In summary, the experimental results demonstrate that our method could provide adjustable privacy protection, while generating
sufficiently high-quality images. This makes our method capable of satisfying different application requirements in practice.
From the presented results, it is obvious that our approach significantly outperforms the classic obfuscated-based methods in
anonymization task to achieve a balanced trade-off among visual quality, privacy protection and utility preservation. Compared
with the deep learning based methods, i.e., CIAGAN and DeepPrivacy, our method can provide more semantic and accurate
anonymization. The qualitative results show that the generated images from the propsoed method can retain more original
characteristics. In contrast, both CIAGAN and DeepPrivacy fail to preserve enough original features.
However, according to our extensive experiments, we find several weaknesses of the current deep learning based de-

identification methods. First, these methods rely on face detection. Any face that is not detected by the deep learning based
methods cannot be anonymized. Our method suffers from a similar issue as it depends on the pre-trained StyleGAN. Thus, it is
challenging to anonymize face images that are not facing forward because such examples are not available during the StyleGAN
training process. In addition, faces covered with objects, such as earrings, are extremely hard to process. To generate a face with
such features requires a more careful design, which is still an open problem for the deep learning based methods.
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FIGURE 9 Qualitative comparison between our method and SOTA anonymization techniques DeepPrivacy and CIAGAN.
From top to bottom show the outputs of: Original, DeepPrivacy, CIAGAN, Ours (� = 0.0), and Ours (� = 0.2).

5 CONCLUSION

This paper presents a novel image privacy protection framework that could protect the image’s privacy in the latent space and
achieve a balanced trade-off between the image’s privacy, utility and quality. The proposed framework consists of an Encoder
and a Generator. Input images are translated by Encoder into the latent space and then subject to semantic manipulations to
protect privacy of faces. Using the Encoder’s output, the Generator is built upon a pre-trained unconditional GAN to reconstruct
a high-fidelity and anonymous image. The advantages of our framework are two-fold: i) it can remove the identity information
in the target image while retaining the other information that has nothing to do with identity (such as image structures), thereby
providing a visually realistic image, and ii) the degree of de-identification can be controlled via a parameter to provide adjustable
protection so that users can flexibly tune their requirements of privacy and utility. Our experimental results demonstrate the
effectiveness of our framework in real-world image datasets, thanks to its ability to generate comparable performance metrics
with the classic techniques as well as the state-of-the-art methods. In the future, we will further explore the disentanglement of
sensitive and non-sensitive attributes in images as well as videos.
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