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Multiscale Emotion Representation Learning for
Affective Image Recognition

Haimin Zhang and Min Xu, Member, IEEE

Abstract—Recognition of emotions conveyed in images has
attracted increasing research attention. Recent studies show
that leveraging local affective regions helps to improve the
recognition performance. However, these studies do not consider
features from the broad context of the local affective regions,
which could provide useful information for learning improved
emotion representations. In this paper, we present a region-
based multiscale network that learns features for the local
affective region as well as the broad context for affective image
recognition. The proposed network consists of an affective region
detection module and a multiscale feature learning module. The
class activation mapping method is used to generate pseudo
affective regions from a pretrained deep neural network to
train the detection module. For the affective region outputted
by the detection module, three-scale features are extracted and
then encoded by a Kernel-based graph attention network for
final emotion classification. We show that integrating features
from the broad context is effective in improving the recognition
performance. We experimentally evaluate the proposed network
for both multi-class emotion recognition and binary sentiment
classification on different benchmark datasets. The experimental
results demonstrate that the proposed network achieves improved
or comparable performance as compared to previous state-of-the-
art models.

Index Terms—Affective image recognition, multiscale repre-
sentation learning, deep neural networks.

I. INTRODUCTION

Emotions, which are universal in humans [1], play a con-
siderable role in people’s lives. Research shows that human
emotions can be evoked by visual stimuli such as images [2],
[3]. With the popularity of social media platforms, where peo-
ple can easily upload and share images, recent years have seen
an increasing interest in developing intelligent algorithms for
understanding emotions in images. A variety of applications,
such as affective image retrieval [4] and opinion mining [5],
will benefit from this research.

Recognition of emotions in images is a complicated task.
Unlike image semantics, visual emotions usually have high
intra-class variations [6]. Images that convey the same emotion
can be taken in very different scenes with various objects.
The high intra-class variations make it difficult to learn ro-
bust emotion representations. Early studies primarily leverage
handcrafted features, which are developed for semantic image
analysis or designed based on the psychology and art theory,
for emotion representation. The low-level features are usually
difficult to be interpreted by humans, therefore there remains a
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Fig. 1: An illustration that shows emotion clues in an image
can be found from multiple scales.

large gap between the features and emotions. In recent years,
convolutional neural networks (CNNs) have become the domi-
nant approach for various computer vision tasks such as image
classification [7], [8] and scene recognition [9]. For affective
image recognition, studies have also shown that CNNs exhibit
significantly improved performance compared to handcrafted
features [10], [11]. State-of-the-art deep neural networks, e.g.,
ResNets [7] and DenseNets [12], were originally developed
for recognizing visual semantics, such as objects, in images.
Although these networks can be directly applied for emotion
recognition in images, it is critical to develop models that are
specifically for the affective image recognition task to further
improve the recognition performance.

The dominant emotion in an image can usually be found
in a local region, while the other parts of the image may
reveal a neutral or other non-dominant emotion. Recent studies
have shown that leveraging local affective regions helps to
improve the recognition performance [11], [13]. A limitation
of these studies is that they require emotion region annotations,
which may take laborious work to obtain or a computationally
intensive procedure to discover. Lee et al. [14] considered
the human face in an image as the local affective region and
proposed a two-stream network that simultaneously extracts
features from the face region, detected by an off-the-shelf
face detector, and the whole image other than the face region.
However, this method can only be applied to tasks in which
the images contain human faces. It is not applicable to more
general affective image recognition tasks.

As illustrated in Figure 1, emotion clues in an image can
usually be found from multiple scales, features extracted from
the broad context could be complementary to those extracted
from the local affective region for emotion recognition. Multi-



scale representation learning has been studied in different areas
including conventional feature design [15], deep representation
learning [16], [17] and face detection [18]. It has also been suc-
cessfully applied for facial expression recognition [19], [20],
[21], which suggests that effective emotion features can be
extracted from multiscale contexts. However, existing studies
have not considered learning multiscale emotion features for
the affective image recognition task. In this work, we propose
an end-to-end multiscale learning network for this task. The
proposed network consists of two modules: an affective region
detection module and a multiscale representation learning
module. For the affective region outputted by the detection
module, we extract multiscale features and then encode the
multiscale features with a graph convolutional network for fi-
nal emotion classification. We show that incorporating features
from multiple scales is effective in learning improved emotion
representations.

Because most of the existing datasets for image emotion
recognition have only image-level annotations. We are unable
to directly train our network for detecting local affective
regions. Instead, we adopt a weakly supervised learning s-
trategy. We first train a convolutional network for emotion
classification using image-level labels and then extract region
bounding boxes using the class activation mapping (CAM)
method [22]. The obtained bounding boxes are used as pseudo
region annotations to train our network for affective region
detection. For the affective region detected by the detection
module, three-scale features are extracted and then encoded
by a kernel-based graph attention network (KGAT), in which
the attention weights are computed by similarity comparison
in the reproducing kernel Hilbert space (RKHS). Finally, we
concatenate the three-scale features for emotion classification.
The whole network can be trained in an end-to-end fashion.

The main contributions of this paper can be summarized as
follows.

e We propose an end-to-end multiscale learning network
that consists of an affective region detection module and
a multiscale learning module for recognition of emotions
in images. For the detected affective region, three-scale
features are extracted and then fused for final emotion
classification. We show that our network learns improved
emotion representations by integrating features from a
broad context.

e A kernel-based graph attention network, in which the
attention weights are computed by similarity comparison
in the RKHS, is introduced for encoding the three-
scale features. We show that our kernel attention method
achieves improved performance compared to convention-
al dot-product attention.

o« We experimentally evaluate the proposed network on
different benchmark datasets for both emotion recognition
and binary sentiment classification. The experimental re-
sults demonstrate that our network achieves improved or
comparable performance as compared to previous state-
of-the-art models.

II. RELATED WORK

A. Affective Image Recognition

Early studies on affective image recognition are mainly
conducted on small-scale datasets such as IAPS [23] and
ArtPhoto [24]. To model the emotional information in an
image, low-level and/or mid-level image features are extracted
based on the psychology and art theory. Machajdik et al.
[23] evaluated a number of low-level features, including color,
texture and harmonious composition, for emotion recognition
in images. Zhao et al. [25] introduced to use features extracted
based on the principles of art, including balance, emphasis,
harmony, variety, gradation and movement, for emotion repre-
sentation. Pang et al. [4] proposed a method based on the deep
Boltzmann machine [26] to learn features from multimodal
inputs for emotion classification and cross-modal retrieval.
They showed that the learned features are complementary to
single-modal features to improve the recognition performance.
However, the use of the learned multimodal features alone
could not improve the recognition accuracy compared to the
use of single-modal features.

Over the past years, researchers have started to leverage
deep learning for emotion recognition. Chen et al. [27]
introduced a visual sentiment classification method using
CNNs. They showed that CNN-based methods significantly
outperform SVM-based methods for image sentiment anno-
tation and retrieval. In [28], a multitask learning framework
was developed for joint emotion classification and emotion
distribution regression. This framework helps to tackle the
problem with annotating images using hard emotion labels,
i.e., each image is labeled with a single emotion category.
Rao et al. [29] introduced to use multilevel features extracted
from a CNN for emotion recognition. This method can extract
both low-level features and high-level semantic features. Zhu
et al. [30] proposed a unified CNN-RNN model in which
multilevel features are extracted from a CNN and then fused
with a bidirectional recurrent neural network (RNN). Integrat-
ing multilevel features, the CNN-RNN model is effective in
improving the recognition performance. Pando et al. [31] pro-
posed a curriculum-guided strategy to learn emotion features.
They showed that the model trained on a large-scale image
dataset exhibits impressive generalization performance across
datasets.

Recently, researchers have begun to leverage local affective
regions for emotion representation. Yang et al. [11] proposed
a method for affective region localization leveraging an oft-
the-shelf region proposal tool, e.g., EdgeBoxes [32]. In this
framework, thousands of candidate regions are required to
be processed for one input image, which is computationally
intensive and time consuming. Rao er al. [13] proposed a
multilevel region-based convolutional neural network based
on the feature pyramid network for emotion recognition in
images. This network can detect local emotion regions and
has been shown to achive improved performance for emotion
classification compared to the previous models. However, this
network needs to be pretrained on a dataset with region
annotations for affective region detection. More recently, Lee
et al. [14] proposed a two-stream context-aware network that
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Fig. 2: An overview of the proposed multiscale learning network for emotion recognition in images. This network consists of
an affective region detection module and a multiscale feature learning module. The detection module is trained using pseudo
affective regions generated with the CAM method. For the detected affective region, three-scale features are extracted and then
encoded by a kernel-based graph attention network for final emotion classification.

simultaneously extracts features from the face region and the
whole context image. This network can be considered as a two-
scale feature learning network; however, it cannot be applied
to more general affective image recognition tasks.

B. Graph Convolutional Networks

Graph convolutional networks (GCNs) have been widely
applied for learning on graph-structured data such as social
networks, citation networks and molecular structures. Existing
graph convolutional networks can be categorized into two
approaches: the spectral-based approach and the spatial-based
approach [33]. The spatial-based approach directly defines
convolutions on graphs and updates node features by aggre-
gating local neighborhood information. This is much efficient
compared to the spectral-based approach. Velickovic et al.
[34] introduced graph attention networks (GATSs), in which
the self-attention mechanism is applied to compute attention
weights in aggregation. Zhang et al. [35] proposed a method
that learns attention weights by similarity comparison in the
reproducing kernel Hilbert space using multiple kernels to
improve the performance of GATSs. Bresson ef al. [36] pro-
posed residual gated graph convnets (GatedGCN5), integrating
edge gates, residual learning [7] and batch normalization [37]
into the graph network model. In recent years, researchers
have successfully combined GCNs with CNNs for computer
vision tasks. Wu et al. [38] developed a two-stream GCN-
based network for image captioning. Gao et al. [39] proposed
a tracking framework that uses a spatial-temporal GCN and a

context GCN for target appearance modeling and localization.

III. METHODOLOGY

Based on the observation that emotion clues in an image
can be found from multiple scales, we present a multiscale
learning network for recognition of emotions in images. The
proposed network consists of an affective region detection
module and a multiscale feature learning module. For the
affective region detected by the detection module, we extract
three-scale features and encode them using a kernel-based
graph attention network. Finally, the three-scale features are
concatenated for emotion classification. An overview of the
proposed network is shown in Figure 2.

Our method involves two steps. First we train a convolu-
tional network and use the obtained model to extract pseudo
affective regions with the CAM method. In the second step,
we train our multiscale learning network using training images
and the pseudo regions. In this section, we first introduce the
CAM method for generating pseudo affective regions. Then,
we present the details of our multiscale learning network for
emotion recognition in images.

A. Pseudo Affective Region Generation

Most of the existing datasets for image emotion recognition
have only image-level annotations. We are unable to directly
train the affective region detection module because it needs re-
gion annotations. Manually annotating affective regions would
require laborous work. We instead adopt a weakly supervised



strategy to generate pseudo affective regions and use the
pseudo regions to train our detection module for detecting
local affective regions.

Specifically, we follow the work of Zhou et al. [22] to
locate the affective regions using the CAM method. The CAM
method leverages a CNN trained using image-level labels
and generates class activation maps by projecting back the
weights of the output layer onto the feature maps outputted
by the last convolutional layer. The class activation map for
a category shows the saliency region used by the network to
identify that category. It is computed as the weighed sum of
the convolutional feature maps. For an image, the value of the
class activation map for category c at location (z, y) is defined

as follows:
Mc(xay) = szfk@cay)v (1)
k

where fi(x,y) denotes the value of the k-th convolutional
feature map at spatial location (z, y), and w§ denotes the k-th
value of the linear transformation weight for predicting class
c in the last fully connected layer. For an image, the CAM
method can generate a saliency/attention map for each of the
network’s output categories.

To obtain the bounding box from a class activation map,
we adopt the thresholding method. We perform binarization
for the class activation map with a threshold value which
equals to 20% of the map’s maximum value and take the
bounding box that covers the largest connected component in
the binarized map. This procedure is only performed for class
activation maps corresponding to the true labels. The bounding
box regions show the most discriminative part of the images
that conveys an emotion. After obtaining the bounding boxes,
we use them as pseudo region annotations to train our affective
region detection subnetwork.

B. The Proposed Multiscale Learning Network

Like the Faster RCNN framework [40], the proposed net-
work for emotion recognition in images is a two-stage archi-
tecture. In the first stage, the local affective region is identified.
For the identified affective region, a unified multiscale repre-
sentation is learned for emotion classification in the second
stage.

As shown in Figure 2, the proposed network starts with
a backbone network, followed by two modules: an affective
region detection module and a multiscale feature learning
module. For the detection module, we adopt the faster RCNN
framework. A region proposal network (RPN) is used to
generate candidate regions and a fast RCNN detector is used
to determine if a candidate region is an affective region. For
the detected affective region, we extract three-scale features
and then encode the three-scale features using a kernel-based
graph attention network. The three-scale features are finally
concatenated together for emotion classification.

We use the ResNet as the backbone network. ResNets
adopt shortcut connections which can effectively address the
gradient vanishing/exploding problem. The RPN takes the
feature maps outputted by the backbone network as input
and outputs a set of rectangular region proposals, each with

a score indicating the probability of the proposal being an
affective region. Specifically, we use a sliding window with
a spatial size of 3x3 to traverse the input feature maps. The
feature maps within the sliding window are mapped to a lower-
dimensional feature space by a shared small network. The ob-
tained feature vector is then fed to two separate fully connected
layers: a box classification layer and a box regression layer. At
each position the sliding window traverses through, & region
proposals, referred to as anchors, located at the sliding window
center are simultaneously predicted. Following the work of
Ren et al. [40], we use k = 9 anchors with 3 scales and 3
aspect ratios.

To train the RPN, each anchor is assigned with a binary label
indicating whether or not the anchor is an affective region.
As in faster RCNN, two kinds of anchors are assigned with
a positive label: (1) the anchor with the highest intersection
over union (IoU) overlap with the pseudo bounding box; or (2)
anchors that have an IoU overlap with the pseudo bounding
box higher than 0.7. We assign a negative label to anchors if
their IoU ratio with the pseudo bounding box is lower than 0.3.
The remaining anchors are not used for the training purpose.
The loss function for training the RPN is defined as follows:

1 1
Ncls Z Lcls(piap;‘k) + ANreq ;p:Lreg (tia t:()v
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where p; denotes the predicted probability for anchor ¢ being
an affective region and p; denotes the label of anchor <. ¢;
and t; are 4-dimensional vectors denoting the predicted and
pseudo bounding box coordinates, respectively. The negative
log likelihood function is used as the classification loss L,
and the robust loss function (smooth L) [41] is used as the
regression loss L,.4. Only positive anchors are used to train
the regression loss. The two terms are weighted by ﬁ and
ﬁcq, \ is a hyperparameter. L
The Fast RCNN is used to classify affective regions from
non-affective regions. It first extracts a feature from the can-
didate box region using a region of interest align (ROIAlign)
layer [42] and then performs classification and regression for
the extracted feature. The ROIAlign layer converts the feature
maps within a region of interest into small fixed-size feature
maps (e.g., 7x 7). Unlike region of interest (Rol) pooling [41],
which may introduce misalignments between the ROI and
the extracted feature maps due to the quantization operation,
RolAlign uses the bilinear interpolation operation [43] to com-
pute feature values at four regularly sampled locations in each
Rol bin and then aggregates the obtained results with the max
pooling method. RolAlign can properly align the Rol with the
grid used for pooling; thus it extracts more robust features than
Rol pooling. The aggregated feature maps are fed to a residual
block, which consists of two bottleneck layer, followed by
a global average pooling layer. Finally, the obtained feature
is taken as input to two separate fully connected layers for
classification and bounding box regression. The Fast RCNN
detector is used only for affective region detection; it is not
used for fine-grained emotion classification at this stage.
The affective region predicted by the detection module

Lrpn =



covers the most discriminative part of the input image that
conveys an emotion. For the detected affective region, we
extract three-scale features for final emotion classification.
At the first scale, we extract features from the feature maps
produced by the backbone network using a RolAlign lay-
er. The obtained feature maps are fed to a residual block,
followed by a global average pooling layer. We denote the
feature vector obtained from this scale by f;. At the second
scale, the feature is extracted from a broad context. This is
achieved by expanding the receptive field size. Specifically,
we utilize two Res2Net bottleneck layers [17] without spatial
down sampling. Unlike ResNet bottleneck layers, a Res2Net
bottleneck layer utilizes a group of 3x3 convolutions, which
are sequentially applied to the input and the output of previous
33 convolutions. The Res2Net layer can extract features from
a broad context compared to the ResNet bottleneck layer. The
RolAlign layer is used to extract features from the output of
the last Res2Net layer. The obtained feature maps are taken
as input to an average pooling layer that produces a feature
vector fo. At the third scale, the feature maps produced by the
backbone network are directly fed to the last residual block of
the ResNet, followed by an average pooling layer to generate
a feature vector fs.

We introduce a kernel-based graph attention network to
encode the three-scale features. Each feature scale is modeled
by a graph node. We consider the graph to be complete and
self-connected, i.e., each pair of nodes are connected by an
edge (undirected). Thus, the graph can be denoted G = (V, E),
where V' = {v1,v2,v3} and E are the node set and the
edge set, respectively. In our graph attention layer, a shared
linear transformation, which is parameterized by W € FP "D
is applied to all node features. Then, we update each node
feature by aggregating neighbourhood features. In aggregation,
each neighbour is associated with an attention weight which
is computed by a kernel function. For node v;, the attention
weight for its neighbour v; is defined as follows:

exp(K(fi, £;)) 3)
ZpEN(i) exp(K (fi, f»))’

where K denotes a kernel function and NV (i) = {j : (v;,v;) €
E} denotes the set of v;’s neighbours. The radial basis
function (RBF), ie., K(z,z') = exp(—y | = — ' ||?)
with a hyperparameter 7, is used as the kernel function by
default. If we use the linear function as the kernel function,
Equation (3) is identical to dot-product attention [44]. In
contrast to dot-product attention, we compute the attention
weight by comparing the similarity between two node features
in the RKHS. By mapping features to the RKHS, our method
can achieve improved performance compared to dot-product
attention. After obtaining all attention weights, we update the
feature for node v; as follows:

aij =

hp=o| Y o Why|, (4)
JEN(3)

where o denotes a nonlinear activation function, e.g., the
rectified linear activation unit (ReLU) function.

Instead of using a single attention head, we adopt the
multihead attention approach. The kernel-based attention is
applied 7' times, and the outputs of the 7" attention heads are
concatenated as the final node feature:

) T
hi=1 o

t=1

Z al,Wth; |, (5)
JEN(3)

where af; denotes the attention weight for the ¢-th atten-
tion head, || denotes the concatenation operation and W* is
the linear transformation weight matrix in the ¢-th attention
head. With the multihead attention approach, the model can
simultaneously extract expressive information from different
representation subspaces [44].

The three-scale features are concatenated together and then
fed to a fully connected layer for final emotion classification.
The affective region detection module and the multiscale
representation learning module can be trained in an end-to-
end fashion. We use the stochastic gradient descent (SGD)
method to train the whole network.

IV. EXPERIMENTS

We conduct extensive experiments on both multiclass emo-
tion recognition and binary sentiment classification to validate
our network. In this section, we first introduce the datasets
and implementation details and then present the experimental
results and comparisons with previous methods.

A. Datasets

CAER-S [14]. The CAER-S dataset was collected from 79
TV shows. It contains approximately 70,000 images catego-
rized into seven categories, i.e., anger, disgust, fear, happy,
sad, surprise and neutral. The images were annotated by three
independent annotators. This dataset is split into 70%, 10%,
20% for training, validation and testing, respectively. For fair
comparison, we use the same train/validation/test split as the
work in Lee et al. [14].

FI-8 [10]. The FI-8 dataset was collected from Flickr and
Instagram. There are 23,308 images labeled with eight emotion
categories defined according to the psychological study of
Mikels [45] by Amazon Mechanical Turk workers. Because
some images no longer exist on the Internet, only 23,164
images were crawled from the Internet. Following the work
in [30], [13], this dataset is split into 80%, 5% and 15% for
training, validation and testing, respectively.

TAPSsubset, Abstract, ArtPhoto and EmotionROI [24],
[46]. The four datasets are small-scale datasets containing
395, 228, 806, and 1980 images, respectively. We use the
four datasets to validate our network for image sentiment
classification. Following the experimental setup in [13], we
use the 5-fold cross-validation method and report the average
of the five validation accuracies as the model performance.

B. Implementation Details

The proposed network is implemented in Pytorch [47]. To
generate pseudo affective regions, we first train a ResNet using
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Fig. 3: Confusion matrix for the experiment on CAER-S.

Model Recognition accuracy (%)
AlexNet (off-the-shelf) 47.36
VGGNet (off-the-shelf) 49.89
ResNet-101 (off-the-shelf) 57.33
AlexNet (fine-tuned) 61.73
VGGNet (fine-tuned) 64.85
ResNet-101 (fine-tuned) 68.46
Rao et al. [13] 78.35
CAER-Net [14] 73.51
Ours + ResNet-50 87.47

TABLE I: Performance of the proposed network on CAER-S
and comparison with previous methods.

image-level labels. The ResNet is initialized using the weights
pretrained on ImageNet [48]. We train the ResNet using SGD
for 90 epochs with a batch size of 128. The values of weight
decay and momentum are set to 0.001 and 0.9, respectively.
The learning rate is initialized to 0.001 and divided by 10
at epoch 30 and 60. After the training procedure is finished,
we apply the CAM method introduced in Section III-A to the
obtained model to generate pseudo affective regions.

For training the proposed multiscale learning network, we
use the weights of the pretrained ResNet model to initialize
the backbone network. The weights of the remaining layers are
initialized by sampling from a zero-mean Gaussian distribution
with a standard deviation of 0.01. We follow the strategy
used in [40] to train the RPN. The non-maximum suppression
(NMS) method is applied to the region proposals based on
the classification scores to reduce proposal redundancy. The
IoU threshold value for NMS is set to 0.7, and the 2000
top ranked proposals after NMS are selected to train the Fast
RCNN. The value of A is set to 1. The dimension of the hidden
features in the graph convolutional layer is set to 256. We use a
single layer kernel-based graph attention network with T = 4
attention heads. The dropout method [49] with the probability
equal to 0.6 is applied to the inputs to the graph network.

The whole network is trained using SGD for 90 epochs with
a batch size of 16. The initial learning rate is initialized to
0.0001 for the backbone network and 0.001 for the remaining
layers, and reduced by a factor of 10 at epoch 30 and 60. The
values of weight decay and momentum are set to 0.0005 and
0.9, respectively. Each channel of input data are normalized
to have a zero mean and unit variance. We report the average
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Fig. 4: Confusion matrix for the experiment on FI-§.

Model Recognition accuracy (%)
Sentibank [11] 44.49
Zhao et al. [25] 46.52
DeepSentiBank [27] 53.16
PCNN [50] 56.16
AlexNet [51] 58.30
ResNet-101 66.16
MlidrNet [29] 67.24
WSCNet [52] 70.07
Zhu et al. [30] 73.03
Rao et al. + ResNet-101 [13] 75.46
Zhang et al. + ResNet-50 [53] 74.84
Zhang et al. + ResNet-101 [53] 7591
Ours + ResNet-50 76.05
Ours + ResNet-101 76.50

TABLE II: Performance of the proposed network on FI-8 and
comparison with previous methods.

classification accuracy of three runs as the model performance.

C. Results on CAER-S

We use AlexNet, VGGNet, ResNet-101, the work of Rao
et al. [13] and CAER-Net [14] as the baseline methods. The
recognition accuracy of the proposed network and comparison
with the baselines are reported in Table I. We obtain an overall
recognition accuracy of 87.47%, significantly outperforming
the baseline methods. Compared with the off-the-shelf features
extracted from AlexNet, VGGNet and ResNet-101 pretrained
on ImageNet, the proposed network improves the performance
over 30.0%. The proposed network also achieves at least
19.01% performance improvement compared with fine-tuned
AlexNet, VGGNet and ResNet-101. The experimental results
demonstrate the superiority of the proposed network over con-
ventional deep neural networks, which are developed for image
classification, for the affective image recognition task. CAER-
Net [14] is a dual-stream architecture that simultaneously
extracts features from the face region and the whole image
other the face region, and uses an adaptive fusion network to
encode the two-stream features for final emotion classification.
The proposed network outperforms the CAER-Net by 13.96%.
This shows the advantage of the proposed network over the
face region-based method for emotion recognition. To the best
of our knowledge, our network achieves the state-of-the-art



Recognition accuracy (%
Feature scales S y (%)

CAER-S FI-8
Scale 1 81.55 71.88
Scale 2 82.17 72.33
Scale 3 73.19 67.06
Scale 1 + 2 86.59 75.36
Scale 2 + 3 84.75 74.16
Scale 1 +2 + 3 87.47 76.05

TABLE III: Ablation: Effect of features from different scales
on the overall performance. The ResNet-50 is used as the
backbone network for the experiments.

performance on this dataset. Figure 3 shows the confusion
matrix for our experiment on this dataset.

D. Results on FI-8

The experimental results on FI-8 and comparison with
previous methods are reported in Table II. The proposed
network achieves 76.50% overall recognition accuracy using
the ResNet-101 as the backbone network. Once again, our net-
work achieves the state-of-the-art performance. The proposed
network shows significantly improved performance compared
to SentiBank [11], DeepSentiBank [27] and PCNN [50]. It
also outperforms AlexNet and ResNet-101 by a large margin.
Compared with MldrNet [29] and WSCNet [52], the proposed
network improves the recognition accuracy 9.26% and 6.43%,
respectively.

Zhu et al. [30] proposed a unified CNN-RNN model that
fuses features from different levels of a convolutional neural
network using a recurrent neural network. Compared with Zhu
et al.’s method, our network achieves a 3.47% performance
improvement. This shows the advantage of our multiscale
learning network over the multilevel-based method. The pro-
posed network achieves 1.04% higher recognition accuracy
than Rao er al.’s [13] multilevel region-based convolutional
neural network. Rao et al.’s network must be first trained on
a dataset that has region annotations for detecting emotion
regions. However, most existing affective image recognition
datasets have only image-level annotations. In their method,
the model is first pretrained on EmotionROI, which contains
region annotations, and then applied to other datasets for
emotion region detection. However, due to the domain shift
across datasets, the model pretrained on EmotionROI might
not generalize well to other datasets. In contrast to their
method, we use the CAM method to generate pseudo affective
regions to train our detection module, therefore our network
performs well for affective region prediction for different
datasets. Our network outperforms Zhang et al.’s [53] by
0.59%. In Zhang et al.’s work, the CAM method is integrated
into the neural network for emotion recognition in images.
Unlike Zhang’s work, we first train a ResNet using only image-
level labels and extract pseudo affective regions with the CAM
method using the pretrained model. This is a preliminary step
of our method. In our training stage, the training images and
generated pseudo affective regions are used for training our
network. At test time, the detection subnetwork first outputs
an affective region, then three-scale features are extracted and

Recognition accuracy (%)

Model CAER-S FI-8
Our model w/o KGAT 83.20 73.87
Our model + KGAT 87.47 76.05

TABLE IV: Ablation: Effect of the kernel graph attention
network on the overall performance. For ‘w/o KGAT’, the
KGAT module is not used in our model, the three-scale
features are directly concatenated for final emotion classifi-
cation. The ResNet-50 is used as the backbone network for
the experiments.

Value of ~/ Recognition accuracy (%)

CAER-S FI-8
Liner kernel (scaled) 85.34 75.16
1/4 87.13 75.85
172 87.47 76.02
1 87.06 76.05
2 86.84 75.63

TABLE V: Impact of the value 7/ in the RBF kernel on the
overall performance. The ResNet-50 is used as the backbone
network for the experiments.

Num. of attention heads Recognition accuracy (%)

CAER-S FI-8
1 86.71 75.57
2 86.96 75.83
3 87.39 76.04
4 87.47 76.05
5 87.45 76.05
6 87.45 76.03

TABLE VI: Impact of the number of attention heads on the
overall performance. The ResNet-50 is used as the backbone
network for the experiments.

then fused for final emotion recognition. Figure 4 shows the
confusion matrix on the FI-8 dataset.

E. Analysis and Ablation Studies

We conduct an ablation of our model to show the effect
of features from different scales on the overall performance.
The experiments are conducted on CAER-S and FI-8. Table
III reports the experimental results. It can be seen that the first
scale feature and the second scale feature show significantly
improved performance compared to the third scale feature,
demonstrating that locating local affective regions is effective
in improving the recognition performance. The second scale
feature performs well as compared to the first scale feature,
indicating that incorporating features from the broad context is
helpful for performance improvement. The joint use of the first
scale and second scale features achieves better performance
than the use of a single scale feature. The recognition per-
formance is further improved when integrating the third scale
features. This demonstrates the effectiveness of our multiscale
learning network for emotion recognition in images.

We also conduct an ablation study to show the importance
of the kernel-based graph attention network. The experimental
results on CAER-S and FI-8 are shown in Table IV. We



Fig. 5: Samples of affective regions predicted by the proposed network (green rectangles) and the pseudo affective regions (red
rectangles) generated with the CAM method. We show that the proposed network performs well in locating local affective

regions.

Method FI-8 (binary sent.) IAPSsubset  Abstract  ArtPhoto  EmotionROI
DeepSentibank [45] 64.39 85.63 71.19 68.73 70.11
PCNN [50] 75.34 88.84 70.84 70.96 73.58
AlexNet [51] 72.43 84.58 65.49 69.27 71.60
VGGNet-16 [54] 83.05 88.51 72.48 70.09 77.02
ResNet-50 [7] 85.43 89.95 73.07 70.93 79.28
ResNet-101 [7] 85.92 90.13 73.36 71.08 79.67
Curriculum Learning [31] 84.81 - - - -
Zhu et al. [30] 84.26 91.38 73.88 75.50 80.52
Yang et al. [11] 86.35 92.39 76.03 74.80 81.26
Rao et al. + ResNet-101 [13] 87.51 93.66 77.77 77.28 82.94
Zhang et al. + ResNet-50 [53] 90.58 95.61 82.59 78.72 84.59
Zhang et al. + ResNet-101 [53] 90.97 95.83 83.02 79.24 85.10
Ours + ResNet-50 90.88 95.47 82.64 78.96 84.75
Ours + ResNet-101 91.16 95.58 83.33 79.72 85.60

TABLE VII: Performance of our network for image sentiment (positive or negative) on FI-8, IAPSsubset, Abstract, ArtPhoto

and EmotionROI, and comparison with previous methods.

see that integrating the kernel-based graph attention module
yields 4.27% and 2.18% performance improvements on the
two datasets, respectively. The results demonstrate that our
the kernel-based graph attention is effective in improving the
overall performance.

Moreover, we study the impact of the parameter v in the
RBF kernel on the overal performance. We rewrite the RBF
kernel as K(z,x') = exp(—y | « — x' ||* /d), where d
denotes the dimension of x and @’. The experimental results
on CAER-S and FI-8 are shown in Table V. It can be seen
that the best performace is achieved when «' is set to 1/2
and 1 on the two datasets, respectively. As compared to
the linear kernel, i.e., scaled dot-product attention, the RBF
kernel improves the performance 2.13% and 0.89% on the
two datasets, respectively. This demonstrates the advantage of
our kernel-based attention over the dot-product attention.

To show the effects of the multi-head attention approach, we
compare the performance of using difference number of atten-
tion heads in the KGAT subnetwork. The comparison results
are shown in Table VI. We see that using multiple attention
heads helps to improve the recognition performance compared
to using a single attention head. We also see that using 4
attention heads achieves 0.76% and 0.48% performance gains
on the two datasets, respectively, compared with using a single
attention head. The results demonstrate the effectiveness of the
multi-head attention approach for performance improvement.

Fig. 6: Examples of affective regions detected by our network
and attention maps predicted by Zhang et al.’s method [53].

Our method is a region-based method for affective image
recognition. In the training stage, the regions generated by
the CAM method are used for training the affective region
detection subnetwork. For the affective region outputted by
the detection subnetwork, multiscale features are extracted
and then fused for final emotion recognition. Therefore, the
performance for predicting local affective regions is significant
for the final emotion recognition. Figure 5 demonstrates sam-
ples of detected affective regions. We see that these detected
affective regions have a high overlap with the pseudo regions
generated by the CAM method. This demonstrates our network
performs well for locating local affective regions.



Figure 6 compares our network with Zhang et al.” model
[53] for locating local affective regions. Zhang et al.s model
[53] predicts an emotion intensity map for an image, the
value of the intensity map at a spatial location indicates
the importance of that location revealing an emotion. Both
the work can highlight the most important affective region
for emotion recognition. Importantly, our network is able to
extract features from the broad context of the local affective
region, which is usually helpful for learning improved emotion
representations.

In many applications with graph convolutional networks,
the nodes in a graph have a small number of neighbours,
e.g., 1 to 3. For example, in three popular datasets (Cora,
Citeseer, Pubmed) [55], there are 2708, 3327, 19717 nodes
and 5429, 4732, 44338 edges respectively. The average num-
ber of edges per node is 2.005, 1.42 and 2.25 respectively
on the three datasets. Graph convolutional networks, such
as graph attention networks (GATs), have shown excellent
performances for node classification on the three datasets. In
our model, the three scale features are modeled with a three
node graph. The attention weights in our model are computed
by similarity comparison in the reproducing kernel Hilbert
space. We show that applying our graph attention network
improves the recognition performance. Figure 7 visualizes
attention scores computed by comparing the first scale feature
with the three scale features on several examples.

F. Image Sentiment Classification

We further validate the proposed network for binary image
sentiment classification. The goal of sentiment classification is
to classify an image as having a positive sentiment or negative
sentiment, that is the general attitude or opinion revealed in the
image. The experiments are conducted on FI-8, IAPSsubset,
Abstract, ArtPhoto and EmotionROI. For FI-8, we convert the
original labels to positive or negative. To reduce overfitting
on IAPSsubset, Abstract, ArtPhoto and EmotionROI, we use
the weights pretrained on FI-8 to initialize the model before
optimization.

The experimental results and comparison with the latest
methods are shown in Table VII. We see that the proposed
network shows significantly improved performance compared
to DeepSentiBank [45] and PCNN [50], as well as AlexNet,
VGGNet and ResNet which are state-of-the-art networks for
image classification. Zhang et al.’s method [53] achieves the
best performance among the five most recent methods that
were developed specifically for sentiment classification. For
using the ResNet-101 as the backbone network, the proposed
network improves the performance 0.19%, 0.31%, 0.48% and
0.50% on FI-8, Abstract, ArtPhoto and EmotionROI, respec-
tively, as compared to Zhang et al.’s method. Our network also
achieves comparable performance as Zhang et al.’s method on
IAPSubset. The results demonstrate the effectiveness of the
proposed network for sentiment classification. In Zhang et al.’s
work [53], the feature maps highlighted by the predicted CAM
map and the original feature maps are fused together for final
emotion recognition. Unlike Zhang ef al.’s work, our method
first predicts an affective region. For the affective region, three-

Fig. 7: Tllustration of attention scores computed by comparing
the first scale feature with the three scale features.

scale features are extracted and then fused with a kernel-
based graph attention network for final emotion classification.
Compared with Zhang et al.’s work, our method integrates
more context information of the local affective region for
emotion representation. The experimental results show that
this is effective in improving the recognition performance.

V. CONCLUSION

In this paper, we presented an end-to-end multiscale learn-
ing network for recognition of emotions in images. Our
method is inspired by the observation that emotion clues in
an image can usually be found from multiple scales. The
proposed network is a two-stage architecture. In the first stage,
the local affective region is identified. A unified multiscale
feature is learned for emotion classification in the second
stage. The CAM method is used to generate pseudo affective
regions to train the proposed network for affective region
detection. Integrating features from the broad context, the
proposed network learns improved emotion representations. In
addition, we intorduce a kernel-based graph attention network,
in which the attention weights are computed by similarity
comparison in the RKHS, to encode the features from dif-
ferent scales. We showed that our kernel-based attention is
effective in improving the recognition performance compared
to conventional dot-product attention. The proposed network
was evaluated for multiclass emotion recognition and binary
sentiment classification on different benchmark datasets. The
experimental results demonstrate that our network achieves
improved or comparable performance as compared to previous
state-of-the-art methods.
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APPENDIX A

The RolAlign layer [42] is used to extract a set of small
feature maps for each region of interest. It first divides the
region of interest into spatial bins (e.g., 7x 7). Then the bilinear
interpolation is applied to compute features at four regularly
sampled locations in each region of interest bin from the
input feature maps, and the obtained features in each bin are
aggregated with a pooling function (e.g., average pooling).

Figure 8 shows an illustration of the ROIAlign layer. The
dashed grid represents a convolutional feature map, and the
solid lines represent 2x2 Rol bins. The blue dots in each bin
are the 4 sampled points. The RolAlign layer computes the
value at each sampling point from the nearest grid points in
the convolutional feature map using bilinear interpolation.
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Fig. 8: An illustration of the ROIAlign layer [42].
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