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Multi-Triage: A Multi-Task Learning Framework for

Bug Triage

Abstract

Assigning developers and allocating issue types are two important tasks in
the bug triage process. Existing approaches tackle these two tasks separately,
which is time-consuming due to repetition of effort and negating the values
of correlated information between tasks. In this paper, a multi-triage model
is proposed that resolves both tasks simultaneously via multi-task learn-
ing (MTL). First, both tasks can be regarded as a classification problem,
based on historical issue reports. Second, performances on both tasks can
be improved by jointly interpreting the representations of the issue report
information. To do so, a text encoder and abstract syntax tree (AST) en-
coder are used to extract the feature representation of bug descriptions and
code snippets accordingly. Finally, due to the disproportionate ratio of class
labels in training datasets, the contextual data augmentation approach is
introduced to generate syntactic issue reports to balance the class labels.
Experiments were conducted on eleven open-source projects to demonstrate
the effectiveness of this model compared with state-of-the-art methods.

Keywords: bug triage, recommendation system, multi-task learning, deep
learning

1. Introduction

Software issue reports—i.e. feature enhancement requests and bugs that
appear during software maintenance—are typically stored in bug repositories
or issue tracking systems [1]. Many open-source software projects predom-
inately use cloud-based issue tracking systems (e.g. Bugzilla, GitHub) to
manage requests systematically [2]. The process of managing an issue track-
ing system involves reviewing new issue reports to ensure they are valid (thus
eliminating duplicate reports), finding appropriate developers for assignment,
and classifying each issue into the relevant issue type (e.g. bug, feature, and
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product component). The process is also known as bug triaging, and a person
who performs these tasks is called a triager or issue tracker [3]. In practice, an
issue tracker manually performs this process repeatedly. Bug triaging is thus
time-consuming and tedious, since many software projects are maintained by
multiple developers and composed of various product components. In some
scenarios, if the assigned developers cannot fix the issue, the issue report is
reassigned to another developer; this reassignment process is widely known
as bug tossing. This tossing process can add to the overall bug fixing time.

Problem. As large numbers of bugs are reported daily in the issue tracking
system, manually managing these issue reports on time becomes challeng-
ing. For instance, in the aspnetcore1 project, over the course of six months
(from Jan 1, 2020 to Jun 30, 2020), 1339 issue reports were reported, with
an average of 223 reports per month. The project is maintained by 84 de-
velopers, and with each report being classified as one of 197 issue types, an
issue tracker needs to spend a lot of time and effort on triaging. As a con-
sequence, this might delay resolving these issue reports. Several automatic
triage approaches have been proposed to leverage the candidate developers’
prediction process [4, 5, 6, 7, 8, 9, 10] and issue type [11, 12, 3] labelling
process.

In general, existing bug triage approaches mainly fall into two categories:
the algebraic model-based approach and the statistical language model-based
approach. Both approaches train both developers and issue types prediction
tasks with a single task learning model. Studies have used terms frequency
(TF) and inverse document frequency (IDF) as the term's weighting factor
in algebraic models. Various distance calculation algorithms (e.g. Euclidean
distance) are used to calculate the distance between two issue reports and to
construct links between a new issue report and potential developers or issue
types via matching with existing issue reports [11, 7].

The most commonly used algebraic models in these studies are: the vec-
tor space model (VSM), latent semantic indexing (LSI), and latent dirichlet
allocation (LDA) [13, 7, 2, 10, 4, 9, 6]. More recent studies have explored
statistical machine learning representation models, such as support vector
machine (SVM) [4] and, neural language models, such as convolutional neu-
ral networks (CNNs) [6], recurrent neural networks (RNNs) to leverage ac-
curate learning representations. However, the existing approaches capture

1https://github.com/dotnet/aspnetcore/
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both an issue report's description and code snippet information as continu-
ous distributed vector representations, as code snippets’ properties are not
captured precisely. In addition, the performance of these learning models
can be degraded due to data imbalances in the training data [6].

Limitations. To leverage the existing bug triage approaches, the following
limitations are addressed in the present study.

Limitation 1: It is time consuming to train multiple single-task
learning models individually. Recommending developers and issue types
are two important tasks of the bug triage process. Existing methods solve
these two tasks separately, which leads to task repetition and ignores the
correlating information between tasks. In a software development project,
some developers normally work on certain components (e.g. user interface
module, API components). Thus, developers and issue types are two closely
related attributes. However, this correlation is not adequately considered in
existing bug triage models. First, both developers and issue types labelling
can be regarded as a classification problem: both rely on historical bug de-
scriptions and code snippet information. Second, these two tasks can benefit
each other: developer selection can incorporate additional knowledge from
issue types labelling, while learning these two tasks together can be improved
by learning textual information and abstract syntax tree (AST) information
from the issue reports.

Limitation 2: There is a lack of structural information of code
snippets in feature representation. Most issue reports contain code
snippets written in the structural language. Code snippets are error-prone, as
they cannot parse into AST structure directly without pre-processing. Nei-
ther learning the code snippets together with the bug description nor negating
them can perform the issue report representation learning effectively.

Limitation 3: There is class imbalance. Each issue report can be
linked to multiple developers and issue types. The disproportionate ratio of
observations in each label, leads to classification predictive modelling prob-
lems. Most studies have addressed the imbalanced labels challenge by using
a minimum threshold approach to filter out the inactive labels. However, this
approach constrains model prediction to these labels.

Contributions. The main contributions of this papers are summarised as
follows:
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• A multi-tasking bug triage model is proposed to recommend a list of
developers and issue types most relevant to a new issue report.

• A precise issue report feature representation approach is proposed. In
this approach, the text description and code snippets context are split
into two separate tokens to reduce noise when learning the representa-
tions.

• A contextual data augmentation approach is used to generate synthetic
issue reports to over-sampled imbalanced datasets, thereby increasing
model accuracy.

• Open-source projects from eleven different domains were extensively
evaluated. The present multi-triage model is compared with baseline
approaches and two single-task learning models (i.e. developers and
issue types) to measure this model’s benefits in terms of training time
and accuracy.

Research questions. This paper focuses on answering the following three
research questions to address the significance of the study.

RQ1: Does the multi-triage model outperform two existing ap-
proaches in terms of accuracy? First, whether the proposed multi-triage
model outperforms the existing approaches is studied.

RQ2: Which component contributes more to the multi-triage
model? This question focuses on performing ablation analysis on the multi-
triage model to identify which of its components are essential to optimise
model performance. Next, the multi-triage model is compared with the con-
ventional single task learning model in terms of time and accuracy.

RQ3: Does increasing the size of training datasets based on
the contextual data augmentation approach improve our model’s
accuracy? In this paper, a contextual data augmentation approach is in-
troduced to increase the size of the training sets to leverage the multi-triage
model’s accuracy. To evaluate the effectiveness of the augmentation approach,
the multi-triage model is trained with two sets of training data (i.e. with and
without augmented data) and the accuracy of the outputs is compared.

Organisation. The remainder of the paper is organised as follows. Sec-
tion 2 introduces background information on the bug triage process, and the
motivating example. Section 3 presents the overall framework of this study’
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(a) Issue report

(b) Pull request

Figure 1: An example of an issue report and the corresponding pull request

approach. Section 4 describes the research questions and implementation.
Section 5 provides the evaluation results. Section 6 discusses validity threats.
Section 7 describes the significance of our findings. Section 8 reports the
related work while section 9 provides conclusions.

2. Background and Definitions

This section discusses background information about the correlation be-
tween developers and issue types recommendation tasks as well as their
usages in the issue report and pull-based development projects. Then, we
present our motivating example.
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Figure 2: Developers and issue types correlation example

2.1. Developers and Issue Types Recommendation Tasks in Bug Triage

Assigning developers and allocating issue types are two essential tasks in
the bug triage process. In the issue tracking system, an issue tracker nor-
mally performs these two tasks as the first step in the bug triage process.
Our multi-triage recommendation model predicts relevant developers and is-
sue types for a new issue report to leverage the bug triage process. In this
context, issue reports include both bug and enhancement-related issues. Our
recommendation model performs two tasks, as below.

Developer recommendation task. This task involves predicting the list
of potential developers to fix a new issue report. Sometimes, the issue report
is fixed by more than one developer, due to its complexity.

Issue type recommendation task. This task involves predicting the list
of issue types to categorise a new issue report. For example, GitHub’s issue
tracking system provides seven generic labels (i.e. bug, duplicate, enhance-
ment, help wanted, invalid, question, and won't fix), but can add a new
custom label as needed [14]. Interestingly, most projects create custom labels
to track issue priority (e.g. high, low), product version (e.g. 2.1), workflow
(e.g. backlog, review), and product components (e.g. area-identity, area-mvc,
area-blazer).

Issue report and corresponding pull request. Fig. 1 presents an ex-
ample of the GitHub issue report 1a and its corresponding pull request 1b.
Recent years have seen a growing interest in pull-based development in open-
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source software projects [15, 16, 17]. In a pull-based model, a developer uses
a pull request form to submit code for request code review. The reviewers
are usually project owners or contributors who make the final decisions on
the requested changes (i.e. reject, merge, or reopen). In the GitHub project,
the fields contained in the pull request form are similar to those in the is-
sue request form but also include additional sections, such as reviewers, a
commits tab, a checks tab, and a files changed tab. In the description field,
most projects reference the fixed issue IDs for traceability. The reviewers field
contains the list of reviewers who review the changes, while the commits tab
contains the commits hierarchy, and the checks tab presents the detailed
build outputs. Lastly, the files changed tab displays the list of changed files
from all the commits. During initial observations, it was learned that a de-
veloper allocated on the issue report may be different from a developer who
created the pull request to fix the issue. Therefore, this study considered that
the developer information from the pull request is non-trivial in the labels
construction process.

Developer and issue type correlation. In existing projects, both devel-
opers and issue types recommendation tasks use historical issue reports to
train the prediction model. Therefore, there is a common learning represen-
tation layer between these two tasks, which can learn together. Also, as a
software project involves various components (e.g. user interface, database,
application programming interface), an issue report can relate to any part of
the system. Consequently, certain issue types are usually assigned to a group
of developers with expertise in certain system areas. The recent work of [18]
highlighted that not all bugs are the same, and the structure of project teams
is based on the components of a system. Fig. 2 presents a simple example in
which developers focus on fixing particular system areas. This example was
extracted from the aspnetcore2.
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(a) Code snippet

(b) AST

Figure 3: A code snippet and corresponding AST example

Table 1: AST nodes terms and abbreviation

Terms Abbreviation
Method Declaration Md
Parameter Para
Block statement Bst
For statement Fst
Expression statement Est
Method call expression Mce

2.2. Motivation

As mentioned earlier, the previous bug triage approaches have considered
developers and issue types prediction tasks as independent tasks and trained
separately for each. Therefore, it is time-consuming to train the model. In
addition, in existing approaches, code snippets are either excluded [9, 8] to
reduce noise, or treated as natural language sequence tokens [6, 7]. Thus,
these approaches cannot learn the code snippets or representations precisely.
In initial observations, the issue reports characteristics of eleven open-source
projects from various domains were investigated, including a web application,
unit testing, entity development, programming interface, compiler, mobile
app, augmented reality, gaming, and search engine to configuration. Further

2https://github.com/dotnet/aspnetcore the GitHub project. The x-axis repre-
sents the developers, whereas the y-axis represents the system areas. The size of the
bubble indicates the total issues fixed by developers in the corresponding areas. Referring
to the example, a handful of potential developers can fix area-blaze and areas-mvc issues.
However, there is one developer (Haok) who is capable of resolving area-identity issues.
Based on this observation, we are motivated to seek the effect of the learning developer
and issue types jointly in the multi-task learning model
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the information is presented in Table 2.
These GitHub projects were selected based on popularity (i.e. rating)

and active activity (i.e. recent commits). Projects with a high number of
contributors and issue types labels were also considered in order to identify
the gap in the existing approaches to leverage the bug triage process. Eclipse
issue reports, which are used in baseline studies to compare this study’s
approach and the-state-of-the-art-approach, were also included. Eclipse issue
reports were extracted from the Bugzilla issue management system. However,
Bugzilla3 does not keep developers’ tossing sequences as this study did not
present the average tossing sequence, value for the eclipse project in Table 2.

Code snippet. The percentage of issue reports include method-level code
snippets were analyzed to reproduce the problem. Interestingly, as presented
in Table 2, 12 to 20 per cent of issue reports contain code snippets. Re-
cent studies [19, 20] have found that learning representations of AST tokens
are more effective than simple code-based tokens in various code prediction
tasks (i.e. code translation, code captioning, code documentation). Inspired
by previous studies, these code snippets are transformed into AST paths
and a separate token is created according to this approach. Fig. 3 shows an
example of a java code snippet 3a and its corresponding AST 3b, where a
node (i.e. Para, Bst, Fst, Est, and Mce) is a terminal node, and the rest
are non-terminal nodes. In this approach, the code snippets are complied
using Eclipse IDE4 for java code snippets and Microsoft visual studio IDE5

for C# code snippets. Table 1 presents the abbreviation for each of the AST
node terms. Then, the code snippets are parsed into AST using Java and
C# extractor from the code to sequence the representation approach [19].
Implementation details are presented in Section 4.

Issue reassignment. In the GitHub project, it is noted that a single pull
request can include fixes for multiple issue reports, and a developer who fixes
the issue may be different from the assigned developers recorded in these
issue reports. In the context of bug triage, this process is normally referred
to as tossing [8]. On average, 368 cases in within the training projects are
classified into reassigned issue reports. These pull request developers’ details

3https://bugs.eclipse.org/bugs/
4https://projects.eclipse.org/projects/eclipse.platform/
5https://visualstudio.microsoft.com/
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Table 2: Raw datasets information

Name Period #No #Code #Dev #Types #Tossing #Days

aspnetcore
10/2014
- 10/2020

7151 2520 60 131 62 45

azure-powershell
01/2015
09/2020

2540 312 386 204 128 82

eclipse
10/2001
05/2021

50806 6320 21 621 - 60

efcore
01/2015
- 09/2020

6612 1650 24 57 2293 76

elasticsearch
01/2015
- 10/2020

5190 1504 104 238 178 92

mixedreality
toolkit-unity

03/2016
- 09/2020

2294 70 55 124 53 71

monogame
01/2015
- 09/2020

1008 110 4 28 22 21

nunit
10/2013
- 09/2020

656 70 27 24 130 63

realm-java
05/2012
-10/2020

1160 340 15 23 400 69

roslyn
02/2015
- -09/2020

5093 1300 79 123 300 100

rxjava
01/2013
- -09/2020

2076 610 5 32 121 44

Avg (368) Avg (67)

are included in the labels construction process, in order to include the issue
report’s tossing sequence.

2.3. Multi-task learning

In recent years, MTL has been successfully applied in many areas, includ-
ing computer vision [21, 22, 23, 24], natural language processing [25], and
facial recognition [26]. It seems, however, that MTL has not been applied to
modelling the bug triage process. In this paper, the MTL model is adopted
to improve the performance of the bug triage process. MTL tackles developer
and issue type recommendation tasks simultaneously by sharing learning pa-
rameters to enable these tasks to interact with each other. Joint learning of
these two tasks significantly improves the performance of each task, compared
to learning independently. The multi-task learning model can share param-
eters between multiple tasks with either hard or soft parameter sharing of
hidden layers. The hard parameter sharing model explicitly shares the com-
mon learning layers between all tasks while branching the task-specific output
layers [27]. The soft parameter sharing model, meanwhile, implicitly shares
the parameters by regularising the distance between the parameters of each
task. Although both approaches can be viewed as the underlying architec-
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ture of the multi-task learning model, hard-parameter sharing is commonly
applied in the context of the neural network.

This multi-task learning model uses the hard-parameter sharing approach
to learn the issue report representation in the common layer and then branch
the two task-specific output layers to predict developers and issue types. In
the common layer, the individual issue report are further subdivided into
two categories, namely 1) natural language and 2) structural language, to
learn the representation effectively. An issue title and description, excluding
code snippets are grouped under natural language, whereas code snippets
are placed under structural language. Then, two encoders are used, namely
1) context encoder and 2) AST encoder, to extract the essential features of
these two contexts. Next, these two features are combined and fed into the
task-specific output layers to perform co-responding classification tasks. The
detailed implementation of this approach is explained in Section 3.

3. Proposed Approach

Figure 4: The multi-triage framework

This section first explains the high-level structure of the multi-triage
framework. Next, it presents the integral components of the multi-triage
model.
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3.1. Overview

Fig. 4 presents the overall structure of the multi-triage framework. This
framework includes three main components: (1) data extraction, (2) a con-
textual data augmenter, and (3) the multi-triage model. In the data extrac-
tion component, ground truth links are constructed between issue reports
and multi-labels (i.e. developers and issue types).

3.2. Data Extraction

Figure 5: An example data extraction steps for an issue report

The data extraction component includes two sub-components: the text
extractor and the AST extractor. The text extractor component concatenates
each issue report’s title and description into one text token, excluding the
code snippet information. The AST extractor parses each code snippet and
constructs the AST paths. An AST or syntax tree has two types of nodes:
terminal and non-terminal. The terminal node represents user-defined val-
ues (e.g. identifiers), whereas the non-terminal node represents syntactic
structures (e.g. variable declarations, a for loop) [19]. An AST path is the
sequences of the terminal and non-terminal nodes.

In this paper, Eclipse and Microsoft visual studio IDE were used to com-
pile the code snippet before passing it to the AST extractor. The AST
generator tool from [19] is used to construct AST paths, using the default
parameters settings (max child node = 10, max path length = 1000, and max
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code length = 1000). In any issue report, a single code snippet can contain
multiple methods as the generator is modified [19] by adding ‘〈BM〉’ and
‘〈EM〉’ separator tags between each method for model learning purposes.

Fig. 5 presents the data extraction steps for a single issue report seen in
Fig. 1a. First, the issue report's title and description are concatenated. Next,
the code snippet is compiled and parsed into AST paths. The AST paths
are generated by pairing all the dependent nodes and using the ‘;’ separator
between a pair to indicate a path. Next, multiple developer labels are created
by using the ‘|’ separator. In the developer labelling process, a pull request
creator account is included if the developers allocated in the issue report do
not include a pull request creator account. Finally, the issue type label is
constructed by using bug or enhancement and system components format
using the same ‘|’ separator.

3.3. Contextual Data Augmenter

Algorithm 1: An algorithm with which to generate a synthetic
issue report with the contextual data augmentation approach

input : list of training issue reports TB, augmentation threshold Threshold
output: list of synthetic issue reports TS

1 MajC ← a majority class samples count;
2 MinC ← total no of minority classes;
3 MinClist ← list of minority classes;
4 EstimateDataAugAmount ← MinC ∗ MajC;
5 if EstimateDataAugAmount < Threshold then
6 MajC ←(Threshold / EstimateDataAugAmount) ∗ MajC
7 end
8 for minclass ∈MinClist do
9 BC ←retrieve total no of issue reports fixed by minclass from TB;

10 while BC < MajC do
11 RC ←retrieve one random record of minclass from TB;
12 NC ←generate a new synthetic record based on RC with contextual data

augmentation approach;
13 Append NC to TS;
14 BC ←BC + 1;

15 end

16 end
1818 return TS

In the contextual data augmenter, synthetic issue reports are created for
each project using the approach presented in algorithm 1. The algorithm’s
input is the list of training issue reports and the Threshold to generate syn-
thetic records. In this approach, a new record is created based on the train-
ing datasets and the generation of synthetic records is limited by using the

13



Figure 6: A synthetic issue report example

Threshold parameter. In this experiment, a Threshold value of 30,000 is used
to control the total number of data augmentation records. The threshold
is calculated based on the approximate total number of issue reports from
target projects. However, it is a hyper-parameter value and can change as
needed. First, it initialises the values with the majority and minority class
details (lines 1 to 3). It creates the clusters by grouping with developer and
issue type labels. After initialisation, MinC ∗ MajC are multiplied to calcu-
late the estimated number of synthetic records to compare with the Threshold
amount (line 4). If the estimated value is larger than the Threshold, then
it calculates the new majority class count value for an adjustment (lines 5
to 7). Next, it iterates through each minority class to generate a synthetic
record (lines 8 to 16).

In each iteration, it randomly retrieves an issue report description (ex-
cluding code snippet) of the current minority class. Then, it substitutes 15%
of the words in the description with the new words using the contextual data
augmentation approach proposed by [28] and creates a new issue report. In
this experiment, the BERT-base-uncased pre-trained model6 was used, which
trained with a large corpus of English data to predict the substitute words.
However, this approach can be generalised to other pre-trained models as
well. Lastly, the output of the algorithm is the training datasets, including
syntactic records.

Fig. 6 presents an example of synthetic issue reports generated with the
contextual data augmenter via comparison with the original issue report. As
shown in Fig. 6, all the syntactic context generated by the data augmenter is
underlined. In general, the data augmenter generates the synthetic reports

6https://huggingface.co/bert-base-uncased/

14

https://huggingface.co/bert-base-uncased/


by substituting the main keywords from original issue reports while main-
taining the original context. In the next section, the final component of the
framework, the multi-triage model, is explained in detail.

3.4. Multi-Triage Model

Figure 7: The multi-triage model

As shown in Fig. 7, the multi-triage model has three main components:
the context encoder, the AST encoder, and classifiers. The two encoders
are used to generate the natural language and structural (code) represen-
tation based on the input issue reports. The share layer between the en-
coders concatenates the outputs of the encoders to construct the overall
feature representations of issue reports. Finally, the classifiers analyse these
feature representations and recommend the potential developers and issue
types as outputs. The main hyper-parameters of the model are batch = 32,
max seq length = 300, embedding dim = 100, and num filters = 100. The
batch size can set between 1 and a few hundred; however, a standard batch
size (32) was selected to train this model [29].
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3.5. Code Representation

Context encoder. As mentioned in Section 1, extracting the representa-
tion features of issue reports is non-trivial in the bug-triage process. In this
model, a context encoder is used to extract the natural language representa-
tions of the issue report. Convolutional neural networks (CNN) are used to
generate these representations. In recent years, CNN have been successfully
applied in various modelling tasks, including textural classification [6, 30, 31]
and image classification [32, 33]). The input of this encoder is the concate-
nated values of issue title and description. The raw input is normalised by
removing stop words, stemming, lower-casing, and padding equally to the
right with max seq length range. First, each issue report is transformed into
a vector by turning each issue report into a sequence of integers (each integer
value being the index of a token in a dictionary). Second, these inputs are
fed into a word embedding layer with input dimension (vocab size + 1). A
dynamic vocab size value equal to the size of the vocabulary of each project
is used. The next layer is filters, which are the core of CNN’s architecture.
1D convolution is applied via filters. The standard kernel size of 4×4 is
used to extract the important features [34]. Then, the max-over-time pool-
ing operation is applied to extract the most relevant information from each
feature map. Finally, the pooling output is passed into the joining layer for
concatenation.

For example, given an issue report with n words [b1, b2, . . . , bn], the word
vectors corresponding to each word are presented as [x1, x2, . . . , xn] (i.e. xi is
the word vector representation of word bi). Let xiεR be k-dimensional (k=1).
The inputs of a convolution layer are the concatenation of each word vectors,
represented as:

x1:n = x1 ⊕ x2 ⊕ · · · ⊕ xn, (1)

where ⊕ denotes the concatenation operator. In a convolution layer, a filter
w ε R, slides across inputs by applying a window of h=4 (words) to capture
the relevant features. In general, a feature ci is processed by sliding a window
of words xi:i+h−1 by

ci = f(w · xi:i+h−1 + b), (2)

where b denotes bias and f is a non-linear function (i.e. the hyperbolic tangent
function)

c = [c1, c2, . . . , cn−h+1]. (3)

Finally, a max-over-time pooling operation [35] is applied to extract the
maximum value ĉ = max{c} to capture the most important feature for each
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feature map. In general, one feature is extracted from one filter. In this model,
100 filters are used to obtain multiple features from the issue report. Next,
the output is flattened to one dimension and fed into the joining layer.

AST encoder. In this approach, each code snippet in an issue report is
parsed to construct an AST path using the AST extractor and which is
used as input to the AST encoder. In the pre-processing phase, all inputs
are first prepared to the same size by padding equally to the right with
max seq length range. Second, an AST path is transformed into a vector by
turning each word into a sequence of integers. Next, these inputs are fed into
the word-embedding layer with input dimension (vocab size + 1).

To learn AST representations, bidirectional recurrent neural networks
with long short-term memory (BiLSTM) neurons [36, 37] are used. In gen-
eral, BiLSTM models combine two separate LSTM layers which operate in
opposite directions (i.e. forward and backward) to utilise information from
both preceding and succeeding states. In LSTM networks, each memory cell c
contains three gates: input gate i, forget gate f , and output gate o. Formally,
an input AST sequence vector [a1, a2, . . . , an] is given, where n denotes the
length of the sequence. The input gate i controls how much of the input at is
saved to the current cell state ct. Next, the forget gate f controls how much
of the previous cell state ct−1 is retrained in the current cell state ct. Lastly,
the output gate controls how much of the current cell state ct is submitted
to the current output ht. The formal representation of the LSTM network is
as follows:

it = σ(Wiaat +Wihht−1 + bi),

ft = σ(Wfaat +Wfhht−1 + bf ),

ot = σ(Woaat +Wohht−1 + bo),

ct = ft ∗ ct−1 + it ∗ tanh .(Wcaat +Wchht−1 + bc),

ht = ot ∗ tanh(ct).

(4)

In Eq. 4, at indicates the input word vector of the AST path, ht indicates
the hidden state, W indicates the weight matrix, b indicates the bias vec-
tor, and σ indicates the logistic sigmoid function. A BiLSTM network cal-
culates the input AST sequence vector a in a forward direction sequence
~ht = [ ~h1, ~h2, . . . , ~hn] and a backward direction sequence ~ht = [ ~h1, ~h2, . . . , ~hn],

then concatenates the outputs yt = [~ht, ~ht]. The formal representation of the
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BiLSTM network is as follows:

~ht = σ(W~haat +W~h
~ht−1 + b~h),

~ht = σ(W ~ha
at +W ~h

~ht+1 + b ~h
),

yt = Wy~h
~ht +W

y ~h
~ht + by

(5)

In Eq. 5, yt is the output sequence of the hidden layer ht at a time step t. Next,
a max-over-time pooling operation [35] is applied over BiLSTM outputs to
extract the important information. Finally, the output is flattened and fed
into the joining layer. In the joining layer, the two encoders are concatenated,
output, and fed into the classification layer.

3.6. Task-Specific Classifiers

The sigmoid function was used to classify the relevant developers and issue
types for a new issue report. As illustrated in Fig. 7, both developer and issue
type classifiers share the same structure but differ in their input labels (i.e.
developer and issue type). Therefore, only illustrate one classification layer is
illustrated in this section. The classification layer is composed of two layers:
a fully-connected FFN with ReLUs as well as a sigmoid layer.

Label classifier. In the FFN layer, the ReLU is an activation function that
outputs the input directly if the input is positive; otherwise, it will output
zero [38]. In Eq. 6, x denotes the concatenated embedding vector with 150
dimensions, W denotes weights, and b denotes bias. Next, the output vectors
are fed into the sigmoid layer to predict the appropriate developers or issue
types for the input issue report.

FFN(x) = max(0, xWi + bi). (6)

The sigmoid exponential activation function is then used to calculate the
probability distribution of the output vectors from the FFN layer for each
possible class (i.e. developers or issue types):

P(cj|xi) =
1

1 + exp(−zj)
. (7)

Eq. 7 presents the formal representation of the sigmoid activation function
at the final neural network layer to calculate the probability of a class cj,
where xi is an input issue report and zj is the output of the FFN layer.
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4. Data and Evaluation

In this section, the research questions and detailed information on the
experimental implementation are presented. The code, data and trained
models are available at [39].

Datasets. The issue reports of ten GitHub projects were collected as de-
scribed in Table 2. In addition, eclipse issue reports were also collected
effectively compare the present approach against baseline studies. Following
previous studies, only retrieve the issue reports with ‘closed’ status [4, 9, 6, 8]
are retrieved. The issue reports with unassigned developers or issue types are
also removed, as the model cannot be trained and validated with unlabeled
records. Furthermore, issue reports assigned to ‘software bots’, which are
frequently used in automatic issue assignment processes [40], are excluded.
As no actual developer is used, these reports are not applicable to use in the
developer prediction process. The statistics of datasets such as labels (i.e.
developers, issue types) and code snippets are presented Table 2. In terms
of issue reports metadata, an issue report title, description, creation date,
assignee, and labels are presented, as well as the corresponding pull request’s
assignee information, to create a tossing sequence.

Single task learning model. The two single-task learning models shown,
below are constructed to evaluate the effectiveness of this multi-task learning
model.

• BiLSTM-based triage model - Two single-task BiLSTM networks
are constructed: one for the developers’ prediction task and the other
one for the issue types prediction task. In these models, architecture
similar to the multi-triage model is replicated and used to create the
two-word embedding layers to contract textual information and AST
paths embedding tokens. Next, these two embedding tokens are con-
catenated and fed into the BiLSTM network to learn the issue report’s
representation. Finally, these learned vectors are passed into the clas-
sifier to predict labels (i.e. developers or issue types).

• CNN-based triage model - Similar to the BiLSTM model, the two
single-task networks are constructed using CNN networks to learn the
representations of issue reports.
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As noted in Section 3, the multi-triage model combines BiLSTM and
CNN networks to learn the representations of issue reports. Therefore, single
networks are built using these two networks to effectively compare the time
and accuracy trade-offs of the model.

Baselines. The below two baselines approaches were used to evaluate the
effective of the present approach.

• SVM+BOW [4]: This uses a Tf-IDF weighting matrix to transform tex-
tual features of issue reports into vector representations, and applies a
support vector machine (SVM) machine learning classifier to automate
the bug triage process.

• DeepTriage [9] - This uses a recurrent neural network (RNN) to learn
the representations of issue reports and a softmax layer to recommend
the potential developers and issue types as outputs.

Both of these approaches focus on predicting labels for a new issue report
by learning the representation of existing issue reports. The first approach
uses a support vector machine, whereas the second utilises a recurrent neu-
ral network to automate the bug triage process. As the present approach
uses BiLSTM and CNN to learn the representations of issue reports, these
approaches have been selected for evaluation. For SVM+BOW, scikit-learn
libraries are used to set up SVM+BOW because the source code is not ac-
cessible. In addition, the scikit-learn is widely used in various studies [50, 2]
to set up machine learning algorithms, including SVM.

Ablation analysis. Parameter analysis plays a crucial role in the super-
vised learning model since tuning a single parameter can affect the model per-
formance. Ablation analysis is a procedure investigating configuration paths
to ascertain which model’s parameters contribute most in optimizing model
performance [41, 42]. An ablation analysis procedure is adopted to determine
which components of the multi-triage model contribute most in leveraging
model performance. In the ablation analysis approach, developers identify
a set of candidate parameters, evaluate the training data by running with
these parameters, and take the candidate parameter which outperforms at
least one other configuration. In this study’s ablation analysis experiments,
encoder decoupling and parameters tuning are performed to determine which
encoder and parameters contribute most to improving model performance.
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Figure 8: Time-series-based 5-fold cross-validation

Evaluation settings. The time-series-based 5-fold cross-validation proce-
dure is followed to split the training (train), development (dev), and test
sets [43, 44, 45, 13, 46]. This is a commonly used validation approach to
measure the generalisability of a learning model. Fig. 8 presents the valida-
tion approach used in the data evaluation process. In this approach, the dev
set makes up 10 per cent of the train set, and the test set assigns 20 per cent
of the subset of the allocated data sample. The data set is folded on a rolling
basis, based on the issue report creation date in ascending order.

All experiments are run in the google-colab7 cloud-based platform on
tesla v100-sxm2 GPU with 32 GB RAM. Python source code provided by
the authors is used to set up the baseline models (i.e. SVM+BOW [4] and
DeepTriage [9]). Also, the deep learning model is implemented using the
TensorFlow Keras8 deep learning library. In the multi-triage approach, both
text input and AST path input are truncated to the length of 300. Each word
is embedded into 100 dimensions. The output sizes of the text encoder and
the AST encoder are 100 and 50, respectively. After joining the two encoder
outputs, batch normalisation is performed on the concatenated output and
the drop (rate 0.5) is employed to reduce overfitting [47]. For the classifier,
binary-crossentropy and the Adam optimiser from the Keras library are used
with a learning rate of 0.001. The model is tuned with different dimension
sizes and learning rates, and results are presented in Section 5. Finally, the
vocabulary size is set based on individual project vocab size and the default
batch size (32) is used to train the model.

7https://github.com/dotnet/aspnetcore/
8https://www.tensorflow.org/
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Evaluation metrics. In these experiments, F-scores are used to measure
the model’s accuracy. In the following equations, TP denotes true positives,
TN denotes true negatives, FP denotes false positives, and FN denotes false
negatives.

• Precision - This is the ratio of the predicted correct labels to the total
number of actual labels averaged over all instances. Eq. 8 presents the
precision formula:

Precision =
TP

TP + FP
(8)

• Recall - This is the ratio of the predicted correct labels to the total
number of predicated labels averaged over all instances. Eq. 9 presents
the recall formula:

Recall =
TP

TP + FN
(9)

• F-scores - This is a commonly used metric for the bug triage process.
It is calculated from the precision and recall scores. The F1 score is
calculated by assigning equal weights to precision and recall, while the
F2 score adds more weight to recall. Even though both precision and
recall are important, the F2 score is usually preferred in bug triage
studies, where measuring the recall is more non-trivial than precision.
Eq. 10 presents the F2 score formula:

Fβ =
(1 + β2)× precision× recall
β2 × precision× recall

(10)

• Accuracy —Calculated by the average across all instances, where the
accuracy of each instance is the ratio of the predicated correct labels
to the total number of (predicated and actual) labels for that instance.
Eq. 11 presents the accuracy formula:

Accuracy =
TN + TP

TN + TP + FN + FP
(11)

5. Results

In this section, evaluation results are presented for the three research
questions.
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Table 3: Multi-triage v.s. baselines (Base1 - SVM + BOW [4], Base2 - DeepTriage [9])
Accuracy (%)

Project Developer Issue type
Base1 Base 2 Multi-triage Base1 Base 2 Multi-triage

aspnetcore 58% 51% 63% 25% 27% 47%
azure-powershell 35% 39% 48% 24% 29% 44%
ecplise 31% 35% 54% 23% 24% 26%
efcore 52% 55% 59% 30% 34% 40%
elasticsearch 46% 53% 58% 13% 21% 31%
mixedreality
toolkitunity

41% 50% 62% 30% 33% 47%

monogame 62% 65% 69% 53% 55% 57%
nunit 36% 38% 41% 19% 23% 27%
realmjava 59% 60% 62% 24% 25% 50%
roslyn 33% 35% 39% 22% 25% 27%
rxjava 64% 66% 68% 31% 40% 49%

AVG 47% 50% 57% 27% 31% 42%
MAX 64% 66% 69% 53% 55% 57%

5.1. RQ1: How does the multi-triage model compare to other approaches?

The performance of the multi-triage model is compared to that of (SVM
+ BOW) [4] and DeepTriage [9] in the eleven open-source projects. The com-
parison results are presented in Table 3. The time-series-based 5-fold valida-
tion is performed on all approaches, and the average accuracy is presented for
both developers and issue types prediction results. Since the Deeptriage [9]
source code is publicly available, its environment can be replicated. How-
ever, the source code of (SVM + BOW) [4] is not accessible, and thus it was
manually implemented using sklearn9 libraries. Both approaches filter out
code snippets and stack trace as these features are excluded in these models.
Conversely, this approach generates a separate token for each code snippet
by parsing it to AST paths and including it in the model’s training.

As shown in Table 3, this approach outperforms (SVM + BOW) [4] and
DeepTriage [9] by an average increase of 10 and 7 percentage points for de-
velopers, and 15 and 11 percentage points for issue types, respectively. At its
highest, this approach achieves 69% and 57% for developers and issue types,
respectively. It was observed that, in both prediction tasks, an accuracy lower
than 40% on the projects (i.e. eclipse, elasticsearch, nunit, and Roslyn) has
either the higher number of potential issue types or developers’ labels, or low
sample data compared to the rest of the projects. In summary, this approach

9https://scikit-learn.org/stable/modules/generated/sklearn.svm.SVC.html
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achieves the best performance, with DeepTriage [9] second by comparison. In
the following section, the qualitative analysis test is performed to determine
how many bug and enhancement records were correctly predicted with this
approach compared to the state-of-the-art approaches.

Figure 9: Qualitative analysis venn diagram

Table 4: Qualitative analysis (bug and enhancement)

Project
Bug Enhancement Total

Bug/
Enhancement

Base1 Base2
Our

Approach
Base 1 Base 2

Our
Approach

aspnetcore 1124 1148 1382 21 25 29 1391/39
azure-
powershell

434 448 455 3 4 5 499/8

ecplise 9670 9950 9980 78 91 96 10035/126
efcore 1038 1069 1216 51 65 68 1245/77
elasticsearch 811 820 857 45 66 69 939/99
mixedreality
toolkitunity

386 413 435 9 13 14 435/23

monogame 122 144 151 10 14 16 180/21
nunit 65 79 97 8 13 16 109/22
realmjava 148 171 190 4 6 7 220/12
roslyn 291 299 303 360 370 390 458/560
rxjava 311 332 353 22 31 34 373/42

AVG 1309 1352 1406 56 63 68
MAX 9670 9950 9980 360 370 390
Total 14402 14873 15419 611 698 744 15884/744

In the qualitative analysis evaluation, sample data is subdivided into two
issue types, namely 1) bug and 2) enhancements group, and the performance
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is analysed on the prediction results. Table 4 presents the statistics of the
prediction results in terms of numbers, whereas the Venn diagram in Fig. 9 il-
lustrates the total numbers of bugs and enhancements found by base1, base2,
and the present approach. Notably, the present approach can predict all issue
types which are predicated correctly in base1 and base2. In addition, this
approach predicts 546 bugs and 46 enhancement records missed by baseline
approaches. After inspecting these records, it became clear that these re-
ports provide trivial descriptive text with code snippets to reproduce the
issue. Previous studies neglected the code snippets in their approach, as the
feature representation of these records cannot provide valuable features for
the model to perform the prediction. It was also observed that most of the
descriptive information provided in the bug and enhancement reports used
similar terms. For example, terms such as ‘add’, ‘improve’, ‘enhance’, ‘up-
grade’ and ‘include’ are frequently used in both bug and enhancement re-
ports. Thus, the baseline approaches that relied on the issue reports’ textual
features might wrongly mislabel as enhancement in some scenarios. The
present approach uses textual and AST representation of the issue reports
to eliminate the mislabelling case by using the additional context from code
snippet metadata.

In addition,it was further observed that the reports failed to predict from
all three approaches. Interestingly, these records do not include either non-
trivial descriptive text or code snippets. These issue reports include either
screenshot images, stack trace information, hyperlinks, which are ignored in
all three approaches. Stack trace information was neglected by this approach
in order to reduce noises in the model training. Screenshots were not covered
due to limitations of the model, which supports either natural language or
structural context.

5.2. RQ2: Which component contributes more to the multi-triage model?

Ablation analysis is performed on the multi-triage model to ascertain
which component contributes more to model performance. To answer this
question, the ablation analysis is divided into two sections: 1) system com-
ponent level ablation analysis, and (2) embedding parameter level ablation
analysis.

5.2.1. System Component Level Ablation Analysis

This section compares the multi-task learning model with the conven-
tional single task learning model to analyse which model performs better. The
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Table 5: Single task prediction model v.s. our approach for developer predictions (preci-
sion(P), recall(R), and accuracy(Acc))

Project Single CNN Single BiLSTM Multi-triage
P R P R P R

aspnetcore 57% 52% 57% 51% 66% 61%
azure-powershell 52% 40% 52% 40% 55% 42%
ecplise 43% 24% 50% 30% 52% 38%
efcore 53% 47% 53% 47% 62% 56%
elasticsearch 54% 44% 54% 44% 62% 53%
mixedrealitytoolkitunity 56% 51% 55% 51% 64% 60%
monogame 59% 59% 59% 59% 69% 69%
nunit 49% 42% 51% 45% 59% 52%
realmjava 55% 52% 55% 52% 64% 61%
roslyn 49% 33% 49% 33% 52% 35%
rxjava 58% 58% 58% 58% 68% 68%

AVG 53% 46% 54% 46% 61% 54%
MAX 59% 59% 59% 59% 69% 69%

(a) Developers precision and recall results

Project Single CNN Single BiLSTM Multi-triage
Acc F2 Acc F2 Acc F2

aspnetcore 54% 52% 53% 51% 63% 61%
azure-powershell 44% 41% 44% 41% 48% 42%
ecplise 32% 24% 46% 33% 54% 38%
efcore 50% 48% 50% 47% 59% 56%
elasticsearch 47% 44% 48% 45% 58% 53%
mixedrealitytoolkitunity 53% 51% 53% 52% 62% 60%
monogame 59% 59% 59% 59% 69% 69%
nunit 34% 43% 37% 46% 41% 52%
realmjava 53% 52% 53% 53% 62% 61%
roslyn 35% 37% 34% 37% 39% 38%
rxjava 58% 58% 58% 58% 68% 68%

AVG 47% 46% 49% 47% 57% 55%
MAX 59% 59% 59% 59% 69% 69%

(b) Developers accuracy and F2 results

two single-task learning models, one with CNN and the other with BiLSTM
networks, are implemented by referring to the present approach’s encoder
architecture. In a single model, the text and the AST path's are concate-
nated into one token and fed into the CNN, or BiLSTMs layer, respectively.
The same classifier components are used in a single model. The outputs
of the single task learning model are either developers or issue labels. The
comparison results are presented in Table 5 for developers and Table 6 for
issue types predictions. Tables 5a and 6a present the precision and recall,
whereas Tables 5b and 6b describe the accuracy and F2 scores. Out of the
three models, the present model achieves the best performance in precision,
recall, accuracy and F2 score.
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Table 6: Single task prediction model v.s. our approach for issue type predictions (preci-
sion(P), recall(R), and accuracy(Acc))

Project Single CNN Single BiLSTM Multi-triage
P R P R P R

aspnetcore 52% 38% 52% 37% 58% 39%
azure-powershell 49% 38% 51% 42% 59% 47%
ecplise 28% 22% 48% 34% 52% 33%
efcore 48% 36% 48% 34% 52% 33%
elasticsearch 44% 21% 43% 20% 48% 25%
mixedrealitytoolkitunity 49% 34% 50% 40% 55% 41%
monogame 53% 46% 55% 49% 60% 53%
nunit 48% 38% 51% 44% 58% 49%
realmjava 46% 35% 50% 43% 56% 45%
roslyn 46% 30% 47% 33% 54% 38%
rxjava 49% 41% 50% 43% 53% 44%

AVG 47% 34% 48% 38% 53% 40%
MAX 53% 46% 55% 49% 60% 53%

(a) Issue types precision and recall results

Project Single CNN Single BiLSTM Multi-triage
Acc F2 Acc F2 Acc F2

aspnetcore 43% 43% 43% 43% 47% 43%
azure-powershell 39% 40% 39% 40% 44% 49%
ecplise 21% 20% 38% 37% 26% 39%
efcore 38% 38% 38% 37% 40% 38%
elasticsearch 29% 27% 29% 26% 31% 27%
mixedrealitytoolkitunity 40% 38% 45% 43% 47% 38%
monogame 49% 49% 51% 51% 57% 49%
nunit 28% 38% 24% 43% 27% 38%
realmjava 40% 37% 46% 45% 50% 37%
roslyn 22% 32% 25% 34% 27% 32%
rxjava 43% 43% 45% 45% 49% 43%

AVG 36% 37% 37% 39% 42% 39%
MAX 49% 49% 51% 51% 57% 49%

(b) Issue types accuracy and F2 results

In terms of developer precision and recall, the present model outperforms
the others by an average increase of 8 percentage points compared to sin-
gle CNN, and 7 percentage points compared to single BiLSTM. In recall,
it improves on both single CNN and single BiLTSM by an average increase
of 8 percentage points. In accuracy, on average, it exceeds the others by
10 percentage points compared to single CNN, and by 8 percentage points
compared to single BiLSTM. In F2 scores, this model performs better than
the single CNN by 9 percentage points, and the single BiLSTM by 8 percent-
age points. Therefore, it can be concluded that developers and issue types
prediction tasks are compatible with learning in one large network.

Interestingly, similar improvements were found for issue types prediction
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Figure 10: Training time

results. In issue types precision, the present model outperforms the others on
average by 6 percentage points compared to single CNN, and by 5 percentage
points compared to single BiLSTM. In recall, it improves on single CNN
by 6 percentage points and on single BiLTSM by 2 percentage points, on
average. In accuracy, on average, it exceeds the others by 8 percentage
points compared to single CNN and by 5 percentage points compared to
single BiLSTM. In F2 scores, the model performs slightly better than single
CNN by 1 percentage point, and the same for single BiLSTM. Therefore, it
is possible to conclude that developers and issue types prediction tasks are
compatible with learning in one large network.

Training times for each model are also presented in Fig. 10. On average,
the multi-triage model accelerates the training process with the drop of 476
sec and 1175 sec compared to the single CNN and single BiLSTM models,
respectively. Although the accelerated training times are not obvious in the
present scenario, imagine a project with N issue reports; the training time
complexity of the single model is (N2 ∗ t), where t is the time consumed by
the model to learn feature representations of each issue report. However, the
multi-triage model only needs (N∗t) times to learn the feature representation;
therefore, the present model is more capable of scaling to train to projects
with large amounts of training data. In summary, the multi-triage model
outperforms the single task learning model in terms of accuracy and training
time.
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(a) Developer

(b) Issue Type

Figure 11: Multi-triage: ablation analysis

5.2.2. Embedding Parameter Level Ablation Analysis

Two types of ablation analysis are performed to evaluate the embedding
parameters: encoder decoupling and parameters tuning.

In the encoder decoupling experiment, the two encoders, text and AST,
are decoupled, and the model’s performance is evaluated with three exper-
imental settings: (1) no text encoder, (2) no AST encoder, and (3) both.
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Table 7: Unique word count for Text and AST

Project Text AST
aspnetcore 32959 29559
azure-powershell 20005 5200
ecplise 342103 1234
efcore 24627 51115
elasticsearch 28116 223942
mixedrealitytoolkitunity 11749 3570
monogame 8839 6351
nunit 5231 3197
realmjava 10950 40145
roslyn 21265 25372
rxjava 11225 93517

AVG 47006 43927
MAX 342103 223942

In the no text encoder experiment, the negation effect of the textual input
is studied. Similarly, AST paths input is excluded in the no AST encoder
experiment. The comparison results for prediction accuracy of developers
and issue types in Fig. 11a and Fig. 11b, respectively. In both predictions,
the combination of textual and AST path inputs achieves the highest results
in all eleven projects, with an average increase of 35 and 3 percentage points
for developers and 23 and 6 percentage points for issue types in comparison
with no text encoder and no AST encoder, respectively. Therefore, it can
be concluded that both the textual encoder and AST encoder are important
components of the multi-triage model.

In the parameters tuning experiment, the effects of embedding dimension
and learning rate on the accuracy of our model were analysed. The model
was tuned with embedding dimensions (100 and 200) and learning rates (0.1,
0.01, and 0.001), which are the most commonly used hyper-parameters in
deep learning models. As previously mentioned, a time-series-based cross-
validation approach was adopted, and the model was trained with various
learning rates and embedding dimension size incrementally. Fig. 12 presents
the accuracy results for the six experiments with developer prediction accu-
racy in Fig. 12a and issue types prediction accuracy in Fig. 12b. In both pre-
diction tasks, embedding dimension 100 with a learning rate of 0.01 provides
the highest average, with an accuracy of 55 percentage points for develop-
ers and 41 percentage points for issue types. The embedding dimension 200
with a learning rate of 0.01 follows at second, with an average accuracy of
53 percentage points for developer and 40 percentage points for issue types.

The internal validity of the embedding parameter results are further anal-
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(a) Developer

(b) Issue type

Figure 12: Multi-triage parameter analysis
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ysed by validating the total number of unique word counts for both text en-
coder and AST encoder input for each project. Table 7 presents the word
count results for all projects. Stop words and special characters were filtered
out before the number of unique words was counted. As shown in Table 7,
the average word counts for text encoder input is 47006, whereas the AST
encoder input is 43927. The highest word count is 342103 for text encoder
and 223942 for AST encoder, respectively. By following previous studies,
a word corpus of around 2 million is trained with embedding size 300 or
higher [48, 49, 50]. The maximum corpus size of the projects’ is lower than
35k, as it is reasonable that both 100 and 200 embeddings provide compara-
ble results in these experiments. However, 100 embedding size was selected as
the optimal hyper-parameter to eliminate complex processing. In summary,
a learning rate of 0.01 with embedding dimension 100 hyper-parameters were
used as optimal parameters to train the model.

5.3. RQ3: Does increasing the size of training datasets (based on the contex-
tual data augmentation approach) improve our model’s accuracy?

Table 8: No data augmentation v.s. data augmentation (accuracy(%))

Multi-triage Multi-triage A+
Project Dev Issue Type Dev Issue Type

aspnetcore 63% 47% 64% 48%
azure-powershell 48% 44% 50% 48%
ecplise 38% 26% 40% 30%
efcore 59% 40% 61% 42%
elasticsearch 58% 31% 60% 33%
mixedrealitytoolkitunity 62% 47% 63% 49%
monogame 69% 57% 70% 58%
nunit 41% 27% 46% 29%
realmjava 62% 50% 63% 51%
roslyn 39% 27% 40% 28%
rxjava 68% 49% 69% 53%

AVG 55% 41% 57% 43%
MAX 69% 57% 70% 58%

In this section, the data-imbalanced problem is addressed with the con-
textual data augmentation approach presented in algorithm 1. First, an Area
under the ROC Curve (AUC) analysis is performed to measure classifier per-
formance. Fig. 13 presents the average AUC and accuracy results for the
multi-triage model. The line graph in 13a illustrates the developers’ AUC
and accuracy results, whereas the line graph in 13b shows the issue types
AUC and accuracy results. In both tasks, AUC fluctuates around 62% and
69%, which indicates that the classifiers perform fairly well.
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(a)

(b)

Figure 13: Multi-triage: AUC v.s. Accuracy
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(a)

(b)

Figure 14: Multi-triage with Data Augmentation: AUC v.s. Accuracy
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Therefore, further analysis was performed on the impact of the size of
the training data on model accuracy. The training data size was increased
by using algorithm 1. Table 8 presents the comparison results. For ease of
reference, the model that uses augmented data was named as multi-triage
(A). As mentioned earlier, the training data augmentation size was incre-
mentally increased in each cross-fold validation as the average accuracy from
the 5-fold validation result was reported. As shown in Table 8, the model
accuracy slightly improved in the multi-triage (A) model, with an average
increase of 2 percentage points on both developers and issue types. The per-
formance of the prediction model was further analysed using the AUC test.
Fig. 14 presents the AUC represented for the multi-triage (A) model. The
line graphs in 14a and 14b illustrate the developers and issue types of AUC
and accuracy results. Notably, AUC performance increased an average of 4
percentage points for developers and 3 percentage points for issue types in
comparison to the multi-triage model AUC performance, as shown in Fig. 13.
The data augmentation approach leveraged the base multi-triage model in
both accuracy and AUC performance measure. Therefore, it is concluded
that the contextual data augmentation approach effectively increases the is-
sue reports training data.

6. Threats to Validity

Threats to external validity. This relates to the quality of the datasets
we used to evaluate our model. We used issue reports from eleven open-source
projects written in C# and Java languages to generalise our works. All the
datasets’ programs were collected from GitHub repositories; each dataset
contains over 600 training issue reports. However, further studies are needed
to validate and generalise our findings to other structural languages. Further-
more, more case studies are needed to confirm and improve the usefulness of
our multi-triage recommendation model.

Threats to internal validity. This includes the influence of hyper-parameters
settings. Our model’s performance would be affected by different learning
rates and embedding dimensions, which were set manually in our experi-
ments. Another threat to internal validity relates to the errors in the imple-
mentation of the benchmark methods. For DeepTriage [9], we directly used
their published GitHub repository. For SVM+BOW [4], we implemented it
ourselves using scikit-learn libraries, because the source code is not acces-
sible. Nonetheless, the scikit-learn is widely used in various studies [51, 2]
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to set up machine learning algorithms, including SVM. Thus, there is little
threat to baselines implementation. In terms of the contextual data aug-
mentation approach, we calculated the threshold amount (30,000) using the
approximate total number of issue reports from targeted projects, based on
the assumption that synthetic records should not be larger than the total.
Thus, the threshold value can change based on the targeted project.

Threats to construct validity. This relates to the applicability of our
evaluation measurement. We use accuracy and the F2 score as the evaluation
metrics that evaluate the performance of the model. They represent standard
evaluation metrics for bug triage models used in previous studies [4, 9].

7. Discussion

This section discusses implications of the accuracy, precision, and recall
rates we achieved on our eleven experimental projects. We also report various
alternatives we have considered in implementing our model and in choosing
a time-series-based cross-validation approach. Then, we further discuss the
decision to use the contextual data augmentation approach in generating
synthetic issue reports. Lastly, we also review the lessons we have learned in
applying a deep learning approach to an issue report contextual and struc-
tural information.

7.1. Accessing the Significance of Our Approach

Our approach achieves an average accuracy of 57% and 47% for developers
and issue types, respectively. Also, our approach compromises precision and
recall for both developers and issue types prediction results, with an average
of 61—54% and 53—40% respectively. The only way to ensure these predic-
tion rates are good enough for the bug triage process is by either performing
a direct observation with human triagers, or by statistical analysis of the
qualitative data. Our study performs qualitative analysis by categorising the
results into two generic issue report types (i.e. bug and enhancements) and
observing the prediction results in terms of numbers. However, we envision
our approach will be evaluated with human triagers in the future. Notably,
all the issue reports predicted correctly in baseline approaches are covered by
our approach. In addition, our approach can correctly predict issue reports,
which are missed by state-of-the-art approaches, due to our model capability
to comprehend the structural context of code snippets. Therefore, we believe
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that the prediction rates we report in this paper for the eleven open-source
projects are sufficient to assist human triagers in assigning a developer and
an issue type for a new issue report. As previously mentioned, there is an
average of 67 days to fix a new issue report in these projects, due to the
delay in triagers becoming acquainted with the problem and finding the rel-
evant developers. Our approach can reduce the time spent on issue report
allocation tasks and regaining the time to resolve the issues.

Furthermore, our multi-triage learning model takes advantage of the multi-
task learning approach to train the developers and issue types classification
tasks in one model. It reduces the training time substantially, compared to a
single-task learning model. However, the multi-task learning model is pruned
to encounter a negative transfer learning problem if prediction tasks are not
compatible for learning together. We eliminate the problem by comparing
our approach with two single-task learning models. To evaluate the two sin-
gle models effectively, we designed these models in the same manner as the
two neural networks used in our encoder layers (i.e. BiLSTM and CNN). No-
tably, our model outperforms the single models in both developers and issue
types prediction in precision, recall, and accuracy. Therefore, we considered
a relatedness between developers and issuer types prediction tasks, as it is
compatible to learn in one single prediction network.

7.2. Evaluation using Time-Series Based Cross Validation

The standard method for evaluating the machine learning model is the
K-fold validation approach. In the K-fold validation approach, the original
sample is randomly partitioned into k equal sized sub-samples and trains the
model k times repeatably. However, the standard K-fold validation approach
is inappropriate in a time-ordered dataset, where the future issue reports will
be used to predict past bug reports. Therefore, we followed a time-series 5-
fold validation approach and trained all our models, including the baselines
approach. When we used the time-series approach, we noticed that the first
one-or two-fold accuracy results are relatively lower than the later folds, due
to smaller data size. The neural networks-based approach generally produces
better results when there is more data available to learn. However, our time-
series approach statically generalised the results based on how the issue report
information flows and alters an issue tracking system.
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7.3. Alternative Considerations on Model Building

We choose to use CNN in-text encoder and BiLSTM for AST encoder by
referring to previous studies in similar areas [52, 19, 9]. Both of the networks
are commonly used in natural language and structural language processing.
Alternatively, we could incorporate the BiLSTM model for text encoder or
CNN for AST encoder. However, in our preliminary test, the CNN model
performs better than does the BiLSTM in the text encoder layer, whereas
the BiLSTM model performs better than does the CNN in the AST encoder.
Therefore, we choose the combination, which produces the best results.

7.4. Applicability of Contextual Data Augmentation Approach

We adopted a supervised machine-learning approach, as our triage model
required a ground truth label for each report to train the model. There-
fore, we faced an imbalanced class problem in our model training. When we
evaluated our model with the AUC test, we observed that our model per-
formance is slightly low, with an average of 65% for developers and 64%
for issue types. Thus, we adopted the contextual augmentation approach to
generate synthetic issue reports to balance developers and issue types label
distribution on training samples. In general, there are two ways to develop
the synthetic reports with the contextual augmentation approach: 1) ran-
dom word substitution, and 2) random word removal [28]. We selected the
substitution approach, as we do not want to lose the important information
of the issue report. We incrementally generated the synthetic reports using
a time-series cross-validation approach and trained the model. Since we are
interested in the performance of our model, we statistically evaluated the
improvement of the data augmentation approach using the AUC test. No-
tably, our model performance rose on average 69% for developers and 67%
for issue types. Therefore, we considered that the contextual augmentation
approach is reasonable for smoothing label distributions in the supervised
learning approach.

7.5. Lessons Learned

Our approach uses textual and code snippets information from issue re-
ports. The accuracy of our approach might be improved by incorporating
additional information.

The screenshot image is a valuable asset of issue reports, providing addi-
tional information about user requirements. Also, the execution stack trace
from issue reports can be used as the pointer to identify the code area in
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recommending issue types. As mentioned in Section 2, the GitHub projects
issue types label includes project areas or components information. Identify-
ing the project areas or components can assist in finding potential develop-
ers by looking into the list of developers who are actively working on these
areas, either using the code ownership information or previous issue assign-
ments history. However, as explained in Section 3, stack trace introduces
noise into the model training, as we neglected this information. Also, corre-
lating code ownership information to issue reports is challenging, especially
for large projects evolving throughout time.

8. Related Work

This section introduces previous studies related to the semi-automatic
bug triage process and multi-task learning model. Moreover, other studies
related to bug resolution (e.g. bug localisation) are discussed.

8.1. Semi-Automatic Bug Triage

In an early work of [53], the authors proposed an automatic bug triage
approach that used a native Bayes (NB) classifier to recommend candidate
developers to fix a new bug. Later, [4] extended this by comparing the work
of [53] with three machine learning classifiers: NB, SVM, and C4.5. Their
preliminary results found that SVM outperforms the other classifiers. In [54],
the authors proposed an approach to modelling developers’ profiles using the
vocabularies from their changed source code files, compared with terms from
issue reports to rank the relevant developers.

A comparison of different machine learning algorithms (i.e. NB, SVM,
EM, conjunction rules, and nearest neighbours) to recommend potential de-
velopers can be found in [55]. In general, the authors used project-specific
heuristics to construct a label for each issue report rather than using the
assigned-to field, in order to eliminate default assignee assignment and du-
plicate reports with unchanged assigned-to field problems. In our approach,
we alternatively address these problems by filtering out issues assigned to
software bots and including the corresponding pull request’s developer infor-
mation as the tossing sequence in our labelling process.

Similarly, [56] proposed a concept profile and social network-based bug
triage model to rank expert developers to fix a bug. In their work, a concept
profiling first defines the topic terms to cluster the issue reports. Then, the
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social network feature captures a set of developers’ collaborative relation-
ships, extracted from the concept profiles, to rank the candidate developers
based on the level of expertise (i.e. a fixer of a bug, a contributor of a bug).
In [57], the authors proposed CosTriage to assist triagers in finding the can-
didate developers who can fix the bug in the shortest time frame. CosTriage
adopts content-boosted collaborative filtering (CBCF), which combines issue
report similarity scores with each developer’s bug fixing time to recommend
relevant developers for a new issue report.

Aside from developer recommendation studies, other studies have focused
on automating issue type prediction in the bug triage process. In [58], the
authors proposed TagCombine, an automatic tag recommendation method,
which is based on a composite ranking approach to analysing information in
software forum sites (i.e. Stack Overflow, free-code). TagCombine consists
of three ranking components: multi-label ranking, similarity-based ranking,
and tag-terms-based ranking. In their approach, multi-nominal NB classifier,
Euclidean distance algorithm, and latent semantic indexing (LSI) are used to
calculate three component scores separately. The linear combination score of
these three components is then used to recommend the list of relevant tags
for a new issue report. In [59], the authors proposed MLL-GA, a composite
method to classify crash reports and failures. MLL-GA adopts various multi-
label learning algorithms and generic algorithms to identify faults from crash
reports automatically.

In the work of [60], the author adopted a BM25-based textual similar-
ity algorithm and KNN to predict severity levels and developers for a new
issue report. In [61], the authors adopted machine learning classifiers, such
as NB and SVM, to predict an issue label (e.g. bug, enhancement) for a
new issue report. Their approach uses the bag-of-words model to represent
issue reports in text classification. In this representation, every word in the
training corpus is considered a feature; therefore, each issue report presents
as a sparse representation with a high number of features. These features
are used by machine learning classifiers to predict issue labels for new issue
reports. Recently, in [9], the author used the BiLSTM model to recommend
potential developers.

Our work is closely related to that of [9]. However, our multi-triage model
adopts a multi-task learning approach and recommends both developers and
issue types from one learning model. As such, it reduces a considerable
amount of training time in comparison to the single task learning model. In
addition, our model uses both textual and structural information (i.e. code
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snippets) to learn the representation of issue reports, as doing so provides a
more accurate representation. In comparison, previous studies have neglected
the code snippet information in order to reduce noises in the model training.
In our approach, we transform the code snippet to AST paths and learn the
representation in a separate encoder, which eliminates the risk of introducing
noises in the model.

There are several techniques to parse AST from partial programs. Some
of the well known approaches are fuzzy parsers [62], island grammars [63],
partial program analysis (PPA) [64] and pairwise paths [19]. Fuzzy parsers
scan the code keywords and extract the coarse-grained structure out of code
snippets [62]. Similarly, island grammars extract part of the code snippets
that describes some details of the function (island) and ignores the rest of the
trivial lexical information (water). In contrast, PPA parsers trace the defined
type of a class or method and extract a typed AST [64]. PPA recovers the
declared type of expressions by resolving declaration ambiguities in partial
java programs. Declaration ambiguity refers to the fields whose declarations
are undeclared, or to the unqualified external references. These approaches
are more suitable for situations where a sound analysis is required, such as
code cloning, code representation and code summarization.

Lastly, in the pairwise paths parser [19], the AST paths are extracted us-
ing modern integrated development environments (IDE) (e.g, Eclipse), which
generate the pairwise paths between terminal nodes (e.g. variable declara-
tion) by neglecting the non-terminal nodes (e.g. do-while loop). In the
pairwise paths approach, two programs that have similar terminal nodes are
likely to parse as similar format. As it is our intention to compare similar
code snippet between issue reports, we have adopted this pairwise paths ap-
proach in our study. Next, we discuss the related work of the multi-task
learning model.

8.2. Multi-Task Learning

The multi-task learning model has been successfully applied in computer
vision applications as well as in many natural language problems which re-
quire solving multiple tasks simultaneously [65, 66]. In the recent work of [21],
the authors used hard parameter sharing to address seven computer vision
tasks. Similar works are presented in [22, 23, 24]. In the work of [67], the au-
thors proposed a framework by which to evaluate which tasks are compatible
with learning jointly in the multi-task learning network. Their preliminary
results revealed that multi-task learning networks’ prediction quality depends
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on the relationship between the jointly trained tasks. Their framework in-
crementally increases the number of tasks assigning to the model by starting
with three or fewer networks. They used predefined inference time, and the
lowest total lost value to identify the compatible pairing tasks.

In [68], the authors used a multi-task learning approach to tackle two
types of question-answering tasks: answer selection and knowledge-based
question answering. In their approach, the CNN network is used to model the
shared learning layer in order to learn the contextual information of historical
question and answer data to predict answers to a new question automatically.
In a similar line of work, the authors of [26] used the CNN network to identify
facial landmarks and attributes (i.e. emotions). In [25], the authors adopted
a multi-task learning network to learn query classification tasks and ranking
of web search tasks together. Our work is similar to that of [68], but we
tackle a problem in a different domain. We adopted multi-task learning with
a hard-parameter sharing approach to recommend potential developers and
issue types for a new issue report.

8.3. Other Tasks in the Bug Resolution Process

In [69], the authors reported the usage of GitHub’s label in over 3 mil-
lion GitHub projects. Their preliminary results revealed that most projects
use four generic types of labelling strategies: priority labels, versioning la-
bels, workflow labels, and architecture labels to categorise the issue reports.
In [70], the authors proposed a CNN-based bug localisation model to assist
developers in identifying code smell areas. In the work of [71], the researchers
leverage deep neural networks to detect duplicate issue reports automatically.

Likewise, [72] relied on recurrent neural networks (RNN) and graph em-
bedding to detect similarities in source code components. The work proposed
in [73] used deep learning neural networks to identify similar code compo-
nents in generating bug-fixing patches for program repair. In [74], an LSTM
encoder-decoder was used to generate a code summary that provided a high-
level description of code functionality changes. Despite different strategies,
these approaches use AST tokens as embedding input to learn the represen-
tation of source code components. Instead, the work in [75, 76] used the
control flow graph (CFG) representation of a program to embed the code to
support a variety of program analysis tasks (e.g. code summarisation and
semantic labelling).
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9. Conclusion

In this paper, we have presented an approach to recommend potential
developers and issue types of an issue report to resolve the issue. Our ap-
proach uses the multi-task learning approach to simultaneously resolve the
developer’s assignment and issue types allocation tasks.

We use a text encoder and AST encoder to learn the precise representation
of issue reports. The experiments are conducted on eleven widely-used open-
source projects and achieve accuracy on average of 57% for developer and
42% for issue types, respectively. Furthermore, we present the effectiveness of
the contextual data augmentation approach in balancing the disproportional
ratio of class labels. In addition, we introduced a qualitative analysis of
our machine learning model against state-of-the-art approaches. We have
reported on lessons learned in processing the issue report data from the issue
tracking system.

We believe that our approach is promising for the leveraging bug as-
signment and the tossing process for open-source software developments. An
interesting future direction includes experiments using our approach with hu-
man bug triagers and investigating the additional information of issue reports
(e.g. screenshots and comments).
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