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Abstract: Causal inference from observational data lies at the heart of education, healthcare, optimal 
resource allocation and many other decision-making processes. Most of existing methods estimate the 
target treatment effect indirectly by inferring the unobserved counterfactual outcome for every 
individual or the underlying treatment response functions. These indirect learning methods are subject 
to issues of model misspecification and high variability. As a complement of existing indirect learning 
methods, in this paper, we propose a direct learning framework, called TauNet, for causal inference 
using deep multi-task learning. It is based on a novel empirical 𝜏𝜏-risk for learning the causal effect 
model of direct interest in a supervised learning scheme. In our proposed framework, the target 
treatment effect model is parametrized as a neural network and learned jointly with other auxiliary 
models in an end-to-end manner. Moreover, we extend the naïve TauNet into other two variants, 
TauNet-Simple and Taunet-Reg, by further incorporating shared representation learning layers and a 
propensity prediction regularizer. Experiments on simulated and real data demonstrate that the 
performances of the proposed methods match or are better than that of existing state-of-arts. Moreover, 
by learning the target treatment effect function directly, the proposed methods tend to obtain more stable 
estimates than existing indirect methods. 
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1 Introduction 
Causal inference (aka treatment effect estimation) (Imbens & Rubin 2015) is the problem of 

estimating the treatment effect of an intervention on a target outcome variable and lies at the heart of 
many domains, including precise medicine (Atan, Jordon & Schaar 2018), computational advertisement 
(Bottou et al. 2013), algorithmic fairness and explainability (Madras et al. 2019) (Schwab & Karlen 
2019), as well as social program evaluation (Hill 2011) . Taking precise medicine as an example, when 
doctors want to test some medicine on a disease, the gold standard method is to conduct a double-blind 
randomized control trial (RCT) where patients are randomly assigned to either the treated (taking 
medicine) or the control group (not taking medicine) and the treatment effect of the medicine is 
measured as the difference of the recovery outcomes between the two groups. However, in many real-
world applications, RCTs may be expensive, unethical, or even impossible (Hernán & Robins 2018). 
As a result, researchers have mainly focused on observational studies that conduct causal inference 
using purely observational data (Rosenbaum & Rubin 1983) (Imbens & Rubin 2015). 

Given the fundamental problem of observational causal inference (Imbens & Rubin 2015), i.e., for 
any individual, only the outcome corresponding to the received treatment can be observed, while 
outcomes under alternative treatment options are unobservable, the task of causal inference from 
observational data is fundamentally different from traditional supervised machine learning where the 
target labels of interest are available in the training data. This leads to causal inference from 
observational data a “missing data” problem. Moreover, in the observational data, both the treatment 
assignment and the observed outcome of an individual are influenced by some of his or her covariates 
which are called confounders in the literature. As a result, the underlying treatment assignment 
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mechanism that determines which treatment will be assigned as well as which potential outcome is 
missing is unknown and not random.  

To tackle these challenges, traditional methods for causal inference have mainly focused on inferring 
the unobserved counterfactual outcomes of each individual via matching (Stuart 2010) (Zhu, Savage & 
Ghosh 2018) or weighting (Rosenbaum & Rubin 1983) (Yiu & Su 2018) the observed factual outcomes 
of other individuals, or inferring the potential outcome models by adjusted regression (Künzel et al. 
2019). Recently, more advanced machine learning techniques, including Bayesian inference (Hill 2011) 
(Alaa & van der Schaar 2017), ensemble models (McCaffrey, Ridgeway & Morral 2004) (Grimmer, 
Messing & Westwood 2017), representation learning (Johansson, Shalit & Sontag 2016) (Shalit, 
Johansson & Sontag 2017) (Yao et al. 2018), deep generative modelling (Louizos et al. 2017) (Zhu et 
al. 2018), etc. have been adopted to build more flexible adjusted regression models for inferring the 
treatment response functions. In general, all these methods run in a multiple steps manner by first 
inferring either the unobserved counterfactual outcomes or the underlying treatment response functions, 
and then plugin these inferred quantities to estimate the target treatment effect. 

In this paper, we propose a direct learning method to tackle both the missing data and selection bias 
issues existed in observational causal inference. Our method parametrizes the target causal effect 
function with deep neural networks (DNNs) and learns it via gradient-based optimization. Once learned, 
the fitted causal effect function can be directly used for estimating different causal effect quantities 
without a detour of estimating the unknown potential outcomes or the treatment assignment mechanism. 
This idea is quite intuitive and motivated by policy gradient methods for policy optimization from the 
reinforcement learning literature (Sutton & Barto 2012). Unlike other value-based algorithms, e.g., 
$Q$-learning, which learn an optimal policy indirectly by estimating the state-action function (i.e., the 
$Q$ function) first, policy gradient methods parametrize the target policy directly and learn it using 
gradient-based optimization. We note that Wager et al. (Wager & Athey 2018) have also proposed to 
directly estimate the individual treatment effect (ITE) non-parametrically using random forests with an 
ad-hoc leaf splitting criterion. Using this causal forest method, individuals in each leaf can be regarded 
as being randomly assigned as if in an RCT. However, tree-based methods need manual feature 
engineering which are not as automatic as the neural network based methods proposed in this paper. 
We also compare it with our proposed methods in the experiment section empirically.  

The main contributions of this paper are: Firstly, we categorize existing methods for causal inference 
into those based on learning the unobserved counterfactual outcome non-parametrically and those based 
on fitting the underlying treatment response functions. As a complementary of these indirect methods, 
we propose a novel empirical 𝜏𝜏-risk and a direct learning framework for treatment effect estimation 
using deep multitask learning. Secondly, in the direct learning framework, we further extend the 
proposed neural network by adding shared representation layers and a new propensity prediction 
regularizer. As a result, we proposed all together three neural network architectures for treatment effect 
estimation in this paper.  Lastly, we validate the proposed methods with comprehensive experiments on 
synthetic, semi-simulated and real-world datasets. Experiment results suggest that our proposed 
methods generally have a better or competitive performance compared to existing state-of-art methods. 
Moreover, estimations of our direct learning methods are generally more stable than their competitors 
since they estimate directly in an end-to-end manner rather than indirectly by a two-stage process. 

The remainder of the paper is organized as follows: We introduce definitions, notations and formalize 
the causal inference problem in Section \ref{sec:II-definition}. In Section \ref{sec:III-related}, we give 
a brief review of related work. As the core section of this paper, Section \ref{sec:IV-direct} introduces 
our proposed direct learning framework for treatment effect estimation and three practical realizations 
using deep neural networks. Experiments on synthetic, semi-simulated and real-world datasets are 
described in Section \ref{sec:V-experiment}. Section \ref{sec:VI-conclusion} concludes the paper and 
discusses future work. 
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2 Problem Formulation 
Consider an observational study consisting of  𝑛𝑛  observations  𝒟𝒟 = {(x𝑖𝑖 , 𝑡𝑡𝑖𝑖 ,𝑦𝑦𝑖𝑖), 𝑖𝑖 = 1, … ,𝑛𝑛} of the 

variables (𝑋𝑋,𝑇𝑇,𝑌𝑌) drawn i.i.d. from some underlying distribution such that for each 𝑖𝑖, x𝑖𝑖 ∈ 𝒳𝒳 denotes 
the pre-treatment covariates, 𝑡𝑡𝑖𝑖 ∈ 𝒯𝒯 the assigned treatment, and 𝑦𝑦𝑖𝑖 ∈ 𝒴𝒴 the observed outcome. Take the 
data from a job training as an example, for an employee with covariate x ∈ 𝒳𝒳, the set of treatments 𝒯𝒯 
might be whether she joined a specific job training program, and the set of outcomes might be 𝒴𝒴 =
[0,10𝐾𝐾] indicating her monthly salary in dollars. In this paper, we only consider the case of binary 
treatment, i.e., 𝒯𝒯 = {0,1}. Denote the treated group as 𝒯𝒯1 = {𝑖𝑖: 𝑡𝑡𝑖𝑖 = 1} and the control group as 𝒯𝒯0 =
{𝑖𝑖: 𝑡𝑡𝑖𝑖 = 0}. For an individual  𝑖𝑖 , let  𝑌𝑌𝑖𝑖(𝑡𝑡) ∈ 𝒴𝒴  be his or her potential outcome under the treatment 
option  𝑡𝑡 . The fundamental problem of causal inference is that only one of the two potential 
outcomes, 𝑌𝑌𝑖𝑖(0) and 𝑌𝑌𝑖𝑖(1), can be observed for a given individual, i.e., 𝑦𝑦𝑖𝑖 = 𝑡𝑡𝑖𝑖𝑌𝑌𝑖𝑖(1) + (1 − 𝑡𝑡𝑖𝑖)𝑌𝑌𝑖𝑖(0). 
In the machine learning literature, this kind of partial feedback is called “bandit feedback” 
(Swaminathan & Joachims 2015a, 2015b). 

For an individual with covariate value x, denote the underlying treatment response functions if he or 
she is assigned into the treated group and the control group as 𝜇𝜇1(x) and 𝜇𝜇0(x) respectively. In the 
language of Pearl’s do-calculus (Pearl 2000), they are defined as 

  𝜇𝜇𝑡𝑡(x) = 𝔼𝔼[𝑌𝑌𝑖𝑖|𝑋𝑋𝑖𝑖 = x,𝑑𝑑𝑑𝑑(𝑇𝑇𝑖𝑖 = 𝑡𝑡)] = 𝔼𝔼[𝑌𝑌𝑖𝑖(𝑡𝑡)|𝑋𝑋𝑖𝑖 = x], 𝑡𝑡 = 0,1   

where   𝑑𝑑𝑑𝑑(𝑇𝑇𝑖𝑖 = 𝑡𝑡)  is the do-operator meaning to “set” the treatment as 𝑡𝑡  rather than “seeing” the 
treatment 𝑡𝑡. In many real –world applications, we are interested in the covariate-specific treatment effect 
of the treatment 𝑡𝑡 on the outcome, which is defined as the expected difference between the two potential 
treatment responses, i.e., 

           𝜏𝜏(x) = 𝜇𝜇1(x) − 𝜇𝜇0(x) = 𝔼𝔼[𝑌𝑌𝑖𝑖(1)|𝑋𝑋𝑖𝑖 = x] − 𝔼𝔼[𝑌𝑌𝑖𝑖(0)|𝑋𝑋𝑖𝑖 = x]         (1)   

This is called the conditional average treatment effect (CATE), individual treatment effect (ITE) or 
heterogeneous treatment effect (HTE) in the causal inference literature (Imbens & Rubin 2015), and is 
intrinsically important in settings where we want to evaluate the efficiency of some policy and make 
personalized recommendations. We can use it to estimate the average treatment effect (ATE) via 𝐴𝐴𝐴𝐴𝐴𝐴 =
𝔼𝔼[𝜏𝜏(x𝑖𝑖)] and the average treatment effect on the treated (ATT) via 𝐴𝐴𝐴𝐴𝐴𝐴 = 𝔼𝔼[𝜏𝜏(x𝑖𝑖)|𝑡𝑡𝑖𝑖 = 1].  

Despite of its importance, treatment effect estimation from purely observational data is fundamental 
impossible without causal assumptions since we can never observe both treatment responses for any 
individual. In order to make the individual treatment effect identifiable, we make the following 
assumptions as usually done in the causal inference literature (Imbens & Rubin 2015). 

Assumption 1 (Consistency). For each individual 𝑋𝑋𝑖𝑖 , the potential outcome under treatment  𝑡𝑡 ∈
𝒯𝒯, 𝑌𝑌𝑖𝑖(𝑡𝑡) is equal to the observed outcome if the actual treatment is 𝑡𝑡. That is, 𝑌𝑌𝑖𝑖(𝑡𝑡) = 𝑌𝑌𝑖𝑖 if 𝑇𝑇𝑖𝑖 = 𝑡𝑡. 

Assumption 2 (Ignorability). For each individual 𝑋𝑋𝑖𝑖, the potential outcome variables 𝑌𝑌𝑖𝑖(𝑡𝑡), 𝑡𝑡 ∈ 𝒯𝒯 are 
statistically independent of the treatment actually taken. That is, 𝑌𝑌𝑖𝑖(𝑡𝑡) ⫫ 𝑇𝑇𝑖𝑖 |𝑋𝑋𝑖𝑖 for all 𝑖𝑖 = 1,2, … ,𝑛𝑛. 

The Consistency assumption is by principle, and the Ignorability assumption means that there exist 
no unobserved confounders. Ignorability is generally uncheckable from data only and must be 
determined by domain knowledge. In practice, we also need the following positivity assumption to 
guarantee enough randomness in the data-generating process so that unobserved counterfactuals can be 
estimated from the observed data. 

Assumption 3 (Common support / Positivity). The treatment propensity is positive for any 
covariate x ∈ 𝒳𝒳, i.e., 0 < 𝑃𝑃(𝑡𝑡 = 1|x) < 1. 
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3 Related Work 
    For the task of  causal inference from observational data, classic methods have focused on estimating 
the ATE through variants of propensity score matching or weighting (Imbens & Rubin 2015). More 
recent works tackle the problem of HTE estimation using standard supervised learning techniques 
(Künzel et al. 2019) (Nie & Wager 2017) (Wager & Athey 2018), Bayesian inference (Hill 2011) (Alaa 
& van der Schaar 2017) (Lin et al. 2020), representation learning (Johansson, Shalit & Sontag 2016) 
(Shalit, Johansson & Sontag 2017) (Yao et al. 2018) and deep generative models (Louizos et al. 2017) 
(Zhu et al. 2018). For a comprehensive overview of this topic, we refer the readers to (Guo et al. 2018) 
and (Yao et al. 2020). In this section, we present a brief review of existing methods that is closely related 
with our methodology. 

3.1 Non-parametric Methods for Causal Inference 

To tackle the fundamental problem of causal inference from observational data, many non-parametric 
methods attempt to transform the collected observational data to mimic a balanced one as from a 
randomized experiment (Imbens & Rubin 2015). Non-parametric methods do not model the relation 
between the pre-treatment covariates, treatment, and outcome. Instead, they realize treatment effect 
estimation by inferring the unobserved counterfactual outcomes using statistical techniques such as 
matching or weighting. On one hand, matching methods assume that similar individuals should have 
similar treatment outcomes, and estimate the unobserved counterfactual outcomes by matching every 
individual with individuals in the counterpart group. Examples of matching estimators include nearest 
neighborhood matching (Crump et al. 2008), propensity score matching (Stuart 2010), kernel matching 
(Zhu, Savage & Ghosh 2018) and optimal matching (Kallus 2017). On the other hand, inverse 
propensity weighting (Rosenbaum & Rubin 1983) (Zhu et al. 2020) calculates the expectation of a 
potential outcome using the weighted mean of observed factual outcomes in the corresponding group. 
The identifiability of potential outcomes is realized by inverse probability weights derived from the 
estimated treatment propensities.  

While matching methods rely on an appropriate neighborhood metric to find a set of neighbors, 
weighting methods are generally designed for estimating average treatment effects and are not 
straightforward for heterogeneous treatment effect estimation. Recently, tree and forest based models 
(Athey & Imbens 2016) (Wager & Athey 2018) have been regarded as adaptive neighborhood metrics 
and used for non-parametric causal inference. In these estimators, ad-hoc node splitting rules targeting 
at treatment effect estimation are designed, trees are trained to predict propensity scores and leaves are 
used to predict treatment effects. 

3.2 Causal Inference Based on Treatment Response Modelling 
Besides inferring the unobserved counterfactual outcomes, another group of methods solve the 

problem of causal inference as a supervised learning problem. They fit the two treatment response 
functions 𝜇𝜇0(x) and 𝜇𝜇1(x) by supervised learning models (e.g., linear regression, random forest and 
neural networks). Then for an individual with covariates  x , the treatment effect is estimated 
transductively via  𝜏̂𝜏(x) = 𝜇𝜇1(x) − 𝜇𝜇0(x) . This is called simulated twins, G-computation, outcome 
regression or counterfactual inference in the literature (Hernán & Robins 2018) (Zhu et al. 2018) 
(Alejandro Schuler 2018). While classical outcome regression methods have mainly assumed 
generalized linear model, in recent years, advanced machine learning models such as Bayesian Additive 
Regression Trees (BART) (Hill 2011), multi-task Gaussian process (Alaa & van der Schaar 2017) and 
neural networks (Zhu et al. 2018) (Alejandro Schuler 2018) have also been adopted for treatment 
response modelling. 

In practice, we can treat the treatment indicator 𝑡𝑡 ∈ {0,1} as a function indicator and learn separate 
treatment response models for each treatment. This is called T-learning (T for “two models” or “twins”) 
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(Künzel et al. 2019). Alternatively, we can regard 𝑡𝑡 as just another covariate and define treatment 
responses under different treatments as a single function, 𝜇𝜇(x, 𝑡𝑡). This is called S-learning (S for “single 
model”) (Künzel et al. 2019). Besides T-learning and S-learning, Künzel et al (Künzel et al. 2019) also 
proposed X-learning that estimates the two treatment response functions  𝜇𝜇0(x) and 𝜇𝜇1(x)  as in T-
learning first, and then impute the estimated ITEs for the treated group 𝒯𝒯1 using 𝜏̂𝜏(x𝑖𝑖) = 𝑦𝑦𝑖𝑖 − 𝜇𝜇0(x𝑖𝑖) 
and for the control group 𝒯𝒯0 using 𝜏̂𝜏(x𝑖𝑖) = 𝜇𝜇1(x𝑖𝑖)− 𝑦𝑦𝑖𝑖. Lastly, X-learning learns the target treatment 
effect function 𝜏𝜏(x) with the imputed ITEs in a supervised manner. 

In treatment response modelling, the key is to obtain a good estimate of the underlying treatment 
response functions  𝜇𝜇0(x)  and  𝜇𝜇1(x) . The target HTE 𝜏𝜏(x)  is estimated indirectly by a two-stage 
procedure. As a result, treatment response functions fitted to minimize the prediction error for the 
observed outcomes are not guaranteed to produce accurate treatment effect estimation. 

3.3 Causal Inference Based on Representation Learning 
In recent years, deep learning techniques have been adopted for developing treatment effect 

estimation methods (Johansson, Shalit & Sontag 2016) (Louizos et al. 2017) (Zhu et al. 2018). By 
formulating counterfactual inference as a domain adaptation problem, Johansson et al  (Johansson, 
Shalit & Sontag 2016) proposed a balancing counterfactual regression framework for treatment effect 
estimation. By virtue of the automatic representation learning ability of neural networks, Johansson et 
al. (Johansson, Shalit & Sontag 2016) proposed the Balancing Linear Regression (BLR) and Balancing 
Neural Network (BNN). Both of them learn a single treatment response function 𝜇𝜇(x, 𝑡𝑡) = ℎ(𝜙𝜙(x), 𝑡𝑡) 
on top of a shared representation 𝜙𝜙(x) of the pre-treatment covariates that attempts to minimize the 
linear discrepancy between the two groups of individuals.  

Within the same framework, Shalit et al. (Shalit, Johansson & Sontag 2017) argued that the single 
treatment response function used  in BLR and BNN may lose the influence of the scaler treatment 
indicator 𝑡𝑡 on the shared high-dimensional representation during training. To avoid this issue, they 
proposed two neural networks, the Target-Agnostic Representation Network (TARNet) and the 
Counterfactual Regression Network (CFR), to learn two separate outcome regression models ℎ0�𝜙𝜙(x)� 
and ℎ1�𝜙𝜙(x)� on top of the shared representation layers 𝜙𝜙(x). Moreover, to realize the goal of covariate 
balance in the representation space, CFR constraint the learning of the shared representation using 
integral probability metrics (IPMs) (Sriperumbudur et al. 2012). Later, Based on the CFR method, Yao 
et al. (Yao et al. 2018) proposed the local similarity-preserved individual treatment effect method that 
is able to learn local similarity preserved representation. 

  In the context of deep multi-task learning (Ruder 2017), Alaa et al. (Alaa, Weisz & Schaar 2017) 
proposed a deep counterfactual network for treatment effect estimation. The deep counterfactual 
network consists of a potential outcomes network and a propensity network. While the potential 
outcomes network is a deep multitask network with a set of shared representation learning layers and 
two outcome prediction heads, the propensity network is a feed-forward network and trained separately 
to estimate the treatment propensities 𝑝𝑝(𝑡𝑡𝑖𝑖|x𝑖𝑖). Recently, the DragonNet proposed in (Shi, Blei & 
Veitch 2019) uses a three-headed multi-task neural network architecture for predicting propensity 
scores and potential outcomes simultaneously. The network is trained in an end-to-end manner and the 
obtained potential outcomes and propensity score functions can be used for downstream treatment effect 
estimation. 

In general, existing causal inference methods based on representation learning also fall into the 
treatment response modelling framework introduced in the last section. They learn a single or two 
treatment response models for downstream treatment effect estimation and share information between 
the treated and control groups via the shared representation learning layers. 
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4 Methodology 
As we can see from the last section, in treatment response modelling, the target treatment effect 

quantities are estimated in an indirect manner by first fitting the underlying treatment response functions. 
Take T-learning for example, the observational data 𝒟𝒟 = {(x𝑖𝑖 , 𝑡𝑡𝑖𝑖 ,𝑦𝑦𝑖𝑖), 𝑖𝑖 = 1, … ,𝑛𝑛} is divided into the 
treated subset 𝒟𝒟1 = {(x𝑖𝑖 ,𝑦𝑦𝑖𝑖), 𝑖𝑖 ∈ 𝒯𝒯1} and the control subset 𝒟𝒟0 = {(x𝑖𝑖 ,𝑦𝑦𝑖𝑖), 𝑖𝑖 ∈ 𝒯𝒯0}. By parameterizing 
the two treatment response models  𝜇𝜇0(⋅) and 𝜇𝜇1(⋅) as 𝜇𝜇0(x;𝛽𝛽0) and 𝜇𝜇1(x;𝛽𝛽1), a naive method for 
learning these two models is to minimize the following empirical 𝜇𝜇-prediction risks over 𝒟𝒟0 and 𝒟𝒟1 
respectively, 

ℒ𝜇𝜇0 =
1
𝑛𝑛0
� 𝐿𝐿(𝜇𝜇0(x𝑖𝑖),𝑦𝑦𝑖𝑖)
𝑖𝑖∈𝒯𝒯0

, ℒ𝜇𝜇1 =
1
𝑛𝑛1
� 𝐿𝐿(𝜇𝜇1(x𝑖𝑖),𝑦𝑦𝑖𝑖)
𝑖𝑖∈𝒯𝒯1

      (2)  

Possible loss functions are the 𝐿𝐿2 loss 𝐿𝐿(𝜇𝜇(x𝑖𝑖),𝑦𝑦𝑖𝑖) = (𝜇𝜇(x𝑖𝑖) − 𝑦𝑦𝑖𝑖)2 for continuous outcomes and the 
log-loss  𝐿𝐿(𝜇𝜇(x𝑖𝑖),𝑦𝑦𝑖𝑖) = −𝑦𝑦𝑖𝑖 log 𝜇𝜇(x𝑖𝑖) − (1 − 𝑦𝑦𝑖𝑖) log�1− 𝜇𝜇(x𝑖𝑖)�  for binary outcomes. Obviously, 
since the above 𝜇𝜇-prediction risks are not targeted at our goal of estimating causal effects, treatment 
effect estimators building on them may not be reliable. In this section, we propose a direct learning 
framework for treatment effect estimation. 

4.1 The Empirical 𝜏𝜏-Risk for Direct Learning of HTE 
Denote the interested HTE function 𝜏𝜏:𝒳𝒳 → ℝ by a neural network 𝜏𝜏(⋅; 𝜃𝜃) with parameters 𝜃𝜃 ∈ 𝚯𝚯. To 

train the neural network, we need a loss function that is able to guide the algorithm to update the model 
parameters. Suppose we have an oracle of the true ITE  𝜏𝜏𝑖𝑖∗ = 𝜏𝜏∗(x𝑖𝑖) ≜ 𝜇𝜇1(x𝑖𝑖) − 𝜇𝜇0(x𝑖𝑖)  for every 
individual in the observational data 𝒟𝒟 = {(x𝑖𝑖 , 𝑡𝑡𝑖𝑖 ,𝑦𝑦𝑖𝑖), 𝑖𝑖 = 1, … ,𝑛𝑛}. Then the optimal parameters 𝜃𝜃∗ ∈ 𝚯𝚯 
can be obtained via supervised learning by minimising the following PEHE-risk: 

                ℒ𝜏𝜏∗(𝜃𝜃) =
1
𝑛𝑛
�[𝜏𝜏∗(x𝑖𝑖)− 𝜏𝜏(x𝑖𝑖;𝜃𝜃)]2
𝑛𝑛

𝑖𝑖=1

               (3) 

This risk is known as the precision in estimating heterogeneous effect (-PEHE), and is commonly 
used to quantify the “goodness” of a as an estimate of the true HTE model 𝜏𝜏∗(x). A fundamental 
challenge that arises when learning the “PEHE-optimal” model 𝜏𝜏(x;𝜃𝜃∗) is that we cannot compute the 
empirical PEHE for a particular 𝜃𝜃 ∈ 𝚯𝚯 since we do not have the oracle of the true ITEs. In order to 
overcome this problem and to optimize the neural network parameters 𝜃𝜃 using the observed data 𝒟𝒟 =
{(x𝑖𝑖 , 𝑡𝑡𝑖𝑖 ,𝑦𝑦𝑖𝑖), 𝑖𝑖 = 1, … ,𝑛𝑛}, we need to bridge the target estimation 𝜏𝜏(x𝑖𝑖;𝜃𝜃) with the observed outcome 𝑦𝑦𝑖𝑖 
for each individual. Obviously, if we have an oracle the counterfactual outcome  𝑦𝑦𝑖𝑖

𝑐𝑐𝑐𝑐  for each 
individual x𝑖𝑖, several lines of algebra then imply that 

                𝔼𝔼[𝑦𝑦𝑖𝑖] = (2𝑡𝑡𝑖𝑖 − 1)𝜏𝜏(x𝑖𝑖;𝜃𝜃) + 𝔼𝔼�𝑦𝑦𝑖𝑖
𝑐𝑐𝑐𝑐�                    (4) 

This permits us to optimize the THE model 𝜏𝜏(x; 𝜃𝜃) in a supervised learning manner by 

𝜃𝜃∗ ∈ argmin
𝜃𝜃∈𝚯𝚯

1
𝑛𝑛
��𝑦𝑦𝑖𝑖 − �(2𝑡𝑡𝑖𝑖 − 1)𝜏𝜏(x𝑖𝑖; 𝜃𝜃) + 𝑦𝑦𝑖𝑖

𝑐𝑐𝑐𝑐��
2

𝑛𝑛

𝑖𝑖=1

          (5) 

where 𝑦𝑦𝑖𝑖
𝑐𝑐𝑐𝑐 is the counterfactual outcome of individual 𝑖𝑖 and is defined by  

𝔼𝔼�𝑦𝑦𝑖𝑖
𝑐𝑐𝑐𝑐� = 𝑡𝑡𝑖𝑖𝜇𝜇0(x𝑖𝑖) + (1− 𝑡𝑡𝑖𝑖)𝜇𝜇1(x𝑖𝑖)       (6) 

In classical non-parametric methods, the counterfactual outcome 𝑦𝑦𝑖𝑖
𝑐𝑐𝑐𝑐 is usually obtained by matching 

with individuals in the counterpart group. In this paper, we obtain it by introducing a counterfactual 
prediction component that consists of the two auxiliary outcome prediction functions 𝜇𝜇0(⋅) and 𝜇𝜇1(⋅) 
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in the training process. Substituting the definition Eq. (6) into Eq. (5), we define the following empirical 
𝜏𝜏-risk as a proxy of the PEHE-risk and use it for learning the HTE model: 

ℒ𝜏𝜏(𝜃𝜃) =
1
𝑛𝑛
�{(2𝑡𝑡𝑖𝑖 − 1)𝜏𝜏(x𝑖𝑖; 𝜃𝜃) + 𝑡𝑡𝑖𝑖𝜇𝜇0(x𝑖𝑖) + (1 − 𝑡𝑡𝑖𝑖)𝜇𝜇1(x𝑖𝑖) −  𝑦𝑦𝑖𝑖}2
𝑛𝑛

𝑖𝑖=1

     (7) 

Figure 1 illustrates the neural network architecture of our proposed direct learning framework. Since 
the method parameterizes our interested HTE model 𝜏𝜏(x; 𝜃𝜃) using neural networks and learns the model 
parameters via the empirical 𝜏𝜏-risk, we name it the TauNet. 

     
Figure 1. Neural network architecture of TauNet. The HTE prediction layers are orange. The green nodes make 
up the auxiliary counterfactual prediction component consisting of two treatment responses  𝜇𝜇0(𝑥𝑥𝑖𝑖) and 𝜇𝜇1(𝑥𝑥𝑖𝑖). 
The diamond toggle is switched according to the observed treatment. 

Till now, we have introduced how to calculate the empirical 𝜏𝜏-risk for a specific HTE function. This 
is realized by incorporating an auxiliary counterfactual outcome prediction component to bridge the 
target HTE estimate with the observed outcome for any individual. Note that, though relies on fitting 
the unknown treatment responses in the training process, the proposed TauNet differs from other 
treatment response modelling methods in that they fitted treatment response models are no longer 
needed for out-of-sample causal inference. That is, we can use the learned HTE function to estimate 
treatment effects for any individual directly. 

 

4.2 Shared Representation Layers 
Learning with auxiliary tasks is also known as multi-task learning (Ruder 2017) in the machine 

learning literature. In the context of deep multi-task learning, multi-task neural networks are usually 
realized with parameter sharing of hidden layers. In the TauNet architecture illustrated in Fig.1, the two 
auxiliary models 𝜇𝜇0(⋅), 𝜇𝜇1(⋅) and our target model 𝜏𝜏(⋅;𝜃𝜃) are parameterized independently. To improve 
learning efficiency by sharing information between different components, we extend the naïve TauNet 
by adding shared hidden layers for representation learning into the original network architecture. The 
extended neural network architecture is illustrated in Fig.2. 

 
Figure 2. Neural network architecture of the extended TauNet with shared representation learning layers. 

 

x𝑖𝑖 

𝑡𝑡𝑖𝑖 

𝒚𝒚𝒊𝒊 = (𝟐𝟐𝒕𝒕𝒊𝒊 − 𝟏𝟏)𝝉𝝉(𝐱𝐱𝐢𝐢) + 𝒚𝒚𝒊𝒊
𝒄𝒄𝒄𝒄 

𝜇𝜇0(⋅) 

𝜇𝜇1(⋅) 

𝜏𝜏(⋅) 

𝒚𝒚𝒊𝒊
𝒄𝒄𝒄𝒄 = 𝒕𝒕𝒊𝒊𝝁𝝁𝟎𝟎(𝐱𝐱𝐢𝐢) + (𝟏𝟏 − 𝒕𝒕𝒊𝒊)𝝁𝝁𝟏𝟏(𝐱𝐱𝐢𝐢) 

x𝑖𝑖 

𝑡𝑡𝑖𝑖 

𝜇𝜇0(⋅) 

𝜇𝜇1(⋅) 

𝜏𝜏(⋅) 

𝜙𝜙(⋅) 

𝒚𝒚𝒊𝒊
𝒄𝒄𝒄𝒄 = 𝒕𝒕𝒊𝒊𝝁𝝁𝟎𝟎(𝐱𝐱𝒊𝒊) + (𝟏𝟏 − 𝒕𝒕𝒊𝒊)𝝁𝝁𝟏𝟏(𝐱𝐱𝒊𝒊) 

𝒚𝒚𝒊𝒊 = (𝟐𝟐𝒕𝒕𝒊𝒊 − 𝟏𝟏)𝝉𝝉(𝐱𝐱𝒊𝒊) + 𝒚𝒚𝒊𝒊
𝒄𝒄𝒄𝒄 
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Denote the shared representation layers in the extended TauNet by 𝜙𝜙:𝒳𝒳 → Φ and parameterize the 
corresponding transformation function as 𝜙𝜙(⋅;𝑊𝑊). For each individual x𝑖𝑖, the observed covariate will 
first be transformed into 𝜙𝜙𝑊𝑊(x𝑖𝑖) ∈ Φ. With shared representation layers, the two treatment response 
functions are 𝜇𝜇0(𝜙𝜙𝑊𝑊(x);𝛽𝛽0) = 𝜇𝜇0(𝜙𝜙𝑊𝑊(x);𝛽𝛽0)  and  𝜇𝜇1(x;𝛽𝛽1) = 𝜇𝜇1(𝜙𝜙𝑊𝑊(x);𝛽𝛽1) . The target HTE 
function is parameterized as 𝜏𝜏(x;𝜃𝜃) = 𝜏𝜏(𝜙𝜙𝑊𝑊(x); 𝜃𝜃). As a result, the empirical 𝜏𝜏-risk for parameter 
optimization becomes 

ℒ𝜏𝜏(𝑊𝑊,𝜃𝜃) =
1
𝑛𝑛
��(2𝑡𝑡𝑖𝑖 − 1)𝜏𝜏(𝜙𝜙𝑊𝑊(x𝑖𝑖);𝜃𝜃) + 𝑡𝑡𝑖𝑖𝜇𝜇0�𝜙𝜙𝑊𝑊(x𝑖𝑖)�+ (1− 𝑡𝑡𝑖𝑖)𝜇𝜇1�𝜙𝜙𝑊𝑊(x𝑖𝑖)� −  𝑦𝑦𝑖𝑖�

2
𝑛𝑛

𝑖𝑖=1

     (8) 

In this realization, the two treatment response prediction tasks and the treatment effect estimation 
task can further share information in a deep multi-task learning manner through the shared 
representation learning layers 𝜙𝜙(⋅;𝑊𝑊), whose weight matrix 𝑊𝑊 is trained to minimize both the above 
empirical 𝜏𝜏-risk and the empirical 𝜇𝜇-prediction risks in Eq. (3).  

4.3 Treatment Propensity Regularizer 
While using hidden representation layers to share information among multiple tasks is easy, it is still 

important for us to figure out essential constraints on these shared representation layers. That is, how 
should we guide the parameters optimization process of these shared representation layers? In the 
treatment response modelling framework for causal inference, balanced representation learning 
methods (Shalit, Johansson & Sontag 2017) (Yao et al. 2018) propose to learn a balanced representation 
so that the discrepancy between the treated and control distributions induced by the learned 
representation is small. Based on the extended TauNet with shared representation layers, we follow the 
same idea used in the DragonNet by (Shi, Blei & Veitch 2019) that the shared representation should 
extract information that are both outcome and treatment predictive from the original pre-treatment 
covariates. 

With such an objective in mind, we further add an auxiliary treatment prediction layer on top of the 
shared hidden representation layers and the extended neural network architecture is illustrated in Fig.3. 
In this neural network, denote the auxiliary treatment prediction layers as 𝑔𝑔:Φ → [0,1]  and 
parameterize it with parameters 𝜑𝜑 ∈ Ψ, the prediction loss for a specific 𝜑𝜑 ∈ Ψ is then 

ℒ𝑔𝑔(𝑊𝑊,𝜑𝜑) =
1
𝑛𝑛
�−𝑡𝑡𝑖𝑖 log𝑔𝑔(𝜙𝜙𝑊𝑊(x𝑖𝑖),𝜑𝜑) − (1 − 𝑡𝑡𝑖𝑖) log�1− 𝑔𝑔(𝜙𝜙𝑊𝑊(x𝑖𝑖),𝜑𝜑)�
𝑛𝑛

𝑖𝑖=1

     (9) 

    Because this prediction loss is essentially targeted for constraining the learning of the shared 
representation layers such that the shared representation is both outcome and treatment predictive, we 
regard it as a regularizer and call it the treatment propensity regularizer. 

 
Figure 3. Neural network architecture of the extended TauNet with shared representation learning layers and 
treatment propensity regularization. 

 

x𝑖𝑖 

𝑡𝑡𝑖𝑖 
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𝒚𝒚𝒊𝒊
𝒄𝒄𝒄𝒄 = 𝒕𝒕𝒊𝒊𝝁𝝁𝟎𝟎(𝐱𝐱𝒊𝒊) + (𝟏𝟏 − 𝒕𝒕𝒊𝒊)𝝁𝝁𝟏𝟏(𝐱𝐱𝒊𝒊) 

𝑔𝑔�𝑡𝑡𝑖𝑖�𝜙𝜙(x𝑖𝑖)� 

𝒚𝒚𝒊𝒊 = (𝟐𝟐𝒕𝒕𝒊𝒊 − 𝟏𝟏)𝝉𝝉(𝐱𝐱𝒊𝒊) + 𝒚𝒚𝒊𝒊
𝒄𝒄𝒄𝒄 
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Table 1: Objective function specifications for different variants of TauNet 

Estimators 𝐿𝐿𝜇𝜇
(𝑖𝑖) ℒ𝜏𝜏 ℒ𝑔𝑔 Ωwd 

TauNet-Null 𝐿𝐿�𝜇𝜇𝑡𝑡𝑖𝑖�x𝑖𝑖;𝛽𝛽𝑡𝑡𝑖𝑖�,𝑦𝑦𝑖𝑖� ℒ𝜏𝜏(𝜃𝜃) 0 ‖𝛽𝛽0‖22 + ‖𝛽𝛽1‖22 + ‖𝜃𝜃‖22 

TauNet-Simple 𝐿𝐿�𝜇𝜇𝑡𝑡𝑖𝑖�𝜙𝜙𝑊𝑊(x𝑖𝑖);𝛽𝛽𝑡𝑡𝑖𝑖�,𝑦𝑦𝑖𝑖� ℒ𝜏𝜏(𝑊𝑊,𝜃𝜃) 0 ‖𝑊𝑊‖22 + ‖𝛽𝛽0‖22 + ‖𝛽𝛽1‖22 + ‖𝜃𝜃‖22 

TauNet-Reg 𝐿𝐿�𝜇𝜇𝑡𝑡𝑖𝑖�𝜙𝜙𝑊𝑊(x𝑖𝑖);𝛽𝛽𝑡𝑡𝑖𝑖�,𝑦𝑦𝑖𝑖� ℒ𝜏𝜏(𝑊𝑊,𝜃𝜃) ℒ𝑔𝑔(𝑊𝑊,𝜑𝜑) ‖𝑊𝑊‖22 + ‖𝛽𝛽0‖22 + ‖𝛽𝛽1‖22 + ‖𝜑𝜑‖22 + ‖𝜃𝜃‖22 

 

4.4 The Objective Functions and Algorithm 

Define the outcome prediction loss for an observed sample (x𝑖𝑖 , 𝑡𝑡𝑖𝑖 , 𝑦𝑦𝑖𝑖) as 

𝐿𝐿𝜇𝜇
(𝑖𝑖) =  𝑡𝑡𝑖𝑖 ⋅ 𝐿𝐿(𝜇𝜇0(x𝑖𝑖),𝑦𝑦𝑖𝑖) + (1 − 𝑡𝑡𝑖𝑖) ⋅ 𝐿𝐿(𝜇𝜇1(x𝑖𝑖),𝑦𝑦𝑖𝑖) 

where 𝐿𝐿(𝜇𝜇(x𝑖𝑖), 𝑦𝑦𝑖𝑖) = (𝜇𝜇(x𝑖𝑖) − 𝑦𝑦𝑖𝑖)2  for continuous outcomes and the log-loss  𝐿𝐿(𝜇𝜇(x𝑖𝑖), 𝑦𝑦𝑖𝑖) =
−𝑦𝑦𝑖𝑖 log 𝜇𝜇(x𝑖𝑖) − (1 − 𝑦𝑦𝑖𝑖) log�1 − 𝜇𝜇(x𝑖𝑖)� for binary outcomes. By combining the learning objectives of all 
components together and adding a weight decay regularization term Ωwd, we obtain the following joint loss 
function for a general TauNet: 

ℒ𝑛𝑛TauNet = ℒ𝜏𝜏 +
𝛼𝛼
𝑛𝑛�𝐿𝐿𝜇𝜇

(𝑖𝑖)
𝑛𝑛

𝑖𝑖=1

+ 𝛾𝛾 ⋅ ℒ𝑔𝑔 + 𝜆𝜆 ⋅ Ωwd    (10) 

where  𝛼𝛼, 𝛾𝛾, λ > 0  are hyper-parameters. Normally, the sample sizes of the two treatment groups in the 
training data are imbalanced. In practice, to compensate for this imbalance, we further weight the outcome 
prediction loss for each individual by an outcome prediction weight defined as 

𝑤𝑤𝑖𝑖 = 𝑡𝑡𝑖𝑖 +
𝑝𝑝(1 − 𝑡𝑡𝑖𝑖)

1 − 𝑝𝑝  

where 𝑝𝑝 = 𝑝𝑝(𝑡𝑡 = 1) = 1
𝑛𝑛
∑ 𝑡𝑡𝑖𝑖𝑛𝑛
𝑖𝑖=1  is simply the treatment proportion in the training dataset. As a result, the 

objective function in Eq.(10) becomes 

ℒ𝑛𝑛TauNet = ℒ𝜏𝜏 +
𝛼𝛼
𝑛𝑛�𝑤𝑤𝑖𝑖 ⋅ 𝐿𝐿𝜇𝜇

(𝑖𝑖)
𝑛𝑛

𝑖𝑖=1

+ 𝛾𝛾 ⋅ ℒ𝑔𝑔 + 𝜆𝜆 ⋅ Ωwd    (11) 

Since the TauNet with architecture shown in Fig.1 does not have shared hidden layers among different 
components, we label it the TauNet-Null. Analogously, the TauNets with architecture shown in Fig.2 and 
Fig.3 are labelled as TauNet-Simple and TauNet-Reg respectively since the latter use the treatment 
propensity prediction component to regularize the shared representation layers while the former does not. 
The specifications of different loss components in the general loss function Eq.(11)  are listed in Table 1. 
We use the stochastic optimization method Adam (Kingma & Ba 2015) to train the model. The pseudocode 
for the joint learning process is summarized in Algorithm1. 

Algorithm 1 Learning Process for TauNet 
Input: Observation data 𝒟𝒟 = {(x1, 𝑡𝑡1,𝑦𝑦1), … , (x𝑛𝑛 , 𝑡𝑡𝑛𝑛 ,𝑦𝑦𝑛𝑛)}, hyper-parameters 𝛼𝛼, 𝛾𝛾, λ ≥ 0, training 
batch size 𝐵𝐵, number of epochs 𝐾𝐾, and learning rate 𝜖𝜖 
Output: The learned parameters (𝑊𝑊,𝜑𝜑,𝛽𝛽0 ,𝛽𝛽1, 𝜃𝜃) 
Procedure: 
  1. Initialize parameters for 𝜇𝜇0(⋅;𝛽𝛽0), 𝜇𝜇1(⋅;𝛽𝛽1) and the HTE model 𝜏𝜏(⋅;𝜃𝜃) 
  2. Split 𝒟𝒟 into the training set 𝒟𝒟𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡  and validation set 𝒟𝒟𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣  
  3. for 𝑘𝑘 = 1, 2, … ,𝐾𝐾, do 
  4.     Sample a training batch 𝒟𝒟𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏ℎ = {(x1𝑘𝑘 , 𝑡𝑡1𝑘𝑘 ,𝑦𝑦1𝑘𝑘), … , (x𝐵𝐵𝑘𝑘 , 𝑡𝑡𝐵𝐵𝑘𝑘 ,𝑦𝑦𝐵𝐵𝑘𝑘)} from 𝒟𝒟𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡  
  5.     Update the parameters (𝑊𝑊,𝜑𝜑,𝛽𝛽0,𝛽𝛽1 ,𝜃𝜃) by gradient descent to minimize Eq.(11) on 𝒟𝒟𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏ℎ. 
  6.     Test convergence using 𝒟𝒟𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣 , if converge 
  7.           break 
  8. end for 
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Figure 4. Graphical illustration of the causal inference process via the three groups of methods. (a) Indirect 
learning by inferring the counterfactual outcome via matching; (b) indirect learning methods by inferring the two 
underlying treatment response functions; and (c) the proposed direct learning method by modelling and inferring 
the target HTE function directly. 

   
Figure 5. Illustration of the three groups of causal inference methods on the example data. (a) Indirect learning 
by inferring the counterfactual outcome via matching; (b) indirect learning methods by inferring the two 
underlying treatment response functions; and (c) the proposed direct learning methods by inferring the target HTE 
function directly. 

 

4.5 Indirect v.s. Direct Learning Methods for Causal Inference 
We have introduced a direct learning framework for causal inference and its three realizations: 

TauNet-Null, TauNet-Simple and TauNet-Reg. In this section, we summarize the difference between 
the proposed direct learning methods with existing indirect methods. Note that existing representation 
learning based methods intrinsically fulfill the task of causal inference by learning the treatment 
response functions. As a result, there are generally two groups of indirect learning methods for causal 
inference: (1) estimating treatment effects by inferring the counterfactual outcome for each individual; 
and (2) estimating treatment effects by inferring the two underlying treatment response functions. 
Overall, we illustrate the causal inference processes of the two groups of indirect learning methods and 
our proposed direct learning methods in Figure 4. 

For the sake of explanation, consider a data-generating process where the observed scaler 
covariate x ∈ [−2, 2]. The underlying treatment assignment mechanism that allocates treatments to 

individuals depends on the covariate value  x via 𝑡𝑡~Bern �x
2+0.5
5

�. With this treatment assignment 
mechanism, individuals with covariate value x far away from 0 are more likely to be treated while 
individuals with value x close to 0 are more likely be assigned into the control group. The two treatment 
response functions are  𝜇𝜇0(x) = x2 + |x|  and  𝜇𝜇1(x) = x2 + |x| + 2x  respectively. With this data-
generating process, it is easy to figure out that the target treatment effect function is 𝜏𝜏(x) = 𝜇𝜇1(x) −
𝜇𝜇0(x) = 2x. For simplicity, we generate 20 samples by this data-generating process. The observational 
samples 𝒟𝒟 = {(x𝑖𝑖 , 𝑡𝑡𝑖𝑖 ,𝑦𝑦𝑖𝑖), 𝑖𝑖 = 1, … ,20} are illustrated in Fig.5. 

Fig. 5(a) illustrates the estimation process of non-parametric causal inference via nearest 
neighborhood matching on the example data. Take the individual with x = 0.6 for example, since we 
have observed its factual outcome under no treatment  𝑦𝑦 = 𝜇𝜇0(x) = 0.96 , to estimate the 

𝑦𝑦𝑖𝑖
𝑐𝑐𝑐𝑐 

xi 

𝑡𝑡𝑖𝑖 𝑦𝑦𝑖𝑖 

𝜇𝜇0 𝜇𝜇1 

𝜏𝜏 

x 

𝑡𝑡 𝑦𝑦 

𝜇𝜇1 

x 

𝑡𝑡 𝑦𝑦 

𝜏𝜏 𝑌𝑌𝑐𝑐𝑐𝑐 
𝜇𝜇0 
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ITE  𝜏𝜏(x = 0.6) , we firstly infer its counterfactual outcome if treated. Comparing it with other 
individuals in the treated group, we match the individual with its nearest neighbour whose covariate 
value is 0.8 and thus get its estimation as 𝑦𝑦𝑐𝑐𝑐𝑐 = 𝜇𝜇1(0.8) = 3.04 . As a result, the non-parametric 
matching estimator obtain the estimated ITE for x = 0.6 as 𝜏𝜏 = 𝑦𝑦𝑐𝑐𝑐𝑐 − 𝑦𝑦 = 2.08. By contrast, as shown 
in Fig. 5(b), methods based on treatment response modelling fit the treatment response functions 𝜇𝜇0(x) 
and  𝜇𝜇1(x)  on the untreated and the treated samples respectively. Based on the learned treatment 
response functions, the ITE for any individual is calculated via 𝜏𝜏(x) = 𝜇𝜇1(x) − 𝜇𝜇0(x). 

Both non-parametric methods and outcome regression methods are very popular for causal inference 
in the literature. However, when the covariate dimension gets higher, it may not be possible for us to 
match individuals from a limit set of observations. In addition, when the underlying treatment responses 
are complex, mild model misspecification in treatment response modelling may lead serous bias in the 
final treatment effect estimation. Since the quantity we are of direct interest is the difference between 
the treatment response if treated versus that if untreated, why do we not learn a model of the difference 
directly? With such a question in mind, we propose to learn it directly using observational data rather 
than estimating it indirectly by firstly inferring the unobserved counterfactual outcome or the treatment 
response functions. The treatment effect estimation process of the direct learning framework is 
illustrated in Fig.5 (c). 

 

5 Experimental Studies 
In general, it is difficult to validate treatment effect estimation models on observational datasets since 

we have no access to all the potential outcomes or the true ITE for any individual. To evaluate the 
performance of our proposed direct learning method: Tau-Null, Tau-Simple and Tau-Reg, we conduct 
experiments on semi-simulated data, experimental data from real-world applications as well as synthetic 
data1. Details on hyper-parameter configurations are described in the appendix. 

5.1 Baselines and Evaluation Metrics 
We compare the proposed method empirically with the three groups of methods introduced in Section 

3. Explanations of baseline methods are listed in Table 2. 

Table 2: List of baseline methods 

 Method Explanation 

Non-
parametric 
methods 

kNN (Crump et al. 2008) Matching with k-nearest neighbors 
PSM (Stuart 2010) Propensity score matching with logistic regression 

CF (Wager & Athey 2018) Causal forest 

Treatment 
response 

modelling 
based 

OLS1/LR1 Ordinal least square / logistic regression with the treatment as a covariate 
OLS2/LR2 Separate ordinal least square / logistic regression for each treatment group 
BART (Hill 2011) Bayesian additive regression trees 
SRF (Künzel et al. 2019) S-Learner with random forest as meta learner  
TRF (Künzel et al. 2019) T-Learner with random forest as meta learner 

XRF (Künzel et al. 2019) X-Learner with random forest and logistic regression as meta learners 

Representation 
learning based 

BLR (Johansson, Shalit & Sontag 2016) Balancing linear regression with covariate selection 

BNN (Johansson, Shalit & Sontag 2016) Balancing neural network with linear discrepancy 
TARNet (Shalit, Johansson & Sontag 2017) Target-agnostic representation network 
CFR-MMD (Shalit, Johansson & Sontag 2017) Counterfactual regression network with the MMD metric 
CFR-Wass (Shalit, Johansson & Sontag 2017) Counterfactual regression network with the Wasserstein metric 

DragonNet (Shi, Blei & Veitch 2019) DragonNet with two outcome perdition heads and a propensity prediction head 

                                                             
1 Source code will be openly accessible after revision. 
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    It has been well known that evaluation of treatment effect estimation methods is difficult due to the 
fundamental problem that treatment outcomes are partially observed in the data. For synthetic and semi-
simulated data where the true treatment effect for each individual is known, we use the square root of 
PEHE and mean absolute errors for evaluating the estimation performance of HTE, ATE and ATT 
respectively: 

𝜖𝜖𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃 = �
1
𝑛𝑛
�(𝜏𝜏𝑖𝑖 − 𝜏̂𝜏𝑖𝑖)2
𝑛𝑛

𝑖𝑖=1

    

𝜖𝜖𝐴𝐴𝐴𝐴𝐴𝐴 = �𝐴𝐴𝐴𝐴𝐴𝐴�−𝐴𝐴𝐴𝐴𝐴𝐴� =
1
𝑛𝑛
��(𝜏𝜏𝑖𝑖 − 𝜏̂𝜏𝑖𝑖)
𝑛𝑛

𝑖𝑖=1

� 

𝜖𝜖𝐴𝐴𝐴𝐴𝐴𝐴 = �𝐴𝐴𝐴𝐴𝐴𝐴�−𝐴𝐴𝐴𝐴𝐴𝐴� =
1
𝑛𝑛1
��(𝜏𝜏𝑖𝑖 − 𝜏̂𝜏𝑖𝑖)
𝑖𝑖∈𝒯𝒯1

� 

For all evaluation metrics, we report both the within-sample error and the out-of-sample error, where 
the former is computed over the training and validation sets, and the later is computed over the test set. 
Standard deviations for multiple replications are also reported. 

5.2 Semi-simulated Data: IHDP 
    The first dataset we use to evaluate the proposed methods is the semi-simulated data IHDP. It was first 
compiled in (Hill 2011) based on the Infant Health and Development Program (IHDP), which is a 
randomized control trail aiming at assessing the impact of specialists’ visits on children’s test scores. There 
are 985 individuals recorded in the original dataset with each individual consisting of 6 continuous and 19 
binary covariates measuring properties of a child and his/her mother. Examples of covariates include gender 
and birth weight of children, age and education attainment of mothers. The binary treatment 𝑡𝑡 indicates 
whether a child was assigned into the program where both intensive high-quality childcare and home visits 
from a trained provider were provided. To create an observational study dataset, the records with non-white 
mothers in the treatment group are omitted to make the treatment and control groups unbalanced. In total 
there are 747 records (139 treated and 608 control) left in the new dataset. 

By keeping the observed covariates and treatment variables from the original data fixed, we simulate 
treatment responses using both the setting “A” and “B” introduced in (Hill 2011). In particular, the setting 
A simulates linear treatment outcomes via 𝜇𝜇0(x𝑖𝑖) = x𝑖𝑖𝑇𝑇𝛽𝛽𝐴𝐴 and 𝜇𝜇1(x𝑖𝑖) = x𝑖𝑖𝑇𝑇𝛽𝛽𝐴𝐴 + 4, where the coefficients 
in the 25-dimensional vector  𝛽𝛽𝐴𝐴  are randomly sampled from  [0, 1,2,3,4]  with 
probabilities  [0.5, 0.2,0.15, 0.1, 0.05] . In the nonlinear outcome setting B, the two treatment response 
functions are 𝜇𝜇0(x𝑖𝑖) = exp((x𝑖𝑖 + 0.5𝐼𝐼)𝑇𝑇𝛽𝛽𝐵𝐵)  and  𝜇𝜇1(x𝑖𝑖) = x𝑖𝑖𝑇𝑇𝛽𝛽𝐵𝐵 − 𝜔𝜔 , where the coefficients in  𝛽𝛽𝐵𝐵  are 
randomly sampled from [0, 0.1, 0.2, 0.3, 0.4] with probabilities [0.6, 0.1, 0.1, 0.1, 0.1], and the offset 𝜔𝜔 was 
chosen such that the true ATE equals 4. In both simulated datasets, we observe for each individual a noisy 
observational outcome 𝑦𝑦𝑖𝑖 = 𝑡𝑡𝑖𝑖𝜇𝜇1(𝑥𝑥𝑖𝑖) + (1 − 𝑡𝑡𝑖𝑖)𝜇𝜇0(𝑥𝑥𝑖𝑖) + 𝑁𝑁(0,1). 

We denote the dataset obtained via the simulation setting A and setting B as IHDP-A and IHDP-B 
respectively. The simulated noiseless outcomes are used to compute the true effects. With continuous 
outcomes, we used the 𝐿𝐿2 loss 𝐿𝐿(𝜇𝜇(x𝑖𝑖),𝑦𝑦𝑖𝑖) = (𝜇𝜇(x𝑖𝑖) − 𝑦𝑦𝑖𝑖)2 for computing outcome prediction losses. 
For comparison, we follow similar neural network configurations in (Shalit, Johansson & Sontag 2017) 
that used 3 exponential-linear layers for the shared representation and the two auxiliary treatment 
response components. Layer size were 200 for representation learning and outcome prediction. Other 
network configurations are described in the appendix. We ran 10 replicates for selecting the hyper-
parameters 𝛼𝛼, 𝛾𝛾, λ and experimental results for 100 experiments with a 63/27/10 train/validation/test 
split ratio are demonstrated in Table 3. 
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Table 3: Within-sample and out-of-sample results on the IHDP dataset. (Lower is better) 

 IHDP-A: Linear outcomes IHDP- B: Non-linear outcomes 
 𝜖𝜖𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑖𝑖𝑖𝑖  𝜖𝜖𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃out  𝜖𝜖𝐴𝐴𝐴𝐴𝐴𝐴𝑖𝑖𝑖𝑖  𝜖𝜖𝐴𝐴𝐴𝐴𝐴𝐴out  𝜖𝜖𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑖𝑖𝑖𝑖  𝜖𝜖𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃out  𝜖𝜖𝐴𝐴𝐴𝐴𝐴𝐴𝑖𝑖𝑖𝑖  𝜖𝜖𝐴𝐴𝐴𝐴𝐴𝐴out  

kNN 2.68±1.75 4.73±1.91 0.18±0.21 0.46±0.14 2.33±1.75 3.95±1.91 0.16±0.21 0.54±0.14 
PSM 6.68±3.38 6.76±2.78 3.79±1.31 3.89±0.10 5.87±3.38 5.86±2.78 3.66±1.31 3.55±0.10 

CF 4.77±2.33 5.07±2.09 0.39±0.36 0.64±0.59 3.07±2.33 3.03±2.09 0.35±0.36 0.47±0.59 
OLS1 5.06±1.26 5.08±1.06 0.83±0.69 0.90±0.13 4.03±1.26 3.95±1.06 0.61±0.69 0.73±0.13 
OLS2 1.89±1.58 1.96±1.33 0.15±0.48 0.25±0.13 1.61±1.58 1.67±1.33 0.12±0.48 0.21±0.13 

BART 1.17±0.30 1.93±0.54 0.12±0.06 0.23±0.08 0.84±0.30 1.13±0.54 0.12±0.06 0.17±0.08 
SRF 3.46±1.70 3.87±1.65 0.57±0.34 0.80±0.21 2.34±1.70 2.46±1.65 0.32±0.34 0.35±0.21 
TRF 2.04±0.77 3.06±1.46 0.15±0.08 0.37±0.11 1.51±0.77 2.06±1.46 0.14±0.08 0.24±0.11 
XRF 3.31±1.73 3.73±1.83 0.24±0.20 0.46±0.16 2.28±1.73 2.40±1.83 0.20±0.20 0.33±0.16 
BLR 1.39±1.45 1.42±1.73 0.21±0.23 0.24±0.28 1.02±1.45 1.07±1.73 0.18±0.23 0.21±0.28 
BNN 1.28±0.99 1.32±1.26 0.17±0.12 0.23±0.18 1.03±0.99 1.07±1.26 0.20±0.12 0.22±0.18 

TARNet 1.49±1.11 1.59±1.00 0.26±0.23 0.31±0.24 1.30±1.11 1.34±1.00 0.27±0.23 0.30±0.24 
CFR-MMD 1.52±1.26 1.59±1.42 0.23±0.20 0.27±0.25 1.27±1.26 1.33±1.42 0.23±0.20 0.27±0.25 
CFR-Wass 1.44±0.72 1.53±1.17 0.25±0.17 0.29±0.24 1.26±0.72 1.35±1.17 0.26±0.17 0.30±0.24 
DragonNet 1.56±1.35 1.61±1.47 0.33±0.38 0.37±0.44 1.32±1.35 1.46±1.47 0.24±0.38 0.28±0.44 

TauNet-Null 1.27±0.90 1.39±1.13 0.17±0.13 0.24±0.21 1.07±0.90 1.19±1.13 0.15±0.13 0.19±0.21 
TauNet-Simple 0.99±0.97 1.17±1.42 0.20±0.25 0.24±0.31 0.79±0.97 0.97±1.42 0.16±0.25 0.16±0.31 

TauNet-Reg 1.14±1.10 1.25±1.30 0.17±0.15 0.22±0.22 1.12±1.10 1.28±1.30 0.19±0.15 0.23±0.22 

As we can see from the table, while our proposed methods obtain the lowest out-sample estimation errors 
in both ITE and ATE estimation, representation learning and DNN based estimators perform generally better 
than estimators based on linear or classical statistical models in terms of individual treatment effect 
estimation (𝜖𝜖𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃 ). In addition, the BART estimator specially designed for the IHDP data obtains very 
similar performances in out-sample ATE estimation, with slightly higher estimation errors 𝜖𝜖𝐴𝐴𝐴𝐴𝐴𝐴out  than our 
TauNet-Simple and TauNet-Reg on the IHDP-A and IHDP-B datasets respectively. By comparing the 
performances of our TauNet-Reg method with DragonNet, we find that using a learned HTE model does 
improve ITE and ATE estimation performances for the IHDP dataset. Moreover, comparing the three TauNet 
variants, it is easy to conclude that sharing information by adding shared representation layers does benefit 
treatment effect estimation. However, it is beyond our expectation that regularizing the shared representation 
to make it treatment predictive does not necessarily improve treatment effect estimation. 

To further investigate the influence of each auxiliary component in the objective function Eq.(11) on the 
final treatment effect estimation performance. We evaluate ITE estimation errors 𝜖𝜖𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃  of the TauNet-Reg 
method with related to the hyper-parameters 𝛼𝛼, 𝛾𝛾, λ when we change one hyper-parameter at a time (𝛼𝛼, 𝛾𝛾 ∈
(10−4, 10−3, 10−2, 10−1), λ ∈ (10−4, 10−3, 10−2) ) while keeping other parameters in their optimal 
configurations. As we can conclude from the resulting error curves in Fig.6, while a large outcome prediction 
parameter (𝛼𝛼) is important for low treatment effect estimation error, changes in the treatment prediction 
parameter ( 𝛾𝛾 ) does not really influence the final estimation very much. This actually matches the 
performances of the results in Table 3. In additional, For the IHDP data, since the simulation treatment 
response functions are relatively simple, using a higher weight decay parameter (λ = 0.01) encourages 
simpler models and thus tends to gain lower estimation errors. 

 

 
Figure 6. Out-sample ITE estimation errors 𝜖𝜖𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃 over different hyper-parameters for the IHDP-A dataset (top) 
and the IHDP-B dataset (bottom). 
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5.3 Real-World Data: Jobs 

We also validate the proposed method using the real Jobs dataset, which combines a randomized 
study ℛ based on the National Supported Work program with a larger observational dataset 𝒪𝒪. This 
dataset was collected to evaluate the effect of job training programs on the employment status. In the 
original LaLonde randomized sample ℛ by (LaLonde 1986), there are 722 employees (297 treated and 
425 control) with 8 covariates such as age, education, and previous earnings. The binary treatment is 
whether an employee was enrolled in the job training program. For more details of the randomized 
study and data, refer2. To evaluate causal inference algorithms, (Shalit, Johansson & Sontag 2017) 
constructed the Job dataset by combining the LaLonde randomized sample ℛ with the observational 
PSID comparison sample 𝒪𝒪 (2490 control)  to predict unemployment after job training. In the Jobs 
dataset, the original 8 covariates are transformed into a 17 dimension feature set. As a result, we obtain 
a real world binary-treatment binary-outcome dataset with 3212 examples and 17 dimensional features.  

    For the Jobs dataset, since the true ITEs are unknown, we are unable to calculate the RMSE 𝜖𝜖𝐼𝐼𝐼𝐼𝐼𝐼. 
Following (Shalit, Johansson & Sontag 2017) and (Louizos et al. 2017), we use the policy risk estimated 
for the randomized subset ℛ as a proxy to the ITE performance 

 𝑅𝑅𝑝𝑝𝑝𝑝𝑝𝑝(𝜋𝜋𝜏𝜏�) = 1− �𝑝𝑝(𝜋𝜋𝜏𝜏�(x) = 1) ∙ 𝔼𝔼[𝑌𝑌1|𝜋𝜋𝜏𝜏�(x) = 1] + �1− 𝑝𝑝(𝜋𝜋𝜏𝜏�(x) = 1)� ∙ 𝔼𝔼[𝑌𝑌0|𝜋𝜋𝜏𝜏�(x) = 0]� 

where 𝜋𝜋𝜏𝜏� :𝒳𝒳 → {0,1} is an policy induced from an ITE estimator 𝜏̂𝜏(⋅) with 𝜋𝜋𝜏𝜏�(x) = 1 if 𝜏̂𝜏(x) > 0, and 
𝜋𝜋𝜏𝜏�(x) = 0 otherwise. This measures the average regret when treating with the induced policy 𝜋𝜋𝜏𝜏�  and 
thus can serve as a proxy of the ITE estimation error. Instead of ATE, the NSW program aims at 
estimating the effect of job training on employment after training for employees enrolled in the training 
program, i.e., the ATT. Since all the treated individuals came from the randomized study ℛ, we can 
easily estimate ATT by  

𝐴𝐴𝐴𝐴𝐴𝐴 ≔
1

|𝒯𝒯1|��𝑌𝑌1(x𝑖𝑖) − 𝑌𝑌0(x𝑖𝑖)�
𝑖𝑖∈𝒯𝒯1

=
1

|𝒯𝒯1|�𝑦𝑦𝑖𝑖
𝑖𝑖∈𝒯𝒯1

−
1

|𝒯𝒯0 ∩ ℛ| � 𝑦𝑦𝑖𝑖
𝑖𝑖∈𝒯𝒯0∩ℛ

  

where 𝒯𝒯1 and 𝒯𝒯0 are the treated and control group in the full dataset. We replicated the experiment 50 
times with a 56/24/20 train/validation/test ratio. Since we have only 297 treated samples in this dataset, 
we choose 500 samples for training at every training batch. The average performances and the 
corresponding empirical standard deviations are list in Table 4.  

Table 4: Within-sample and out-of-sample results on Jobs dataset. (Lower is better) 
 𝑅𝑅𝑝𝑝𝑝𝑝𝑝𝑝𝑖𝑖𝑖𝑖  𝑅𝑅𝑝𝑝𝑝𝑝𝑝𝑝out 𝜖𝜖𝐴𝐴𝐴𝐴𝐴𝐴in  𝜖𝜖𝐴𝐴𝐴𝐴𝐴𝐴out  

kNN 0.08±0.01 0.26±0.05 0.03±0.02 0.10±0.05 
PSM 0.28±0.03 0.29±0.06 0.34±0.41 0.36±0.41 

CF 0.17±0.02 0.24±0.05 0.02±0.01 0.07±0.05 
LR1 0.22±0.01 0.23±0.05 0.01±0.01 0.06±0.05 
LR2 0.23±0.01 0.24±0.05 0.01±0.01 0.06±0.05 

BART 0.21±0.01 0.25±0.05 0.10±0.05 0.12±0.10 
SRF 0.20±0.03 0.25±0.05 0.03±0.01 0.07±0.05 
TRF 0.11±0.01 0.24±0.05 0.02±0.01 0.07±0.05 
XRF 0.12±0.01 0.23±0.04 0.02±0.01 0.07±0.05 
BLR 0.23±0.01 0.23±0.04 0.03±0.02 0.07±0.05 
BNN 0.24±0.01 0.24±0.04 0.03±0.02 0.07±0.05 

TARNet 0.23±0.01 0.23±0.05 0.06±0.02 0.08±0.05 
CFR-MMD 0.23±0.01 0.24±0.04 0.04±0.02 0.09±0.05 
CFR-Wass 0.23±0.01 0.24±0.04 0.04±0.03 0.08±0.07 
DragonNet 0.17±0.02 0.22±0.04 0.04±0.04 0.10±0.08 

TauNet-Null 0.18±0.02 0.21±0.05 0.03±0.02 0.08±0.06 
TauNet-Simple 0.20±0.02 0.23±0.05 0.03±0.02 0.07±0.05 

TauNet-Full 0.17±0.02 0.23±0.04 0.04±0.03 0.07±0.05 

                                                             
2 Available at: http://users.nber.org/~rdehejia/data/nswdata2.html  
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Figure 7. HTE estimation errors over different hyper-parameters for the Jobs dataset. 

 
As we can see from the result, in general, almost all methods get decent estimation performances. In 

particular, straightforward modelling the treatment response models with logistic regression, either with 
a single outcome model or two separate outcome models, perform remarkably well in ATT estimation. 
However, since logistic regression is a linear model, the HTE function derived from the two logistic 
regression treatment response model will also be linear. As a result, we can only ascribe simple 
treatment policies and thus the policy risk for these methods are slightly higher than our proposed DNN-
based methods. Comparing the three TauNet variants, we can conclude that adding shared 
representation learning layers does not improve heterogeneous treatment effect estimation but is likely 
to benefit ATT estimation. 

We also investigated the HTE estimation performance 𝑅𝑅pol of the TauNet-Reg method with related 
to the hyper-parameters  𝛼𝛼, 𝛾𝛾  and  λ . The resulting error curves along hyper-parameter values are 
illustrated in Fig.7. As we can see, for this dataset, a relatively larger outcome prediction parameter (𝛼𝛼) 
is important for getting a lower policy risk. Comparatively, the impact of the treatment prediction 
parameter (𝛾𝛾) fluctuates in its value range. Notably, observing the estimation errors along the weight 
decay parameter λ, we know that smaller λ and thus more complex models are preferred for treatment 
effect estimation on this dataset. 

 

5.4 Experiment on Synthetic Data 
To further check the robustness of the proposed models and their performance in different sample 

size and imbalance settings, we adapted the data simulation setup A in (Nie & Wager 2018) and 
simulated data by the following data-generating process: 

x𝑖𝑖~𝑈𝑈(0,1)5,    𝑡𝑡𝑖𝑖|x𝑖𝑖~Bern�trim𝜂𝜂(sin(𝜋𝜋x𝑖𝑖1x𝑖𝑖2))� 

where  trim𝜂𝜂(𝑧𝑧) = max{𝜂𝜂, min(𝑧𝑧, 1 − 𝜂𝜂)}  and  𝜂𝜂 ∈ (0,0.5]  is the imbalance parameter. The two 
treatment response functions and the observed factual outcome for each individual are respectively 

𝜇𝜇0(x𝑖𝑖) = sin(𝜋𝜋x𝑖𝑖1x𝑖𝑖2) + 2(x𝑖𝑖3 − 0.5)2 + x𝑖𝑖4 + 0.5x𝑖𝑖5 

𝜇𝜇1(x𝑖𝑖) = 𝜇𝜇0(x𝑖𝑖) + (x𝑖𝑖1 + x𝑖𝑖2)2 

𝑦𝑦𝑖𝑖 = 𝑡𝑡𝑖𝑖𝜇𝜇1(x𝑖𝑖) + (1 − 𝑡𝑡𝑖𝑖)𝜇𝜇0(x𝑖𝑖) 

With this data-generating process, the underlying HTE function is  𝜏𝜏(x𝑖𝑖) = 𝜇𝜇1(x𝑖𝑖) − 𝜇𝜇0(x𝑖𝑖) =
(x𝑖𝑖1 + x𝑖𝑖2)2 . We simulated data with sample size  𝑛𝑛 = 500, 1𝐾𝐾, 3𝐾𝐾, 5𝐾𝐾, 7𝐾𝐾  and 𝜂𝜂 =
0.1, 0.2, 0.3, 0.4, 0.5. For each simulation setting, we split the data into train/validation/test sets with a 
ratio of 56/24/20 and replicated the experiments 50 times. We compared our direct learning methods 
with other baselines based on representation learning and DNNs (i.e., BLR, TARNet, BNN, CFR-MMD, 
CFR-WASS and DragonNet). All neural networks have similar configurations, with 2 hidden layers for 
each component and 50 neurons each layer. Hyper-parameters are set as  𝛾𝛾 = 1 and 𝛼𝛼 = 𝜆𝜆 = 0.0001. 
The training batch size was 200.  
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5.4.1 Performances in Different Imbalance Settings 
According to the above data-generating process, the imbalance parameter 𝜂𝜂 ∈ (0,0.5] controls the 

data imbalance between the treated and untreated groups. Fig. 8 and Fig.9 illustrate respectively the 
error bar plots for out-sample ITE and ATE estimation errors with related to the imbalance parameter 𝜂𝜂 
in different sample sizes.  

As we can see from the results, as 𝜂𝜂 increases which indicates the data is getting more balanced, 
estimation errors of all methods generally decreased. While the two CFR methods get the largest 
estimation errors for both ITE and ATE estimation in almost all imbalance settings, our proposed 
methods obtain the lowest estimation errors in estimating ATE in all settings. Regarding the ITE 
estimation, our proposed TauNet-Reg method generally gets the lowest ITE estimation error except 
when 𝜂𝜂 = 0.5 and the sample size 𝑛𝑛 = 5000.  Besides error means of different methods, it is also easy 
for us to see from the error bar plots that our proposed direct learning methods get generally lower 
empirical standard deviations than their competitors. This empirically indicates that the proposed direct 
learning methods are generally more stable for treatment effect estimation. 

 

 
Figure 8. Comparisons of out-of-sample ITE estimation errors 𝜖𝜖𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃 and the corresponding empirical standard 
deviations with related to the imbalance parameter 𝜂𝜂 in different sample size 𝑛𝑛 ∈ {500, 1𝐾𝐾, 3𝐾𝐾, 5𝐾𝐾, 7𝐾𝐾}. 

 
Figure 9. Comparisons of out-of-sample ATE estimation errors 𝜖𝜖𝐴𝐴𝐴𝐴𝐴𝐴 and the corresponding empirical standard 
deviations with related to the imbalance parameter 𝜂𝜂 in different sample size 𝑛𝑛 ∈ {500, 1𝐾𝐾, 3𝐾𝐾, 5𝐾𝐾, 7𝐾𝐾}. 
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5.4.2 Performances in Different Sample Sizes 
To investigate the impact of sample size on estimation performances of different methods, we also 

illustrate the ITE and ATE estimation errors curves along sample size in different imbalance settings in 
Fig.10 and Fig.11 respectively. Since the performances of the three proposed methods are very similar, 
to avoid clutter, we only include the TauNet_Reg in Fig.10 and TauNet-Simple in Fig.11. 

As we can see from Fig.10, on one hand, as the sample size gets larger, all methods generally get 
better estimation performances; on the other hand, our proposed TauNet-Reg generally obtains the most 
stable and lowest estimation errors. Although the DragonNet gets similar and even better performance 
as the TauNet-Reg when we have relatively large sample size, its performances when the sample size 
is relatively small are barely satisfactory, generally the worst among all the comparing methods. In 
regard to ATE estimation, it is easy to see from Fig.11 that while estimation errors of other baselines 
fluctuate as the sample size increase, the estimation error of our proposed TauNet-Simple is consistently 
lower and not sensitive to the change of sample size. In addition, empirical standard deviations of 
TauNet-Simple are also the smallest, indicating that our proposed methods are generally more stable. 

 

 
Figure 10. Comparisons of out-of-sample HTE estimation errors 𝜖𝜖𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃 and corresponding empirical standard 
deviations with related to the sample size 𝑛𝑛 in different imbalance parameter settings 𝜂𝜂 ∈ {0.1, 0.2, 0.3, 0.4, 0.5}.  

 
Figure 11. Comparisons of out-of-sample ATE estimation errors 𝜖𝜖𝐴𝐴𝐴𝐴𝐴𝐴  and corresponding empirical standard 
deviations with related to the sample size 𝑛𝑛 in different imbalance parameter settings 𝜂𝜂 ∈ {0.1, 0.2, 0.3, 0.4, 0.5}. 
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6 Conclusion and Discussion 
In this paper, we proposed a direct learning framework called TauNet for treatment effect estimation 

from observational data. Compared with existing methods that complete the task in an indirect way by 
first inferring the unobserved counterfactual outcomes or the underlying treatment response models, the 
proposed TauNet parametrizes and learns the target treatment effect function directly. It builds on top 
of deep multi-task learning and is learned via an ad-hoc designed empirical 𝜏𝜏-risk. As a realization of 
the conceptual framework, we proposed three variants of TauNet: TauNet-Null, TauNet-Simple and 
TauNet-Reg. To validate their effectiveness, we conducted comprehensive experiments and compared 
these realizations with a range of baselines. The experiment results showed that the proposed methods 
performed generally better than existing baselines and tended to obtain more stable estimates. Overall, 
we have focused on treatment effect estimation with binary treatments in this paper. An interesting 
future research question is how to extend the direct learning framework to settings with multivariate 
treatments and even continuous treatments. 
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Appendix. Experiment Configurations 
Neural networks are implemented using the Tensorflow platform (Abadi et al. 2016). In all the 

experiments, we applied Xavier initialization (Glorot & Bengio 2010) for weight matrices, bias vectors 
are initialized by zeros, and scalar biases are initialized by 0.1. Search ranges of hyper-parameters 
are 𝛼𝛼, 𝛾𝛾 ∈ �10−4, 10−3, 10−2, 10−1�, λ ∈ �10−4, 10−3, 10−2� . The experimental configurations for the 
two IHDP datasets and the Jobs dataset are listed in Table A1.  

 

Table A1: Experiment configurations on each benchmark dataset 
 IHDP-A IHDP-B Jobs 

Outcome prediction parameter, 𝛼𝛼 0.1 0.1 0.1 
Propensity regularization parameter, 𝛾𝛾 0.01 0.1 0.01 
Weight-decay parameter, λ 0.01 0.01 0.0001 
Num. of representation layers 3 3 3 
Num. of outcome prediction layers 2 2 3 
Num. of HTE layers 2 2 2 
Dim. of representation layers 200 200 200 
Dim. of outcome prediction layers 200 200 200 
Dim. of treatment prediction layers 100 100 100 
Dim. of HTE layers 100 50 50 
Batch size 100 100 500 
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