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Abstract—Frequency estimation is a fundamental problem in
many areas. The well-known A&M and its variant estimators
have established an estimation framework by iteratively inter-
polating the discrete Fourier transform (DFT) coefficients. In
general, those estimators require two DFT interpolations per
iteration, have uneven initial estimation performance against
frequencies, and are incompetent for small sample numbers due
to low-order approximations involved. Exploiting the iterative
estimation framework of A&M, we unprecedentedly introduce
the Padé approximation to frequency estimation, unveil some fea-
tures about the updating function used for refining the estimation
in each iteration, and develop a simple closed-form solution to
solving the residual estimation error. Extensive simulation results
are provided, validating the superiority of the new estimator over
the state-the-art estimators in wide ranges of key parameters.

Index Terms—Frequency estimation; DFT; interpolation;
Padé approximation; Cramér-Rao lower bound (CRLB).

I. INTRODUCTION

As a fundamental research issue, frequency estimation of a
single-tone complex exponential signal has been investigated
in many areas, including vehicular communication and sensing
[1]–[3]. It is worth noting that vehicular radar/sensing based on
communication waveforms is very popular currently [4], [5],
where estimating target parameters can be treated as frequency
estimation problems [6]. Discrete Fourier transform (DFT)
and its interpolation-based frequency estimation have attracted
extensive attention, due to the low complexity and high effi-
ciency. Earlier works exploit the fixed DFT coefficients, which
can cause uneven estimation bias for different frequencies [2].
In [7], the authors introduced an iterative DFT-interpolated
frequency estimator, known as A&M, which improves the
asymptotic mean squared error (MSE) performance to 1.0147
times the Cramér-Rao lower bound (CRLB). Many variants of
A&M have been developed, achieving various improvements,
e.g., a more accurate initial estimate [8], a smaller estimation
bias [9], a particular treatment of real sinusoidal signals [10],
and an improved asymptotic performance [11].

A common issue of the above estimators [7]–[11] is that
each iteration requires at least 2N complex multiplications,
with N denoting the number of signal samples. This com-
plexity is scaled up with the number of iterations. The issue is
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specifically treated in [8] which proposes an improved initial
estimate that can reduce up to two interpolations yet with
the same asymptotic performance as the original A&M. The
issue is also noticed in [11] which uses the same number
of interpolations as A&M but achieves a better asymptotic
performance.

Another common issue of the estimators [7]–[11] is that a
first-order Taylor series (TS) is used for approximating the
relation between the updating function and the estimation
error1. On one hand, this makes the estimators incompetent
for small N ’s, since the first-order TS is only valid for large
N ’s. On the other hand, the large approximation error can lead
to uneven estimation accuracy for different frequencies. As a
consequence, more iterations may be required for a satisfactory
estimate [11]. We underline that the small-N scenario is not
uncommon. The frequency estimator studied here can be used
for estimating the angle-of-arrival (AoA) [12], [13], which is
known as spatial frequency, of an antenna array. The number
of antennas available for the spatial DFT is practically limited.

This correspondence is motivated to improve the estimation
accuracy of the DFT interpolation-based frequency estimator,
reduce interpolations and enhance the applicability to wider
range of sample numbers. A key innovation of this work is
unprecedentedly introducing the Padé approximation (PA) to
the interpolation-based frequency estimation. PA employs the
ratio of two polynomials to approximate a given power series,
e.g., TS, where the sum of the degrees of the two polynomials
in a PA is equal to the degree of the power series [14, Sec.
5.12]. Underlying the successful application of PA are several
key contributions, as summarized below.

We construct the PA that approximates the sixth-order
TS of the updating function (in contrast to the first-order
TS employed in most previous designs [7]–[11]). We prove
some useful features of the updating function in terms of its
monotonicity and symmetry, and use the features to simplify
the PA by suppressing some high-order terms. We also derive
the coefficients of the simplified PA. Moreover, we develop
a closed-form solution to solving the frequency estimation
error from the established PA, where we apply the features
of the updating function to remove the ambiguities in the
solution. Extensive simulations validate that our estimator
achieves more uniform performance across wide ranges of
sample numbers and frequencies, and approaches CRLB more
tightly, compared with state-of-the-art estimators.

1As will be illustrated in Section III-A, the updating function is used for
calculating the estimation error in each iteration.
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II. SIGNAL MODEL

Consider the estimation of the unknown frequency f from
the following N samples of a complex single-tone exponential
signal,

s(n) = Aej(
2πfn
fs

+φ) + z(n), n = 0, 1, · · · , N − 1, (1)

where A, fs, φ and N denote the signal amplitude, the
sampling rate, the initial phase and the sample number, respec-
tively. The additive white Gaussian noise (AWGN) is denoted
by z(n). The frequency f can be decomposed into the sum of
an integer and a fractional multiples of fs/N , i.e.,

f = (k? + δ)fs

/
N, δ ∈ [−0.5, 0.5], (2)

where k? denotes an integer and δ a non-integer. Taking the
N -point DFT of s(n), i.e.,

∑N−1
n=0 s(n)e−j

2πkn
N , yields,

S(k) =

N−1∑
n=0

Ãej
2π(k?+δ)n

N e−j
2πkn
N + Z(k), (3)

where Ã = Aejφ, f in (1) is replaced by its expression given
in (2), and Z(k) denotes the DFT of z(n). The integer k? can
be estimated by identifying the maximum of |S(k)|2, i.e.,

k? : max k∈[0,N−1]|S(k)|2. (4)

As generally treated in previous works [7]–[11], we assume
that k? is accurately estimated so as to focus on refining
the frequency estimate by estimating δ. This is a legitimate
assumption, since we tend to focus on the asymptotic per-
formance of a frequency estimator, as achieved in high SNR
regions, when developing a new estimator or comparing with
the previous ones. Also following the related works [7]–
[11], we focus on the single-tone signal to introduce the new
ideas/designs. The extension to multi-tone scenarios will be
remarked in Section V.

III. PROPOSED FREQUENCY ESTIMATOR

In this section, a new estimator is developed to iteratively
estimate δ. We first introduce the core updating function, based
on which we establish the overall estimator.

A. Core Updating Function

Consider the i-th iteration, where the estimate of δ from
the previous iteration, as denoted by δi−1, is available. With
reference to [11], we interpolate the DFT coefficients at

ki,± = k? + δi−1 ± qi, (5)

where k? is given in (2), and qi is an extra controlling
parameter used to shift the interpolation positions. Plugging
k = ki,± into (3), the interpolated DFT coefficients are

S(ki,±) = Ăsin(π(ξi ∓ qi))
/

sin(π(ξi ∓ qi)/N), (6)

where Ă = Ãej
(N−1)π
N (ξi∓qi), Ã given in (3), ξi(= δ − δi−1)

denotes the estimation error in the (i−1)-th iteration, and the

noise term is dropped for brevity. Denoting Si,± = S(ki,±),
we can construct the following ratio,

ρi = (|Si,+|2 − |Si,−|2)
/

(|Si,+|2 + |Si,−|2) (7)

The purpose of doing so is to estimate ξi from ρi. Let ξ̂i denote
the estimate of ξi. We can use ξ̂i to refine the δ estimation as
follows [7], [11],

δi = δi−1 + ξ̂i, s.t. ξ̂i ≈ ξi = δ − δi−1. (8)

Next, we illustrate how to estimate ξ̂i from ρi.
Introducing the function S(ξi,±qi) = sin2(π(ξi∓qi))

sin2(
π(ξi∓qi)

N )
, the

right-hand side (RHS) of (7) can be written into

f(ξi) =
S(ξi, qi)− S(ξi,−qi)
S(ξi, qi) + S(ξi,−qi)

. (9)

Jointly observing (7) and (9), we see that estimating ξ̂i from
ρi is equivalent to solving the equation f(ξi) = ρi. Some
features of f(ξi), which are useful for deriving the solution,
are provided in the following lemma; refer to Appendix A for
its proof.

Lemma 1: For |ξi| ≤ qi, f(ξi) monotonically increases
with ξi, and presents odd symmetry around the origin, i.e.,
f(−ξi) = −f(ξi).

From (9), we see that it can be difficult to directly solve the
equation f(ξi) = ρi, due to the existence of the squared sine
functions. To simplify the equation, many previous estimators,
e.g., [7]–[11], [15], use the first-order TS of f(ξi) which is
valid for large N ’s. In contrast, we propose to use the PA to
approximate the following TS of f(ξi) (of degree six), i.e.,

f̃(ξi) =

6∑
l=0

clξ
l
i = c1ξi + c3ξ

3
i + c5ξ

5
i , (10)

where the even powers of ξi are suppressed since f(ξi) is an
odd function of ξi, as illustrated in Lemma 1. We propose to
use the following PA to approximate the above TS,

f̂(ξi) =

(
P∑
p=0

apξ
p
i

)/(
R∑
r=0

brξ
r
i

)
, P = R = 3, (11)

s.t. f̂(0) = f̃(0); f̂ (k)(0) = f̃ (k)(0), k = 1, · · · , P +R,

where h(k)(x) denotes the k-th derivative of h(x) (h can be f̂
or f̃ ) and h(k)(0) is value of h(k)(x) at x = 0. Note that the
rationale for setting P = R = 3 is illustrated in Appendix B.

Also note that the constraints in (11) constitute (P + R +
1) equations, which can be used to express the coefficients
of the PA, i.e., ap and br, in terms of those of TS, i.e., cl.
We underline that the properties of f(ξi) unveiled in Lemma
1 can be used to suppress some high-order terms in f̂(ξi).
As illustrated in Appendix B, we have a0 = a2 = 0 and
b1 = b3 = 0. Plugging these constraints into the (P +R+ 1)
equations, the PA coefficients can be solved, with the following
solution achieved.
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Lemma 2: The function f(ξi) can be approximated by f̂(ξi)
with the approximation error in the order of O(ξ7i ), where

f̂(ξi) = (a1ξi + a3ξ
3
i )
/

(1 + b2ξ
2
i ),

with a1 = c1, a3 = c3 − c1c5
/
c3, b2 = c5

/
c3. (12)

Equating f̂(ξi) obtained in Lemma 2 to ρi calculated in (7),
we obtain that a1ξi+a3ξ3i = ρ(1+b2ξ

2
i ), which can be further

turned into a cubic equation of ξi,

ξ3i + k2ξ
2
i + k1ξi + k0 = 0,

s.t. k2 = −ρb2/a3, k1 = a1/a3, k0 = −ρ/a3, (13)

Using the cubic formula [16], the three roots of the above
equation can be solved as

z1 = −k2/3 + 2B, z2 = −k2/3−B +D,

z3 = −k2/3−B −D, (14)

with the intermediate variables given by

B = (S + T )/2, D =
√

3(S − T )j/2;

S =
3

√
R+
√
D, T =

3

√
R−
√
D, D = Q3 +R2;

R =
(9k1k2 − 27k0 − 2k32)

54
, Q =

(3k1 − k22)

9
,

where k0, k1 and k2 are given in (13). Among the three roots,
only one is the final estimate of ξi, as dictated below.

Lemma 3: The estimate of ξi is given by

ξ̂i = zi∗ , s.t. i∗ = argmini |zi|. (15)

Proof: As proved in Lemma 1, f(ξi) is monotonic against
ξi for |ξi| < qi. Thus, we can only have one solution to
f(ξi) = ρi in the region of |ξi| < qi. Since the continuous
region covers ξi = 0 (the smallest value that can be taken),
the solution to the equation f̂(ξi) = ρi in the region is the
smallest root given in (14). This leads to the (15).

Based on the above analyses and derivations, the steps of
estimating δi from δi−1 are summarized as follows.

Algorithm 1: Given a1, a3, b2, δi−1 from iteration (i− 1)
and qi, and provided that |ξi| ≤ qi, δi can be estimated as
follows:

1) Interpolate the DFT coefficients at ki,± given in (5),
leading to Si,± given in (7);

2) Construct ρi, as illustrated in (7);
3) Compute the coefficients k0, k1 and k2 based on (13);
4) Compute the three roots in (14);
5) Obtain the estimate of ξi, as given in Lemma 3;
6) Update δi as done in (8).

B. Initialization and Proposed Estimator in Overall

As revealed in [11], a high-quality initialization can speed
up the asymptotic convergence of an iterative frequency es-
timator. Next, we provide a high-quality initialization of the
proposed estimator with a single interpolation; c.f., two or
more interpolations in many previous designs [7]–[11], [15].

Assume that δ ∈ [0, 0.5] holds. If we set δ0 = 0.25, then the
estimation error ξ1 satisfies that ξ1 = δ − δ0 ∈ [−0.25, 0.25].
Accordingly, we can set q1 = 0.25 and run Algorithm 1 to
estimate δ1. Moreover, we notice that δ0 − q1 = 0. This
indicates that one of the interpolated DFT coefficients is
at k1,− = k? + δ0 − q1 = k?. This DFT coefficient has
been computed when identifying k?; see (4) in Section II.
Thus, we only need to interpolate one DFT coefficient at
k1,+ = k?+δ0+q1 = 0.5. The above analysis also applies for
the case of δ ∈ [−0.5, 0]. Then, the next question is how to
determine the initial region of δ. To answer that, the following
sign test [8] can be performed by reusing the DFT results for
identifying k? ,

α = sign{[S(k? − 1)− S(k? + 1)]S†(k?)}, (16)

where k? is given in (2), and ()† takes the complex conjugate.
Using α, we have

δ ∈ [0, 0.5], if α > 0; or δ ∈ [−0.5, 0], if α < 0. (17)

As will be illustrated in Section IV, the sign test has a high
accuracy in the sense that the estimators with or without using
the sign test approach the CRLB from the same SNR.

Based on the above initialization and Algorithm 1, we
summarize the overall processing of the proposed frequency
estimator in the following algorithm.

Algorithm 2: Input: N , δ0 = 0.25α, q1 = 0.25, qi (i =
2, · · · , I), the coefficient set C1 = {a1, a3, b2} for δ1, and
the sets Ci = {a(i)1 , a

(i)
3 , b

(i)
2 } for δi (i ≥ 2). The proposed

estimator performs as follows:
1) Estimate δ1 by running Algorithm 1 once based on N ,

δ0, q1 and C1;
2) For each i = 2, · · · , I , run Algorithm 1 iteratively based

on N , δi−1, qi and Ci.
The final frequency estimate is given by f̂ = fs(k

?+δ̂I)
N .

We remark that, it is non-trial to analyze the (asymptotic)
performance of the proposed estimator. The main reason is
because the analysis strategy, as developed in [15] and widely
used in previous works [7]–[11], relies on a linear approxima-
tion between ρi and ξi; whereas, in contrast, we use the non-
linear PA to pursue a high-accuracy depiction of the relation
between the two variables. Nevertheless, through extensive
simulations to be provided in Section IV, our estimator is
seen to outperform several state-of-the-art estimators which
have the theoretical guarantee of approaching the CRLB. Two
other remarks on Algorithm 2 are provided below.

1) Computational Complexity (CC): To analyze the overall
CC of the proposed estimator, we first evaluate the CC of
Algorithm 1. Its CC is dominated by that of interpolating
DFT coefficients in Step 1). According to (3), one interpolation
needs N complex multiplications (CMs). As illustrated above
(16), a single interpolation is required for the first iteration,
while for iteration i(≥ 2), we need 2N CMs to interpolate
the DFT coefficients twice. Algorithm 2 runs Algorithm
1 for I times, and thus its overall CC is dominated by
N + (I − 1) · 2N = (2I − 1)N CMs. In contrast, the CC
of the previous estimators, e.g., the three benchmarks to be
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illustrated in Section IV-A, are dominated by 2IN CMs. As
will be illustrated in Section IV, the proposed estimator is able
to approach the CRLB after only two iterations, i.e., I = 2.

2) Selection of qi: We recommend taking qi = q1 =
0.25 (∀i) given two reasons. First, the proposed estimator is
robust against the value of qi, or in other words the estimation
performance remains almost the same across a wide range of
qi’s. This will be illustrated in Fig. 5 of Section IV. Second,
a benefit of taking of qi = q1 = 0.25 (∀i) is that only one set
of PA coefficients, i.e., C1, are required to be stored onboard,
saving storage and time for indexing different sets (if used) in
practical systems.

IV. SIMULATION RESULTS

In this section, we provide simulation results to validate
the superior performance of the proposed estimator over the
previous estimators.

A. Benchmark Estimators

Several related estimators are simulated as benchmarks
which can be implemented in the framework of Algorithm 2.
Below, we only highlight their differences from our estimator.

1) A&M [7]: This estimator always interpolates the DFT
coefficients at ki,± = k? + δi−1 ± 0.5 (∀i ≥ 1) with δ0 = 0

taken. The ratio ρi =
|S(ki,+)|−|S(ki,−)|
|S(ki,+)|+|S(ki,−)| is constructed in each

iteration, and ξi = ρi/2. A&M also has a different construc-
tion of ρi which leads to the same asymptotic performance as
the one given above and hence is not considered here.

2) Generalized A&M (GAM) [8]: This estimator iterates as
A&M but starts from a different initial δ0. In particular, GAM
takes δ0 = αβ, where α is given in (16) and β = 0, 0.25 and
0.5 are considered and compared in the work. Here, for a fair
comparison with our estimator, we only consider β = 0.25.

3) Hybrid A&M and q-Shift Estimator (HAQSE) [11]: This
estimator applies A&M for δ1. Then, starting from i = 2,
HAQSE interpolates the DFT coefficients at ki,± = k? +
δi−1 ± qH, where qH = N−1/3 is proven to be sufficient
for the estimator to converge to the CRLB for large N ’s
and qH ≤ 0.32 is suggested in [3] to ensure the validity
of HAQSE also for small N ’s. HAQSE constructs ρi as
ρi = <

{
S(ki,+)−S(ki,−)
S(ki,+)+S(ki,−)

}
and updates ξi = qH cos2(πqH)

1−πqH cot(πqH)ρi.

B. Results and Analysis

Unless otherwise specified, the following parameters are
used for all the estimators: k? = 2, fs = 1, I = 2,
δ ∈ U[−0.5,0.5], q1 = q2 = 0.25 (for the proposed estimator),
and qH = N−1/3 (for HAQSE). Note that U[−0.5,0.5] denotes
the uniform distribution in [−0.5, 0.5]. All the results to
be presented are averaged over 5 × 104 independent trials.
Moreover, the CRLB [7], given by 6f2

s

4π2γN3 , is provided in most

simulation results, where γ = |A|2
σ2
0

is the SNR of the single-
tone signal given in (1), and σ2

0 denotes the noise variance
of z(n) therein. As interpreted in Table I, different estimators
in the simulation results are differentiated by markers, while
different values of N are distinguished by line styles.

TABLE I: Marker and Line Style Definitions in Simulation Results.
Marker ◦ + × O none

Estimator AM GAM HAQSE Proposed CRLB
Line style dash dash-dotted solid

N 8 16 32
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Fig. 1: MSE of f̂ versus γ: (a) is for the first iteration, (b) for the second.
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Fig. 2: Illustration of the ratio between MSE and CRLB to better compare
different estimators: (a) for the first iteration, (b) for the second. For better
clarity, range limits are imposed on the y-axes, and hence the estimators with
larger MSEs become invisible in the figure.

Fig. 1 plots the MSE of f̂ against γ, where N = 8, 16
and 32 are simulated. We see that the MSEs of f̂ converge
to the CRLB for all the estimators. Comparing the two sub-
figures, it is obvious that the estimation performance of all
the estimators is further improved (closer to the CRLB) after
the second iteration. Fig. 2 zooms in the differences among
the estimators by normalizing the MSEs plotted in Fig. 1
against their respective CRLBs. We see from Fig. 2(a) that,
after the first iteration, the proposed estimator already achieves
the MSE as low as 1.079 times the CRLB for a small N = 8,
and reduces the MSE to 1.063 times the CRLB for N = 32,
which is notably based on a single interpolation. We see from
Fig. 2(b) that, after the second iteration, the proposed estimator
persistently outperforms the benchmark estimators across the
whole region of γ and approaches the CRLB more tightly.

We see from Fig. 2(b) that the simulated MSE can be
smaller than the CRLB, yet with a considerably small differ-
ence. Two reasons may cause this phenomenon. First, CRLB is
derived for a deterministic parameter that is under estimation,
while the frequency taken for the simulations is random over
independent trials. We remark that this random configuration
is necessary for a fair comparison of different estimators, since
they can have dramatically distinct estimation performance
over frequencies, as will be illustrated in Fig. 4. Second,
this phenomenon can be caused by the finite number of
independent (Monte-Carlo) trials. Refer to [11, Sec. V] for
a detailed analysis of this aspect.
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Fig. 3: MSE performance against N , where γ = 20 dB, (a) for the first
iteration, and (b) for the second.
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Fig. 4: MSE performance versus δ, where (a) for the first iteration, and (b)
for the second. Note that N = 16, γ = 20 dB, and 100 discrete values are
evenly taken in the region of δ ∈ [−0.5, 0.5].

Fig. 3 illustrates the MSE performance w.r.t. N . From
Fig. 3(a), we see that, after the first iteration, the normalized
MSEs of the proposed estimator is as low as 1.065 which is
improved by about 6.74% over A&M and GAM (both achieve
the minimum about 1.142). We also see that the proposed
estimator present a more stable asymptotic performance than
A&M and GAM, as N increases. From Fig. 3(b), we see that,
after the second iteration, the proposed estimator is able to
approach the CRLB for almost all values of N , while HAQSE
can only achieve this for large N ’s. This is expected since
HAQSE is designed for large N ’s. On the other hand, this
highlights the benefit of introducing the Padé approximation.

Fig. 4 plots the MSE of different estimators against the
whole region δ ∈ [−0.5, 0.5]. We see from Fig. 4(a) that the
proposed estimator already has a close-to-CRLB performance
at some δ after the first iteration. We also see that the proposed
estimator provides a performance lower bound for GAM. This
is expected, since both estimators take δ0 = 0.25 while the
proposed one achieves a more accurate approximation between
ρi and ξi. We see from Fig. 4(b) that, after the second iteration,
the proposed estimator achieves the best flatness in the whole
region of δ.

Fig. 5 compares HAQSE and the proposed estimator in
terms of q2 (for the proposed) or qH (for HAQSE). We see
that both estimators show the tight convergence to the CRLB
in the case of N = 16 and 32, and show the robustness
against q. This is consistent with the analysis in [11] that the
asymptotic performance of HAQSE shall remain the same for
qH ≤ N−1/3. We also see that our estimators always provides
a performance lower bound for the HAQSE across the whole
region of q2. Notably, we see that, for the small N = 8, our
estimator still presents a stable MSE performance over q2’s,
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Fig. 5: MSE performance versus q2, where γ = 20 dB. The sub-figures (a),
(b) and (c) are for N = 8, 16 and 32, respectively. For fair comparison with
HAQSE, we set qH = q2 which is evenly taken from [0.1, N−1/3].

while HAQSE shows an increasingly worse performance as qH
increases. The visible improvement achieved by the proposed
estimator over the state-of-the-art HAQSE is: on one hand,
due to the more accurate initial estimate in the first iteration,
as has been demonstrated in Figs. 1 to 4; and on the other
hand, ensured by the newly proposed much more accurate
approximation between ρi and ξi.

V. CONCLUSION AND REMARKS

This correspondence develops an accurate frequency esti-
mator with fewer interpolations yet better accuracy and wider
applicability to small number of samples, as compared with the
state-of-the-art estimators. This is achieved by introducing, for
the first time, the Padé approximation in approximating the up-
dating function of estimation error. This is also accomplished
by newly unveiled features of the updating function and the
derivation of a closed-form solution to solving the residual es-
timation error in each iteration. Extensive simulations validate
the performance superiority of the proposed estimator over the
state-of-the-art estimators.

We remark that the single-tone scenario is focused on in
this correspondence for introducing the new ideas. Using
the estimate-and-subtract strategy2 (ESS) [12], [17], [18], a
single-tone estimator can often be extended to multi-tone
scenarios. For instance, the two benchmarks A&M [7] and
HAQSE [11], originally developed for single tone, have been
successfully applied to multi-tone scenarios applying ESS
[12], [17], [18]. The proposed estimator, combining ESS, is
expected to work for multi-tone scenarios as well, since it
outperforms A&M and HAQSE, as presented in Section IV.
The detailed extension is deferred to future work.

APPENDIX

A. Proof of Lemma 1

Since 0 < qi ≤ 0.5 is satisfied, S(ξi,±qi) approximates
the square of a sinc function [19]. Hence, we know that
S(ξi, qi) is a monotonically increasing function from −qi
to qi while S(ξi,−qi) monotonically decreases in the same
region. These can be translated into S ′+ > 0, S ′− < 0,

2The strategy first estimates each frequency coarsely as a single tone, as if
there were no other tones; then, from the second round, each tone is refined
by subtracting the recovered signals of other tones. With more rounds of
refinement performed, the estimates of all tones can be increasingly accurate.
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where S ′+ denotes the first derivative of S(ξi, qi) w.r.t. ξi
and S ′− is similarly defined for S(ξi,−qi). Accordingly, the
monotonicity of f(ξi) can be deduced from its first derivative,
i.e., f ′ = 2(S ′+S− − S ′−S+)

/
[S+ + S−]2 > 0, where S+

denotes S(ξi, qi), and S− denotes S(ξi,−qi).
From the expression given in (9), we know that S(ξi,±qi)

is symmetric about ξi = ±qi. Thus, they are also symmetric
about the axis of ξi = 0 in the region of |ξi| ≤ qi, i.e.,

S(ξi, qi) = S(−ξi,−qi), S(−ξi, qi) = S(ξi,−qi). (18)

Applying this symmetry in (9) leads to

f(−ξi) =
S(−ξi, qi)− S(−ξi,−qi)
S(−ξi, qi) + S(−ξi,−qi)

=
S(ξi,−qi)− S(ξi, qi)

S(ξi, qi) + S(ξi,−qi)
= −f(ξi),

which shows the symmetry of f(ξi) about the origin.

B. Rationale of Setting (P,R) = (3, 3)

Based on (10), the TS f̃(ξi) is of degree six. Thus, according
to [14, Sec. 5.12], we have P + R = 6 for the PA f̂(ξi)
given in (11). Lemma 1 shows f(0) = 0. Solving f̂(0) =
0 yields a0 = 0, which then indicates P ≥ 1. Lemma 1
also states f(−ξi) = −f(ξi). To preserve the odd symmetry,
the numerator and denominator of f̂(ξi) can only have odd
and even powers of ξi, respectively, since there is a non-zero
constant b0 in the denominator. Based on the above analysis,
(P,R) = (1, 5) or (2, 4) leads to the same PA with the degree
of the denominator polynomial up to four; (P,R) = (3, 3) or
(4, 2) leads to the same PA with the degree of the denominator
polynomial up to three; and (P,R) = (5, 1) or (6, 0) makes
the PA degenerated into TS. Given that a cubic polynomial
can be more tractable than a quartic one, we employ the PA
with (P,R) = (3, 3).
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