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DPTL+: Efficient Parallel Triangle Listing on
Batch-Dynamic Graphs (Cover Letter)

Michael Yu, Lu Qin, Ying Zhang, Wenjie Zhang, Xuemin Lin

We would like to thank the reviewers for their insightful
and invaluable comments. We have revised the paper carefully
according to the comments. A summary of major revisions is
given below, followed by the point-to-point response made to
each reviewer.

1) Rewrite the motivation part to justify the importance of
improving the efficiency for batch update setting.

2) Improve the experiment part to include more explana-
tions and newly designed experiments.

3) Through detailed discussions and experiments, we com-
pare our proposed technique to more general dynamic
graph processing techniques.

4) Proof-read and improve presentation.
Please kindly find our point-to-point responses below.

RESPONSE TO REVIEWER #1

Comment 1.1 (D1) Lack of novelty: I am not sure that
(2) counts as a contribution of this paper. The idea of
applying hashing to speedup intersections is quite known
and even the authors own previous paper [13] applies the
same idea. This should have made clear by the authors,
as a reader might overestimate the novelty of this step.
Moreover, given that DPTL (which does not use hashing)
does not achieve very exciting results makes me question
the significance of contributions of this paper.

Response. Yes, hashing is a well-known method for speeding
up the intersection. In the revision, we clarify that our second
contribution is the design of a novel triangle listing strategy
such that we can use a time-efficient hashing technique:
bitmap hashing in our problem setting to improve both time
complexity and practical performance. In Section III-C of
the revision, we stress that although the time complexity of
lookup operation in various hashing techniques is O(1), only
the hashing technique without collision (e.g., bitmap hashing)
can check the existence of an element with exactly one look-
up operation. As mentioned in [12] and verified in our newly
designed experiments using different hashing schemes (Fig. 9
in the revision), there is no clear advantage to apply the
traditional hashing techniques (with collisions) to support the
edge-oriented triangle listing algorithms, compared to the sort-
merge based approach. In the revision, we stress that we can
immediately enhance the search performance by using bitmap
hashing techniques. However, the bitmap hashing technique
needs n bits where n is the number of vertices. As stressed in
the revision (Section III-C), we cannot afford to pre-build hash
tables for all vertices or build the tables on the fly for every
pivot edge processed. Thus, the key challenge in our algorithm

is how to design a triangle listing strategy such that the bitmap
hashing can be efficiently used in our problem setting, leading
to our second contribution in this paper. Specifically, we design
a new triangle listing strategy such that we build a bitmap hash
table only once for each pivot vertex u processed, and ensure
that deg(u) ≥ deg(v) is true for each pivot edge (u, v) with
pivot vertex u.

To further justify the second contribution, we design a
new experiment in Fig. 9 of the revision. Particularly, we
use the standard C++ hash table implementation in STL for
the neighborhood intersection computation of DPTL, namely
DPTL-h1, and build a hash table for every vertices. Recall that
we use sort-merge for the intersection computation in DPTL.
In addition to the large memory required, DPTL-h1 does not
show superior performance in terms of processing time on uk-
2005 graph compared to DPTL, while our proposed DPTL+
significantly outperforms DPTL under all settings.

Regarding the performance of DPTL, in the revision we
highlight that (1) DPTL can ensure that each updated triangle
is output exactly once, and only the updated edges are involved
in the neighborhood intersection of two ending vertices, which
is important specially when the batch size is small; (2) In the
experiments, we stress that DPTL significantly outperforms
the baseline algorithms when the batch size is small. We also
explain why its performance becomes less competitive when
the batch size grows, compared to the baseline algorithms.
Note that this problem is addressed by DPTL+ in our paper,
as the second contribution. �

Comment 1.2 (D2) Parallelization speed-ups seem low:
Another point that is a bit surprising to me and deserved
more attention in the manuscript is the low speed-up due
to the parallelization. As the authors mention, the task is
embarrassingly parallel, but figure 12 does not reflect that.

Response. We would like to remark that the processing time
reported in figure 12 (now Fig. 8 in the revision) is the total
execution time, which consists of two parts: (1) update of the
graph and (2) list of the updated triangles. The graph update
time is the same for all algorithms. We make these clear in
the revision.

We notice that graph update, although very fast, still takes
a certain portion of the total execution time if the triangle
listing is fast. Moreover, compared to triangle listing, it is
difficult to achieve a good parallelization speed-up for graph
update because of a large number of write operations involved.
These make the parallel speed-up of the total execution time
not very impressive when the triangle listing time is fast.
In the revision,



(1) We decompose the total execution time in the Fig. 8.
We report that, in terms of triangle listing time which is
the focus of our study, our proposed algorithms can achieve
a good speed-up. It is reported that the speed-up of the
triangle listing time of DPTL+ with 32 threads is 21, 10,
16, 11 on graphs uk-2014-host, uk-2005, twitter-2010, sk-
2005 respectively, compared to DPTL+ with single thread. The
corresponding speed-up of DPTL (resp. AOT*) is 28 (resp. 6),
19 (resp. 2), 20 (resp. 7), 21 (resp. 4), respectively.
(2) We improve the parallel implementation of graph update
in the revision. Particularly, we try different OpenMP parallel
schedule compiling options and find that the static option is
faster than the dynamic option used in our previous implemen-
tation. Therefore, we use the static option for graph update
when testing all algorithms in the revision. This can enhance
the speed-up of the total execution time when graph update
occupies a certain portion of the total time. For instance, the
speed-up of execution time of uk-2014-host is 7 times in the
previous submission, and now it is 18 in the revision. As
shown in Fig 8 of the revision, the speed-up of the processing
time of DPTL+ with 32 threads is 18, 6, 12, 7 on graphs uk-
2014-host, uk-2005, twitter-2010, sk-2005 respectively, com-
pared to DPTL+ with single thread. The corresponding speed-
up of DPTL (resp. AOT*) is 25 (resp. 6), 17 (resp. 2), 18
(resp. 7), 16 (resp. 4), respectively. �

Comment 1.3 (D3) Some experiments are inconclusive:
The third negative point about this paper is the way that
the workloads were constructed. The proposed method
gains decrease with batch size but edges are selected at
random, For small batches, it is not clear how many
triangles will actually change. If such number is very
small, then a user would probably increase the batch
size, making your method less attractive. The number of
modified triangles should also be reported in the results.

Response. Thanks for your suggestion. In the revision,
(1) As suggested, we add a new figure (Fig. 6) to report
the number of modified triangles relative to the batch-size.
It shows that there are a large number of modified triangles
even with a small batch-size. For instance, in graph sk-2005,
there are around 36 million and 411 million modified triangles
for batch-size of 0.01 percent and 0.1 percent, respectively.
(2) In the revision, we also report that a significant portion of
the graph is affected even for a small batch-size. For example,
the size of an influenced graph of sk-2005 for batches size
of 0.01 percent and 8 percent are 1, 082 million and 1, 717
million respectively.
(3) We notice that the graph stackoverflow used in the experi-
ments is a temporal graph where each edge is associated with
a timestamp. In the revision, we design a new experiment
(Fig. 11) to evaluate the performance of the algorithms on
different batch selection methods: random sampling method
and time based method in Fig. 11 (a) and Fig. 11 (b),
respectively. Though the running time of each algorithm is
different on two batch selection methods, we observe the same
performance rankings and similar trends of the algorithms in
two figures. �

Comment 1.4 (1) Batch-Dynamic Graph definition of G’;
(2) a typo in section 3B; (3) confusing notation in exper-
iments; (4) moving correctness proof to the appendix; (5)
more discussion about counting version of the problem.

Response. Thanks for your suggestion. We have modified the
paper in the revision accordingly. �

RESPONSE TO REVIEWER #2

Comment 2.1 (D1) According to Section III.B, the
baseline AOT* must compute the intersection of every
edge in the influenced graph, including both edges in the
update batch and in the original graph. Is there a way to
prune early in this case, e.g., skipping an edge if it is not
in the update batch? A single bit per vertex may simplify
this process.

Response. In the revision, we show an example in Section III-
A that we have to compute the neighborhood intersection of
an original edge in AOT* since it is chosen as the pivot edge
by the algorithm. This implies that we cannot simply skip an
edge that is not in the update batch for AOT*. Actually, the
main contribution of DPTL is the design of a new updated
triangle listing strategy such that we only need to compute
the neighborhood intersection on the edges in the update batch
without missing any result. �

Comment 2.2 (D2) The proposed algorithm is a little
narrow and does not apply to other graph processing
problems. For example, the following two papers pro-
posed more general frameworks of incremental graph
processing:

1) Incremental Graph Pattern Matching, SIGMOD’11
2) GraphIn: An Online High Performance Incremental

Graph Processing Framework, Euro-Par 2016
The paper should make qualitative/quantitative compar-
ison to these previous works. In particular, how does
the proposed algorithm compare to more general graph
processing frameworks mentioned in D2? If they are
different, can the proposed algorithm be integrated into
an existing framework?

Response. Thanks for your suggestion. In the revision,
(1) We add a new subsection (Section VII-B) to discuss if our
proposed techniques can be effectively integrated into the gen-
eral subgraph processing framework. Through detailed discus-
sion, we show that, same as existing triangle listing algorithms,
the core of the proposed techniques in our paper is specific
to the triangle structure, and hence cannot be used for general
subgraph processing framework. For instance, the key of the
orientation technique designed for DPTL and DPTL+ is to use
an updated edge as pivot edge to uniquely identify a triangle
such that we output each triangle exact once, but we cannot do
this on larger subgraphs. Similarly, for larger graph patterns,
multiple pivot edges will be involved in the neighborhood



intersection computation, we cannot ensure deg(u) ≥ deg(v)
for every pivot edge u→ v, and hence cannot guarantee that
the time complexity of Θ(min{deg(u), deg(v)}) for each edge
u→ v.
(2) In the revision, we also stress that the problem of triangle
enumeration problem itself has many real-life applications, and
many efficient triangle listing algorithms have been proposed
under different settings.
(3) We also add a new subsection (Section VI-C) in the related
work to briefly introduce the incremental subgraph pattern
matching algorithms. We show that the problem of triangle
listing is a special case of subgraph enumeration, and hence
any subgraph enumeration algorithm can be immediately used
for triangle enumeration by setting the query pattern as a trian-
gle. Nevertheless, their algorithms are not specially designed
for the triangle listing, and it is not promising to directly apply
them to the problem of triangle listing. When we worked
on the paper revision, we got source code from authors of
SIGMOD’11 paper [29]. We also note that the author of Euro-
Par’16 paper [30] replied that the project had not been open-
sourced. Not surprisingly, the performance of SIGMOD’11
paper is not efficient when it is used on the problem of triangle
listing on batch-updated graphs, and even cannot compete with
our naive algorithm due to some overhead for the support of
general graph processing. For instance, on the ego-Facebook
graph from SNAP (https://snap.stanford.edu/data) with 4, 039
nodes and 176, 468 edges, the implementation from SIG-
MOD’11 takes 684 seconds under our default settings. While
DPTL+ only takes 0.04 seconds. Considering the SIGMOD’11
paper is not designed for triangle listing and none of the
graphs deployed in this paper can be properly run by their
implementation when the pattern is set to a triangle, we did
not include this comparison in the experiments of this paper.
�

RESPONSE TO REVIEWER #3

Comment 3.1 (D1) The authors fail to justify the im-
portance of why they need to improve the efficiency for
batch update setting. The authors aim to propose efficient
algorithms for solving the triangle listing problem in batch
update setting. However, as pointed out by the authors in
the Introduction: ”many applications do not require strong
real-time response, and can therefore afford to postpone
updates for a later time or to process updates on a fixed
periodic basis.” Therefore, the efficiency issues for batch
update may not be very important. The authors should
justify why they need to improve the efficiency for batch
update setting.

Response. As suggested, in the revision we rewrite the intro-
duction to justify why we need to improve the efficiency for
batch update setting from two perspectives.
(1) Indeed, the efficiency is not very important from users’
perspective if they do not have real-time requirements. In the
revision, we stress that this is important for the throughout of
the system. As discussed in the paper, we may significantly
improve the average processing time by processing updates

in a batch fashion. In practice, triangle listing is one of
many tasks on the system. By developing efficient algorithm
for batch-updated graph, we may reduce the use of system
resource and hence enhance the throughout of the system.
(2) In the revision, we also highlight that, in some scenarios
the update of the edges may arrive at the system in batches,
therefore it is natural to develop efficient algorithms for bach
update setting. For instance, rather than immediately sending
every update, other parties may instead periodically send
updated information to the system to save communication
costs. �

Comment 3.2 (D2) In experimental settings, both AOT*,
DPTL, DPTL+ are the authors’ previous work and current
work. However, since triangle listing is the famous prob-
lem, I really doubt whether some other research studies,
e.g., [21], can be properly adapted to this setting.

Response. Yes, triangle listing is a famous problem and
there are many existing works under different settings. In
the revision, we provide more discussions and design a new
experiment to justify that we already use reasonable baselines
in the paper.
(1) We added a new subsection (Section VII-A) to discuss
how to adapt existing triangle listing algorithms to our set-
ting. Clearly, all existing main memory triangle listing algo-
rithms can be immediately applied on the influenced graph
to enumerate updated triangles. We can also consider other
studies under other settings such as external memory (e.g.,
[17] ([21] in previous submission)) or distributed (e.g.,[16])
computing environments. For instance, the graph is partitioned
into different groups in [17] such that each partition can be fit
into the main memory. After computing the triangles in each
individual group, they need to compute the triangles across
different groups. To compute the triangles across two groups
A and B, we may regard this as the problem of triangle listing
in a batch-update setting; that is, A is the original graph and B
is the batch-updates. However, this is not the research focus of
[17], and the existing main memory triangle listing algorithm
is directly used on the extended subgraph, where the definition
of extended subgraph is similar to the influenced graph in
our paper. Similarly, no special optimization is considered on
this aspect in other studies. Thus, as to our best knowledge,
a reasonable baseline is to apply the state-of-the-art main
memory triangle listing algorithms on the influenced graph.
(2) We add a new experiment (Fig. 10 in the revision) in which
two representative main memory triangle listing algorithms,
CF [8] and KClist [13], replace AOT for listing triangles
on the influenced graph. However considering that neither
CF nor KClist are state-of-the-art, it is reported that their
corresponding algorithms under our settings, namely CF* and
KClist*, are clearly outperformed by AOT*. �

Comment 3.3 Typos and incomplete sentence.

Response. Thanks, we fixed the problem and conducted a
thorough proof-reading in the revision. �



DPTL+: Efficient Parallel Triangle Listing on
Batch-Dynamic Graphs

Michael Yu†, Lu Qin‡, Ying Zhang‡, Wenjie Zhang†, Xuemin Lin†

†University of New South Wales, Australia
‡AAII, University of Technology Sydney, Australia

{mryu, zhangw, lxue}@cse.unsw.edu.au {lu.qin, ying.zhang}@uts.edu.au

Abstract—Triangle listing is an important topic in many
practical applications. We have observed that this problem has
not yet been studied systematically in the context of batch-
dynamic graphs. In this paper, we aim to fill this gap by
developing novel and efficient parallel solutions. Specifically,
given a graph G and a batch-update of edges B, we report the
updated triangles (deleted triangles and new triangles) resulting
from the batch of updates. We notice that it is cost expensive to
directly apply state-of-the-art triangle listing algorithms because
they are designed to enumerate the complete set of triangles from
a given graph, whereas only the updated ones are the relevant
output for our problem setting. In this paper, we developed an
efficient algorithm, namely DPTL, based on a newly designed
orientation technique, which only outputs the updated triangles
while ensuring that each triangle solution is identified without
any duplicate solutions. We follow up by taking advantage of a
graph’s degree distributions and designed a more sophisticated
algorithm, namely DPTL+. We show that DPTL+ can achieve
the best performance in terms of both practical performance
and theoretical time complexity. Our comprehensive experiments
over 28 real-life large graphs show the superior performance of
the DPTL+ algorithm when compared against DPTL and two
baseline solutions. Theoretically, we also show that DPTL+ has a
time complexity of Θ(

∑
〈u,v〉∈B min{deg(u), deg(v)}+m) where

deg(x) is the degree of a vertex x, and m is the number of edges
adjacent to the vertices in the batch-update. This time complexity
is more promising than that of other solutions.

I. INTRODUCTION

The triangle-listing problem is a fundamental problem in the
area of graph analytics, where the complete set of all triangle
structures in a simple undirected graph is returned. In network
analysis, triangle listing algorithms serve as an important tool.
Triangle structures provide valuable connective information
about objects that are closely connected. It has a wide array
of applications and can be seen playing a critical role in
topics such as community search [1], [2], role discovery [3],
structural clustering [4], higher-order graph clustering [5], web
spam discovery [6], and other real-world applications that
practically benefit from the mining of triangle structures.

Batch-Dynamic Graph Motivation. Dynamic graphs are
increasingly prevalent as many applications have to face high
volumes of updates on graphs that are constantly changing. A
typical dynamic graph application receives updates and imme-
diately processes them. Nevertheless, in some scenarios, users
do not require strong real-time response, and can therefore
afford to postpone updates for a later time or to process up-
dates on a fixed periodic basis. We may significantly improve
the average processing time by processing updates in a batch

fashion. In practice, triangle listing is one of the many tasks
on the system. By developing efficient algorithm for batch-
updated graph, we may reduce the use of system resource
and hence enhance the throughout of the system. In some
applications the update of the edges may arrive the system in
batch, and it is natural to develop efficient algorithms for bach
update setting. For instance, instead of immediate sending
every update, other parties may periodically send updated
information to the system to save the communication costs. We
also notice the increasing prevalence of computational devices
that support multiple-core processing, and batched operations
processing is a good candidate to take advantage of parallel
algorithm designs [7].

By considering all above factors, we find that there exists
a natural motivation to design efficient parallel triangle listing
algorithms that consider batch-updates of dynamic graphs.
Some graph algorithms are developed in the literature for
a variety of graph problems in a batch-dynamic context.
However, as far as we are aware, there has not been any
systematic study into the problem of triangle listing on batch-
dynamic graphs, not to mention any parallel implementations.
To fill this important gap, in this paper we develop efficient
parallel triangle listing algorithms on batch-dynamic graphs.
Specifically, given a graph G and a batch-update B, we
aim to develop an efficient parallel algorithm to report the
updated triangles (i.e., deleted original triangles and inserted
new triangles) resulting from the batch-update.

Challenges. Listing triangle structures on a dynamic graph is
different to that on static graphs. A major challenge for triangle
listing on dynamic graphs is to list only the solutions that
are affected by the update; In comparison, existing triangle
listing algorithm for static graphs only perform a complete
re-computation of all triangle solutions in an updated graph.
Another major challenge is how an algorithm has to manage
many types of triangles whilst ensuring a superior time com-
plexity. Finally, keeping expensive neighborhood intersection
operations to a minimal number of edges whilst ensuring the
correctness of the solution, and preventing duplicated triangles
from appearing in the output is also a challenge.

Contribution. In this paper, we propose to study this yet to
be explored problem and make the following contributions.

• This is the first systematic work for the problem of
triangle-listing on a batch-dynamic graph setting.

• We design a parallel triangle-listing algorithm for



TABLE I
THE SUMMARY OF NOTATIONS

Notation Definition
G = (V,E) undirected graph with vertices V and edges E

~G directed graph with vertices V and directed edge ~E
B batch-update consists of a set of inserted/deleted edges

B+(B−) inserted (deleted) edges in batch-update B
∆G set of triangles in graph G
V (G) set of vertices in graph G

u, v, w, x, y, z vertices in graph
(u, v) undirected edge with vertex u and v

〈u, v〉, u → v directed edge from vertex u to v
(u, v, w) triangle with vertices u, v and w
deg(u) degree of vertex u
deg+(u) out-degree of vertex u in an oriented graph

batch-dynamic graphs, named Dynamic Parallel
Triangle-Listing (DPTL) by designing a new graph
orientation technique, with a time complexity of
Θ(

∑
〈u,v〉∈B max{deg(u), deg(v)}), where deg(x)

denotes the degree of the vertex x, and B is the set
of edges in the batch-update. Note that DPTL outputs
each updated triangle exactly once, and only conducts
neighborhood intersection operation for updated edges.

• We propose an improvement algorithm to DPTL, namely
DPTL+, by developing a novel triangle listing strat-
egy such that we can use a time-efficient hash-
ing technique: bitmap hashing in our problem set-
ting to improve both time complexity and practical
performance. Particularly, we are able to bound the
amount of computation with a good time complexity of
Θ(

∑
〈u,v〉∈B min{deg(u), deg(v)}+m), where m is the

number of edges adjacent to the vertices in the batch-
update.

• We conduct an extensive performance study using 28
real-world large graphs up to billion scale, and demon-
strate the high efficiency of our proposed solutions com-
pared to the baseline methods.

II. BACKGROUND

In this section, we give a formal introduction of the problem
studied. We first cover the set of notations that appear in this
paper, a summary of which is shown in Table I.

A. Notations and Problem Definition
Let G = (V,E) be an undirected simple graph, where V

refers to its set of vertices, and E refers to its set of edges.
V (G) and E(G) are also used to denote the sets V and
E in graph G respectively. The number of vertices and the
number of edges are denoted as n and m where n = |V | and
m = |E|, respectively. We denote the set of neighbors of any
vertex u in an undirected graph G as N(u). We denote the
degree of vertex u in G as deg(u), where deg(u) is |N(u)|.
For directed graphs ~G = (V, ~E), we use ~E to denote the
set of directed edges. Directed edges are denoted as {〈u, v〉}
or {u → v} where u and v are the starting and ending
vertex respectively. For vertices in a directed graph, the set of
outgoing-neighbors of vertex u in ~G is denoted as N+(u), the
out-degree of u is denoted as deg+(u) = |N+(u)|. Likewise,
the in-neighborhood of vertex u in ~G is denoted as N−(u), and
its in-degree as deg−(u) = |N−(u)|. We refer to an undirected
edge as (u, v) between vertices u and v . A triangle consisting

of vertices u, v and w is denoted by (u, v, w), where a triangle
is defined as a set of three vertices that are fully connected.
Batch-Dynamic Graph. In this paper, we consider a batch-
dynamic setting where a batch of updates contains a mix of
edge insertion or edge deletion operations. We use B to denote
the set of updated edges from a batch-update. The set of
inserted edges is denoted using B+ and the set of deleted
edges is denoted using B−. We make the assumption that B+

and B− are disjoint (i.e., B− ∩B+ = ∅), since any common
edge(s) found in both sets can be removed from each batch-
update without affecting the final triangle list. In particular, we
use G′ = (V,E∪B+−B−) to denote the updated graph after
a batch-update B is applied to the original graph G which adds
new edges in B+ and deletes edges in B−. Note that we only
consider edge updates in the paper. This is because insertions
or deletions of the graph vertices can also be expressed using
edge updates.
Influenced Graph. To output a list of every triangle affected
by a batch-update, we have to consider the neighborhood of
two vertices from every updated edge. With reference to Fig.1
(a), given an updated edge (b, d) (dash line) we identify the
updated triangle (b, c, d) by checking all vertices that belong
to the neighborhood of the vertices b and d (i.e., vertices a, b,
c and d). In this paper, we use V 1

B to denote the set of vertices
incident to at least one updated edge in B. We also use V 2

B
to denote the set of vertices in V 1

B and all vertices in G that
are adjacent to any vertex in V 1

B . In this paper, we will use
Ginf to denote a graph containing (1) the induced subgraph
of G regarding the vertices in V 1

B , and (2) the neighbors of V 1
B

(i.e., V 2
B) and all edges between V 1

B and V 2
B . Namely, we refer

to Ginf as the influenced graph in relation to a batch-update
B. It is apparent that we only need to consider the influenced
graph Ginf to list all updated triangles. For simplicity, when
referring triangle listing computations on an updated graph,
we are considering only the influenced graph where there is
no chance for ambiguity.

Problem Statement. Given an undirected simple graph G =
(V,E), we aim to list the complete set of all newly inserted
and deleted triangles after a given batch of edge updates B.
We also aim to develop a main-memory parallel algorithm
that has a good time complexity and practical performance.
Our algorithm should also produce a correct and complete list
of new/deleted triangles after a batch of edge updates. More
specifically, let ∆G and ∆G′ denote the set of all triangles
in the original graph G and all the triangles in a graph G′

after a batch-update is processed. The triangle solutions we list
include all triangles from {∆G′−∆G} (new triangles inserted
from update) and those from {∆G −∆G′} (triangles deleted
from update).

B. Orientation technique
One of the key challenges in triangle listing is in ensuring

that each triangle solution gets listed exactly once. To address
this issue, some orientation techniques have been proposed
and adopted in the literature relating to triangle listing algo-
rithms. The key idea is to generate a directed (i.e., oriented)
acyclic graph ~G from an initially undirected input graph G [8].
Each undirected edge is mapped to a directed edge where its



direction (i.e., orientation) is decided by the relative rank of its
endpoints based on a vertex-ordering (e.g., vertex IDs or vertex
degree) [8]. Given a triangle (u, v, w), we refer to a vertex u
as a pivot vertex if u has two out-going edges to vertices v
and w (i.e., u → v and u → w) in the oriented graph; We
refer to a directed edge u → v as pivot edge if the vertex v
has one incoming edge and one out-going edge. We note that
each triangle in the undirected graph is associated with only
one pivot vertex and one pivot edge since there exists no cyclic
triangle in any oriented graph. Fig.1 shows an example of an
oriented graph, where Fig.1(b) shows the directed version of
the undirected graph from Fig.1(a) using an orientation based
on a vertex ID ordering. For instance, the triangle (b, c, d) is
reported when b is processed as pivot vertex with pivot edge
b→ c.

The advantage of the oriented technique is two-fold:
Firstly, by simply processing all pivot vertices using the
above procedure, it already guarantees that each triangle is
generated only once without having to otherwise perform
any pruning for the removal of duplicate triangle solutions.
Secondly, algorithm can be easily made parallel by pro-
cessing sets of pivot vertices independently. To our best
knowledge, the AOT algorithm [9] is the state-of-the-art
main memory triangle listing algorithm with a time complex-
ity of Θ(

∑
〈u,v〉∈~E min{deg+(u), deg+(v)})), where ~E and

deg+(x) denote the set of directed edges in an oriented graph
and the out-degree of vertex x respectively.
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Fig. 1. Graph Orientation

III. INSERTION-ONLY BATCH-DYNAMIC GRAPHS

In this section, we simplify the problem to that of processing
only batches containing only edge insertions, because batch
deletion operations can be processed in a very similar fashion.
We follow up by summarizing the final algorithm in a mixed
batch operation setting in the next section. In Section III-A,
we discuss two baseline solutions and show their limitations.
Section III-B and Section III-C introduce two solutions for
triangle listing on batch-dynamic graphs.

A. Warm-up

It is apparent that each updated triangle solution will include
at least one edge from the edge-update batch. As a result,
an intuitive and straightforward solution would be to iterate
through each update edge (u, v) and list all affected triangles
found when checking the neighborhood of the two endpoints.
When the updated edges in B are processed sequentially,
as illustrated in Algorithm 1, each new triangle will output

only once because an updated triangle only outputs when
the last new edge arrives. The time complexity of this se-
rial Naive algorithm is Θ(

∑
〈u,v〉∈B max{deg(u), deg(v)})),

where deg(x) denotes the degree of vertex x on the influ-
enced graph GInf . Despite the simple effective design of
Algorithm 1, it is difficult to achieve an efficient parallel
implementation. If we consider directly processing new edges
in parallel at Line 1 of Algorithm 1, we are likely to overlook
a significant portion of new triangle solutions. As an example,
any new triangle with two new edges can easily be neglected
if those two new edges are processed at the same time but
on different threads. There is no efficient trivial solution to
address this issue. We are able to account for every unique new
triangle if we process the new edges in parallel on the updated
graph after inserting all new edges from a given batch-update.
Processing the set of new-edges across multiple threads on
this updated graph will produce the complete set of new
triangles. However, a drawback is that duplicate triangles will
unavoidably be produced. The removal of duplicate triangles
may take O(n∆ lg(n∆)) time where n∆ is the number of
updated triangles. In practice, n∆ is significantly greater
than the number of edges in B (e.g., tens of billions of
triangles for million scale graphs). As shown in our initial
experiments, a parallel implementation on multiple threads is
much slower than the serial (i.e.,single thread) algorithm under
our experimental settings, despite taking into account that the
removal of duplicates can be processed in parallel.

Algorithm 1: Naive Method
Input : G : undirected graph; B : batch-update
Output : new triangles generated after batch-update
for (u, v) ∈ B do1

for w ∈ N(u) ∩N(v) do2
print (u,v,w);3

Update G;4

Another solution can be to apply a state-of-the-art main
memory triangle listing algorithm against the influenced graph
GInf , we refer to this solution as AOT∗. The time complexity
of AOT∗ is Θ(

∑
〈u,v〉∈EInf

min{deg(u), deg(v)})), where
EInf denotes the set of edges in the influenced graph GInf .
Although this algorithm is efficient in terms of listing all
triangles in GInf , it will encounter existing triangles from
the original graph G during the computation. For instance,
the edge 〈b, c〉 in Fig. 1(b) is not an updated edge, but it
will be chosen as pivot edge for neighborhood intersection
computation. In comparison, only the updated edges are pro-
cessed for Algorithm 1 (i.e., join operation for the neighbors
of two ending vertices at Line 2), whereas every edge will be
processed in AOT ∗ to ensure the correctness of the algorithm.
The advantage of AOT ∗ is that the parallel implementation
is readily available, whereas this is not the case for the naive
algorithm.

B. Dynamic Parallel Triangle List Algorithm

In this subsection, we introduce our solution based on a
newly developed orientation technique, namely DPTL. We
begin by explaining our motivation, followed by descriptions
of the algorithm. We finish with a thorough analysis split into



3 parts, where we cover the space cost, time complexity as
well as the correctness of our algorithm.

(1) Motivation. As discussed in Section III-A, the parallel
implementation of naive algorithm will inevitably produce
duplicate triangle solutions, the overhead of sorting and re-
moving duplicates is a significant bottleneck that leads to a
poor performance. Where by applying an orientation technique
on an influenced graph, the parallel implementation of AOT ∗

is able to avoid issues of duplication solutions, but it ultimately
has to compute an intersection for every edge in the influenced
graph, which includes original edges that do not participate in
the formation of any new/updated triangle solutions.

One may wonder if it is possible to develop a new technique
that (1) lists each updated triangle only once in the parallel
implementation; while all the more, (2) only computes the
intersection for the updated edges in B exclusively. We
find that the existing orientation technique introduced in
Section II-B naturally resolves the first goal, however the
orientation technique means that every edge will have to be
processed once to avoid missing any updated-triangle solution,
and therefore does not address the second goal. This motivates
us to develop a more sophisticated orientation technique to
satisfy both desired properties.

In addition to considering a direction of the initially undi-
rected edge in an oriented graph, we also consider whether
the edge is a newly updated edge from B or an edge origi-
nally from graph G. Note that by considering this additional
property, each edge now has four possible states depending on
its direction as well as edge origin (i.e., from B or from G).
We note here the formation of cyclic triangle (clock-wise or
anti clock-wise) is impossible given the nature of orientation
technique. Our key idea is to identify a unique pivot edge for
each updated triangle to perform the intersection of its starting
and ending vertices, such that we can prevent a unique triangle
from being processed multiple times.

Since each updated new triangle contains at least one new
edge in B, as illustrated in Fig. 2, we can categorize the
updated triangles into one of three types, where each triangle
solution belongs to exactly one of the three. With reference to
Fig. 2, ∆1, ∆2, and ∆3 refer to updated triangles with one,
two and three new edges in B, respectively. The role of an
edge in a triangle is either a new edge or an original edge.
We label these two edge roles differently. If the line is solid,
it represents an edge from graph G; otherwise it is dashed
and represents an edge from an update batch B. A pivot edge
is highlighted with red color. Moreover, an undirected line is
equivalent to the edge having both directions.

Below, we show how to choose the pivot vertex and pivot
edge for triangles in three categories. We leave the proof of
the correctness to the end of this subsection.
• (Case 1, ∆1) For each triangle in ∆1, we choose the

starting vertex of the new edge and the new edge as the
pivot vertex and pivot edge, respectively. As shown in
Fig. 2(a), vertex u is the pivot vertex and the new edge
u→ v is the pivot edge.

• (Case 2, ∆2) For each triangle in ∆2, we choose the
vertex x with two new edges as the pivot vertex. The
edge x → y or y → x is used as pivot edge where y

is the starting vertex of the original edge. As shown in
Fig. 2(b), vertex u is the pivot vertex, and the new edge
u→ v or v → u is the pivot edge.

• (Case 3, ∆3) For each triangle in ∆3, we choose the
vertex x with two out-going new edges as the pivot
vertex. The edge x → y is used as pivot edge where
the vertex y has one in-going edge and one out-going
edge. As shown in Fig. 2(c), vertex u is the pivot vertex,
and the new edge u→ v is the pivot edge.

(c) Case 3
(b) Case 2
(a) Case 1
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Fig. 2. Orientation technique for DPTL

(2) Description of the Algorithm (DPTL). We take the time
to reiterate that this part considers the case where the batch-
set B consists only of new edges. Additionally, we use G to
denote the relevant influenced graph after including the batch-
update for ease of presentation. We apply the degree based
orientation technique [10], [11], [8] to convert the influenced
graph G into a directed influenced graph ~G. Particularly, we
use deg~G(u) and deg+

~G
(u) to denote the degree and out-degree

of a vertex u in the oriented graph ~G. For an undirected edge
(u, v) in G, it becomes a directed edge u→ v if deg~G(u) >=
deg~G(v) where a tie is broken by vertex IDs.

A pseudo-code of the method is shown in Algorithm 2
where three cases shown in Fig. 2 are carefully considered.
The algorithm takes in two parameters: the oriented influenced
graph ~G and the set of edges from a batch-update B. Let
V (B) denote the vertices in the new edges B, we can process
them as pivot vertices in a parallel fashion. For each pivot
vertex u ∈ B, we output its corresponding updated triangles
(Lines 1-16). At Lines 3-6, all triangles with u as pivot vertex
and new edge u→ v (i.e., Case 1) as the pivot edge are output,
where N+

B (u) denotes the out-going neighbors of u in ~G where
(u, v) is a new edge in B. At Lines 8-11, all triangles with u
as pivot vertex with two new edges (i.e., Case 2) are output,
where NB(u) denotes both out-going and in-going neighbors
of u in ~G where (u, v) is a new edge in B. Note that both
u→ v and v → u may be used as pivot edges. The third case
is handled at Line 13-16 where each triangle consists of three
new edges, with u and u→ v as pivot vertex and pivot edge,
respectively.

Example 1: We further explain the DPTL algorithm by a
running example illustrated in Fig. 3. When v0 is processed as
the pivot vertex, the triangle (v0, v1, v9) is reported in Case 1
with v0 → v1 as the pivot edge since (v0, v9) and (v1, v9) are
original edges and v9 is the neighbor of both v0 and v1. The
triangle (v0, v1, v7) is output under Case 2 with v0 → v7 as
the pivot edge. When v5 is processed as the pivot vertex, the
triangle (v5, v0, v6) is reported under Case 2 with v5 ← v0

as the pivot edge. With v6 as the pivot vertex, the triangle
(v6, v4, v5) is output under Case 3 with v6 → v4 as the pivot
edge.



Algorithm 2: DPTL

Input : ~G: the oriented influenced graph after batch-update
Input : B: new edges in batch-update
Output : new triangles resulting from batch-update
for each u ∈ V (B) in parallel do1

/*CASE 1*/2
for v ∈ N+

B (u) do3
W ← N~G(u) ∩N~G(v) ;4
for w ∈W do5

print (u, v, w);6

/*CASE 2*/7
for v ∈ NB(u) do8

W ← NB(u) ∩N+
~G

(v) ;9
for w ∈W do10

print (u, v, w);11

/*CASE 3*/12
for v ∈ N+

B (u) do13
W ← N+

B (u) ∩N+
B (v) ;14

for w ∈W do15
print (u, v, w);16
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Fig. 3. Running Example

(3) Space Complexity. DPTL is very space efficient because
no extra data structure is required in Algorithm 2. Thus the
space complexity of DPTL is O(m) where m is the number
of edges in the influenced graph.
(4) Time Complexity. The dominant cost of Algorithm 2
is the intersection of neighbor sets for two ending vertices
of the pivot edge. Assuming the neighbors of each vertex
are already sorted, the time complexity for each pivot edge
is Θ(max{deg(u), deg(v)}). Thus, the time complexity is
Θ(

∑
〈u,v〉∈B max{deg(u), deg(v)})) since only the edges in

B are used as pivot edges.
As we output each updated triangle exactly once, and there

is no resource competition, the parallel implementation of
Algorithm 2 is straightforward where the pivot vertices at
Line 1 can be processed in parallel.
(5) Correctness Analysis. Please refer to Section IX-A for
correctness analysis of Algorithm 2.

C. Advanced Dynamic Parallel Triangle List Algorithm

In this subsection, we further enhance the performance of
DPTL algorithm by carefully considering the degree distribu-
tion information in graphs. This additional technique is added
to produce a new algorithm, namely DPTL+.

(1) Motivation. When analyzed as a serial algorithm, DPTL
shares the same time complexity with the naive algorithm ,
where the dominant cost of both algorithms is in the set-
intersection of the neighborhoods for each new edge (u, v) in
B, leading to a time complexity of Θ(max(deg(u), deg(v)))
as the sort-merge is used for intersection operation. It is
well known that we may improve the above time complexity
to Θ(min(deg(u), deg(v))) by applying hashing techniques.
Suppose we have a hash table H that is initialized to the
neighborhood of a vertex u (i.e., N(u)), we are then able to
compute N(u)∩N(v) of an edge by looking up each neighbor
of v (i.e., N(v)). If we ensure that deg(u) ≥ deg(v) is
true, it comes to the time complexity Θ(min(deg(u), deg(v))).
Ensuring that deg(u) ≥ deg(v) is achievable if we always
choose the endpoint vertex with larger degree as the vertex u
for each new edge processed.

A immediate implementation is to pre-build and maintain
hash tables for every vertices in the graph. Note that although
the time complexity of lookup operation in existing hashing
techniques is O(1), only the hashing technique without colli-
sion (e.g., bitmap hashing) can check the existence of an ele-
ment with exactly one look-up operation. As mentioned in [12]
and verified in the experiments, there is no clear advantage
to apply the traditional hashing techniques (with collisions) to
support the edge-oriented triangle listing algorithms, compared
to the sort-merge based approaches. Moreover, more space is
required if we pre-build hash tables for all vertices.

This motivates us to apply the time-efficient hashing tech-
nique: bitmap hashing. However, the bitmap hashing technique
needs n bits where n is the number of vertices, and we cannot
afford to pre-build bitmap hash tables for all vertices or build
the tables on the fly for every pivot edge processed. To avoid
this, we can amortize the cost of hash table constructions by
instead building a bitmap hash table once for each pivot vertex
u when it is processed, and looking up the neighbors of the
other vertex v for each pivot edge with exact one look-up
operation. However, where previously possible if we build a
hash-table for each edge, we lose the ability to ensure that
deg(u) ≥ deg(v) is true for each pivot edge (u, v) with pivot
vertex u. The current algorithm, DPTL, cannot address this
problem.

To tackle this problem, we are motivated to design an new
triangle listing strategy to take advantage of the bitmap hash
technique. Since we have already set that deg(u) ≥ deg(v)
is true for each directed edge u → v due to our usage of
the orientation technique, which implies that we can only use
edge u → v as the pivot edge for the pivot vertex u (resp.
u ← v as the pivot edge for the pivot vertex v). We will
be able to ensure the processing cost for each pivot edge
u → v or v → u is Θ(min(deg(u), deg(v))), together with
the hash table construction cost Θ(m) in total. Regarding the
Algorithm 2, we already use the edge u→ v as the pivot edge
for pivot vertex u in Case 1 (Fig. 2(a)) and Case 2 (Fig. 2(c)).
However, as shown in Fig. 2(b), we may use the edge u← v
as the pivot edge when u is the pivot vertex. In the running
example in Fig. 3, when v7 is processed as the pivot vertex, the
triangle (v7, v0, v9) is identified by pivot edge v7 ← v0 with
deg(v7) > deg(v0). To alleviate this issue, we re-design the
process strategy of the algorithm as illustrated in Fig. 4 where



Cases 1 and 3 are the same as DPTL illustrated in Fig. 2.
Particularly, we further consider the Case 2 in two scenarios.
For Case 2.1, we choose the vertex u with two out-going new
edges as the pivot vertex and u→ v as the pivot edge where
v is the ending vertex of the original edge. For Case 2.2, we
choose the vertex u with one out-going new edge and one
out-going original edge as the pivot vertex, and the new edge
u → v as the pivot edge. Now we always use u → v as the
pivot edge under four cases when u acts as a pivot vertex.

(a) Case 1
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(b) Case 2.1


(c) Case 2.2
 (d) Case 3


Fig. 4. Orientation technique for DPTL+

(2) Description of the Algorithm (DPTL+). DPTL+ consid-
ers four types of triangles shown in Cases 1, 2.1, 2.2 and 3
of Fig. 4. We note in advance the similarities of the triangle
types to those considered by DPTL, where the definition for
triangles with three update-edges and that with one update-
edge remain the same.

A pseudo-code is shown in Algorithm 3, where DPTL+ also
iterates through vertices found in B at Line 1, as was the case
in DPTL. For each pivot vertex u processed, a bitmap hash
table H is also initialized based on its neighbors in N(u) at the
start. Particularly, for each out-going edge u → v, Hv is set
to ⊕ (Lines 3-4). For each in-coming edge u← v, Hv is set
to 	 (Lines 5-7). For each pivot vertex u, all triangle patterns
in Case 1 are listed in Lines 11 though 14. Note that the look-
up operations Hw = ⊕ or Hw = 	 for w ∈ N~G(v) and
v ∈ N+

B (u) implies that w ∈ N~G(u) ∩ N~G(v) where u → v
is the pivot edge. Similarly, all triangle patterns in Case 2.1
are listed in Lines 16 through 19; all triangle patterns in Case
2.2 are listed in Lines 21 through 24, and all triangle patterns
in Cases 3 are listed in Lines 26 through 29.

Example 2: With respect to the running example in Fig. 3,
we show how triangles in Case 2.1 and 2.2 are uniquely
identified. Note that in DPTL, triangle (v0, v7, v9) is reported
with v7 as its pivot vertex and v7 ← v0 as its pivot edge. In this
new case for DPTL+, (v0, v7, v9) now corresponds to the Case
2.2 with v0 as pivot vertex and v0 → v7 as the pivot edge.
Same for the triangles (v0, v5, v6) and (v0, v5, v4). Triangle
(v0, v1, v7) corresponds to Case 2.1, which is reported with
pivot vertex v0 and pivot edge v0 → v7 in both DPTL and
DPTL+.
(3) Space Complexity. In addition to the influenced graph
G, we only need to maintain a hash table H per thread for
its active pivot vertex. Since a vertex will be only processed
once as the role of pivot vertex, the space time complexity

Algorithm 3: DPTL+

Input : ~G: the oriented influenced graph after batch-update
Input : B: new edges in batch-update
Output : new triangles resulting from batch-update
for u ∈ V (B) in parallel do1

H ← ∅;2
for v ∈ N+

~G
(v) do3

Hv ← ⊕;4

for v ∈ N~G(v) do5
if Hv 6= ⊕ then6

Hv ← 	;7

for v ∈ N+
B (v) do8

Hv ← ];9

/*CASE 1*/10
for v ∈ N+

B (u) do11
for w ∈ N~G(v) do12

if Hw = ⊕ or Hw = 	 then13
print (u, v, w);14

/*CASE 2.1*/15
for v ∈ N+

B (u) do16
for w ∈ N+

~G
(v) do17

if Hw = ] then18
print (u, v, w);19

/*CASE 2.2*/20
for v ∈ N+

B (u) do21
for w ∈ NB(v) do22

if Hw = ⊕ then23
print (u, v, w);24

/*CASE 3*/25
for v ∈ N+

B (u) do26
for w ∈ N+

B (v) do27
if Hw = ] then28

print (u, v, w);29

of DPTL+ is O(pm) where m is the number of edges in the
influenced graph G, and p is the number of threads at running
time.
(4) Time Complexity. It takes Θ(deg(u)) time to initialize
the hash table for each pivot vertex u. The total cost spent
on hash table initialization is Θ(m) time where m is the
number of edges in the influenced graph G. For each pivot
edge processed at Lines 12, 17 ,22 and 27, the cost is
Θ(min{deg(u), deg(v)}) because we have deg(u) ≥ deg(v)
under all cases. All in all, the time complexity of the DPTL+
(Algorithm 3) is Θ(

∑
〈u,v〉∈B min{deg(u), deg(v)} + m)

which is more competitive than that of DPTL (Algorithm 2).
Same as DPTL, DPTL+ only outputs each updated triangle

once, and there is no resource competition between threads,
the parallel implementation of Algorithm 3 is straightforward
where the pivot vertices at Line 1 can be processed in parallel.
(5) Correctness Analysis. Please refer to Section IX-B for
the correctness analysis of Algorithm 3.

IV. INSERTION/DELETION MIXED BATCH-DYNAMIC GRAPH

In this section, we discuss the final algorithm for triangle
listing on batch-dynamic graphs, where both inserted and



deleted edges are considered. We use G1 and G2 to denote
the original graph and the graph after batch-update B. By
∆G1

and ∆G2
, we denote the set of triangles in G1 and G2,

respectively.
According to the problem definition, we are only interested

in the updated triangles after the batch-update, and we do not
need to care about the order in which the updated triangles are
output. Thus, the final algorithm consists of two phases: (1)
oriented original graph ~G1 and the batch of deleted edges B−

as input of DPTL or DPTL+; and (2) oriented updated graph
~G2 and the batch of inserted edges B+ as the input of DPTL

or DPTL+. The deleted triangles and new triangles resulting
from the batch-update will be output in phases (1) and (2),
respectively.

As there is no mutual edge between the inserted edges B+

and deleted edges B−, the updated graph consists of three
types of edges: original edges, inserted edges, and deleted
edges (if we do not explicitly remove the deleted edges). For
each deleted triangle pattern, there exists at least one deleted
edge from B− and none of the inserted edges from B+ 1 since
we consider batch deletion first. Thus, all deleted triangles
(i.e.,∆G1

−∆G2
) can be reported in Phase (1). Similarly, for

each new triangle pattern, there exists at least one new edge
from B+ and none of the deleted edges from B−2. Since
all deleted edges are removed in G2 after the computation in
Phase (1), and all new edges are included in G2; therefore
G2 contains only original edges and inserted edges, all new
triangles (i.e.,∆G2 −∆G1 ) can be output in Phase (2).

V. EXPERIMENTAL SETUP

Algorithms. We compare our proposed algorithm with the
following methods discussed in the paper. In total, there are 4
methods in this experimental setting.
• Naive (Algorithm 1 in Section III-A) Serial version that

lists updated triangles one update-edge at a time. As
discussed in Section III-A, the parallel version of the
naive algorithm is much slower than the serial version
with single thread under our experiment setting, this is
due to its expensive cost in removing duplicate solutions.

• AOT* State-of-the-art triangle listing algorithm [9] ap-
plied on the influenced graph ~G, as discussed in Sec-
tion III-A.

• DPTL (Algorithm 2 in Section III-B) Our first algorithm
using a new orientation technique.

• DPTL+ (Algorithm 3 in Section III-C) DPTL with hash
table and degree-ordering based lookup optimization.

Datasets. The dataset we use in this experiment includes a
number of real-world sample graphs including some billion-
scale graphs. Some sample graph data are neither simple
nor undirected, and they are treated and processed as simple
undirected graphs for the purpose of this experiment. Each
directional edge is considered as an undirected edge, multi-
edges and loops are also ignored. The final list of datasets
used in this paper is in Table 2, where uk-2005 is used as the
default graph in the experiments.

1Otherwise, the triangle cannot be included ∆G1
2Otherwise, it cannot be included in ∆G2

Workload. To evaluate the algorithms under the batch-
dynamic setting, we first perform a batched deletion followed
by a subsequent batched insertion, and return the amount of
total time spent. Particularly, we randomly extract edges from
the graph to use as new edges and deleted edges for the batch-
update, the graph consisting of the remaining edges is used as
the original graph. The set of edges involved in both edge
insertion and deletion batches is controlled based on the batch
size, which is the percentage of a given graph’s edge count
and varies from 0.01% to 8% with default value 4%.
Performance Measurement. In the experiments, we record
the running time of the algorithms to evaluate their per-
formance, which consists of graph batch-update time and
the updated triangle listing time. Test instances that do not
terminate within an hour (or 3600 seconds) are not included
in the final figure. Note that we do not evaluate the space
consumption because all 4 algorithms are space efficient.
Experimental Settings. In the experiments, all programs are
implemented in c++ and compiled with g++-9. Regarding the
batch-update of the graph, we update the adjacency lists of
all vertices in parallel. In the implementation, we use static
OpenMP parallel schedule compiling option. The source code
for the AOT* algorithm is obtained by the authors in [9]. All
experiments are performed on a 64 bit Linux machine with
an Intel(R) Xeon(R) Gold 6150 CPU @ 2.70GHz, the L1, L2
and L3 cache of 32K, 1024K, and 25344K respectively, with
a RAM size of up to 376GB. The number of threads chosen
for parallel execution varies from 1 to 32 with 8 threads as
default.

A. Performance Evaluation

1) Effect of Diff. graphs: 28 datasets are deployed for
the purposes of the experiment, and the running time of 4
algorithms is reported in Fig. 5 with default batch size (4%)
and number of threads (8). We divide the results into two plots
based on their edge-count for clarity, where the graphs with
larger number of edges are evaluated in the second plot. In
terms of total processing time, our DPTL+ algorithm performs
the best: we find that its running time is consistently the least
among the four methods tested. When comparing DPTL+ with
its base design DPTL, the addition of the second technique
does show an improvement in terms of the running-time. We
are able to observe instances where the difference in running-
time is less prominent, such as soc-lastfm, lijournal-2008 and
friendster. Although DPTL+ and DPTL consider the same set
of update-edges during the iteration, DPTL+ does perform
better than DPTL overall. While both DPTL and DPTL+ make
use of the orientation technique, the DPTL algorithm does
not make use of the additional degree distribution information
which contributes towards a reduction in the overall intersec-
tion costs when considering the degree difference of edge
endpoints. For the baseline algorithms AOT*, our algorithm
DPTL performs faster than AOT* for most graphs. As reported
in Fig. 5, the performance of the naive algorithm is not
competitive under most of the settings, especially the large
graphs.

2) Effect of Batch-Size: Where the thread count is fixed to
the default of 8 threads, we measure the performance of all



TABLE II
STATISTICS OF 28 DATASETS.

Graph #Nodes (M) #Edges (M) Max Degree Avg Degree
soc-lastfm 1.19 9.04 5150 7
soc-digg 0.77 11.81 17643 15
youtube 3.22 18.75 91751 5
skitter 1.7 22.19 35455 13

higgs-twitter 0.46 25.02 51386 54
dbpedia 3.97 25.22 469692 6

web-hudong 1.98 28.86 61440 14
actor 0.38 30.08 3956 78

uk-2014-tpd 1.77 30.57 63731 17
flicker 1.62 30.95 27236 19
petster 0.62 31.39 80636 50

web-baidu-baike 2.14 34.03 97848 15
wiki-topcats 1.79 50.89 238342 28

sx-stackoverflow 6.02 56.37 44065 9
uk-2014-host 4.77 80.43 726244 16
ljournal-2008 5.36 99.03 19432 18

soc-orkut 3 212.7 27466 70
hollywood-2011 2.18 228.99 13107 105
indochina-2004 7.41 301.97 256425 40

wikipedia-link-en 12.15 576.52 962969 47
arabic-2005 22.74 1107.81 575628 48

uk-2005 39.46 1566.05 1776858 39
webbase-2001 118.14 1709.62 816127 14

it-2004 41.29 2054.95 1326744 49
twitter-2010 41.65 2405.03 2997487 57

friendster 124.84 3612.13 5214 28
sk-2005 50.64 3620.13 8563816 71

uk-2006-05 77.74 5271.7 4070242 67

four algorithms given batch sizes ranging from 0.01% to 8%
of the graph being processed. We first report the number of
modified triangles regarding different batch-size (percentage)
on 6 graphs in Fig. 6. It is shown that the number of modified
triangles is considerable large even with a small batch-size.
For instance, in graph sk-2005, there are around 36 million and
411 million modified triangles for batch-size of 0.01 percent
and 0.1 percent, respectively.

In Fig. 7, we demonstrate the processing time of the
algorithms on four graphs. It is shown that the performance of
DPTL+ consistently outperforms other competitors under all
settings. With the growth of batch size, the margin between
DPTL+ and DPTL becomes more significant, which implies
that benefit of exploiting degree distribution is obvious on
larger influenced graphs. We observe that the AOT* algorithm
is not very sensitive to changes in batch size, this is because
the size growth of influenced graph is slow on the batch-
size. For example, the size of an influenced graph of sk-2005
for batches size of 0.01 percent and 8 percent are 1, 082
million and 1, 717 million respectively. As DPTL can take
immediate advantage of the small number of updated edges, it
significantly outperforms AOT* when the batch-size is small.

3) Effect of the number of threads: Our existing evaluation
of the discussed algorithms are based on a thread setting
of 8 threads, we assess here the degree of parallelism by
considering its execution on multiple thread counts: from
single threaded operation up to 32 threads. As discussed
previously, we reiterate that for the naive algorithm, the plots
only depict its single threaded running time for all points along

the x axis. Cases that exceed a running time of 3600 seconds
are left out of the plot.

In Fig. 8, we decompose the total execution time of each
algorithm into graph update time and triangle listing time,
where all algorithms have the same graph update time. Here,
we slightly abuse the notation by using the algorithm name
to represent its triangle listing time. As expected, the per-
formance DPTL+ is superior to other algorithms under all
settings. With reference to Fig. 8, for larger datasets, such as
uk-2005 and it-2004, DPTL is not as fast as AOT* for lower
thread settings. Once DPTL reaches a parallel execution of
around 8 threads, it is able to overtake AOT* as the more
efficient algorithm.

In terms of parallelization speed-up of triangle listing time,
DPTL+, DPTL and AOT* demonstrate a good performance.
It is reported that the speed-up of the triangle listing time of
DPTL+ with 32 threads is 21, 10, 16, 11 on graphs uk-2014-
host, uk-2005, twitter-2010, sk-2005 respectively, compared
to DPTL+ with single thread. The corresponding speed-up
of DPTL (resp. AOT*) is 28 (6), 19 (2), 20 (7), 21 (4),
respectively.

We noticed that graph update, although very fast, still takes
a certain portion of the total execution time if the triangle
listing is fast. Moreover, compared to triangle listing, it is
difficult to achieve a good parallel speed-up for graph update
because of a large number of write operations involved. These
factors make the parallel speed-up of the total execution time
not very impressive when the triangle listing time is very fast
(e.g., Fig 8(d)). Nevertheless, in terms of total processing time,
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Fig. 8 shows that DPTL+ with 32 threads can still achieve a
speed-up of 18, 6, 12, 7 on graphs uk-2014-host, uk-2005,
twitter-2010, sk-2005 respectively, compared to DPTL+ with
single thread. The corresponding speed-up of DPTL (resp.
AOT*) is 25 (6), 17 (2), 18 (7), 16 (4), respectively.

As shown in Fig. 8 of the revision, the speed-up of the
processing time of DPTL+ with 32 threads is 18, 6, 12,
7 on graphs uk-2014-host, uk-2005, twitter-2010, sk-2005
respectively, compared to DPTL+ with single thread. The
corresponding speed-up of DPTL (resp. AOT*) is 25 (6), 17
(2), 18 (7), 16 (4), respectively.

B. Additional Experiments
In this subsection, we provide additional experiments for

better understanding of the proposed methods.
1) Evaluate Diff. hash schemes: In Fig. 9, we use the

standard C++ hash table implementation in STL (Standard
Template Library) for the neighborhood intersection compu-
tation of DPTL, namely DPTL-h1, and pre-build a hash table
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for every vertex. Recall that we use sort-merge and bitmap
hashing for the intersection computation in DPTL and DPTL+,
respectively. In addition to the large memory required, DPTL-
h1 does not show superior performance in terms of processing
time on uk-2005 graph compared to DPTL, while our proposed
DPTL+ significantly outperforms DPTL under all settings.

2) Justification of the baseline: To justify that AOT* is a
reasonable baseline, two representative main memory parallel
triangle listing algorithms, CF [8] and KClist [13], replace
AOT for listing triangles on the influenced graph. As expected,
considering that they are not state-of-the-art, Fig. 10 shows that
their corresponding algorithms, namely CF* and KClist*, are



101

102

103

104

1 2 4 8 16 32

P
ro

ce
ss

in
g 

T
im

e

Update Naive AOT* DPTL DPTL+

10-1

100

101

102

1 2 4 8 16 32

P
ro

ce
ss

in
g 

T
im

e

(a) uk-2014-host

100
101
102
103
104

1 2 4 8 16 32

P
ro

ce
ss

in
g 

T
im

e

(b) uk-2005

101

102

103

104

1 2 4 8 16 32

P
ro

ce
ss

in
g 

T
im

e

(c) twitter-2010

101

102

103

104

1 2 4 8 16 32

P
ro

ce
ss

in
g 

T
im

e

(d) sk-2005

Fig. 8. Evaluating Parallel Performance

10-1

100

101

102

103

0.01
0.1 0.5 2 8

P
ro

ce
ss

in
g 

T
im

e

 Batch size (%)

DPTL+
DPTL

DPTL-h1

Fig. 9. Diff. hash schemes

101

102

103

0.01
0.1 0.5 2 8

P
ro

ce
ss

in
g 

T
im

e

Batch size (%)

AOT*
kClist*

CF*

Fig. 10. Evaluate baselines

clearly outperformed by the AOT*.
3) Evaluate of batch selection: In the above experiments,

we choose a batch of updates by randomly selecting edges
from a graph. We notice that there is a timestamp on edges
of the graph stackoverflow. To evaluate the effect of the
batch selection methods, we compare the performance of the
algorithms in Fig. 11(a) and Fig. 11(b), where random se-
lection and time-based selection method are used respectively.
Though the running time of each algorithm is different on two
batch selection methods, we observe the same performance
rankings and similar trends of the algorithms in two figures.
Note that we also report the number of modified triangles
for these two approaches in Fig. 6, denoted by stackoverflow
and stackoverflow-temporal, respectively. It is shown that time
based batch selection method (i.e., stackoverflow-temporal)

has less number of modified triangles compared to the sam-
pling based one (i.e., stackoverflow) under same batch size, but
they have similar growth rate when the batch-size increase.
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VI. RELATED WORK

In this section, we introduce existing works closely related
to our problem studied.

A. Triangle Listing and Counting

As a special subgraph, the triangle is a fundamental struc-
ture that is the building block for subgraph patterns that
are more complex, it is also widely used in many real-life
applications. In particular, in-memory algorithms have been
extensively studied in the literature (e.g.,[8], [13], [10], [11]).
Triangle listing can be classified into two popular computing
paradigms which are the edge-iterator [14] and the node-
iterator [15]; both paradigms share a common asymptotic
behavior [11]. Since then, triangle listing solutions have mostly
been improvements and optimizations based on these two
early paradigms. In more recent years, the topics of interest
have shifted to parallel/distributed processing (e.g.,[12], [16]),
efficient I/O external memory methods (e.g.,[17], [18]), and
the asymptotic cost analysis of triangle listing in random
graphs [19].

The triangle counting is a problem related to the triangle
listing problem, which find the total number of triangles in a
graph G. Compared to listing algorithms, counting algorithms
find ways to compute the number without relying on the
exploration of triangle instances. Many algorithms have been
designed to count triangles (e.g., [20], [21], [22]). Approxi-
mate methods are useful for settings that handle large-scale
graphs, or settings where a given approximation is as useful
as knowing the exact triangle count (e.g., [23], [24], [25]).

B. Batch-update Algorithms on Dynamic Graphs

The are advantages of processing updates in batches when
dealing with high volumes of changing data. Various algo-
rithms that consider batche-updates have been investigated
such as computing clustering coefficients [26], single-source
shortest-path [27], dynamic connectivity problems [7] and
those with GPU support [28]. Recently, the problem of com-
puting the exact triangle count for batch-dynamic graph has
been studied in [25]. However, their methods cannot be applied
to listing triangle solutions as they do not need to explicitly
list each triangle, and the duplication can be simply avoided
by inclusive-exclusive principle.

C. Subgraph Enumeration on Dynamic Graphs

As a generalization of triangle listing algorithm, the problem
of subgraph enumeration has been intensively studied in the



literature, which aims to find all occurrence of a query
subgraph g in a graph G. In recent years, some incremental
solutions (e.g., [29], [30], [31], [32], [33]) have been proposed
to efficiently detect updated subgraph upon the updates of the
graph. Though their techniques can be immediately used for
the problem of updated triangle listing by simply setting the
query subgraph as a triangle, this is not promising because
(1) unlike existing triangle listing algorithms, they are not
specifically designed for the triangle; and (2) their optimization
techniques cannot directly benefit the triangle listing. For
instance, one of the commonly used approaches is the partial
result indexing. However, we may come up with an updated
triangle for any two connected edges (i.e., wedges), and it is
infeasible to index all of them.

VII. DISCUSSION

A. Justification of the Baseline Algorithms

As shown in Section VI-A, triangle listing is a famous
problem and there are many existing works under different
settings. Clearly, all existing main memory triangle listing
algorithms can be immediately applied on the influenced
graph to enumerate updated triangles. We may also consider
other studies under other settings such as external memory
(e.g., [17]) or distributed (e.g., [16]) computing environments.
For instance, the graph is partitioned into different groups
in [17] such that each partition can be fit into the main
memory. After computing the triangles in each individual
group, they need to compute the triangles across different
groups. To compute the triangles across two groups A and B,
we may regard this as the problem of triangle listing in a batch-
update setting; that is, A is the original graph and B is the
batch-updates. However, this is not the research focus of [17],
and the existing main memory triangle listing algorithm is
directly used on the influenced subgraph. Similarly, no special
optimization is considered on this aspect in other studies. Thus,
as to our best knowledge, a reasonable baseline is to apply
the state-of-the-art main memory triangle listing algorithms
on the influenced graph, which is confirm by Fig. 10 in the
experiments.

B. Compared to General Graph Matching Algorithms

As discussed in Section VI-C, it is infeasible to directly
apply the general dynamic graph matching algorithms for the
problem of triangle listing on batch-updated graphs because
they are not specifically designed for triangle listing. One
natural question is that if we can extended our proposed
approach to enhance their performance. Same as existing
triangle listing algorithms, the core of the proposed techniques
in our paper is specific to the triangle structure, and hence
cannot be used for general subgraph processing framework.
For instance, the key of the orientation technique designed for
DPTL is to use an updated edge as pivot edge to uniquely
identify a triangle such that we output each triangle once,
but we cannot do this on larger subgraphs. Similarly, for
larger graph pattern multiple pivot edges will be involved in
the neighborhood intersection computation, we cannot ensure
deg(u) ≥ deg(v) for every pivot edge u→ v. Thus, we cannot

guarantee that time complexity of Θ(min{deg(u), deg(v)})
for each edge u→ v.

VIII. CONCLUSION

The triangle listing is a fundamental problem in graph anal-
ysis with a wide range of applications. Though this problem
has been intensively studied on static graphs, this paper is the
first to investigate the problem in the context of batch-dynamic
graphs with batch edge insertion and deletion operations. An
efficient parallel algorithm DPTL+ has been developed with
the best theoretical time complexity and practical performance
compared to other solutions.
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IX. APPENDIX

A. Correctness of DPTL
We show that the Algorithm 2 correctly outputs all updated

triangles in the sense that (1) all updated triangles are reported, and
none of the existing triangles are encountered in the computation;
and (2) each updated triangle is reported exactly once.

Given a triangle (x, y, w) in the graph G, there are a total of
4 × 4 × 4 = 64 possible patterns considering the edge directions
and types (new or existing edges). Among them, the cyclic triangles
(clockwise or anti clockwise) will be excluded, with a total number of
2×2×2×2 = 16. The triangles without new edge will be excluded
as well with a total number of 2×2×2 = 8. Considering there are 2
cyclic triangle patterns without any new edge, the number of triangle
patterns in the output of the Algorithm 2 is 64 − 16 − 8 + 2 = 42
following the inclusionexclusion principle.

In the following, we show that these 42 patterns will be uniquely
reported in Algorithm 2. Let’s start with Case 1, and assume (x, y) is
the new edge. As shown in Fig. 12, there are 6 valid patterns. Patterns
in Fig. 12(a)-(c) will only be output when x is the pivot vertex and
x → y is the pivot edge. Patterns in in Fig. 12(d)-(f) are associated
with pivot vertex y and pivot edge y → x. Other patterns with new
edge (x, z) or (y, z) can be detected in the same way. Note that there
is no cyclic triangle due to the use of orientation technique and the
output triangle has at least one new edge (i.e., exiting triangle will
not be reported). Thus, 18 triangle patterns in Case 1 can be correctly
output.
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Fig. 12. Case 1 for DPTL
Regarding the Case 2 with two new edges, we assume (y, z) is the

only original edge. As shown in Fig. 13, there are 6 valid patterns,
and x is the pivot vertex. While the choice of pivot edge is different
with x → y for Fig. 13(a), y → x for Fig. 13(b) and (c), x → z
for Fig. 13(d), z → x for Fig. 13(e) and (f). With similar rationale

to Case 1, another 18 triangle patterns in Case 2 can be reported
correctly.
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Fig. 13. Case 2 for DPTL
Regarding the Case 3 with three new edges, and we assume x

is the vertex with two out-going edges. There are two valid triangle
patterns as shown in Fig. 14 where x is the pivot vertex, and x→ y is
the pivot edge in Fig. 14(a) and x→ z is the pivot edge in Fig. 14(b).
With similar rationale to Cases 1 and 2, 6 valid triangle patterns in
Case 3 can be reported correctly. Based on the above analysis, we
can see all 18 + 18 + 6 = 42 valid triangle patterns can be uniquely
identified by their corresponding pivot vertices and pivot edges. So
the correctness of Algorithm 2 follows.
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Fig. 14. Case 3 for DPTL
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Fig. 15. Case 2.1 and 2.2 for DPTL+

B. Correctness of DPTL+
Since the Case 1 and 3 of the DPTL+ are the same as those of

DPTL, we limit the analysis on the Case 2 where an updated triangle
contains two new edges. Let edge (y, z) be the only original edge,
compared to Fig. 13 (Case 2 of DPTL), the choice of some pivot
vertices and pivot edges have been changed in DPTL+ as shown in
Fig. 15. Particularly, the pivot vertex (x) and pivot edges (x→ y and
x → z) remain the same in Fig. 15(a) and (d), which corresponds
to the Case 2.1 in DPTL+. While other 4 triangle patterns fall in the
Case 2.2 of DPTL+, and now vertex y becomes the pivot vertex with
pivot edge y → x in Fig. 15(b) and (c), and the vertex z becomes the
pivot vertex with pivot edge z → x in Fig. 15(e) and (f). Similarly,
we can correctly find triangle patterns with two new edges where
(x, y) or (x, z) is the original edge. So the 18 triangle patterns in
Case 2 can be reported correctly.

Based on the above analysis and the correctness of DPTL, DPTL+
uniquely reports all 42 valid triangle patterns with their corresponding
pivot vertices and pivot edges.
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