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We would like to thank the reviewers for their insight-
ful and invaluable comments. We have revised the paper
carefully according to the comments. A summary of ma-
jor revisions is given below, followed by the point-to-point
response to each reviewer.

1. We have presented the scenarios where our proposed
black-box approaches are applicable.

• We have revised the Motivations part of the Intro-
duction section to identify different application sce-
narios between our black-box approaches and exist-
ing white-box solutions.

• We have highlighted the different scenarios in Section
VI.A.

2. We have added, in the Introduction section, Table I to
classify the relationship between strategies and adopted
measures.

3. We have compared the effectiveness of our approach
with a greedy algorithm [19] for betweenness promo-
tion.

• We have described the greedy algorithm in Section
VI.A.

• We have included Exp 5 and Exp 6 in Section VII.C (a
new subsection) to compare the effects of promoting
scores and promoting rankings, respectively.

All the updates have been marked in blue in the
manuscript. Please kindly find our point-to-point responses
below.

1 Response to Reviewer # 4

W1 The outline could make it clear from the beginning
which strategy applies to which measure.

D2 It would be nice if those results were briefly outlined
earlier in the paper, instead of providing generalities.

Response: Thanks for the suggestion.

1. We have added, in the Introduction section, Table I to
show the relationship between strategies and adopted
measures.

2. We have included the relationship at the beginning of
Section V.B and Section V.C as the outline. ⌅

W2 Sometimes measure names appear to be used inter-
changeably (Section III.C); that should be a typo.

Response: We apologize for the inconvenience caused by
the misuse of notations. In the revision:

1. We have added, in Section III, Table II to list the com-
monly used notations for a smooth understanding.

2. We have fixed the typos in Example 3.1 and Problem
3.1.

Thanks for your careful reading. ⌅

W3 Experimental study shows ranking variations; could
also use relative measures.

D3 The experimental study could present relative, rather
than absolute, variation measures.

Response: We want to deliver our sincere gratitude for this
advice. In the revision, we have replaced the absolute rank-
ing variation metric with a relative one (denoted as Ratio).

1. We have described this relative metric at the beginning
of Section VII.

We propose strategies to promote a central-
ity measure C. To assess the effectiveness
of the proposed strategies in upgrading cen-
trality ranking, a simple metric is the ranking
variation �R(t) for the target node t. How-
ever, �R(t) is an absolute value that does
not consider the graph size; a desirable al-
ternative would be the relative ranking vari-
ation Ratio, which is the ratio of �R(t) to
the node number n, that is,

Ratio = �R(t)
n

◊ 100%.

1



2. We have revised Fig. 4 - Fig. 7 and the related descrip-
tion of results, accordingly. ⌅

R1 Compare black-box solutions to greedy white-box so-
lutions in terms of the number of edits needed to
achieve a certain centrality score.

Response: Thanks for the comment. In the revision, due
to space limitations, we use betweenness promotion as an
example to show the comparison between our black-box
solution and the existing greedy white-box solution [19].

1. We have described the procedure of the greedy algo-
rithm briefly in Section VI.A.

2. We have created a new subsection (Section VII.C) to
report the comparison results, where Exp 5 evaluates
the ranking promotion effect, and Exp 6 examines the
score promotion effect. The results suggest that i) our
proposed approach is comparable with the greedy algo-
rithm regarding the ranking promotion; ii) the greedy
algorithm is applicable when score promotion is the pri-
mary goal. ⌅

2 Response to Reviewer # 5

W1 The problem is not addressed in a satisfactory way.
It is not clear how the node’s properties can be mea-
sured, without breaking the very own “black box as-
sumption”.

D1 The assumptions are not clear. the black box seems
”conveniently” for the network but not for the node to
improve upon.

Response: Thanks for all the comments. The lack of clar-
ity may be because, in the previous manuscript, we did not
distinguish between the two main roles in a network: own-
ers and users [23]. Our paper focuses on network users
who have no access to the entire network structure but
plan to modify the network to affect the centrality calcu-
lated/measured by the network owners.

In the revision, we have included the following statement
in Section VI.A for an explanation.

While existing solutions apply to network own-
ers who have a complete view of network struc-
tures, we attack this problem from the perspec-
tive of network users who do not have access to
the entire network structure, that is, users plan to
modify the graph without referring to the network
structure, thereby influencing the centrality cal-

culated by the network owners.

Thanks for posing these valuable comments, which al-
low us to improve the presentation and make this paper
more understandable. ⌅

W2 At least a study on minimality should be added (can
you minimize the number of edits and still achieve
good centrality measures)

Response: Thanks for providing a possible extension of
our work as “a study on minimality.” This is an interest-
ing yet challenging problem. We show the hardness of the
minimality problem below (without rigorous proof).

We first describe the hardness of a related prob-
lem (MRI): given an edit number b, maximize
the ranking improvement of a target node on
networks with known topology. As presented
in [19], the MRI problem does not admit any
polynomial-time constant-factor approximation
algorithm, unless P = NP.

We then verify that the minimality problem
(given a ranking improvement amount, output the
minimum number of needed edits) is at least as

hard as the MRI problem:

• We perform a binary search on the amount of
ranking improvement, which is used as an in-
put to the minimality problem. (Note that the
binary search is feasible and efficient since the
ranking improvement amount is bounded by
the node number.)

• As long as the output of the minimality prob-
lem (i.e., edit number) is below the given
edit number b, we continue the binary search;
otherwise, the current ranking improvement
amount is reported as the answer to the MRI
problem.

Therefore, it is not likely to devise a polynomial-time al-
gorithm with a constant-factor approximation ratio for the
minimality problem, unless P = NP. On the other hand,
the minimality problem and the related MRI problem are
meaningful. We have included the budget-based (i.e., edit
number-based) improvement study as our future work in
Section VIII, aiming to find a practical (heuristic) solution
to solve this problem.

Our future work includes investigating more ad-
vanced strategies: given a budget b of graph edits
(by inserting edges and (or) nodes), modify the
black-box network to maximize the target node’s
centrality ranking.

Thanks again for inspiring this potential research
opportunity. ⌅

W2 The strategies are really straightforward. While I ap-
preciate that “simple is better” it seems quite naive to
just add nodes or edges to the node in question. This
would alter the whole network.

D2 The methods are too simple and seem to ignore chal-
lenges with unknown topology. Also they seem costly
(Add a lot of nodes etc)
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Response: Thanks for all the comments.
For your first comment, “the methods are too simple and
seem to ignore challenges with unknown topology”:

1. For black-box networks, the challenge lies in how to
ensure the ranking of a target node will be improved
definitely — recall that even on networks with known
topology, the problem of ranking maximization is hard
to approximate [19], let alone we have no access to the
network structure.

2. To overcome the challenge, we propose two principles:
the maximum gain and the minimum loss principles.
The strategies are straightforward, yet the principles

are non-trivial — we ensure that the strategy meeting
a principle is theoretically guaranteed to boost a target
node’s ranking, even on black-box networks. Please re-
fer to the newly added Table I in the Introduction section
for more information.

For your second comment, “they seem costly,” we apolo-
gize for not explicitly stating cost analysis. In the revision,
we have highlighted cost analysis in Remark 2 of Section
V.A, both theoretically and empirically.

We can theoretically compute the value of p

Õ

(see Lemma 5.3, Lemma 5.6, Lemma 5.9, and
Lemma 5.12), with which the ranking of the tar-
get node will definitely increase. Empirically, in
Section VII, we observe that a small size (e.g.,
16) is sufficient to ensure an effective improve-
ment using our proposed promotion strategies.

⌅

W3 The experimental work is a little succinct with high
level discussion of findings.

D3 The experimental eval, is too high level.

Response: Yes, you are right. We apologize for not pre-
senting experimental findings well due to space constraints.
In the revision, we have tried our best to include more de-
tailed discussions.

1. We have re-organized the original experiment results
into two subsections — Section VII.A for testing the
maximum gain principle and Section VII.B for testing
the minimum loss principle.

2. We have changed the promotion size from “5, 10, 50,
100, 150” to “4, 8, 16, 32, 64”. In this way, when dou-
bling the size, we can show the trendy of the promotion
effect intuitively from the figures. Thanks for your sug-
gestion.

3. We have updated all the figures, tables, and result de-
scriptions in Section VII.A and Section VII.B, accord-
ingly.

4. We have created a new subsection (Section VII.C) to re-
port the comparison with an existing white-box solution
[19] for betweenness promotion, where Exp 5 evaluates
the ranking promotion effect, and Exp 6 examines the
score promotion effect. ⌅

3 Response to Reviewer # 7

W1 The authors claim in their introduction, that greedy
algorithms for the stated problems fail. However, this
claim is never evaluated.

Response: Thanks. We have added a new subsection (Sec-
tion VI.B) to describe an existing greedy algorithm (de-
noted as Greedy) [19]. This subsection has provided the
following statement to explain why the greedy algorithm
does not apply to black-box networks.

Note that in step 2), Greedy needs to compute
�C(t|v) (for ’v œ {V

Õ \ NGÕ(t)}), which neces-

sitates the knowledge of the network structure to
calculate BCÕ(t) and BC(t). Instead, our method
does not involve any computation on the network
and thus is feasible when the network structure is
unknown. We compare our method with Greedy
in Section VII. ⌅

W2 No experimental comparison with related work is
given; although the setting of related work is different
(i.e. the network is not modified in a black-box man-
ner) a comparison of results would help the reader to
understand the consequences of this different setting.

Response: Thanks for the constructive comment. In the
revision:

1. We have added a new subsection (Section VII.C) to
compare with a greedy algorithm, where Exp 5 evalu-
ates the ranking promotion effect, and Exp 6 examines
the score promotion effect.

2. We have updated the Motivations part in the Introduc-
tion section to identify different settings between our
work and the related work.

Greedy algorithms are efficient in practice
[10] and are valuable to network owners

[23] who have a complete view of the net-
work structure to make a greedy decision for
centrality improvement. On the other hand,
for privacy reasons [24, 25], a real-world
network is more likely to be a black box for
network users [23] — users do not have ac-
cess to the entire network structure. When
the network structure is inaccessible, greedy
algorithms are not candidates for users who
want to increase centrality.

⌅

D1 Page 4, double line strategy: “First, p nodes from �V

(Line 1)” Here, a verb is missing.
D2 Typo “between a target nodes t” and the node w.

Response: Thanks for all the comments. We have fixed
these typos. Besides, we have proofread to eliminate other
typos. Thanks again for your careful reading. ⌅
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Abstract—Centrality measures are widely used to map each node
to its importance in a network. For many practical applications,
vital nodes that bear high centrality values have superior positions
over other nodes. To benefit from the positive impact of becoming
a vital node, the problem of improving the centrality of the target
node has attracted increasing attention. Many existing studies attack
this problem by increasing the centrality score of the target node on
the premise of knowing the network structure in advance. However,
these methods suffer from privacy issues due to their dependence on
the network structure and may lose their effectiveness because other
nodes can simultaneously increase the centrality scores. Therefore,
in this paper, we explore the following question: given a black-
box network whose structure is unknown, is it possible to improve
the centrality ranking (rather than the centrality score) of a target
node by implementing certain strategies? We provide an affirmative
answer to this question. First, to avoid relying on the network
structure for promotion, we propose strategies that freeze the
original graph while appending nodes and edges just around the
target nodes. Second, to guide strategies for effectively boosting
centrality, we devise two principles that grant the target node
with either the maximum gain or the minimum loss of centrality
scores over other nodes. We prove that a strategy meeting the
proposed principles is guaranteed to upgrade the target node’s
centrality ranking. Extensive experiments were conducted to verify
the effectiveness of the proposed strategies on black-box networks.

Index Terms—Centrality, Network analysis, Black-box networks,
Effective promotion, Principle-guided strategies

I. INTRODUCTION

Networks have been extensively applied to model entities and
their relations in the real-world [1, 2]. As one of the essential
aspects of network analysis, centrality reveals the local properties
of a network [3]: given a graph1

G(V, E), a centrality measure
assigns a score to every node v œ V to indicate the relative
importance of this node [4]. Some commonly used centrality mea-
sures are degree centrality, closeness centrality, and betweenness
centrality (see [5] and references therein).

As a tool for mapping each node to its corresponding signifi-
cance, centrality measures are exploited to identify vital nodes on
a network [5]. Vital node identification has many applications on
networks [5–7], with examples ranging from advertisements on
social networks [8] to outbreak control on epidemic networks [9].
Nodes that have relatively high centrality scores have superior
positions over other nodes on a network [10, 11]. This paper
studies the issue of promoting a target node’s centrality on a
network to benefit from the positive impact of becoming a vital
node (for fun and profit).

1We do not distinguish between “network” and “graph” if the context is obvious.

Applications. The motivating examples for centrality promotion
are listed below.
• Closeness Promotion. The closeness of a node is the reciprocal

of the sum of the distances from this node to all nodes in the
graph [6]. In co-authorship networks, authors with relatively
high closeness are likely to receive more citations [10, 12].
Moreover, research results published by authors with high
closeness are prone to disseminate widely in the network [13].
Therefore, an author would be pleased to adopt promotion
strategies to increase closeness, thereby having more research
impact than colleagues with relatively lower closeness.

• Betweenness Promotion. The betweenness of a node is the
fraction of the shortest paths between node pairs that pass
through this node [14]. In social networks, users with high
betweenness are influential since their posted information (e.g.,
tweets) diffuses rapidly and widely [15]. Users with relatively
high betweenness can thus be requested to help spread informa-
tion of others for wide dissemination. Hence, a user can employ
promotion strategies to increase the betweenness to become
more influential than users with relatively lower betweenness.

• Coreness Promotion. The coreness of a node is the largest
integer k such that this node is contained in a subgraph in which
each node has a degree not less than k [16]. In information
networks, nodes with relatively high coreness act as blockers
to prevent rumors from spreading throughout the system [17].
Consequently, a user can adopt promotion strategies to increase
coreness for better control of rumor spreading than users with
relatively lower coreness.

• Eccentricity Promotion. The eccentricity of a node is the
reciprocal of the maximum distance from this node to all the
nodes [7]. In sport team networks, compared with players with
average eccentricity, players with relatively high eccentricity
can easily affect other teammates [18]. Accordingly, a player
can adopt promotion strategies to increase eccentricity for a
positive influence on other teammates’ activities.

Existing Solutions. Current research normally inserts additional
edges into the original graph to improve the centrality score
of a target node, provided that the network topology is known.
Examples can be found in [19] (for betweenness), [20] (for
coreness), [10] (for closeness), and [21] (for eccentricity), etc.
These studies are formed as follows: given a graph G(V, E),
a target node t œ V , and a budget b, select b edges from
the non-existing edges ‚

E = {V

2 \ E}, thereby maximizing
the centrality improvement of t. Due to the hardness of these
problems, many researchers resort to greedy algorithms to obtain
suboptimal solutions for centrality promotion [19, 20, 22].



Motivations. Greedy algorithms are efficient in practice [10] and
are valuable to network owners [23] who have a complete view
of the network structure to make a greedy decision for centrality
improvement. On the other hand, for privacy reasons [24, 25], a
real-world network is more likely to be a black box for network
users [23] — users do not have access to the entire network
structure. When the network structure is inaccessible, greedy
algorithms are not candidates for users who want to increase
centrality.

Furthermore, existing greedy algorithms normally improve a
target node’s centrality score2 and are applicable when the central-
ity score is critical [10]. For example, an increasing betweenness
score for an airport always corresponds to an increasing volume
of traffic and customers [26]. Nevertheless, there are contexts
where a high centrality ranking is desirable (see [5, 19] and our
motivating examples). In this case, an increasing score does not
necessarily mean an improved ranking [19] — other nodes can
also enlarge their centrality scores.
Challenges. To overcome the limitations of existing solutions,
we manipulate black-box networks (networks with an unknown
structure) to promote a target node’s centrality ranking. Specifi-
cally, we have two goals: i) we do not rely on the knowledge of
the network structure to make an improvement (thus it is feasible
for network users); ii) we increase the centrality ranking (rather
than the centrality score) of the target node.

These appealing goals are not easily achieved because we need
to overcome the corresponding challenges: i) How to design
a practical promotion strategy when the network structure is
unknown? ii) How to ensure the promotion strategy is valid for
a target node to increase its centrality ranking?
Our Solution. Our solution is to overcome these challenges while
achieving the given goals. To address the first challenge, we pro-
pose promotion strategies that only append additional nodes/edges
around the target node. These strategies negate the need to change
(and refer to) the structure within the original graph, thus making
promotion on black-box networks feasible. To solve the second
challenge, we update the centrality scores of nodes to a different
extent after promotion (the target node has the maximum gain
or the minimum loss over all other nodes) to potentially improve
the centrality ranking of the target node. Non-trivial theoretical
analysis is undertaken to show that this simple yet elegant idea
works well for centrality promotion.
Contributions. Our contributions are summarized as follows.
• Formalization of the centrality promotion problem on black-

box networks (Section III). We discard dependency on the
network structure for promotion. In addition, to ensure valid
promotion, we aim to increase the centrality ranking instead of
the centrality value of the target node.

• Practically usable promotion strategies for centrality promotion
(Section IV). We incorporate various promotion strategies into
a general model, where only additional nodes and edges around
the target node are inserted. Based on the structure between the
inserted nodes, three strategies are proposed, i.e., multi-point,
double-line, and single-clique strategies.

• Theoretically effective promotion principles for centrality pro-
motion (Section V). We propose the maximum gain principle
(resp. the minimum loss principle) that grants the target node

2The problem of ranking improvement on networks with a known structure is
studied in [19], but only the hardness result is shown and no algorithm is given.

TABLE I: Principle-Guided Strategies
Maximum Gain Minimum Loss

Centrality Betweenness Coreness Closeness Eccentrictiy
Strategy Multi-Point Single-Clique Multi-Point Double-Line

with the maximum score gain (resp. the minimum score loss)
over other nodes. Then, for a specific centrality measure, the
aforementioned principles guide the selection of an effective
strategy: we verify that the strategy meeting a principle is
theoretically guaranteed to boost the target node’s ranking.
Specifically, as given in Table I, the maximum gain principle
guides the choice of the multi-point strategy and single-clique
for betweenness and coreness, respectively; the minimum loss
principle guides the choice of the multi-point strategy and
double-line strategy for closeness and eccentricity, respectively.

• Extensive empirical studies on real-world networks (Sec-
tion VII). We conduct experiments to validate the effectiveness
of the proposed principle-guided strategies. The experiment
results demonstrate that the proposed strategies are valid in
improving the centrality ranking on black-box networks.

II. PRELIMINARY

A. Notations
Given a graph G(VG, EG) with the node set VG and the edge

set EG ™ V

2

G, the node number is n = |VG| and the edge number
is m = |EG|. For ’v œ VG, the neighbors NG(v) of v are the
nodes adjacent to v, i.e., NG(v) = {u|(v, u) œ EG}. Accordingly,
the degree of v is defined as the number of nodes in NG(v) and
is denoted as degG(v) = |NG(v)|. Given a node set S ™ VG,
the subgraph induced by S is denoted as G[S] = (S, ES), where
(u, v) œ ES if and only if u, v œ S and (u, v) œ E. When
inserting additional nodes �V and edges �E in the original graph
G, we get an updated graph G

Õ
(V

Õ
, E

Õ
) = G

Õ
(V fi�V , Efi�E).

Given a node pair s, t in G, the path pG(s, t) from s to t is a
sequence of nodes, < s = v

0

, v

1

, . . . , vk = t >, with (vi, vi+1

) œ
EG, for ’i œ [0, k ≠ 1]. The length of pG(s, t) is the number of
edges on pG(s, t). The path from s to t with the minimum length
is defined as the shortest path. The length of the shortest path is
defined as the shortest distance and is denoted as distG(s, t).

When the context is clear, we use V , E, N(v), deg(v),
p(s, t), dist(s, t) to denote VG, EG, NG(v), degG(v), pG(s, t),
distG(s, t) respectively. In this paper, we focus on unweighted
and undirected graphs. Moreover, we assume that graphs are con-
nected; otherwise, we work on the largest connected component.
More general cases are left for further investigation.

v1
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v8
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v10

Fig. 1: Graph G
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Fig. 2: Updated Graph G

Õ

Example 2.1: Fig. 1 shows a graph G with 10 nodes and 15 edges.
For v

5

, N(v

5

) = {v

1

, v

3

, v

6

, v

9

} and deg(v

5

) = |N(v

5

)| = 4.
The subgraph G[S] induced by S = {v

1

, v

3

, v

5

, v

6

} is colored
gray in Fig. 1. The neighbor of v

5

in G[S] is {v

1

, v

3

, v

6

} and
degG[S]

(v

5

) = 3. A path from v

5

and v

7

in G is < v

5

, v

1

, v

7

>

with length 2. Among all the paths from v

5

to v

7

, this path has the
minimum length and is the shortest path, therefore, dist(v

5

, v

7

) =

2. Fig. 2 shows an updated graph G

Õ with additional nodes �V =

{w

1

, w

2

} and edges �E = {(w

1

, v

4

), (w

2

, v

4

)} attached to G.



TABLE II: Description of Symbols
Symbol Description
G, GÕ Graph, and updated graph
C(v),CÕ(v) Centrality score of a node v in G, GÕ

C(v),CÕ(v) Reciprocal centrality score of a node v in G, GÕ

R(v),RÕ(v) Centrality ranking of a node v in G, GÕ

�C(v) Score variation of v, i.e. CÕ(v) ≠ C(v)
�C(v) Reciprocal score variation of v, i.e. CÕ(v) ≠ C(v)
�R(v) Ranking variation of v, i.e., R(v) ≠ RÕ(v)
BC, RC, CC, EC Assign C as betweenness, coreness, closeness, eccentricity
BC, RC, CC, EC Assign C as reciprocal score of BC, RC, CC, EC

B. Centrality Measures
We concentrate on four types of centrality measures: closeness,

eccentricity, betweenness, and coreness.
Definition 2.1: (Closeness [6]) Given a graph G(V, E), the
closeness of a node v œ V is defined as CC(v) =

1q
uœV

dist(v,u)

.

Definition 2.2: (Eccentricity [3]) Given a graph G(V, E), the ec-
centricity of a node v œ V is defined as EC(v) =

1

maxuœV dist(v,u)

.

Definition 2.3: (Betweenness [14]) Given a graph G(V, E),
the betweenness of a node v œ V is defined as BC(v) =q

(s,t)œV 2,s ”=t””=v
‡v(s,t)

‡(s,t)

, where ‡(s, t) is the number of shortest
paths between s and t and ‡v(s, t) is the number of s-t shortest
paths through v.
Definition 2.4: (Coreness [16]) Given a graph G(V, E), the
coreness of a node v œ V , i.e., RC(v), is the largest k, such
that v is included in a subgraph G[S], where each node u œ S

has a degree not less than k in G[S], that is degG[S]

(u) Ø k.
Example 2.2: For the graph G in Fig. 1, the shortest
distance from v

1

to {v

1

, v

2

, v

3

, v

4

, v

5

, v

6

, v

7

, v

8

, v

9

, v

10

} are
{0, 1, 1, 2, 1, 1, 1, 2, 2, 3}. Then, the closeness of v

1

is CC(v

1

) =

1

0+1+1+2+1+1+1+2+2+3

=

1

14

. The eccentricity of v

1

is EC(v

1

) =

1

3

since 3 is the largest distance from v

1

to other nodes.
To obtain the betweenness of v

1

, we enumerate all the node
pairs in the graph. For example, for the node pair v

3

, v

7

,
”(v

3

, v

7

) = 2 since there are two shortest paths between them;
”v1(v

3

, v

7

) = 1 since there is one v

3

-v
7

shortest path via v

1

.
Then, ”v1 (v3,v7)

”(v3,v7)

=

1

2

for the node pair v

3

, v

7

. We summarize
over all the node pairs and obtain BC(v

1

) = 9.5.
The coreness of v

1

is 3 because there is a subgraph G[S] in
G with nodes S = {v

1

, v

3

, v

5

, v

6

} that includes v

1

. The degree
of each node in G[S] is not less than 3, and we cannot find
another subgraph G[S

Õ
] containing v

1

, and each node in G[S

Õ
]

has a degree greater than 3.

III. PROBLEM FORMULATION

In this section, we first introduce some concepts when a graph
G is updated to G

Õ, and then the centrality promotion problem
is formally defined. For ease of understanding, some commonly
used symbols are summarized in Table II.
Score Variation. Given a graph G(V, E), we define the centrality
measure C as a function that maps a node v œ V to the real value
C(v), i.e., C : V æ IR. For example, centrality measures CC,
EC, BC, and RC defined in Section II are all centrality functions.
For ’v œ V , C(v) is the centrality score of v. We define the
reciprocal centrality score of v as the reciprocal of C(v) and
denote it as C(v) =

1

C(v)

. When �V and �E are inserted to
transform G to an updated graph G

Õ
(V

Õ
, E

Õ
) = G

Õ
(V fi �V , E fi

�E), we denote the centrality score of v in G

Õ as CÕ
(v) and the

reciprocal centrality score as CÕ
(v) =

1

CÕ
(v)

, for ’v œ V

Õ.

TABLE III: Score Variations and Ranking Variations (CC)
v1 v2 v3 v4 v5 v6 v7 v8 v9 v10 w1 w2

CC(v) 1
14

1
22

1
15

1
23

1
14

1
12

1
18

1
18

1
16

1
24 0 0

CCÕ(v) 1
20

1
30

1
19

1
25

1
20

1
18

1
26

1
26

1
24

1
34

1
35

1
35

R(v) 2 8 4 9 2 1 6 6 5 10 11 11
RÕ(v) 3 9 2 6 3 1 7 7 5 10 11 11

For a node v œ V with C(v) in G and CÕ
(v) in G

Õ, we define
the score variation of v as the difference between the centrality
score of v in G

Õ and G and denote it as �C(v), i.e., �C(v) =

CÕ
(v) ≠ C(v). We also define the reciprocal score variation of

v as the difference between the reciprocal centrality score of v in
G

Õ and G and denote it as �C(v), i.e., �C(v) = CÕ
(v) ≠ C(v).

For a node w œ {V

Õ \ V }, or w œ �V , w does not appear in
G, and we denote C(w) = 0 and C(w) = ÿ3. Then we have
�C(w) = CÕ

(w) and �C(w) = CÕ
(w).

Example 3.1: Table III shows the closeness of nodes in Fig. 1
(denoted as G) and in Fig. 2 (denoted as G

Õ). Here, C is set to CC.
For a node v

4

in V , CC(v

4

) =

1

23

and CC(v

4

) = 23; CCÕ
(v

4

) =

1

25

and CCÕ
(v

4

) = 25. Therefore, �C(v

4

) = CCÕ
(v

4

)≠CC(v

4

) =

1

25

≠ 1

23

= ≠ 2

575

, �C(v

4

) = CCÕ
(v

4

) ≠ CC(v

4

) = 25 ≠ 23 = 2.
For a node w

1

œ �V , CC(w

1

) = 0, �C(w

1

) = CCÕ
(w

1

) =

1

35

;
CC(w

1

) = ÿ and �C(w

1

) = CCÕ
(w

1

) = 35.

Ranking Variation. Given a graph G(V, E), we define the cen-
trality ranking R(v) of a node v œ V as the position of C(v)

in the ordered centrality scores of nodes in V (sorted in non-
increasing order), i.e., R(v) = |{u|u œ V,C(u) > C(v)}| + 1,
where R(v) = 1 means v has the highest score while R(v) = |V |
implies v has the smallest score. When converting G(V, E) to
G

Õ
(V

Õ
, E

Õ
), we denote the centrality ranking of v œ V

Õ as RÕ
(v),

i.e., RÕ
(v) = |{u|u œ V

Õ
,CÕ

(u) > CÕ
(v)}| + 1.

For a node v œ V with R(v) in G and RÕ
(v) in G

Õ, we define
the ranking variation of v as the difference between the ranking
of v in G and G

Õ and denote it as �R(v), that is, �R(v) =

R(v) ≠RÕ
(v). For a node w œ �V , w does not appear in G, and

we derive R(w) by assuming C(v) = 0 in G, thus to obtain the
ranking variation of w.
Example 3.2: Table III presents the centrality ranking of nodes
in Fig. 1 (denoted as G) and in Fig. 2 (denoted as G

Õ). For a
node v

4

œ V , R(v

4

) = 9 and RÕ
(v

4

) = 6. Therefore, �R(v

4

) =

R(v

4

) ≠RÕ
(v

4

) = 9 ≠ 6 = 3. For a node w

1

œ �V , R(w

1

) = 11

since we assume C(w

1

) = 0 in G; RÕ
(w

1

) = 11 in G

Õ. Therefore,
�R(w

1

) = R(w

1

) ≠ RÕ
(w

1

) = 0.

Problem Definition. This paper focuses on exploring whether it
is possible to improve the centrality ranking of a target node
by adopting a promotion strategy. A promotion strategy is an
action to transform G(V, E) to G

Õ
(V fi�V , E fi�E) by inserting

a certain structure (composed of �E and (or) �V ) into G. For a
target node t œ V , a strategy is effective if the centrality ranking
of t is upgraded, that is �R(t) = R(t)≠RÕ

(t) > 0. Formally, the
problem studied in this paper is the following.
Problem 3.1: Given a black-box network G(V, E), a target
node t œ V , and a centrality measure C (where C can be
BC, RC, CC, EC, etc.), we aim to investigate whether there exists
a promotion strategy to convert G(V, E) to G

Õ
(V fi�V , Efi�E),

thereby improving the centrality ranking of t to make �R(t) > 0.

3For ’w œ �V , the equation C(w) = ÿ may bring ambiguity. But this equation
is only for convention’s sake, and we will not use the value of C(w) in the sequel.



IV. PRACTICALLY USABLE PROMOTION STRATEGIES

This section provides practically usable promotion strategies.
The promotion strategy is defined as an operation that modifies
G to an updated graph G

Õ. Note that we assume the network
structure is unknown. To meet this requirement, we attach a
structure (i.e., �V , �E) around the target node t to reshape G

while avoiding changing the original topology of nodes in G. To
model promotion strategies with this requirement, we engage a
triple tuple [target node, promotion size, type] = [t, p, T ].

• target node is the node t to be upgraded.
• promotion size is the number p of inserted nodes �V , that is,

p = |�V |.
• type specifies the structure T of nodes within �V , and from

T , we derive �E .
Different assignments of type lead to different types of pro-

motion strategies. We will introduce three strategies where type
is assigned as multiple points, double lines, and a single clique,
respectively.

Algorithm 1: Multi-Point Strategy.
Input: Graph G(V, E), [t, p, multiple points]

Output: Graph GÕ
(V fi �V , E fi �E)

1 �V Ω p points with no inter-connection;
2 for each node w œ �V do
3 �E Ω (�E fi (t, w));
4 return GÕ

(V fi �V , E fi �E)

Multi-Point Strategy. If type is assigned as “multiple points”, we
get a multi-point strategy, whose detail is given in Algorithm 1.
First, p nodes without interconnection are introduced as �V

(Line 1). Then, for each node w œ �V , we insert an edge (w, t)

between w to the target node t to form �E (Line 2-3).

v1

v2v3

v4
v5 v6 v7

v8

v9

v10
w1 w2

w4

w3

(a) Multi-Point

v1

v2v3

v4
v5 v6 v7

v8

v9

v10
w1 w2

w4

w3

(b) Double-Line

v1

v2v3

v4
v5 v6 v7

v8

v9

v10
w1 w2

w4

w3

(c) Single-Clique

Fig. 3: Strategies for v

4

Example 4.1: For graph G in Fig. 1, the updated graph G

Õ

using the multiple-point strategy [v

4

, 4, multiple points] is shown
in Fig. 3(a). In G

Õ, four points {w

1

, w

2

, w

3

, w

4

} that are not
interconnected are attached to the target node v

4

.

Algorithm 2: Double-Line Strategy.
Input: Graph G(V, E), [t, p, double lines]

Output: Graph GÕ
(V fi �V , E fi �E)

1 �V Ω p points with no inter-connection;
2 Divide �V into two disjoint subsets S1 and S2 with equal sizes;
3 for wi œ S1, where i = 1 : |S1| ≠ 1 do
4 if i = 1 then
5 �E Ω (�E fi (t, wi));
6 �E Ω (�E fi (wi, wi+1));
7 for wi œ S2, where i = 1 : |S2| ≠ 1 do
8 if i = 1 then
9 �E Ω (�E fi (t, wi));

10 �E Ω (�E fi (wi, wi+1));
11 return GÕ

(V fi �V , E fi �E)

Double-Line Strategy. If type is assigned as “double lines”, we

get a double-line strategy, whose detail is given in Algorithm 2.
First, p nodes constitute �V (Line 1). Then, we divide the inserted
nodes �V into two equal-size4 subsets S

1

and S

2

such that |S
1

| =

|S
2

|, S

1

fi S

2

= �V , S

1

fl S

2

= ÿ (Line 2). For S

1

(Line 3), we
connect the first node w

1

œ S

1

to t (Line 4-5), and for other
nodes but the last node w|S1|, we connect wi to wi+1

thus to
form a line (Line 6); the same procedure happens for nodes in
S

2

(Line 7-10).
Example 4.2: For graph G in Fig. 1, the updated graph G

Õ using
the double-line strategy [v

4

, 4, double lines] is shown in Fig. 3(b).
In G

Õ, two lines {w

1

, w

2

} and {w

3

, w

4

} are attached to the target
node v

4

.

Algorithm 3: Single-Clique Strategy.
Input: Graph G(V, E), [t, p, single clique]

Output: Graph GÕ
(V fi �V , E fi �E)

1 �V Ω p points with no inter-connection;
2 for wi œ �V , where i = 1 : |�V | do
3 �E Ω (�E fi (wi, t));
4 for wj œ �V , where j = 1 : |�V | do
5 if i < j then
6 �E Ω (�E fi (wi, wj));

7 return GÕ
(V fi �V , E fi �E)

Single-Clique Strategy. If type is assigned as “single clique”, we
get a single-clique strategy, as shown in Algorithm 3. First, p

nodes establish �V (Line 1). Then, for each node wi œ �V

(Line 2), we connect wi to t (Line 3) and all other nodes in �V .
Example 4.3: For graph G in Fig. 1, the updated graph G

Õ

using the single-clique strategy [v

4

, 4, single clique] is shown
in Fig. 3(c). In G

Õ, a clique (i.e., complete graph) with
{w

1

, w

2

, w

3

, w

4

} and the target node v

4

is formed.
Remark 1: This paper investigates whether a black-box network
can be manipulated for centrality promotion. To this end, we keep
the promotion strategies simple enough to emphasize that the
black-box network is easy to control even with straightforward
strategies. There are other equally important topics, such as the
detectability of strategies and the maximal promotion effect under
certain budgets. However, all these topics are underpinned by our
research — only when it is possible to raise the centrality ranking
on black-box networks are these topics of research significance.
We leave these topics as future work.

V. THEORETICALLY EFFECTIVE PROMOTION PRINCIPLES

Section IV introduces several practical promotion strategies.
But for a specific centrality measure, how to elect an effective
promotion strategy to guarantee that the target node’s ranking
will be improved? We respond to this question by giving two
principles in Section V-A as a guide for choosing a strategy.
Then, we provide examples of how these principles are exploited
in some commonly used centrality measures. For simplicity, the
proofs in this section are moved to the Appendix.

A. Promotion Principles
Maximum Gain Principle. The mechanism of the first principle
is straightforward yet non-trivial: when inserting additional nodes
into G using a strategy, we try to increase the centrality scores
of all nodes in G to a different extent. When the growth of the
centrality scores on the target node t is more significant than
those of all other nodes, the final centrality scores of the target

4when p is odd, we make |S1|≠|S2| = 1. We omit this situation for simplicity.



node t will potentially exceed other high centrality nodes —
thus, resulting in an effective ranking upgrade. This scheme is
called the maximum gain principle, which is formally defined in
Definition 5.1.
Definition 5.1: (Maximum Gain Principle) Given a graph
G(V, E), a promotion strategy [t, p, T ] that converts G(V, E) to
an updated graph G

Õ
(V fi�V , Efi�E) fulfills the maximum gain

principle for a centrality measure C if
• (Maximum Property) for an arbitrary size p, �C(t) Ø

�C(v) Ø 0, for ’v œ V ;
• (Dominance Property) CÕ

(t) Ø CÕ
(w), for ’w œ �V ;

• (Boost Property) there exists a size p

Õ such that when p > p

Õ,
CÕ

(t) > CÕ
(v), for some node v œ V with C(v) > C(t).

We now interpret this principle. For nodes v with scores no
larger than that of t in G, the maximum property ensures the
scores of nodes v will not overtake t in the updated graph G

Õ;
the boost property guarantees that in G

Õ, the score of t will exceed
at least one node whose score is larger than t in G. These two
properties ensure the ranking of t will be advanced by at least
one among the nodes in V . The dominance property forces the
ranking of nodes w in �V not to exceed t in G

Õ. As a result, the
ranking of t in G

Õ will definitely be upgraded compared to that
in G. The effectiveness is formally presented in Theorem 5.1.
Theorem 5.1: If a strategy [t, p, T ] fulfills the maximum gain
principle for a centrality measure C, then it converts G(V, E) to
G

Õ
(V fi �V , E fi �E) to make �R(t) > 0.

Minimum Loss Principle. The mechanism of the second principle
is similar to the first one but with a reversed logic: when inserting
additional nodes into G, we try to decrease the centrality scores
of all nodes in G to different degrees. When the decline of the
centrality scores on the target node t is less significant than
all other nodes, the final centrality scores of the target node
t will potentially exceed the other high centrality nodes in G,
thus, producing an effective ranking upgrade. This scheme is
denoted as the minimum loss principle and is formally defined
in Definition 5.2.
Definition 5.2: (Minimum Loss Principle) Given a graph
G(V, E), a promotion strategy [t, p, T ] that converts G(V, E) to
an updated graph G

Õ
(V fi�V , E fi�E) fulfills the minimum loss

principle for a centrality measure C if
• (Minimum Property) for an arbitrary size p, �C(v) Ø

�C(t) Ø 0

5, for ’v œ V ;
• (Dominance Property) CÕ

(t) Ø CÕ
(w), for ’w œ �V ;

• (Boost Property) there exists a size p

Õ such that when p > p

Õ,
CÕ

(t) > CÕ
(v), for some node v œ V with C(v) > C(t).

The interpretation of the minimum loss principle resembles that
of the maximum gain principle. The minimum property guarantees
that the ranking of nodes with scores no larger than t are not
ranked higher than t in G

Õ, while the boost property ensures that
the ranking of t will be advanced by at least one. The dominance
property ensures the ranking of t is not lower than the nodes in
�V . Together, the ranking of t will be improved definitely in G

Õ,
which is given in Theorem 5.2.
Theorem 5.2: If a strategy [t, p, T ] fulfills the minimum loss
principle for a centrality measure C, then it converts G(V, E)

to G

Õ
(V fi �V , E fi �E) to make �R(t) > 0.

5When G is modified to GÕ, a positive �C(v) means a decrease in the score
of v, for ’v œ V .

TABLE IV: Example of Maximum Gain Principle (BC)
v1 v2 v3 v4 v5 v6 v7 v8 v9 v10 w1 w2 w3 w4

BC(v) 9.5 0 8 0 4 13 0 0 8.5 0 0 0 0 0
R(v) 2 6 4 6 5 1 6 6 3 6 6 6 6 6
BCÕ(v) 15.5 0 40 42 8 23 0 0 12.5 0 0 0 0 0
RÕ(v) 4 7 2 1 6 3 7 7 5 7 7 7 7 7

Remark 2: Given a strategy [t, p, T ], for both principles, the first
two properties are fulfilled for every promotion size p. However,
the boost property only requires the existence of a certain size p

Õ.
We can theoretically compute the value of p

Õ (see Lemma 5.3,
Lemma 5.6, Lemma 5.9, and Lemma 5.12), with which the
ranking of the target node will definitely increase. Empirically, in
Section VII, we observe that a small size (e.g., 16) is sufficient to
ensure an effective improvement using our proposed promotion
strategies.

Usage of Promotion Principles. We discuss how to select from
the above two principles for a specific centrality measure. We
apply the maximum gain principle when the insertion of new
nodes does not reduce the centrality score of any node in G. For
example, centrality measures such as betweenness and coreness
possess this feature (see [27] and references therein). Their
promotions will be introduced in Section V-B.

We adopt the minimum loss principle when the insertion of new
nodes does not increase the centrality score of any node in G.
Centrality measures such as closeness and eccentricity admit this
characteristic (see [27] and references therein). Their upgrades
will be presented in Section V-C.

B. Maximum Gain Principle-Guided Strategies
For centrality measures (e.g., betweenness and coreness) where

the maximum gain principle takes effect, Theorem 5.1 explains
that the strategy meeting the maximum gain principle will provide
an effective promotion. Specifically, the maximum gain principle
guides the selection of the multi-point strategy for betweenness
and the single-clique strategy for coreness.
Multi-Point Strategy for Betweenness Centrality. We justify that
a multi-point strategy is effective for betweenness promotion
by verifying that it satisfies the three properties given in the
maximum gain principle (Definition 5.1). Specifically, Lemma 5.1
verifies the maximum property, Lemma 5.2 validates the domi-
nance property, and Lemma 5.3 justifies the boost property.
Lemma 5.1: [t, p, multiple points] that converts G(V, E) to
G

Õ
(V fi �V , E fi �E) fulfills the maximum property for BC, that

is, for an arbitrary size p, �C(t) Ø �C(v) Ø 0, for ’v œ V .
Lemma 5.2: [t, p, multiple points] that converts G(V, E) to
G

Õ
(V fi �V , E fi �E) fulfills the dominance property for BC,

that is, for an arbitrary size p, BCÕ
(t) Ø BCÕ

(w), for ’w œ �V .

Lemma 5.3: [t, p, multiple points] that converts G(V, E) to
G

Õ
(V fi �V , E fi �E) fulfills the boost property for BC, that

is, there exists a size p

Õ
=


BC(v) ≠ BC(t) + 1 such that

when p > p

Õ, BCÕ
(t) > BCÕ

(v), for some node v œ V with
BC(v) > BC(t).

Based on Lemmas 5.1-5.3 and Theorem 5.1, the effectiveness
of the multi-point strategy for BC is derived in Theorem 5.3.
Theorem 5.3: The multi-point strategy fulfills the maximum gain
principle for betweenness centrality (BC). Hence, given a graph
G(V, E), [t, p, multiple points] converts G(V, E) to an updated
graph G

Õ
(V fi �V , E fi �E) to make �R(t) > 0.

Example 5.1: For betweenness promotion, Table IV shows
the effect of the multi-point strategy [v

4

, 4, multiple points] that



transforms G in Fig. 1 to G

Õ in Fig. 3(a). (i) The maximum
property holds since �C(v

4

) = 42 is the maximum for nodes
in V . (ii) The dominance property holds since BCÕ

(w

1

) =

BCÕ
(w

2

) = BCÕ
(w

3

) = BCÕ
(w

4

) = 0 < BCÕ
(v

4

). (iii) The
boost property holds since for v

5

with BC(v

5

) > BC(v

4

), we
have BCÕ

(v

5

) < BCÕ
(v

4

) (when the size p = 4 > p

Õ
=

BC(v

5

) ≠ BC(v

4

) + 1 = 3). Moreover, v

4

now becomes the
node with the highest betweenness in the updated graph and its
ranking variation (6 ≠ 1 = 5) is larger than zero.

Single-Clique Strategy for Coreness Centrality. We verify that
a single-clique strategy satisfies the maximum gain principle
for coreness promotion by Lemma 5.4 (maximum property),
Lemma 5.5 (dominance property), and Lemma 5.6 (boost prop-
erty).
Lemma 5.4: [t, p, single clique] that converts G(V, E) to G

Õ
(V fi

�V , E fi �E) fulfills the maximum property for RC, that is, for
an arbitrary size p, �C(t) Ø �C(v) Ø 0, for ’v œ V .
Lemma 5.5: [t, p, single clique] that converts G(V, E) to G

Õ
(V fi

�V , E fi �E) fulfills the dominance property for RC, that is, for
an arbitrary size p, RCÕ

(t) Ø RCÕ
(w), for ’w œ �V .

Lemma 5.6: [t, p, single clique] that converts G(V, E) to G

Õ
(V fi

�V , Efi�E) fulfills the boost property for RC, that is, there exists
a size p

Õ
= RC(v) + 1 such that when p > p

Õ, RCÕ
(t) > RCÕ

(v),
for some node v œ V with RC(v) > RC(t).

Based on Lemmas 5.4-5.6 and Theorem 5.1, the effectiveness
of the single-clique strategy for RC is derived in Theorem 5.4.
Theorem 5.4: The single-clique strategy fulfills the maximum
gain principle for coreness centrality (RC). Hence, given a graph
G(V, E), [t, p, single clique] converts G(V, E) to an updated
graph G

Õ
(V fi �V , E fi �E) to make �R(t) > 0.

C. Minimum Loss Principle-Guided Strategies

For centrality measures (e.g., closeness and eccentricity) where
the minimum loss principle takes effect, Theorem 5.2 explains
that the strategy meeting the minimum loss principle will provide
an effective promotion in theory. Specifically, the minimum loss
principle guides the selection of the multi-point strategy for
closeness and the double-line strategy for eccentricity.
Multi-Point Strategy for Closeness Centrality. We demonstrate
that a multi-point strategy is effective for closeness improvement
by verifying it meets the three properties given in the minimum
loss principle (Definition 5.2). Specifically, Lemma 5.7 justifies
the minimum property, Lemma 5.8 verifies the dominance prop-
erty, and Lemma 5.9 validates the boost property.
Lemma 5.7: [t, p, multiple points] that converts G(V, E) to
G

Õ
(V fi �V , E fi �E) fulfills the minimum property for CC, that

is, for an arbitrary size p, �C(v) Ø �C(t) Ø 0, for ’v œ V .
Lemma 5.8: [t, p, multiple points] that converts G(V, E) to
G

Õ
(V fi �V , E fi �E) fulfills the dominance property for CC,

that is, for an arbitrary size p, CCÕ
(t) Ø CCÕ

(w), for ’w œ �V .
Lemma 5.9: [t, p, multiple points] that converts G(V, E) to
G

Õ
(V fi �V , E fi �E) fulfills the boost property for CC, that

is, there exists a size p

Õ
=

CC(t)≠CC(v)

distG(v,t)

such that when p > p

Õ,
CCÕ

(t) > CCÕ
(v), for some node v œ V with CC(v) > CC(t).

Based on Lemmas 5.7-5.9 and Theorem 5.2, the effectiveness
of the multi-point strategy for CC is derived in Theorem 5.5.
Theorem 5.5: The multi-point strategy fulfills the minimum loss
principle for closeness centrality (CC). Hence, given a graph

TABLE V: Example of Minimum Loss Principle (CC)
v1 v2 v3 v4 v5 v6 v7 v8 v9 v10 w1 w2 w3 w4

CC(v) 14 22 15 23 14 12 18 18 16 24 ÿ ÿ ÿ ÿ
R(v) 2 8 4 9 2 1 6 6 5 10 11 11 11 11
CCÕ(v) 26 38 23 27 26 24 34 34 32 44 39 39 39 39
RÕ(v) 3 9 1 5 3 2 7 7 6 14 10 10 10 10

G(V, E), [t, p, multiple points] converts G(V, E) to an updated
graph G

Õ
(V fi �V , E fi �E) to make �R(t) > 0.

Example 5.2: For closeness promotion, Table V shows the effect
of the multi-point strategy [v

4

, 4, multiple points] that transforms
G in Fig. 1 to G

Õ in Fig. 3(a). (i) The minimum property holds
since �C(v

4

) = 4 is the minimum for nodes in V . (ii) The dom-
inance property holds since CCÕ

(w

1

) = CCÕ
(w

2

) = CCÕ
(w

3

) =

CCÕ
(w

4

) =

1

39

< CCÕ
(v

4

). (iii) The boost property holds since for
v

2

with CC(v

2

) > CC(v

4

), we have CCÕ
(v

2

) < CCÕ
(v

4

) (when
the size p = 4 > p

Õ
=

CC(v4)≠CC(v2)

distG(v4,t2)

=

1

3

). Moreover, the positive
ranking variation (9 ≠ 5 = 4) of v

4

confirms the effectiveness.

Double-Line Strategy for Eccentricity Centrality. We reveal that
a double-line strategy satisfies the minimum loss principle for
eccentricity promotion by Lemma 5.10 (minimum property),
Lemma 5.11 (dominance property), and Lemma 5.12 (boost
property).
Lemma 5.10: [t, p, double lines] that converts G(V, E) to G

Õ
(V fi

�V , E fi �E) fulfills the minimum property for EC, that is, for
an arbitrary size p, �C(v) Ø �C(t) Ø 0, for ’v œ V .
Lemma 5.11: [t, p, double lines] that converts G(V, E) to G

Õ
(V fi

�V , E fi �E) fulfills the dominance property for EC, that is, for
an arbitrary size p, ECÕ

(t) Ø ECÕ
(w), for ’w œ �V .

Lemma 5.12: [t, p, double lines] that converts G(V, E) to G

Õ
(V fi

�V , Efi�E) fulfills the boost property for EC, that is, there exists
a size p

Õ
= 2 ◊ EC(t) such that when p > p

Õ, ECÕ
(t) > ECÕ

(v),
for some node v œ V with EC(v) > EC(t).

Based on Lemmas 5.10-5.12 and Theorem 5.2, the effectiveness
of the double-line strategy for EC is derived in Theorem 5.6.
Theorem 5.6: The double-line strategy fulfills the minimum loss
principle for eccentricity centrality (EC). Hence, given a graph
G(V, E), [t, p, double lines] converts G(V, E) to an updated
graph G

Õ
(V fi �V , E fi �E) to make �R(t) > 0.

VI. RELATED WORK

A. Centrality Promotion

Promotion with Known Network Structures. Existing studies typ-
ically modify the original graph (by adding edges) when network
structures are known. Bergamini et al. [19] presented the approx-
imation hardness result of the betweenness score maximization
problem and devised a greedy algorithm. Given a coreness score,
the issue of maximizing the number of nodes whose coreness
is no smaller than that given score has been studied in [20]. In
addition, Crescenzi et al. [10] provided hardness and algorithmic
results to improve a target node’s closeness score. Furthermore,
approximation algorithms have been designed in [21] to maximize
a target node’s eccentricity score.

While existing solutions apply to network owners who have a
complete view of network structures, we attack this problem from
the perspective of network users who do not have access to the
entire network structure, that is, users plan to modify the graph
without referring to the network structure, thereby influencing the
centrality calculated by the network owners. To the best of our



knowledge, this is the first work to explore centrality promotion
on a black-box network.
Greedy Algorithm for Betweenness Promotion. As an example of
how greedy algorithms are exploited in boosting centrality, we
present the algorithm developed by Bergamini et al. [19] which
boosts the betweenness score. We denote this method as Greedy.
Given a graph G(V, E), a target node t, and a budget b, Greedy
works in b rounds. In each round, it selects an edge from {V

2\E}.
The output of Greedy is the selected b edges (denoted as B). The
specific procedure of Greedy is detailed as follows:

1) Initialize G

Õ
(V, E) as G(V, E) and compute BC(t) on G.

2) For each node v œ {V

Õ \ NGÕ
(t)},

a) Add (v, t) into G

Õ temporarily and compute BCÕ
(t) on G

Õ.
b) Compute �C(t|v) = BCÕ

(t) ≠ BC(t) and then remove
(v, t) from G

Õ.
3) Select the node v with the largest �C(t|v) and insert (v, t)

into both G and B.
4) Stop after b rounds; otherwise go to step 1).
In step 1), we initialize the graph G

Õ as G and calculate BC(t)

of t on G. In Step 2), for each node v that is not directly
connected to t in G

Õ, i.e., v œ {V

Õ \ NGÕ
(t)}, we temporarily

add the edge (v, t) into G

Õ. We then calculate BCÕ
(t) and obtain

the betweenness improvement �C(t|v) = BCÕ
(t) ≠ BC(t) of t

on G

Õ, followed by removing this edge. Then, node v with the
maximum �C(t|v) is selected and we insert the edge (v, t) into
both G and the answer set B. This process stops after b rounds;
if not, we go to step 1) for a new iteration.

Note that in step 2), Greedy needs to compute �C(t|v) (for
’v œ {V

Õ \ NGÕ
(t)}), which necessitates the knowledge of the

network structure to calculate BCÕ
(t) and BC(t). Instead, our

method does not involve any computation on the network and thus
is feasible when the network structure is unknown. We compare
our method with Greedy in Section VII.

B. Centrality Measures
There are other centrality measures in the literature [5]. The

harmonic centrality of a node is the sum of the reciprocal shortest
distance from this node to all other nodes [28]. Katz centrality
determines the node’s importance by evaluating the number of
nodes that can reach it through a path, with a penalization on the
path length [29]. Current-flow betweenness centrality evaluates
node importance by applying the electrical current model for
information spreading [14]. Our principles are applicable to guide
the selection of suitable strategies for these centrality measures
(see Section V-A for guidance) — provided the strategies conform
to the proposed principles, they are guaranteed to be effective.
These extensions are left for future work.

VII. EXPERIMENTS

This section evaluates the performance of principle-guided
strategies on real-world graphs. We first present some experi-
mental settings, and then test the maximum gain principle and
minimum loss principle in Section VII-A and Section VII-B,
respectively, followed by a comparison with the greedy algorithm
in Section VII-C.
Dataset. We conducted experiments on four real-world networks6.
The details of these datasets are given in Table VI. We assume
the graphs are undirected. If not, the edge directions are ignored.

6downloaded from http://snap.stanford.edu/data/index.html

TABLE VI: Description of Datasets
Name Dataset n m Diameter Degeneracy
WIKI Wiki-vote 7,066 100,736 7 53
HEPP CA-HepPh 11,204 117,619 13 238
EPIN Epinions 75,877 405,739 15 67
SLAS Slashdot 77,360 469,180 12 54
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Fig. 4: Relative Ranking Variations (Betweenness)

For a disconnected graph, we performed experiments on the
largest connected component. Table VI presents the node number
(n) and edge number (m) of the largest connected component
of a graph G. The diameter of G is the largest reciprocal
eccentricity score of all nodes, i.e., maxvœV (EC(v)) [30]. The
degeneracy of G is the largest coreness score of all nodes, i.e.,
maxvœV (RC(v)) [16]. The algorithms used in this paper were
implemented using NetworkX [31] and teexGraph7 [30].
Metric. We propose strategies to promote a centrality measure C.
To assess the effectiveness of the proposed strategies in upgrading
centrality ranking, a simple metric is the ranking variation �R(t)

for the target node t. However, �R(t) is an absolute value that
does not consider the graph size; a desirable alternative would be
the relative ranking variation Ratio, which is the ratio of �R(t)

to the node number n, that is,
Ratio =

�R(t)

n

◊ 100%.

A. Testing Maximum Gain Principle
We examine strategies that satisfy the maximum gain principle:

the multi-point strategy for betweenness and the single-clique
strategy for coreness. For all experiments, each time we randomly
selected one target node from the graph. We repeated the process
ten times to report the results. Specifically, the same experiment
was conducted ten times, each time for a selected target node.
For each target node, we set the promotion size p from 4, 8, 16,
32, to 64 to insert �V (and �E).
Exp 1: Betweenness Centrality Promotion. This set of experi-
ments confirms that the multi-point strategy satisfies the three
properties of the maximum gain principle to promote betweenness
(BC) on real graphs.
Exp 1-1: Maximum Property. Recall that the maximum property
indicates that target node t has a score variation no smaller
than that of the other nodes in V . To this end, we compare the
score variations between target nodes t and node v, whose score
variation is maximal among the nodes in {V \ t}. Due to space
limitations, we only present the results for five target nodes (by
assigning new IDs from 1 to 5) on WIKI and HEPP in Table VII

7https://github.com/franktakes/teexgraph



TABLE VII: Score Variations of V (Betweenness)

Dataset ID 4 8 16 32 64
t v t v t v t v t v

WIKI

1 56,532 3,512.2 113,096 7,046.4 226,320 14,092.8 453,152 28,185.5 908,352 56,371.1
2 56,532 46,979.1 113,096 93,958.2 226,320 187,916.5 453,152 375,833 908,352 751,666
3 56,532 20,037 113,096 40,073.9 226,320 80,147.9 453,152 160,295.8 908,352 320,591.6
4 56,532 11,867.3 113,096 23,734.6 226,320 47,469.3 453,152 94,938.5 908,352 189,877
5 56,532 9,493.3 113,096 18,986.5 226,320 37,973 453,152 75,946 908,352 151,892

HEPP

1 89,636 7,737.7 179,304 15,475.3 358,736 30,950.7 717,984 61,901.4 1,438,016 123,802.8
2 89,636 8,241.5 179,304 16,483.1 358,736 32,966.1 717,984 65,932.2 1,438,016 131,864.5
3 89,636 89,616 179,304 179,232 358,736 358,464 717,984 713,628 1,438,016 1,433,856
4 89,636 50,027.8 179,304 100,055.5 358,736 200,111.1 717,984 400,222.2 1,438,016 800,444.4
5 89,636 75,419.4 179,304 150,838.8 358,736 301,677.5 717,984 603,355.1 1,438,016 1,206,710.2

TABLE VIII: Scores of Target Nodes and �V (Betweenness)

Dataset ID 4 8 16 32 64
t w t w t w t w t w

WIKI

1 179,818.3 0 236,382.3 0 349,606.3 0 576,438.3 0 1,031,638.3 0
2 56,532.7 0 113,096.7 0 226,320.7 0 453,152.7 0 908,352.7 0
3 56,593.2 0 113,157.2 0 226,381.2 0 453,213.2 0 908,413.2 0
4 57,139.1 0 113,703.1 0 226,927.1 0 453,759.1 0 908,959.1 0
5 58,305.5 0 114,869.5 0 228,093.5 0 454,925.5 0 910,125.5 0

HEPP

1 89,636 0 179,304 0 358,736 0 747,984 0 1,438,016 0
2 257,043.9 0 346,711.9 0 526,143.9 0 885,391.9 0 1,605,423.9 0
3 89,636 0 179,304 0 358,736 0 717,984 0 1,438,016 0
4 103,552.4 0 193,220.4 0 372,652.4 0 731,900.4 0 1451,932.4 0
5 89,636 0 179,304 0 358,736 0 717,984 0 1,438,016 0

TABLE IX: Score Variations of V (Coreness)

Dataset ID 4 8 16 32 64
t v t v t v t v t v

WIKI

1 1 0 5 0 13 0 29 0 61 1
2 0 0 1 0 9 0 25 0 57 1
3 0 0 2 0 10 0 26 0 58 1
4 2 0 6 0 14 0 30 1 62 1
5 2 0 6 0 14 0 30 1 62 1

HEPP

1 2 1 6 1 14 1 30 1 62 1
2 0 0 2 1 10 1 26 1 58 1
3 3 0 7 0 15 0 31 0 63 0
4 0 0 4 1 12 1 28 1 60 1
5 1 1 5 1 13 1 29 1 61 1

— each row of Table VII is for one target node, and each target
node represents an independent experiment.

It can be found that on both datasets and at various sizes p,
the score variation of target node t is larger than v. For example,
on WIKI, for target node t with ID 1, when the size p is 4, the
score variation is 56532 while the score variation of v is 3512.2:
the variation of t is more than ten times that of v. This means
that all nodes in {V \ t} have score variations no larger than that
of t.
Exp 1-2: Dominance Property. The dominance property reveals
that after inserting �V into G to form G

Õ, target node t has a
betweenness score no smaller than that of nodes in �V . Thus,
we compare the betweenness score between target node t and the
nodes in �V in G

Õ, and the results are in Table VIII.
Each row of Table VIII illustrates the comparison of between-

ness score between target node t and the node w whose score is
the maximum in �V . It can be found that BCÕ

(t) is much larger
than BCÕ

(w). Moreover, the score of w (which is maximum in
�V ) is zero in Table VIII. This confirms that the target node has
a score no smaller than those of nodes in �V .
Exp 1-3: Boost Property. The boost property guarantees that, in
the updated graph G

Õ and when size p is sufficient, BC(t)

Õ will
exceed some node v in V whose BC(v) is larger than BC(t) in
G. Combining the former two properties, the effect of the boost
property is reflected in the positive ranking improvement of t.
Thus, we show the relative ranking variations (Ratio) for ten
target nodes t on the four tested graphs in Fig. 4, where the
maximum, average, and minimum Ratio of these target nodes
are reported.

Fig. 4 shows that the value of Ratio increases with the
increasing size p on all datasets. Furthermore, the Ratio of all
target nodes is larger than zero at various sizes p on the graphs
we used. For example, on HEPP, with only 8 inserted nodes, the
maximum Ratio of the target node exceeds 44.1%. This means
that, in the updated graph G

Õ, the target node’s ranking advances
by more than 4940 (44.1% ◊ 11204 > 4940).

TABLE X: Scores of Target Nodes and �V (Coreness)

Dataset ID 4 8 16 32 64
t w t w t w t w t w

WIKI

1 4 4 8 8 16 16 32 32 64 64
2 7 4 8 8 16 16 32 32 64 64
3 6 4 8 8 16 16 32 32 64 64
4 4 4 8 8 16 16 32 32 64 64
5 4 4 8 8 16 16 32 32 64 64

HEPP

1 4 4 8 8 16 16 32 32 64 64
2 6 4 8 8 16 16 32 32 64 64
3 4 4 8 8 16 16 32 32 64 64
4 4 4 8 8 16 16 32 32 64 64
5 4 4 8 8 16 16 32 32 64 64
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Fig. 5: Relative Ranking Variations (Coreness)

Exp 2: Coreness Centrality Promotion. The second set of ex-
periments verifies that the single-clique strategy meets three
properties of the maximum gain principle to promote coreness
(RC) on real graphs.
Exp 2-1: Maximum Property. We compute the score variations of
nodes in V and report the results for five target nodes (IDs from
1 to 5) on WIKI and HEPP in Table IX. Each row of Table IX
represents a comparison between a certain target node t and node
v, whose score variation is the maximum among nodes in {V \t}.
It can be observed that the score variation of target node t is no



TABLE XI: Reciprocal Score Variations of V (Closeness)

Dataset ID 4 8 16 32 64
t v t v t v t v t v

WIKI

1 4 8 8 16 16 32 32 64 64 128
2 4 8 8 16 16 32 32 64 64 128
3 4 8 8 16 16 32 32 64 64 128
4 4 8 8 16 16 32 32 64 64 128
5 4 8 8 16 16 32 32 64 64 128

HEPP

1 4 8 8 16 16 32 32 64 64 128
2 4 8 8 16 16 32 32 64 64 128
3 4 8 8 16 16 32 32 64 64 128
4 4 8 8 16 16 32 32 64 64 128
5 4 8 8 16 16 32 32 64 64 128
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Fig. 6: Relative Ranking Variations (Closeness)

smaller than those of nodes in {V \ t} under various sizes p,
which is consistent with the maximum property.
Exp 2-2: Dominance Property. Each row of Table X gives a
comparison of the coreness score between target node t and node
w whose score is maximal in �V . It can be found that, in the
updated graph G

Õ, the score of t is not less than that of w (and thus
all nodes in �V ) at various p, which conforms to the dominance
property.
Exp 2-3: Boost Property. Fig. 5 shows the relative ranking varia-
tions (Ratio) for ten target nodes on all four datasets. We report
the maximum, minimum, and average Ratio of these target nodes.
From Fig. 5, we find that all the target nodes successfully upgrade
their centrality rankings given a suitable size p — the Ratio

value is larger than zero at that size. For example, on WIKI, the
minimum Ratio among the ten target nodes is larger than 9.2%

when p is only 16. Combining the former two properties, the
non-negative ranking improvement implies that the single-clique
strategy fulfills the boost property.

B. Testing Minimum Loss Principle

These experiments study the strategies that fulfill the minimum
loss principle: the multi-point strategy for closeness and the
double-line strategy for eccentricity. The experimental settings
are similar to the test of the maximum gain principle.
Exp 3: Closeness Centrality Promotion. The third set of experi-
ments demonstrates that the multi-point strategy satisfies the three
properties of the minimum loss principle to promote closeness
(CC) on real graphs.
Exp 3-1: Minimum Property. Note that the minimum property
indicates that target node t has a reciprocal score variation no
larger than that of other nodes. For this purpose, we compare
the reciprocal score variation between target node t and node v,
which has the smallest reciprocal score variation in {V \ t}. Due
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Fig. 7: Relative Ranking Variations (Eccentricity)

to space constraints, Table XI shows the results for five target
nodes (by assigning new IDs from 1 to 5) on WIKI and HEPP.

Each row of Table XI represents a separate experiment in which
a target node t is selected to be promoted. Table XI shows that
the reciprocal score variation of target node t is smaller than the
variation of node v, whose variation is the minimum in {V \ t}.
For example, for target node t with ID 1 and at the size 8 on
WIKI, the reciprocal score variation of t is 8, while the variation
of v is 16. This implies that the multi-point strategy fulfills the
minimum property.
Exp 3-2: Dominance Property. Each row of Table XII compares
the closeness score between target node t and node w (with the
largest score in �V ). It can be seen that the score of each target
node t is no smaller than that of w at various p in the updated
graph G

Õ. For example, on WIKI, the closeness of t with ID 1

is 1

23450

, while the closeness of node w with the largest score in
�V is 1

30518

. These results indicate that the multi-point strategy
satisfies the minimum property.
Exp 3-3: Boost Property. Fig. 6 shows the relative ranking vari-
ations (Ratio) for ten target nodes on four datasets, where the
maximum, minimum, and average Ratio of these target nodes
are reported. This figure shows that the Ratio is larger than zero
for most target nodes at various p. For example, when p = 16, all
target nodes have Ratio values larger than zero. Combining the
first two properties, the positive Ratio suggests that the multi-
point strategy meets the boost property.
Exp 4: Eccentricity Centrality Promotion. The fourth set of ex-
periments demonstrates that the double-line strategy conforms to
the three properties of the minimum loss principle to upgrade
eccentricity (EC) on real graphs.
Exp 4-1: Minimum Property. Table XIII depicts the reciprocal
score variations �C for t and v (whose variations are the smallest
in {V \ t}). We find that the reciprocal score variation of target
node t is not larger than those of nodes in {V \ t} on WIKI and
HEPP. These results reveal that target node t has the minimum
loss of all the nodes in V .
Exp 4-2: Dominance Property. Table XIV compares the eccen-
tricity score between target node t and node w (whose score is
the maximum in �V ) in the updated graph G

Õ. It can be observed
that the score of t is not less than that of w (and thus all nodes
in �V ).
Exp 4-3: Boost Property. Fig. 7 shows the ranking variations
(Ratio) of ten target nodes on four datasets. Fig. 7 shows that
most target nodes’ Ratio values are positive at various sizes of
p, although some Ratio values are not significant for some small



TABLE XII: Scores of Target Nodes and �V (Closeness)

Dataset ID 4 8 16 32 64
t w t w t w t w t w

WIKI

1 1
23,450

1
30,518

1
23,454

1
30,526

1
23,462

1
30,542

1
23,478

1
30,574

1
23,510

1
30,638

2 1
25,883

1
32,951

1
25,887

1
32,959

1
25,895

1
32,975

1
25,911

1
33,007

1
25,943

1
33,071

3 1
25,788

1
32,856

1
25,792

1
32,864

1
25,800

1
32,880

1
25,816

1
32,912

1
25,848

1
32,976

4 1
25,782

1
32,850

1
25,786

1
32,858

1
25,794

1
32,874

1
25,810

1
32,906

1
25,842

1
32,970

5 1
27,254

1
34,322

1
27,258

1
34,330

1
27,266

1
34,346

1
27,282

1
34,378

1
27,314

1
34,442

HEPP

1 1
45,845

1
57,051

1
45,849

1
57,059

1
45,857

1
57,075

1
45,873

1
57,107

1
45,905

1
57,171

2 1
49,887

1
61,093

1
49,891

1
61,101

1
49,899

1
61,117

1
49,915

1
61,149

1
49,947

1
61,213

3 1
56,192

1
67,398

1
56,196

1
67,406

1
56,204

1
67,422

1
56,220

1
67,454

1
56,252

1
67,518

4 1
53,701

1
64,907

1
53,705

1
64,915

1
53,713

1
64,931

1
53,729

1
64,963

1
53,761

1
65,027

5 1
56,837

1
68,043

1
56,841

1
68,051

1
56,849

1
68,067

1
56,865

1
68,099

1
56,897

1
68,163

TABLE XIII: Reciprocal Score Variations of V (Eccentricity)

Dataset ID 4 8 16 32 64
t v t v t v t v t v

WIKI

1 0 0 0 0 2 4 10 12 26 28
2 0 0 0 0 2 4 10 12 26 28
3 0 0 0 0 2 4 10 12 26 28
4 0 0 0 0 2 4 10 12 26 28
5 0 0 0 0 2 4 10 12 26 28

HEPP

1 0 0 0 0 0 0 7 8 23 24
2 0 0 0 0 0 0 7 8 23 24
3 0 0 0 0 0 0 7 8 23 24
4 0 0 0 0 0 0 7 8 23 24
5 0 0 0 0 0 1 7 9 23 25

TABLE XIV: Scores of Target Nodes and �V (Eccentricity)

Dataset ID 4 8 16 32 64
t w t w t w t w t w

WIKI

1 1
6

1
7

1
6

1
7

1
8

1
9

1
16

1
17

1
32

1
33

2 1
6

1
7

1
6

1
7

1
8

1
9

1
16

1
17

1
32

1
33

3 1
6

1
7

1
6

1
7

1
8

1
9

1
16

1
17

1
32

1
33

4 1
6

1
7

1
6

1
7

1
8

1
9

1
16

1
17

1
32

1
33

5 1
6

1
7

1
6

1
7

1
8

1
9

1
16

1
17

1
32

1
33

HEPP

1 1
9

1
10

1
9

1
10

1
9

1
10

1
16

1
17

1
32

1
33

2 1
9

1
10

1
9

1
10

1
9

1
10

1
16

1
17

1
32

1
33

3 1
9

1
10

1
9

1
10

1
9

1
10

1
16

1
17

1
32

1
33

4 1
9

1
10

1
9

1
10
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Fig. 8: Comparison of Relative Ranking Variations

p. For example, when p is 16, on EPIN, the maximum Ratio

is 89.2%, while the minimum Ratio is 0.8%. The non-negative
Ratio confirms that the ranking of target node t exceeds some
node in {V \ t} whose score is larger than t in the original graph,
thereby resulting in an effective improvement.

C. Comparison with a Greedy Algorithm
To further examine the effectiveness of the proposed strategies,

we compare our multi-point strategy (denoted as Multi-Point)
with the greedy algorithm (Greedy) for betweenness promotion
as an example. The comparisons for other centrality measures
are omitted due to space limitations. Details of Greedy are
presented in Section VI, and the description of Multi-Point is
in Algorithm 1.

Although Greedy inserts additional edges into the graph while
our method Multi-Point inserts additional nodes into the graph,
both methods increase the betweenness score when the graph is
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Fig. 9: Comparison of Score Variations

modified. In this case, we test the effect of both methods in
terms of promotion size p (i.e., the edge number for Greedy
and the node number for Multi-Point). As suggested in [19], we
select five target nodes t for boosting and set promotion size p

ranging from 1 to 10. The promotion effect is evaluated by score
variation and relative ranking variation (Ratio) before and after
the insertion. The results are reported as the average value over
five target nodes.
Exp-5: Comparison of Relative Ranking Variation. We show the
average relative ranking variation (Ratio) of Greedy and Multi-
Point on WIKI and HEPP in Fig. 8. On WIKI, Multi-Point’s
Ratio outperforms Greedy’s at all p. For example, when 10

nodes/edges are inserted, Multi-Point’s Ratio is 61.3%, while
Greedy’s Ratio is 60.8%. On HEPP, although Greedy’s Ratio is
always better than Multi-Point’s, the gap narrows as p increases.
For instance, when p = 1, Greedy’s Ratio is 1.9 times better than
that of Multi-Point, while Greedy’s Ratio is 1.1 times better than
Multi-Point’s when p = 10. This means our proposed Multi-Point
is comparable with Greedy regarding the ranking promotion.
Exp-6: Comparison of Score Variation. We present the average
score variation in Fig. 9. On WIKI, the average score variation
of Multi-Point is slightly better than that of Greedy at various p.
Nevertheless, the difference is relatively small: the variation of
Multi-Point is only 1.15 times larger than that of Greedy when
p = 10. On the other hand, on HEPP, Greedy outperforms Multi-
Point significantly: when p = 10, the Greedy’ score variation is
over 11.5 times better than that of Multi-Point. This is reasonable
because Multi-Point lacks the network structure for promotion,
and its aim is for ranking promotion. In this case, Greedy is
applicable when score promotion is the primary goal.

VIII. CONCLUSION

This paper provides an affirmative answer to whether it is
possible to improve a target node’s centrality ranking on a black-
box network. By designing feasible strategies, we eliminate the
dependence on the network structure for promotion. The effective-
ness of promotion strategies is supported by the maximum gain
principle and minimum loss principle. Extensive experimental
studies on real-world networks confirm that the principle-guided
strategies effectively improve the target nodes’ centrality ranking
for various centrality measures. We hope our research can pave
the way for more attention on manipulating black-box networks
for fun and profit. Our future work includes investigating more
advanced strategies: given a budget b of graph edits (by inserting
edges and (or) nodes), modify the black-box network to maximize
the target node’s centrality ranking.
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APPENDIX

A. Proofs for Section V-A.
Proofs of Theorem 5.1. We prove it from the properties of Definition 5.1.

• Maximum Property implies that CÕ
(v) Æ CÕ

(t) (or equivalently,
RÕ

(t) Æ RÕ
(v)), for ’v œ V with C(v) Æ C(t), since otherwise

�C(v) = CÕ
(v) ≠ C(v) is larger than �C(t) = CÕ

(t) ≠ C(t),
contradiction.

• Dominance Property indicates that RÕ
(t) Æ RÕ

(w), for ’w œ �V .
• Boost Property shows that when p > pÕ, RÕ

(t) > RÕ
(v), for at least

a node v œ V with C(v) > C(t).
Suppose there are num nodes with scores larger than t in G, i.e., num =

|{v œ V |C(v) > C(t)}|, then there are at most num≠1 nodes in V with
scores larger than t in GÕ (by Boost Property). Hence, R(t) = num + 1

and RÕ
(t) Æ num + 1 ≠ 1. Therefore, �R(t) = R(t) ≠ RÕ

(t) Ø 1 > 0.
Proofs of Theorem 5.2. The proof is similar to that of Theorem 5.1.

B. Proofs for Strategy for Betweenness Centrality
We first give some supporting lemmas and then provide proofs for

Lemmas 5.1-5.3, and Theorem 5.3. When G(V, E) is converted to
GÕ

(V fi �V , E fi �E), ‡(a, b) and ‡Õ
(a, b) denote the number of a-

b shortest paths in G and GÕ, respectively; ‡v(a, b) and ‡Õ
v(a, b) denote

the number of a-b shortest paths via v in G and GÕ, respectively.
Lemma S.1: Given [t, p, multiple points] that converts G(V, E) to
GÕ

(V fi �V , E fi �E), any a-b shortest path does not pass through
a node in �V , for ’(a, b) œ V 2.
Proof: If w œ �V is on an a-b shortest path, then the a-b path can be
shortened by connecting a to t then to b (to bypass w), contradiction.
Lemma S.2: Given [t, p, multiple points] that converts G(V, E) to
GÕ

(V fi �V , E fi �E), ‡Õ
(a, b) = ‡(a, b), for ’(a, b) œ V 2.

Proof: Since we only append nodes around t and do not change edges
within V , ‡Õ

(a, b) Ø ‡(a, b); ‡Õ
(a, b) Æ ‡(a, b) since otherwise a new

a-b path must contain w œ �V , which contradicts with Lemma S.1.
Lemma S.3: Given [t, p, multiple points] that converts G(V, E) to
GÕ

(V fi �V , E fi �E), ‡Õ
v(a, b) = ‡v(a, b) for ’v œ V , ’(a, b) œ V 2,

and v ”= a ”= b.
Proof: Lemma S.2 indicates there is no increase in shortest path number
for node pairs in V . (i) If v is not on any a-b shortest path, ‡Õ

v(a, b) =

‡v(a, b) = 0; (ii) If v is on some a-b shortest paths, by [32], ‡v(a, b) =

‡(v, a) ◊ ‡(v, b) equals ‡Õ
v(a, b) = ‡Õ

(v, a) ◊ ‡Õ
(v, b).

Lemma S.4: Given [t, p, multiple points] that converts G(V, E) to
GÕ

(V fi �V , E fi �E), ‡Õ
t(a, b) = ‡Õ

(a, b), for ’(a, b) œ {�V ◊ {V fi
�V }} fi {{V fi �V } ◊ �V }, and a ”= b ”= t.
Proof: We prove the case for (a, b) œ {�V ◊{V fi�V }} since the other
case is symmetric in undirected graphs. If ‡Õ

t(a, b) ”= ‡Õ
(a, b), then node

a connects to some node w ”= t to reach b, which means degGÕ
(a) Ø 2.

This contradicts with the fact that degGÕ
(a) = 1 (a only connects to t).

Lemma S.5: Given [t, p, multiple points] that converts G(V, E) to
GÕ

(V fi �V , E fi �E), ‡Õ
v(a, b) = 0, for ’(a, b) œ �

2
V , ’v œ {V \ t},

and a ”= b ”= v.
Proof: Suppose ‡Õ

v(a, b) ”= 0, then the a-b shortest path via v is
shortened by connecting a to t then to b, contradiction.
Lemma S.6: Given [t, p, multiple points] that converts G(V, E) to
GÕ

(V fi �V , E fi �E), ‡Õ
w(a, b) = 0, for ’w œ �V , ’(a, b) œ

{V fi �V }2, and a ”= b ”= w.
Proof: If ‡Õ

w(a, b) ”= 0, degGÕ
(w) Ø 2 because w is on some a-b path,

which contradicts with the fact that degGÕ
(w) = 1.

Proof of Lemma 5.1. Denote ‡v(a,b)
‡(a,b) as PBCv(a, b) and ‡Õ

v(a,b)
‡Õ(a,b) as

PBC

Õ
v(a, b). Given u œ V , by Lemma S.2 and Lemma S.3,

PBCu(a, b) = PBC

Õ
u(a, b), for ’(a, b) œ V 2, and a ”= b ”= u; since

�V do not exist in G, PBCu(a, b) = 0, for ’(a, b) œ {�V ◊ {V fi
�V }}fi{{V fi�V }◊�V }, and a ”= b ”= u. We then divide V into {t}
and {V \t}. For t, by lemma S.4, PBC

Õ
t(a, b) = 1, for ’(a, b) œ {�V ◊

{V fi �V }} fi {{V fi �V } ◊ �V }. Thus, �C(t) = BC

Õ
(t) ≠ BC(t) =

�(a,b)œV 2fi{V ◊�V }fi{�V ◊V }fi�2
V

(PBC

Õ
t(a, b) ≠ PBCt(a, b)) = 0 +

2(|V | ≠ 1) ◊ |�V | + |�V | ◊ (|�V | ≠ 1). For v œ {V \ t}, (i) for
’(a, b) œ �

2
V , PBC

Õ
v(a, b) = 0 by Lemma S.5; (ii) for ’(a, b) œ {�V ◊

V } fi {V ◊ �V }, PBC

Õ
v(a, b) Æ 1 by definition [32]. Thus, �C(v) =

BC

Õ
(v) ≠ BC(v) = �(a,b)œV 2fi{V ◊�V }fi{�V ◊V }fi�2

V
(PBC

Õ
v(a, b) ≠

PBCv(a, b)) Æ 0 + 2(|V | ≠ 1) ◊ |�V | + 0. Consequently, �C(t) ≠
�C(v) Ø |�V | ◊ (|�V | ≠ 1) Ø 0.



Proof of Lemma 5.2. For w œ �V , BC

Õ
(w) = 0 by Lemma S.6. Then,

BC

Õ
(t) Ø BC

Õ
(w) since betweenness is non-negative [32].

Proof of Lemma 5.3. From proof of Lemma 5.1, �C(t) ≠ �C(v) Ø
|�V | ◊ (|�V | ≠ 1) Ø (|�V | ≠ 1)

2. Given v œ {V \ t} with BC(v) >
BC(t), �C(t) ≠ �C(v) > BC(v) ≠ BC(t) derives BC

Õ
(v) < BC

Õ
(t).

Thus, BC

Õ
(t) > BC

Õ
(v), if |�V | = p > pÕ

=


BC(v) ≠ BC(t) + 1.

Proof of Theorem 5.3. By Lemmas 5.1-5.3 and Theorem 5.1.

C. Proofs for Strategy for Coreness Centrality
We first present supporting lemmas and then give proofs for Lem-

mas 5.4-5.6, and Theorem 5.4
Lemma S.7: Given a graph G(V, E), if v œ V is contained in a clique
S with size |S| = k, then RC(v) Ø k ≠ 1.
Proof: For ’v œ S, degS(v) Ø k ≠ 1, and then RC(v) Ø k ≠ 1 in G.
Lemma S.8: Given [t, p, single clique] that converts G(V, E) to GÕ

(V fi
�V , E fi �E), RC

Õ
(w) = |�V |, for ’w œ �V .

Proof: RC

Õ
(w) Ø |�V | by Lemma S.7 since t and w œ �V form

a clique; RC

Õ
(w) Æ |�V | because coreness of w is bounded by its

degree [33].
Lemma S.9: Given [t, p, single clique] that converts G(V, E) to GÕ

(V fi
�V , E fi �E), if �C(t) = 0, then �C(v) = 0 for ’v œ {V \ t}.
Proof: For ’v œ {V \t}, let S be the maximal subgraph in G, s.t., v œ S
and degS = RC(v); let SÕ be the maximal subgraph in GÕ, s.t., v œ SÕ

and degSÕ
= RC

Õ
(v). When �C(v) > 0, {SÕ \ S} ™ {t fi �V }. But the

fact v connects �V only by t implies t œ {SÕ \ S}, thus �C(t) ”= 0.
Lemma S.10: Given [t, p, single clique] that converts G(V, E) to GÕ

(V fi
�V , E fi �E), �C(v) = RC

Õ
(v) ≠ RC(v) Æ 1, for ’v œ {V \ t}.

Proof: We reuse the symbols S and SÕ as in the proof of Lemma S.9.
The facts {SÕ \ S} ™ {t fi �V } and v has no direct connection with
�V indicate the degree of nodes v œ S can be reduced by at most one
by deleting {SÕ \ S} from SÕ, hence, RC(v) Æ RC

Õ
(v) ≠ 1.

Proof of Lemma 5.4. By Lemma S.9, if �C(t) = 0, �C(v) = 0, ’v œ
{V \ t}; By Lemma S.10, if �C(t) ”= 0, then �C(v) Æ 1 Æ �C(t).
Proof of Lemma 5.5. By Lemma S.7, RC

Õ
(t) Ø |�V | (t and �V form

a clique); By Lemma S.8, RC

Õ
(w) = |�V |, for ’w œ �V .

Proof of Lemma 5.6. By Lemma S.7, RC

Õ
(t) Ø |�V |; By Lemma S.10,

�C(v) = RC

Õ
(v)≠RC(v) Æ 1, for ’v œ {V \t}. Given RC(v) > RC(t),

RC

Õ
(t) Ø |�V | > RC(v) + 1 Ø RC

Õ
(v) when |�V | = p > pÕ

=

RC(v) + 1.
Proof of Theorem 5.4. By Lemmas 5.4-5.6 and Theorem 5.1.

D. Proofs for Strategy for Closeness Centrality
We first provide supporting lemmas and then present proofs for

Lemmas 5.7-5.9, and Theorem 5.5.
Lemma S.11: Given [t, p, multiple points] that converts G(V, E) to
GÕ

(V fi �V , E fi �E), distGÕ
(a, t) + distGÕ

(t, b) = distGÕ
(a, b), for

’(a, b) œ {{V fi �V } ◊ �V } fi {�V ◊ {V fi �V }}, and a ”= b.
Proof: We verify the case for (a, b) œ {{V fi �V } ◊ �V } since the
other case is similar. If distGÕ

(a, t) + distGÕ
(t, b) ”= distGÕ

(a, b), then
any a-b shortest path bypasses t in GÕ, which contradicts with the fact
that b only connects to t, for ’b œ �V , b ”= a.
Lemma S.12: Given [t, p, multiple points] that converts G(V, E) to
GÕ

(V fi �V , E fi �E), distGÕ
(a, b) = distG(a, b), for ’(a, b) œ V 2.

Proof: distGÕ
(a, b) Æ distG(a, b) since edges within V do not change;

distGÕ
(a, b) Ø distG(a, b) since otherwise a new a-b shortest path via

w œ �V can be shortened by connecting a to t then to b, contradiction.
Proof of Lemma 5.7. For ’u œ V , (i) distGÕ

(u, a) = distG(u, a),
for ’a œ V ; (ii) distG(u, a) = 0 since �V is not in G, for
’a œ �V . Thus, �C(u) = �aœ{V fi�V }distGÕ

(u, a) ≠ distG(u, a) =

�aœ�V distGÕ
(u, a). Consequently, for ’v œ {V \t}, �C(v)≠�C(t) =

�aœ�V (distGÕ
(v, a) ≠ distGÕ

(t, a)) = �aœ�V distGÕ
(v, t) > 0.

Proof of Lemma 5.8. For ’w œ �V , by Lemma S.11, CC

Õ
(w) =

1
�aœ{V fi�V }distGÕ (w,a) =

1
�aœ{V fi�V }{distGÕ (w,t)+distGÕ (t,a)} <

1
�aœ{V fi�V }distGÕ (t,a) = CC

Õ
(t).

Proof of Lemma 5.9. From proof of Lemma 5.7, �C(v) ≠ �C(t) =

�aœ�V distGÕ
(v, t) = |�V |distG(v, t) (by Lemma S.12), for ’v œ

{V \ t}. Given CC(v) > CC(t), CC

Õ
(v) < CC

Õ
(t) (or equivalently,

CC

Õ
(v) > CC

Õ
(t)) when �C(v) ≠ �C(t) = |�V |distG(v, t) >

CC(t) ≠ CC(v), or |�V | = p > pÕ
=

CC(t)≠CC(v)
distG(v,t) .

Proof of Theorem 5.5. By Lemmas 5.7-5.9 and Theorem 5.2.

E. Proofs for Strategy for Eccentricity Centrality
We first present some supporting lemmas and then show proofs for

Lemmas 5.10-5.12, and Theorem 5.6. We define the aggregate distance
from v to a set of nodes S ™ V as distG(v, S) = maxuœS distG(v, u).
Lemma S.13: Given a graph G(V, E), for ’v œ V , and ’S ™ V ,
EC(v) = max(distG(v, S), distG(v, {V \ S})).
Proof: By definition, EC(v) = maxuœV distG(u, v) =

max(maxuœS distG(u, v), maxuœ{V \S} distG(u, v)) =

max(distG(v, S), distG(v, {V \ S})).
Lemma S.14: Given a graph G(V, E), EC(a) Æ dist(a, b) + EC(b), for
’(a, b) œ V 2.
Proof: Let c be the node, s.t., distG(a, c) = EC(a), then EC(a) =

distG(a, c) Æ distG(a, b) + distG(b, c) Æ distG(a, b) + EC(b).
Lemma S.15: Given [t, p, double lines] that converts G(V, E) to GÕ

(V fi
�V , E fi �E), distGÕ

(a, b) = distGÕ
(a, t) + distGÕ

(t, b), for ’(a, b) œ
{�V ◊{V fi�V }fi{V fi�V }◊�V }, and distGÕ

(a, b) > distGÕ
(a, t);

distGÕ
(b, �V ) = distGÕ

(b, t) + distGÕ
(t, �V ), for ’b œ V .

Proof: �V consists of two disjoint sets S1 and S2 (on each of the double
lines). Moreover, t is the cut node among S1, S2 and {V \ t} in GÕ —
deleting t separates these parts. Therefore, distGÕ

(a, t) + distGÕ
(t, b) =

distGÕ
(a, b) by the cut property [34], for ’(a, b) œ {�V ◊{V fi�V }fi

{V fi �V } ◊ �V }, and distGÕ
(a, b) > distGÕ

(a, t) (to avoid a, b
being both in S1 or S2); In addition, for ’b œ V , distGÕ

(b, �V ) =

maxwœ�V distGÕ
(b, w) = maxwœ�V distGÕ

(b, t) + distGÕ
(t, w) =

distGÕ
(b, t) + maxwœ�V distGÕ

(t, w) = distGÕ
(b, t) + distGÕ

(t, �V ).
Lemma S.16: Given [t, p, double lines] that converts G(V, E) to
GÕ

(V fi �V , E fi �E), distGÕ
(a, b) = distG(a, b), for ’(a, b) œ V 2;

distGÕ
(a, S) = distG(a, S), for ’a œ V, ’S ™ V .

Proof: distGÕ
(a, b) Æ distG(a, b) since edges within V do not change;

distGÕ
(a, b) Ø distG(a, b) since otherwise a new a-b shortest path via

w œ �V can be shortened by connecting a to t then to b. For S ™ V ,
by aggregating over b œ S, distGÕ

(a, S) = distG(a, S).
Lemma S.17: Given [t, p, double lines] that converts G(V, E) to GÕ

(V fi
�V , E fi �E), if EC

Õ
(t) < EC(t), then EC

Õ
(t) = distGÕ

(t, �V );
otherwise, EC

Õ
(t) = distGÕ

(t, V ) = distG(t, V ).
Proof: By Lemma S.16, distGÕ

(t, V ) = distG(t, V ). EC

Õ
(t) =

max(distGÕ
(t, V ), distGÕ

(t, �V )) = max(EC(t), distGÕ
(t, �V )).

Thus, EC

Õ
(t) < EC(t) (resp. EC

Õ
(t) > EC(t)) implies EC

Õ
(t) =

distGÕ
(t, �V ), and EC

Õ
(t) = EC(t) indicates EC

Õ
(t) = EC(t) =

distGÕ
(t, V ) = distG(t, V ).

Lemma S.18: Given [t, p, double lines] that converts G(V, E) to GÕ
(V fi

�V , E fi �E), if EC

Õ
(t) < EC(t), then EC

Õ
(v) < EC(v) for ’v œ V .

Proof: If EC

Õ
(t) < EC(t), then EC

Õ
(t) = distGÕ

(t, �V ) by
Lemma S.17. This means distGÕ

(t, �V ) > distGÕ
(t, V ) = distG(t, V ).

For ’v œ {V \ t}, disGÕ
(v, �V ) = distGÕ

(v, t) + distGÕ
(t, �V ) >

distG(v, t) + distG(t, V ) Ø EC(v) (by Lemma S.14). Then, EC

Õ
(v) Ø

disGÕ
(v, �V ) > EC(v), and thus EC

Õ
(v) < EC(v).

Proof of Lemma 5.10. We discuss two cases. (i) If �C(t) = 0, for
’v œ {V \ t}, EC

Õ
(v) = max(distGÕ

(v, V ), distGÕ
(v, �V )) Ø

distGÕ
(v, V ) = distG(v, V ) = EC(v). Then, �C(v) Ø �C(t) = 0.

(ii) If �C(t) > 0, by Lemma S.17, EC

Õ
(t) = distGÕ

(t, �V ); by
Lemma S.18, EC

Õ
(v) = distGÕ

(v, �V ) because EC

Õ
(v) < EC(v),

for ’v œ {V \ t}. Thus, �C(v) ≠ �C(t) = (distGÕ
(v, �V ) ≠

EC(v)) ≠ (distGÕ
(t, �V ) ≠ EC(t)) = distGÕ

(v, t) ≠ EC(v) + EC(t) =

distG(v, t) ≠ EC(v) + EC(t) Ø 0 (according to Lemma S.14).
Proof of Lemma 5.11. There are two cases. (i) If EC

Õ
(t) = EC(t),

then by Lemma S.17, EC

Õ
(t) = distGÕ

(t, V ). For ’w œ �V ,
EC

Õ
(w) Ø distGÕ

(w, V ) = distGÕ
(w, t) + distGÕ

(t, V ) Ø EC

Õ
(t), and

thus EC

Õ
(w) Ø EC

Õ
(t). (ii) If EC

Õ
(t) Ø EC(t), then by Lemma S.17,

EC

Õ
(t) = distGÕ

(t, �V ) =

|�V |
2 (maximum distance to nodes on each

line). For ’w œ �V , EC

Õ
(w) Ø distGÕ

(w, �V ) Ø |�V |
2 (maximum

distance to nodes on the other line), and thus EC

Õ
(w) Æ EC

Õ
(t).

Proof of Lemma 5.12. If EC

Õ
(t) = distGÕ

(t, �V ) =

|�V |
2 >

distGÕ
(t, V ), by Lemma S.18, EC

Õ
(v) = distGÕ

(v, �V ) > EC(v), and
by Lemma S.15, EC

Õ
(v) = distGÕ

(v, t) + distGÕ
(t, �V ) > EC

Õ
(t).

This means, when p = |�V | > pÕ
= 2 ◊ EC(t), EC

Õ
(t) > EC

Õ
(v), for

’v œ {V \ t}.
Proof of Theorem 5.6. By Lemmas 5.10-5.12 and Theorem 5.2.
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