“© 2021 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all
other uses, in any current or future media, including reprinting/republishing this material for advertising or
promotional purposes, creating new collective works, for resale or redistribution to servers or lists, or reuse
of any copyrighted component of this work in other works.”

FAST: FPGA-based Subgraph Matching on Massive
Graphs

Xin Jinf, Zhengyi Yang$, Xuemin Lin®, Shiyu Yang’, Lu Qinf, You Peng®

YEast China Normal University, $University Of New South Wales, * University of Technology Sydney

xinjin@stu.ecnu.edu.cn, {zyang, lxue}@cse .unsw.edu.au,

syyang@sei.stu.ecnu.edu.cn,

We would like to thank the reviewers for their insightful
and invaluable comments. We have revised the paper carefully
according to the comments. A summary of major revisions is
given below, followed by the point-to-point response to each
reviewer.

1) Add additional comparison with GPU-based solutions.

2) Provide the statistics about the number and size of CST

to show the scalability of the partition mechanism.

3) Conduct more experiments as suggested by reviewers

for better comparison.

4) Strengthen the application of subgraph matching on

FPGA:s.
5) Revise the figures, proof-read and improve presentation.
Please kindly find our point-to-point responses below.

RESPONSE TO REVIEWER #1
Comment 1.1 (R1) Compare with GPU based solutions

Response. Thanks. We have added experiments in the revised
paper to compare FAST with two state-of-the-art GPU-based
solutions GSI [39] and GpSM [35]. We do not compare PBE
[16] because it is unable to handle labeled graphs. The results
are illustrated in Comparing with Existing Algorithms (Section
VII-C, Fig. 12). For demonstration, we extract the results of
FAST compared with GSI and GpSM and present them here
in Fig. 1 (go-q4 in DGO3 and ¢4-gs in DG10 due to space
limit). As shown, FAST outperforms GSI and GpSM for all
the queries. Note that both GSI and GpSM fail to complete all
the queries due to out of memory (denoted as OOM).

Comment 1.2 (R2) Rewrite the text of the System
Overview scetion including symbol tables in the Software
Implementation subsection and making sure all terms are
concretely defined when used.

Response: Thanks. We have carefully rewritten the text of the
Software Implementation (Section V). A symbol table (Table
1) is added at the beginning of Section V. Specifically, we
have made the following changes with respect to W1:

« We modify the data graph G in the Fig. 1(b) and CST in
the Fig. 3(b) in the revised paper so that the Example 2
can be easier to understand.

o We define the unclear symbols (e.g. O) and terms (e.g.
‘valid node’) before used.

lu.gin@uts.edu.au,

you.peng@unsw.edu.au

FAST GS| ==GpSM

O
© INIZ r
S 103 [
- 102 [
g
g 109 |
210, 1
w1072

(a) DG03

FAST GS| mGpSM

@ T T T
o INF |
(o 102 [
70
g .107 |
{82

(b) DG10

Fig. 1. Elapsed time of FAST, GSI and GpSM

CST is not a DAG nor a tree. It is an undirected
graph as given in Definition 2. We abuse the term tree
during naming to emphasize that CST is constructed
based on the spanning tree of the query graph following
conventions. A footnote has been added in Definition 2
to clarify.

Each vertex in CST has a candidate set in which each
candidate in it refers to a data vertex in the data graph.
We have modified the definition of CST (Definition 2)
to make it clear. In addition, we use the term ‘candidate’
to distinguish a candidate vertex from a CST vertex after
Definition 2 to remove ambiguity.

N (v) is the adjacency list of v € C'(u) with respect to
(u,u’) in CST, ie., NY(v) = {v' € C(¥') | (v,?') €
E(CST)}. The definition is added in the third paragraph
of Section V-A.

We have added CSTProcess (Algorithm 3) to clarify the
scheduling process.

Comment 1.3 (R3) Record some statistics about the
number of partitions that was used in each experiment

as well as the total size of the CST.

Response. Thanks. We have added the statistics about the
number of partitions and the total size of CST in the revised
paper. The results are illustrated in The Necessity of CST
Fartition (Section VII-A, Fig. 8).

Our partition method demonstrates good scalability in the
experiments. Let Scst and S¢ be the size of all CST partitions
and data graph, respectively. In general, SSC—ZT < 60% for all
experiments and SSC—ZT keeps stable for the most of queries

while the data graph grows. The rapid growth of SSCzT in g7
from DGO3 to DG10 is due to the rapid increase in the number
of embeddings.

Moreover, we evaluate the partition time with respect to the
number of embeddings as the data graph grows. The results are
shown in Fig. 2. The partition time is almost linear to the num-
ber of embeddings, with the average partition time increases
only slightly (1.09 x 1079, 1.15 x 1079, 2.11 x 1072, and
2.15 x 1079 seconds per embedding for DGO1, DG03, DG10
and DG60, respectively), while the sizes of data graphs grows
rapidly (the numbers of edges are 17.24M, 52.65M, 176.48M
and 1.25B for DGO1, DG03, DG10 and DG60, respectively).
This proves the scalability of our partition mechanism when
the data graph grows.

Subgraph matching on complex query in large data graphs is
challenging for all algorithms. The queries we use are selected
from the Interactive Workload in the LDBC-SNC benchmark
which already includes complex queries in practical (e.g. the
number of results of g7 in DG60 exceeds 4 billion). The results
show that our partition mechanism can handle complex real-
world workloads.

q0 + q2 q7 average -

2 INF gl 94 g8 =

6 |
= 10]
e 10°
= 10% | -//_//////
c 3 i
S 10 ¢
= 10? : #
a 10 : : : : : :

105 10% 10° 108 10° 10" 10'" INF

#Embeddings

Fig. 2. The partition time per embedding

Comment 1.4 (D4) The logarithmic scale used in the
experiments is not ideal for acceleration ratios < 1.

Response. Thanks. In the revised version, we label the actual
acceleration ratio on the right side of the figures.

RESPONSE TO REVIEWER #2

Comment 2.1 (D3) The claims of novelty of the CST data
structure should be toned down. Transforming the query graph
into a spanning tree and matching the edges in the tree first
is a well-known technique used by many algorithms. CST
might not be exactly the same as data structures used by
previous work, but it is a minor variations. A tree partitioning
technique seemingly similar to the one of this paper was
already introduced by the QFrag algorithm.

Response. Thanks. We have revised the description in the
first paragraph of CST Structure (Section V-A) to lower our
tone. CST is similar to the auxiliary data structure in previous
works, but with vital difference. The design choice is discussed
at the end of Section V-A in the Remark. We refer to the main
contribution as our CPU-FPGA co-designed framework with
the help of CST structure and its partition mechanism, instead
of solely the design of CST.

In addition, the partitioning technique of CST is different
with the one of QFrag [30]: (1) QFrag partitions its tree-like
structure only on the second query vertex in the matching
order. In FAST, we partition CST from the first query vertex
to the last one until CST meets the requirements. (2) QFrag
partitions its tree-like structure for load-balancing, so the
partition factor is fixed (equals to the number of workers).
The partition factor of CST is dynamically determined each
round. (3) QFrag does not partition the relationships between
the non-tree neighbors like us.

Comment 2.2 (D5) Figure 11 has a lot of information and
its y axis is in log-scale. It is difficult to understand the exact
speedup for the different experiments, and the text only reports
the best-case speedups. Please add numbers on top of each bar
to make the figure more readable.

Response. Thanks. We have fixed Fig. 11 (Fig. 12 now) in
the revised paper. Each query shows similar trend in different
data graphs, so we choose to present the results of only five
queries for each data graph to make the figure easy to read.
The complete results is included in our technical report [21].

RESPONSE TO REVIEWER #3

Comment 3.1 (D1.1) While it is understood CST partitioning
is necessary, the choice of k£ (Lines 2-3 of Algo. 2) requires
some explanation or experiments. Is the acceleration sensitivity
to k?

Response. Thanks. The acceleration is not very sensitive to
k when k is in asmall range (e.g. k£ < 10). The choice of k
do make impact on the partition time, but when k is small,
the partition time of CPU can overlap well with the time
of computing matchings on FPGA (the most time-consuming
process). When k is large, the partition time can potentially
increase and hence slow down the acceleration. However, our
greedy strategy can select a good k to reduce the time for

partitioning and the final number of CST partitions, so it can
make less impact on the total computation.

We have added the k-Determination experiment as illus-
trated in Fig. 3. Besides our greedy strategy, we test FAST
with fixed k € {2,4,6,8,10}. The average number of CST
and the average partition time are reported. It can be seen that
our greedy approach does achieve the least number of CST
and least time cost to partition CST.

'2ng [Parfition Timé-DGO3 — |2N('): e

— 200 r | 1'5 =
@ 150 | -
® 100 | 110 ¢
Hinlin o

0 0 o

Greedy 2 4 6 8 10
Fig. 3. The average number of CST and average partition time varying k

Comment 3.2 (D1.2) The matching O appears to play an
important role in efficiency. It should be tested with some
alternatives.

Response: Thanks. We have tested FAST with the following
matching orders: (1) CFL’s order (order the root-to-leaf path
of a spanning tree). (2) DAF’s order (a topological order of
DAG). (3) CECI’s order (a breadth-first search order). (4) all
random connected orders. The results are added in the revised
paper (Section VII-C, Fig. 13).

For each query, we extract the minimum, average and
maximum time in all random connected orders as the results
of BEST, AVG and WORST matching orders, respectively. It
can be seen from the figure that the average elapsed time of
FAST with CFL’s, DAF’s and CECI’s matching orders is very
close to each other. The FAST with the WORST matching
order (about 5x slower than the BEST order in average) can
still outperform CPU-based solutions CFL, CECI and DAF (by
9.6x, 11.1x and 36.3x, respectively) which further proves the
effectiveness our CPU-FPGA co-designed framework.

It is practically infeasible to always compute the best plan
[33], so FAST is designed to accept any matching order. In
the paper, we adopt the path-ordering matching order similar
to CFL-Match which present good performance in most cases.

Comment 3.3 (D1.3) Similarly, the threshold § should be
backed up by experiments.

Response. Thanks. We add the § experiments in Effectiveness
of Software Scheduler (Section VII-B). The results are illus-
trated in Fig. 11 in the revised paper. According to the figure,
Software Scheduler optimization achieves best improvements
when § = 0.1.

Comment 3.4 (D2) Are the experiments on the existing
work [13, 17, 12] run on a setup that only one thread

is allowed? It makes more sense if the code is compiled
with its best optimization options on the host machine.

Response. Thanks. CFL [13] is designed and implemented
only for single thread. DAF [17] and CECI [12] provide the
parallel version of their algorithms. We run DAF and CECI
on using 8 threads (on a 8-core machine) denoted as DAF-
8 and CECI-8, respectively, and compare the results with
FAST. However, DAF-8 encounters out of memory error when
processing DG03 and DG10. So we only report the elapsed
time of CECI-8 in Fig. 12 in the revised paper. We extract
the elapsed time of FAST, CECI and CECI-8, as shown in
the Fig. 4 here. FAST outperforms CECI-8 in all queries even
when 8 threads are used, the average acceleration rate of FAST
compared with CECI-8 is 5.79x, 8.51x and 9.31x for DGOI,
DGO03 and DGI10, respectively.

FAST = CECI mw CECI-8
INF : :
€ 3 1595
g 10 283 496
n 10% | 102 53.3
% 1 11.9
g 10"t
L
10°
DGO03 DG10

Fig. 4. The average elapsed time of CECI-8, CECI, FAST-8 and FAST

Comment 3.5 (R1) Discuss, analyze or show the param-
eters used in the experiments as detailed as possible (D1-
D2).

Response. Thanks. We have given the corresponding response
in Comment 3.1-3.4.

Comment 3.6 (R2) Strengthen the applications of the
paper (D3).

Response. Thanks. Subgraph matching has a wide range of
applications as mentioned in the first paragraph of the intro-
duction. FPGA-based subgraph matching can speed up and
benefit all applications of them. Moreover, subgraph matching
is essentially the core operation of subgraph queries in graph
databases (e.g. Neo4j) and RDF engines(e.g. gStore). FPGA-
based subgraph matching can be integrated into existing graph
databases and RDF engines to accelerate many real-world
applications. Such attempts has already been made using GPUs
but not FPGAs. We have added a short discussion in our
revised paper (Section I).

Comment 3.7 (R3) Proofread the paper.

Response. Thanks. We have proofread the paper to fix the
typos and mistakes we found in the paper.

FAST: FPGA-based Subgraph Matching on Massive
Graphs

Xin Jinf, Zhengyi Yang®, Xuemin Lin®, Shiyu Yang', Lu Qin?, You Peng®

tEast China Normal University, $University Of New South Wales, * University of Technology Sydney

xinjin@stu.ecnu.edu.cn, {zyang,lxue}@cse.unsw.edu.au,

syyang@sei.stu.ecnu.edu.cn,

Abstract—Subgraph matching is a basic operation widely used
in many applications. However, due to its NP-hardness and the
explosive growth of graph data, it is challenging to compute
subgraph matching, especially in large graphs. In this paper,
we aim at scaling up subgraph matching on a single machine
using FPGAs. Specifically, we propose a CPU-FPGA co-designed
framework. On the CPU side, we first develop a novel auxiliary
data structure called candidate search tree (CST) which serves
as a complete search space of subgraph matching. CST can
be partitioned and fully loaded into FPGASs’ on-chip memory.
Then, a workload estimation technique is proposed to balance
the load between the CPU and FPGA. On the FPGA side, we
design and implement the first FPGA-based subgraph matching
algorithm, called FAST. To take full advantage of the pipeline
mechanism on FPGAs, task parallelism optimization and task
generator separation strategy are proposed for FAST, achieving
massive parallelism. Moreover, we carefully develop a BRAM-
only matching process to fully utilize FPGA’s on-chip memory,
which avoids the expensive intermediate data transfer between
FPGA’s BRAM and DRAM. Comprehensive experiments show
that FAST achieves up to 462.0x and 150.0x speedup compared
with the state-of-the-art algorithm DAF and CECI, respectively.
In addition, FAST is the only algorithm that can handle the
billion-scale graph using one machine in our experiments.

Index Terms—subgraph matching, FPGA, pipeline

I. INTRODUCTION

Graph analysis has been playing an increasingly important
role in the area of data analytics in recent years. One of
the most fundamental problems in graph analysis is subgraph
matching. Given a query graph ¢ and a data graph G, it
aims to find all subgraphs of G that are isomorphic to g.
It has a wide range of applications including protein-protein
interaction networks analysis [27], chemical sub-compound
search [38]], social network analysis [32], computer aided
design [26]], and graph pattern mining [34]. It is also a
core operation in graph databases [8] and RDF engines [43]].
However, it is challenging to compute subgraph matching,
especially in large graphs, due to its NP-hardness [19].

Extensive research has been conducted to develop efficient
solutions for subgraph matching. Most practical solutions on
CPUs [12]-[14], 11701, (18]I, [20], [31], [40] are based on the
backtracking approach, which recursively extends a partial
embedding by mapping the next query vertex to a data vertex.
Limited by the stand-alone design, these sequential solutions
show unsatisfactory response time and poor scalability when
handling massive graphs. In addition, general-purpose CPUs
are not an ideal way to handle graph processing: they do not
offer flexible high-degree parallelism, and their caches do not
work effectively for irregular graphs with limited data locality.

lu.gin@uts.edu.au,

you.peng@unsw.edu.au

FPGAs. FPGAs, which provide a new alternative to accelerate
computation in the hardware level, has evolved rapidly in
recent years. FPGAs have shown enormous advantages over
CPUs on parallelism. Data can be directly streamed to FPGAs
without instruction decoding and processed in pipelines. Be-
cause of its high potential to express parallelism at a massive
scale and other benefits such as more energy-efficient than
GPUs [11], FPGAs have been applied to implement complex
systems in industry. For example, Microsoft used FPGAs
to speed up Bing Search and Azure Machine Learning [1]].
FPGAs have also been rolled out by major cloud service
providers such as Amazon Web Services [2], Alibaba [3],
Tencent [4], Huawei [5]], and Nimbix [[6f]. In academia, it
has become a promising trend to use FPGAs to speed up
different research problems including many graph processing
problems [10], [15], [25]], [41], [42]. Nevertheless, subgraph
matching algorithms using FPGAs have not been developed
in the literature. FPGA-based subgraph matching can speed
up and benefit all aforementioned applications. It can also be
integrated into existing graph database systems (e.g. Neo4j
[8]) and RDF engines (e.g. gStore [43]]) to accelerate various
subgraph queries. Motivated by this, in this paper, we explored
how the pipeline mechanism of FPGAs can be fully utilized
to accelerate the subgraph matching problem.

Challenges. We present the challenges of solving the problem
of subgraph matching on FPGAs as follows:

o Strictly pipelined design on FPGA. FPGAs utilize a
pipelined design, in which a fully pipelined loop demands
no data dependencies among iterations. Thus the existing
backtracking-based algorithms cannot be directly imple-
mented on FPGAs. Furthermore, as FPGAs have an order of
lower clock frequency than CPUs (e.g., 300MHz vs. 2GHz),
it requires intricate design of the subgraph matching units
on FPGAs to obtain high performance.

o Limited FPGA on-chip memory. FPGAs have small sizes
of on-chip memory (BRAM) that are usually only tens
of megabytes; hence the huge graph data and intermedi-
ate results will easily overflow BRAM when performing
subgraph matching on FPGAs. Moreover, as fetching data
from FPGA’s external memory (DRAM) takes much more
cycles than BRAM (e.g., 8 cycles vs. 1 cycle), frequent data
transfer between BRAM and DRAM can significantly harm
the performance. Thus, it is rather challenging to manage
the data on FPGAs efficiently such that we can reduce the
data transfer operations between BRAM and DRAM.

Contributions. To address these challenges, we propose a
CPU-FPGA co-designed architecture which accelerates sub-
graph matching on a single machine using the power of
FPGAs. Specifically, our main contributions are as follows.

e The first CPU-FPGA co-designed framework to acceler-
ate subgraph matching. The framework includes a well-
designed scheduler on the host side (i.e., the CPU) and
a fully pipelined matching algorithm FAST on the kernel
side (i.e., the FPGA). A workload estimation method is
proposed on the host side for load-balancing between the
CPU and FPGA, which can be exploited to extend our
framework to multi-FPGA environment. To further improve
the efficiency of FAST algorithm on the kernel side, we
propose two optimizations with task parallelism and task
generator separation.

o A BRAM-only matching process to fully utilize FPGA’s on-
chip memory. We first design an auxiliary data structure CST
to serve as a complete search space. An efficient partition
strategy of CST is proposed so that CST can be fully
loaded into BRAM, reducing the costly data fetching from
FPGA'’s external memory. Then we propose a BRAM-only
partial results buffer to avoid the expensive intermediate data
transfer between BRAM and DRAM.

o Extensive experiments using the industrial-standard LDBC
benchmark. Our experiments using LDBC [7] show that
FAST outperforms the state-of-the-art algorithms by orders
of magnitude (up to 150.0x and 462.0x compared with CECI
[12]] and DAF [17], respectively). More importantly, FAST
is the only algorithm that can scale to the billion-scale graph
on a single machine in our experiment.

Paper Organization. The rest of the paper is organized as
follows. Section [[I] introduces background and Section [II|
presents related works. The system overview of the proposed
solution is introduced in Section followed by the detailed
design of software and hardware in Section |V| and Section
respectively. Experimental results are presented in Section

Section [VIII| concludes the paper.

II. BACKGROUND

In this section, the problem definition of subgraph matching
is stated first, followed by a brief introduction of FPGAs.

A. Problem Definition

A graph G is represented as a tuple G = (V, F, [, X), where
V(G) is the set of vertices, E(G) C V x V is the set of edges
in G, X is the set of labels, and [is a labelling function that
assigns each vertex v € V a label in X, denoted [g(v). We
focus on undirected, labelled, connected, and simple graphs in
this paper. Note that, our techniques can be readily extended
to edge-labeled and directed graphs. We denote the number of
vertices and edges in G by |V(G)| and |E(G)|, respectively.
The set of neighbors of v € V(G) in G is denoted by Ng(v) =
{v € V(G)|(v,v") € E(G)} and the degree of v, denoted by
de(v), that is dg(v) = [N (v)|. The dg = FHEG! and Dg
are denoted as the average and maximum degree, respectively.

Definition 1. (Subgraph Isomorphism) Given a query graph
q and a data graph G, ¢ is subgraph isomorphism to G if and

only if there is an injective mapping M from V(q) to V(QG)
such that Yu € V(q), l4(u) = lg(M(u)) and V(u, v') € E(q),
(M(u), M(u')) € E(G), where M (u) is the vertex to which
u is mapped.

We refer to each injective mapping M as a subgraph
isomorphism embedding of q in G. A graph ¢’ is an induced
subgraph of g if and only if Yy, ' € Ve = (u, 1) € Eg,
we have e € Ey . We call an embedding of an induced
subgraph of ¢ in G a partial embedding, denoted as p. The
M,y (u) denotes the mapping vertex of u in g. We use O
to denote the matching order, which is a sequence of query
vertices representing the order they are matched.

(b) Data graph

(a) Query graph
Fig. 1. Subgraph Matching

Example 1. For example, consider the query graph ¢ in Fig.
[I(a)] and the data graph G in Fig. [I(b)] Suppose the matching
order is {ug,u1,us,us}, since there is a subgraph isomor-
phlSIIl embedding M = {(’U(), "Ul), (Ulﬁ ’l74)./ (’l127 ’Ug), (U3, 'Ug))},
q 1is subgraph isomorphism to G. We call p =
{(ug,v1), (u1,v4), (uz,v3)} a partial embedding and ug will
be the next query vertex to match.

Problem Statement. Given a query graph ¢ and a data
graph GG, we study the problem of subgraph matching, which
efficiently extracts all subgraph isomorphic embeddings of ¢
in G.

B. Characteristics of FPGA

A field-programmable gate array (FPGA) is an integrated
circuits that consists of a matrix of configurable logic, mem-
ory, and digital signal processing (DSP) components. These
components are distributed within a grid of configurable
routing wires connected to programmable chip I/O blocks.
This flexible and programmable fabric can be configured to
perform any functionality implemented as a digital circuit.
The FPGA program statements are translated into a netlist
of primitive components first and then be assigned to physical
components in the FPGA fabric, determining which routing
wires should be used to connect them. This architecture allows
data to be directly streamed to FPGAs with no need to decode
instructions, as necessary in CPUs, to achieve high efficiency.

FPGAs have an unique programming model in which com-
putations are laid out spatially and the programmer has to
specify how data and control flows from one logic block to
another inside the data path. Thus, common design challenges
when developing FPGA-based algorithms is the amount of
space (resources) required and the ability to meet timing
(ensuring the data can be moved across the circuit in a correct
manner). It is also worth to mention that the clock rate on
FPGAs is usually about 10x slower than that of CPUs (i.e.,

300MHz vs 2.4GHz). Thus, FPGA-based algorithms must be
thoughtfully designed to provide better performance than CPU
implementations, by exploiting massive parallelism, typically
in the form of deep pipelines.

III. RELATED WORK
A. Subgraph Matching

Stand-alone Solutions. The study of practical subgraph
matching algorithms was initiated by Ullmann’s backtracking
algorithm [36], which recursively matches query vertices to
data vertices following a given matching order. Later re-
searches [14], [20], [31], [40] focus on different matching
order, pruning rules, and index structure. Turbo;so [18] pro-
poses to merge similar vertices with and a CR index structure.
CFL-Match [13]] proposes the core-forest-leaf decomposition
to reduce redundant Cartesian products and proposes a more
compact auxiliary structure CPI to solve the exponential size
of CR. CECI [12] and DAF [17] adopt the intersection-based
method to find the candidates, which demonstrate better per-
formance than the edge verification method used in previous
works [33]]. However, these solutions fail to accommodate
large graphs due to their inherent sequential nature.

Distributed Solutions. Most distributed algorithms utilize dis-
tributed join to compute matches. [22], [23]], [28]] decompose
the query graph into sub-queries, find the matches of each sub-
query, and use a series of binary joins to assemble the final
results. [9], on the other hand, grows the query graph one
vertex at a time following a specific order to obtain worst-
case optimality. FAST can be potentially used to accelerate
the computation in distributed subgraph matching.

GPU-based Solutions. GpSM [35] and GunrockSM [37]
adopt the binary join strategy in GPUs, which collects candi-
dates for each edge of ¢ and joining them to find final matches.
They suffer from high computation workload, high memory
latency, and severe workload imbalance. GSI [39] proposes
a Prealloc-Combine approach, which joins candidate vertices
instead of edges to improve the efficiency. The algorithms
mentioned above are only able to handle the graphs that
can be fit into the GPU memory. PBE [16] solves this by
partitioning the graph in advance and matching intra- and inter-
partition matches in two separate steps. However, as the on-
chip memory of an FPGA is order-of-magnitude smaller than a
GPU memory, this approach can hardly be applied to FPGAs.

B. FPGA-based Acceleration of Graph Processing

FPGAs can be an energy-efficient solution to deliver spe-
cialized hardware for graph processing. This is reflected by
the recent interests in developing various graph algorithms
and graph processing frameworks on FPGAs. For examples,
[10] applies FPGAs to speed up Maximum Matching and [42]
utilizes FPGAs to accelerate the process of the Single-Source-
Shortest-Paths. In addition to these specific graph algorithms
on FPGAs, a lot of effort was devoted to design generic frame-
works for facilitating the implementation of graph algorithms
on FPGAs [15], [25]], [41]. However, these frameworks are
usually built upon specific programming models (e.g. BSP,
Vertex-Centric) supporting only limited APIs. This restricts

the implementation of a highly optimized subgraph matching
algorithm. More critically, most of the frameworks can only
handle small graphs and cannot scale to large ones.

IV. SYSTEM OVERVIEW

The overview architecture of our system is illustrated in
Fig. |2l The host side, i.e. CPU, takes charge of constructing
and partitioning our novel auxiliary data structure CST and
offloading them to FPGA through PCle bus. It also shares a
small portion of matching tasks to improve throughput. The
kernel side, i.e. FPGA car(ﬂ is PCle-attached to the host
machine, focusing on the subgraph matching tasks.

’ Host
! CPU i
. ot Main Memory Kernel
! -
1 Construction
! v
1
@ csT
1 s
1 Partition CST
! Y
! (5)
" Execution
A

Fig. 2. The overall system architecture

When the query and data graph are read into the host’s main
memory, the system launches the execution tasks described as
follows:

1) CPU constructs CST based on ¢ and G, which prunes a
large number of false positives according to graph attributes
such as labels and degrees, etc. CST serves as a complete
search space for all embeddings of ¢ in G (Section [V-A).

2) Limited by FPGA on-chip resources, CST is often too large
to be fully loaded into BRAM. The host side partitions CST
to satisfy the size constraint (Section [V-B).

3) Once a partitioned CST satisfies the constraint, it is trans-
ferred to DRAM on FPGA card from the host’s main
memory through PCle bus.

4) On the kernel side, FAST reads a partitioned CST from
DRAM to BRAM and runs subgraph matching on it. The
results are flushed to DRAM when the whole search space
of this CST has been searched. FAST repeats this procedure
as long as there exists an unprocessed CST (Section [VI).

5) On the host side, when all CST has been partitioned and
offloaded, CPU shares a small portion of matching tasks
to improve the overall throughput (Section [V-C).

6) When FPGA finishes its processing, CPU receives a termi-
nation signal and fetches results to the main memory.

The details of software and hardware implementation are
described in Section [V] and Section [V1] respectively.

V. SOFTWARE IMPLEMENTATION

In this section, we first introduce our novel auxiliary data
structure CST and its partition strategy. Then we present how
to schedule matching tasks between the host and kernel side.

n this paper, we focus on FPGAs with DRAM attached, while our
techniques can be applied on FPGAs without DRAM as well.

TABLE I
DEFINITION OF PARAMETERS IN SOFTWARE IMPLEMENTATION

Nyt(vs) = {vs,vr} and N?(v3) {vg}. The all em-

beddings of ¢ in G {(ug,v1), (u1,v4), (uz,vs3), (us,vg)} and

A. CST Structure

We adopt the indexing-enumeration framework; that is,
construct an auxiliary data structure, then compute all em-
beddings based on this data structure. Following conventional
technique , 130]l, the query graph is firstly transformed into
a spanning tree. Given a query graph ¢ and a data graph G, we
build an auxiliary data structure upon them called candidate
search tree (CST).

Definition 2. (Candidate Search Tree) Given a query graph
q and a data graph G, a candidate search tree CST(,) is a
grap}ﬂ that is isomorphic to g. Each vertex u of CST(,) has
a candidate set, denoted C'(u), which stores all vertices of G
that u can be mapped. There is an edge between v € C(u)
and v" € C(u’) for adjacent vertices v and u’ in CST , ¢y if
and only if (v,v") € E(G).

We denote CST,) as CST if the context is clear. Given
the query graph ¢ and its BFS trees ¢, we call adjacent vertices
uw and u, in CST non-tree neighbors if (u,u,) € E(q) but
(u,un) ¢ E(tq). The adjacent candidates v € C'(u) and v,, €
C(uy,) for non-tree neighbors u and w, in CST are called
non-tree candidate neighbors. We use N (v) to denote the
adjacency list of v € C'(u) with respect to (u,u’) in CST, i.e.,
N (v)={v" € C(v) | (v,v") € E(CST)}. CST inherits the
parent-child relationships of ¢,. We use u, and u. to denote
the parent and child vertex of w, respectively. The vertex
in CST is a leaf or root vertex if u has no child vertices or
parent vertices, respectively.

Us(D

(a) BFS Tree t4

(b) CST
Fig. 3. Example CST structure

Example 2. For example, given the query graph ¢, the data
graph G in Fig. [T] and BFS tree t, of ¢ in Fig. B(a)} the
corresponding CST is in Fig. Then u; and uy are
called non-tree neighbors because (ui,us) ¢ E(tq),while
vy € C(uy) and vy € Cf(ug) are called non-tree candi-
date neighbors. C(uy) = {vsg,ve}, Clu2) = {vs,vs,v7},

2We abuse the term free during naming to emphasize that CST is con-
structed based on the spanning tree of the query.

Syclgl'i_(’l d.de;ﬁniﬁonht {(ug,v2), (u1,vs), (uz,vs), (us,v19)} can be computed by
candidate search tree :
tq a breadth-first search tree of ¢ traversing only the CST.
C'(u) the candidate set of u in CST

N (v) the adjacency list of v regarding (u, u’) Algorithm 1: CSTConstructor(q, G, tq)

Up [Uc the parent / child vertex of w in CST
Un, the non-tree neighbor of u in CST Input: ¢, G, t,
9] the matching order of ¢ Output: CST

[CST] the size of CST 1 root < root vertex of tq;

Dcst the maximum degree of candidates in CST 2 C(root) + compute candidates of root;

/* Line : Top-Down Construction */
3 foreach u € ‘ q) in a top-down fashion do

C(u) + compute candidates of u;

foreach v, € C(u,) do

foreach v € C(u) do

| if (v,vp) € E(G) then N,,” (vp).push(v);

RTINS

/* Line Bottom-Up Refinement */

FH:
8 foreach u € ‘ q) in a bottom-up fashion do
9 foreach v € C(u) do

10 if v is not valid then
11 | remove v and its adjacency lists;
12 foreach child vertex u. of u in t, do

13
14

foreach v’ € N (v) do
| if v' ¢ C(uc) then remove v’ from Ny (v);

/* Line 119: Add Edges Between Non-tree
Candidate Neighbors */
15 foreach u € V(q) do
16 foreach v € C(u) do
foreach non-tree neighbor u, of u do
foreach v, € C(un) do
| if (v,vn) € E(G) then N;; (v).push(vn);

20 return CST

The construction of CST is described in Alogrithm [1} We
first adopt the similar top-down construction (Line and
bottom-up refinement (Line [8T4) in to build a tree-like
data structure. We verify whether a data vertex conforms with
the local features of the query vertex to compute candidate set
C(u) (Line 2} Line). A candidate v of vertex u is valid if
|Ny (v)] # 0 for any child vertex u. of v and Jv, € C(uy)
that v € N, (v,). We remove v from C(u) and its adjacency
lists if v is not valid during the bottom-up refinement. (Line
[TOHTT). Then edges are added between non-tree candidate

neighbors (Line [T3}{19).

Soundness. CST should serve as a complete search space for
the given query graph ¢ over the data graph G. To achieve
this, CST must satisfy the following soundness constraint:

o For every vertex u in CST, if there is an embedding of q in

G that maps u to v, then v must be in C(u).

Note that, although in the soundness requirement we only
consider candidates of query vertices, the edges between
candidates are automatically included based on our CST
definition. Regarding a sound CST, we have the following
theorem.

Theorem 1. Given a sound CST, all embeddings of ¢ in G
can be computed by traversing only the CST.

Remark. CST has vital differences with the auxiliary data
structure in previous works, namely CPI (compact path-index)
[13]] and CS (candidate space) [17]. Compared with CPI, CST
uses all edge information in g during construction (by adding

(a) Initial CST with k = 2

(b) Ist partition of CST

(c) 2nd partition of CST (d) Workload Estimation

Fig. 4. Running Example of Scheduling

non-tree edges), making it a complete search space. Hence, it
can be partitioned and the embeddings of each partition can
be computed independently in FPGA’s BRAM (details will
be introduced in the next subsection). The reasons that we
do not use the structure CS are as follows: (1) The top-down
construction and bottom-up refinement of CST is equivalent
to the first two refinements (totally three) of CS, making the
size of CST close to CS for most data graphs; (2) Constructing
CST is much less expensive because the edges between non-
tree candidate neighbors are not updated during construction
as necessary in CS. Consequently, CST can potentially have
a larger search space than CS because of fewer pruning steps.
However, there is an essential trade-off between the size of
search space and the construction cost. Compared with pure
CPU-based algorithms, FAST is more sensitive to the cost of
constructing the auxiliary data structure conducted by CPU, to
let FPGA receive its tasks from the host as soon as possible.

B. CST Partition

Limited by on-chip resources on FPGAs, CST is often
too large to be fully loaded into BRAM. Generally, the read
latency of BRAM is 1 cycle while DRAM is about 7-8 cycles.
Our experiments show the dramatic performance decreasing
when we access CST from DRAM rather than BRAM (Section
[VII-A). On the other hand, accesses to CST are random and
unpredictable, which eliminates the possibility of prefetching
the data from DRAM to BRAM. Hence, it is necessary to
partition CST and offload them to FPGA one by one.

In addition to the size of CST, denoted as |C'ST|, we also
set a limitation on the maximum degree of candidates in CST,
i.e., Dcst. The reason is that the maximum number of access
ports to an adjacency list are limited on FPGAs and it will
be discussed in detail in Section We use dg and dp
to denote the threshold of |CST| and Dcst, respectively. We
partition the CST if either |CST| > ds or Dogr > 0p.

The partition strategy of CST is illustrated in Algorithm
@ Note that we adopt the path-based method to compute
the matching order O in this paper, which determines O by
ordering the root-to-leaf paths of ¢,. However, our method
is designed to work with any arbitrary connected matching
orders. Initially, to partition CST, we partition candidates of
root vertex in CST. If there is only one candidate of root
vertex in CST, we move on to partition candidates of next
vertex u in O. The first step is to determine the partition factor
k, which equals to the maximum value between the ratio of
|CST| and Degr to their corresponding thresholds (Line .
If k exceeds the number of candidates, i.e., |C(u)|, we set k

to |C(u)| (Line). We partition C(u) into k parts evenly and
then construct a new CST level-by-level in a top-down manner.
For those vertices precedes u in O, we pick candidates as the
same as the old CST (Line [7}fg). For those vertices follows
u in O, we pick candidates in old CST which can reach at
least one candidate in the partitioned C'(u) (Line [O12). CST
is offloaded to FPGA or assigned to CPU as soon as it satisfies
|CST| and Dcst constraints (Line . Otherwise, it will be
further partitioned recursively.

Algorithm 2: CSTPartition(CST,O, index)
Input: CST,0, index

u < Olindez];
k<« ma;r(—lcés-rl , Best);

k + min(k, CST.|C(u)]);
partition CST.C(u) into k parts evenly;
for ¢ from 0 to k do
CST « 0;
foreach vertex u’' precedes u in O do
| ¢ST.C(u') « CST.C(u');
foreach vertex u’ follows u in O do
foreach candidate v in CST.C'(u") do
if v can reach ith partitioned CST.C(u) then

| ST .C(w') « CST .C(«) U {u};
update adjacency lists of CST' based on CST;
if |CST'| < s and Dogrr < 6p then

‘ CSTProcess(O, CST,);
else if CST/.|C(U)‘ equals to 1 then

‘ CSTPartition(CST/, O, index + 1);
18 else CSTPartition(CST/7 O, index);

R N N S

-
-

[S -
IS TER-NER TN T

Example 3. As shown in Fig. suppose k is 2, we first
partition the root candidates {vi,v2} into 2 parts: {v;} and
{v2}. Then, to construct CST rooted by vy, we pick candidates
of u; and wy that are adjacent to v, which are {vs, vs5} and
{vg,vs}. After that, we pick the candidates of uz that can
reach vy, which are {vg, v19}. Obviously, there is no overlap
of the search space between two partitioned CST in Fig.
and Fig. so no repeated results will be reported.

C. Schedule the Matching Tasks

After finishing the partition of CST, the host side shares a
small portion of matching tasks in order to further improve the
throughput as a whole. Considering load balancing between
the CPU and FPGA, the workload of CST, denoted as WcsT,
should be estimated first. The size of search space in different
CST can usually differs a lot due to the power-law feature
of real-world graphs. We use the number of embeddings in

CST without considering any false positives to estimate Wesr.
It can be computed in a bottom-up way using a dynamic
programming algorithm. For each candidate v € C(u), we
compute ¢, (v), the number of embeddings in CST for the
subgraph of ¢ induced by the suffix of matching order starting
from w such that w is mapped to v. Initially, ¢,(v) = 1
for all leaf vertices w. Then we compute ¢, (v) in a bottom-
up fashion, where CU(U) = Hu’eu.child ZU’GN”,(v) Cu/ (U/)'
Finally, the total workload West = Zvec(ur) cu:(v).

Example 4. Given CST in Fig. and t, in Fig. 3(a)| the
workload estimation results are illustrated in Fig. {4(d)l For

vertex to a candidate vertex following the matching order.
This sequential design cannot be pipelined because of data
dependencies among iterations. To solve this, we decompose
the matching process into three steps as follows: (1) Generator
expands partial results by matching the next vertex in the
matching order; (2) Validator verifies whether a new partial
result is valid; (3) Synchronizer collects results. Different from
the typical algorithms, our method processes thousands of
partial results at a time in these steps, so that each step
can fully utilize the pipeline mechanism of FPGA. Our basic
pipeline design is shown in Algorithm |4 denoted as FAST.

leaf vertices uz and u2, c,,(vg) = cCyy(V10) = Cuy(vs) =
Cus (V7) = Cy,(vg) = 1. Then we compute ¢, (v) in a bottom-
up fashion, e.g., ¢y, (v1) = (cy, (V3) + cu, (v5)) * (Cuy (Vs) +
Cuy (v8)) = 4. Finally, WesT = ¢y (v1) + o (v2) =443 =T7.

Algorithm 3: CSTProcess(O, CST)

Input: O, CST
1 West +—compute the workload of CST;
2 if We + Wesr < 8 x (We + Wpg + West) then
3 assign CST to CPU;,
4 ‘ We + We + Wesrt;
5 else
2

FAST(CST, Oy,

7 Wr < Wr + WesT;

As illustrated in Algorithm [3] we restrict the proportion of
the total workload of CST assigned to the host side from
exceeding a threshold, denoted as . When a valid CST is
constructed, West is computed first (Line E]) We use W and
W to denote the total workload of CST assigned to the host
anq kernel side, respegtively: If < 4, it will be
assigned to the host side (Line . Otherwise, FPGA takes
charge of this CST (Line [3}ff). The host side uses the basic
backtracking subgraph matching algorithm to process CST. It
should be noted that when CST is assigned to CPU, CST is
temporarily cached and will be processed when all partition
procedure finishes. When CST is assigned to FPGA, CST is
offloaded to FPGA immediately.

VI. HARDWARE IMPLEMENTATION

In this section, we first present our proposed algorithm
FAST to accelerate subgraph matching on FPGAs. Then
we introduce several important optimizations to improve the
matching process based on FPGA characteristics. Notations of
all the related parameters are listed in Table

TABLE 11
DEFINITION OF PARAMETERS

Symbol Definition

P Intermediate results buffer

M the set of all embeddings
i | Po An input / output partial result

Po The set of po

N, The maximum size of P,
Up [Un The parent / non-tree neighbor of u in CST
ty tn a visited / edge validation task
To I Tn The set of ty, / tn

A. Basic Pipeline of Subgraph Matching

In the typical backtracking algorithms [[12], [[13], [17], [18],
one partial result is expanded at a time by matching the next

Algorithm 4: FAST(CST, O)

Input: CST, O
Output: M
1 M0, P« 0
2 foreach candidate v of root vertex pipeline do

3 | P.push({v});

4 while P # 0 do

5 Po, To, Tn < Generator(P,CST, O);
6 B, < VisitedValidator(T,);

7 B,, < EdgeValidator(CST, Ty,);
8

9

Synchronizer(M, P, Py, By, Br);
return M

Given CST and matching order O, we first match the root
vertex to all its candidates to generate first batch of partial
results (Line . Then for each round, Generator reads
multiple partial results from P and expand them (Line [3).
A partial result is valid iff it passes the two validations: (1)
visited validation, i.e., the new mapped candidate v is not
visited before (Line @); (2) edge validation, i.e., the new
mapped candidate v are adjacent to the mapping vertices of
w’s non-tree neighbors (Line [7). The new valid partial or
complete results will be pushed into P or M by Synchronizer,
respectively (Line[§). FAST terminates when P is empty (Line
[). As shown in Fig.[5(a)| these steps are processed serially in
our basic pipeline design. We discuss the details as follows.

Algorithm 5: Generator(P,CST, O)
Input: P,CST,O
Output: P,, T, Tn

1 Py 05 Ty < 0; Tr < 05

2 u < get next vertex to be mapped in O,

/% Line [3H9|: Generate P, and T, */
3 while |P,| < N, do
4 | pi < P.pop();
5 C(u) <+ get u's candidates from CST based on p;;
6 if |P,| + |C(u)| > N, then break;
7 foreach v € C(u) pipeline do
8 Po.push(p; x {v});
9 To.push((v, pi));
/% Line |10 : Generate Tn, */
10 foreach u’s non-tree neighbor u,, do
1 foreach p, € P, pipeline do
2 | Tn.push(Mp,(u), Mp,(un), the index of po);

13 return P,, T,, Ty,

Generator. Generator is used to expand partial results and
generate visited validation tasks T, and edge validation tasks
Tr. Algorithm E] shows the workflow of Generator. At first,

we expand partial results and generate visited validation tasks
T, (Line [3}9). This procedure can be fully pipelined. Limited
by on-chip resources, we control the maximum number of
newly expanded partial results each round, denoted as N,, (line
[6). We will discuss how to pick the value of N, in detail in
Section [VI-B] Then we generate edge validation tasks 7;, (Line

. The inner loop of ¢, generation procedure is fully
pipelined (Line [TT{I2)). We have specific one visited validation
task ¢, for each new partial result p,, while the number of edge
validation tasks t,, is determined by the query structure and
matching order. One precondition to pipeline a loop is that
the cycles of loop body are fixed. So we have to separate 7,
generation procedure from other two steps. The outer loop of
7T, generation procedure (Line [I0) cannot be pipelined for the
same reason.

Algorithm 6: VisitedValidator(7,)

Input: 7,
Output: 5,
1 By, < 0
2 foreach (v, p;) in T, pipeline do
3 b+ 1;
4 foreach v’ in p; parallel do
5 | if v’ == v then b+ b & 0;
6
7

B, .push(b);
return 53,

Visited Validator. As shown in Algorithm [6] Visited Validator
is used to validate if the new mapped candidate v is visited
before by comparing v with every vertex in p; (Line [A}{5). We
use the array partition mechanism in FPGAs, i.e., partitioning
an array into individual elements, to effectively increases the
amount of read and write ports for the storage. The mechanism
offers the possibility to compare v with every element of p,
in parallel. Each p, has two bits to reflect whether it passes
visited and edge validation, respectively. If v has been visited,
the visited bit is set to zero (Line [f). This module can be
pipelined completely.

Algorithm 7: EdgeValidator(CST, 7,,)

Input: CST, 7,

Output: 53,
1 B, 0
2 for (v,vn,t) in T, pipeline do
3 if (v,vn) exists in CST then b + 1;
4 else b+ 0;
5
6

B, .set(i,b);
return 5,

Edge Validator. As shown in Algorithm [/| Edge Validator
checks whether the new mapped candidate v is adjacent to
all v,, the mappings of u’s non-tree neighbors. It checks
edge existence in CST (Line [3) by comparing v, with all
non-tree candidate neighbors of v. Here we also adopts the
array partition mechanism so that edge existence check can
be completed in O(1). However, this mechanism costs much
more on-chip resources, which limits the maximum number
of access ports of an array, denoted as Port,,,,. Thus we
partition CST if Dcst exceeds Port,q.. If there is no edge
between v and v,,, the edge bit is set to zero (Line E]) It should
be noted that each p, may have more than one ¢,,, any of them

Algorithm 8: Synchronizer(M, P, P,, B, B,)

Input: M, P, P,, By, By
1 for p, in P, pipeline do
by By.pop(), bn < Bn.pop();
if b, =1 and b, = 1 then
if [po| == |O| then M.push(p,) ;
else P.push(p,) ;

[I

failed will lead to an invalid p,. The Edge Validator module
can also been pipelined completely.

Synchronizer. As shown in Algorithm [8] Synchronizer is
designed to collect partial results. For each p,, it first fetches
its two validation bits from B, and B,, (Line [2). If any bit
is zero, this p, will be discarded (Line E]) Then it compares
|po| and |O] to check whether it is a complete result (Line [4)).
The complete result is reported and stored into M while the
partial result is stored back into P.

Example 5. Suppose that we have CST in Fig.
O = (ug,u1,uz,ug) and P = {{v1,vs},{v1,vs}}. The
Generator first expand partial results in P to get P, =
{{Ul, U3, UG}7 {’Ul, U3, US}7 {’U17 Us, U6}7 {’U17 Us, US}} and gen-
erate T, = {(vs,0), (vs,0), (vs,1), (vs,1)}. After that, T, =
{(1)37 V6, 0)7 (U37 vs, 1)) (’U5, Vs, 2)) (1}5, vs, 3)} arc generated'
Then Visited Validator and Edge Validator processes T,
and 7T,, respectively. We get B, = {1,1,1,1} and B, =
{1,0,0, 1}. Finally, Synchronizer pushes valid partial results
{{1}1,1)371)6}7 {1)171}5,’08}} into P.

B. Cycle Analysis and Buffer Design

In this subsection, we first discuss how to pick the value
of the maximum number of newly expanded partial results
each round, denoted as N,. Then our BRAM-only intermediate
results buffer is introduced, which completely avoids the
intermediate data transfer between BRAM and DRAM.

Based on Algorithm E]-Bl, we use [, — Lg to denote the
average cycles for the following six procedures: (1) read from
intermediate results buffer P; (2) generate a new partial result
P, and its visited validation task %,,; (3) process t,; (4) collect
Dos (5) generate an edge validation task ¢, ; (6) process t,,. We
use m to denote the number of ¢,, for p,. So the total cycles
of a partial result from being expanded to finally collected are
(Ll +L2+L3+L4+’I’L X (L5+L6))

Suppose in the whole search space, the total number of p,
and t,, is N and M, respectively. To simplify the equations,
we denote Z?Zl L;as Ly and Z?:s L; as L;. So without any
pipelining optimization, the total cycles Lgc.;q; to process the
whole search space is:

Lserial:NXLf+MXLt (1)

In FAST, the six procedures can be pipelined completely
and we process N, partial results each round. It means each
round the serial algorithm needs Lo X N, cycles to process
the second procedure while FAST needs (Ly+ N,+1) cycles.

So the total cycles Lpgsic 18:

LbasiczNXLf;MXLt+4N+2M)

o
As shown in Equation [2| a small N, decreases the per-
formance. However, it leads to over-consumption of on-chip
resources when N, is too large. Thus we ensure N, >>

»CLOCK

» CLOCK » CLOCK

T
Generator [Generator] f—)[T, Generator]—")[FIFOS
A T Tn Ty,
TR0s ST ,—)[T, Generator]—)[FIFOsh
Visited Edge —
[Validator] [Validator] V\;IITJ:SN
By By
FIFOs FIFOs
Pi Po

I Intermediate Results Buffer I I

Intermediate Results Buffer I I

Intermediate Results Buffer I

(a) Basic pipeline of subgraph matching

(b) Optimization with task parallelism

(c) Optimization for Generator

Fig. 5. The Hardware Implementation of FAST

% and the specific value of N, should be carefully

chosen based on different FPGAs (our configuration is given
in Section [VII). It should be noted that for a partial result, if its
candidates are too many, i.e., |C(u)| > N,, we will generate
N, partial results by mapping N, candidates in C(u). The
rest candidates will be mapped later.

It is expensive to transfer partial results between BRAM
and DRAM. So we develop a strategy to avoid the overflow
of the intermediate results buffer 7. We use p™ to denote a
partial result that maps n query vertices. We observe that a
p!V (@l is a complete result and will not be pushed back into P.
Therefore, each round we expand p” with the maximum n in
‘Pso that these partial results can be expanded to complete ones
as soon as possible. As a result, for any n € [1,|V(q)| — 1],
our strategy guarantees the number of p™ does not exceed N,.
Finally, we allocate (|V (¢)| — 1) x N, space for P on BRAM,
which prevents the overflow of P.

C. Optimization with Task Parallelism

As shown in Fig. [5(a)} in our basic pipeline design, modules
are executed in serial. The number of access ports to ordinary
memory area on BRAM is limited, so two modules can not
access the same memory simultaneously. As a result, Visited
Validator and Edge Validator cannot start until all ¢,, and t,, are
generated. Synchronizer will be idle before all validation tasks
are finished. Therefore, as illustrated in Fig. we utilize
task parallelism mechanism on FPGA to allow modules being
executed in parallel.

In contrast to loop parallelism, when task parallelism is
deployed, different execution modules are allowed to operate
simultaneously. The task parallelism is achieved by taking
advantage of extra buffering introduced between the modules.
The buffer is implemented by FIFOs (First in, First out) on
FPGA. The output of each module will be streamed into the
buffer, and the next module processes the data as long as the
buffer is not empty.

As shown in Algorithm [5] once ¢, is generated (Line [J)), it
is streamed to the FIFOs, and Visited Validator starts to work.
Similarly, once t,, is generated (Line @, it is streamed to the
FIFOs, and Edge Validator starts its process. The p, will be
collected by Synchronizer as soon as its two validation bits
are ready. Compared with the basic version, more than one
module can work simultaneously.

Consider the total cycles of this task parallelism version,
denoted as Ly,sx. In this optimized design, the first loop of
Generator (Line in Algorithm [5) and Visited Validator
(Algorithm [6)) execute in parallel. And the second loop of
Generator (Line in Algorithm 5, Edge Validator (Algo-
rithm [7) and Synchronizer (Algorithm [8) execute concurrently.
To simplify the equation, suppose we have pick an appropriate
N,. Then we have:

Ligsk = 2N + max(N, M) 3)

Compared with Equation [2| this optimization can achieve
up to 50% performance improvement in theory.

D. Optimization for Generator

As shown in Fig. in our task parallelism version, ¢,
generation procedure has to wait until ¢,, generation procedure
finishes, which decreases the overall throughput. Synchronizer
also waits for the output of Edge Validator, although all visited
bits of p, are ready. Therefor, we carry out optimizations on
Generator module.

Generator module is split into t, Generator and t,, Gen-
erator. Once a new p, is generated, it will be copied so that
the source and the copy of p, can be streamed into different
FIFOs of two generators separately. Both ¢, Generator and
t, Generator can start to work while Synchronizer starts to
collect partial results at the same time. This optimization is
achieved by copying data and using more on-chip resources
(e.g., FIFOs). Thanks to the loop parallelism characteristic
of FPGA, the cost of copy of p, does not decrease the
performance. And we analyze the total cycles of this optimized
version L.,. All modules execute concurrently. As a result,
the minimum cycles we can achieve is as follows:

Lsep = N + max(N, M) “)

Compared with equation [3] this optimization can achieve at
most 33% performance improvement theoretically.

VII. EXPERIMENTS

We present the results of our performance studies in this
section. We first introduce the experimental setup of the ex-
periments. Then, we investigate the necessity of CST partition
and evaluate the effectiveness of our software and hardware
optimizations, followed by the comparison with the state-of-
the-art algorithms. We also evaluate our algorithm on a billion-
scale graph to test the scalability.

Algorithms. We compare two state-of-the-art GPU-based so-

lutions: GSI [39] and GpSM [35]]. We do not comapre PBE

[16] because it is unable to handle labeled graph. According to

the latest survey [33]], we compare other three state-of-the-art

CPU-based algorithms: CFL [[13]], DAF [17], CECI [12] and

five versions of our algorithm:

o FAST-DRAM: the algorithm fetches data from DRAM with-
out any other optimizations.

o FAST-BASIC: the algorithm fetches data from on-chip mem-

ory without any other optimizations (Section [VI-A).

o FAST-TASK: FAST-BASIC algorithm boosted by the task
parallelism optimization (Section

o FAST-SEP: FAST-BASIC algorithm boosted by the both
task parallelism and task generator separation optimization

(Section [VI-D)

o FAST-SHARE: FAST-SEP algorithm where the host side, i.e.

CPU, shares some matching tasks (Section [V-C).

Among the five versions, we choose FAST-SHARE as the
final version of our algorithm, denoted as FAST. The parallel
version of DAF and CECI are also evaluated, denoted as DAF-
8 and CECI-8 respectively, which run on 8 CPU threads. For
all other algorithms, we use only one CPU thread.

Setup. We implement FAST in C++ on an Alveo U200
Data Center Accelerator Card, equipped with 64GB off-chip
DRAM, 35MB on-chip BRAM, and communicates with the
host through PCle gen3 x 16. It runs at 300 MHz on the FPGA
card. All experiments are conducted on a machine equipped
with an 8-core Intel Xeon E5-2620 v4 CPU (2.1GHz), 250G
host memory, NVIDIA Tesla V100 (5120 streaming proces-
sors, 16GB global memory), running Ubuntu 16.04.

TABLE III
CHARACTERISTICS OF DATASETS.

Name Vel |Ec| dg Da # Labels
DGO1 3.18M 17.24M 10.84 464,368 11
DGO03 9.28M 52.65M 11.34 1,346,287 11
DGI10 29.99M 176.48M | 11.77 4,282,812 11
DG60 | 187.11M 1.25B 13.33 | 26,639,563 11

Datasets. The datasets commonly used in previous works
[13], [17], [18]], [29] are composed of small-scale data graphs
(e.g., Yeast with 3.11K vertices and 12.51K edges) and large
queries (e.g., 200 vertices), whereas the data graphs are usually
very large and the queries are relatively small in real-world
workloads nowadays. Therefore, we adopt the LDBC social
network benchmarking (LDBC-SNB) [7]] in our experiment to
simulate real-world workloads. The LDBC-SNB benchmark
serves as an industry-standard benchmarking and provides
a data generator that generates a synthetic social network
together with a set of benchmarking tasks, in which many
tasks are subgraph matchings.

We list the datasets and their statistics in Table [[ll These

datasets are generated simulating a real social network akin
to Facebook with a duration of 3 years. The dataset’s name,
denoted as DGz, represents a scale factor of x.
Queries. We use the queries in [24], as shown in Fig. [
The queries are selected from the LDBC-SNB’s complex tasks
with some adaptions, including only keeping the node types
as labels and removing multi-hop edges in order to conform
with the subgraph matching problem studied in this paper.

Fig. 6. The Queries

Metrics. To evaluate an algorithm, we measure the execution
time in milliseconds. We set a time limit of 3 hours for each
query. Each query is run three times and the average time is
reported. We denote the execution time of queries with timeout
as ‘INF’ and queries running out of memory as ‘OOM’.

A. The Necessity of CST Partition

We partition CST in order to store it in BRAM instead of
DRAM on FPGA because of the much higher read latency of
DRAM. On the other hand, the random read of CST leads
to the impossibility to prefetch the data from DRAM into
BRAM. We compare the elapsed time of FAST-DRAM and
FAST-BASIC to verify the necessity of CST partition.

FAST-DRAM = FAST-BASIC =

INF

—_ o
@ 5l -
P 102 BZ] 1800% &
£ 10° 1 o555] o, S
E Lo Eok 600% 5

o 409% ©
§ 109 %3333 1 400% g
01 | B 1200% 8
o2 5 <

a2 q3 a5 q6 q7 q8

Fig. 7. Elapsed time of FAST-DRAM and FAST-BASIC for DG10

As shown in Fig. [7] the results indicate that FAST-BASIC
outperforms FAST-DRAM for all the queries in both DGO03
and DG10. Despite the initial overhead to fetch data from
DRAM to BRAM, FAST-BASIC achieves about 5.0x speedup
compared with FAST-DRAM on average. The speedup is close
to the ratio of the read latency. Moreover, it is confirmed
by the growing speedup (4.50x for DGO1, 5.18x for DGO3,
and 5.93x for DG10) that the initial transmission overhead
has a decreasing impact on the overall performance for a
larger graph. These results show the necessity to partition CST
structure to avoid direct data access to DRAM.

We use Scst and S¢ to denote the size of all CST partitions
and data graph, respectively. Fig. [§] illustrates the number
of CST partitions and SSCST As expected, the number of
CST partitions increases for larger data graphs. And SCST
keeps stable for most queries while the data graph grows
(9CST < 60% for all queries). The rapid growth of SCST in
qr from DGO3 to DG10 is due to the rapid increase 1n the
number of embeddings. Theses results confirm the scalability
of our CST partition mechanism. Moreover, we conducted
experiments about the impact of k in our technical report [21]]

B. Evaluating Optimization Techniques

In this section, we test the four versions of our algorithm:
FAST-BASIC, FAST-TASK, FAST-SEP and FAST-SHARE to
evaluate our software and hardware optimizations.

—________
#CST

Fig. 8. The number and total size of partitioned CST
FAST-BASIC =@ FAST-TASK

T o

L 2 5250 1 50% ®
o 10° BEIN o 8
E 4o ‘%;Ei\% 140% ¢
iz 10 SN o
N 130% =

5 0] BN 5
g 10 BN 120% &
a N "9
o107 r EEN 110% 8
Hyp2 2 <

@2 a3 95 a6 q7 o8

Fig. 9. Elapsed time of FAST-BASIC and FAST-TASK for DG10

Effectiveness of Task Parallelism. FAST-BASIC only adopts
the loop pipeline mechanism of FPGA, while FAST-TASK
introduces task parallelism so that full execution modules are
allowed to operate in parallel. From the acceleration ratio
in Fig. O] we can see that the task parallel optimization
achieves up to 50% improvement (e.g. gg). The theoretical
improvement of task parallelism is discussed in Section [VI-C|
From Equation (2) and Equation (3), we can see that the task
parallelism optimization achieves better performance for dense
queries whose M is larger than N. The acceleration ratio of g3
is much lower than other queries because of its much higher
% (about 2 for ¢3 and close to or lower than 1 for other
queries).

FAST-TASK = FAST-SEP =
INF N ' ' .

10" ¢
100 ¢ %
107"t
1072 t
1078
g2

a3 as a6 a7 a8
Fig. 10. Elapsed time of FAST-TASK and FAST-SEP for DG10

%585

1 50%
1 40%
1 30%
1 20%
1 10%

<7
2>
o203

193%
KL

e
XX

Elpased Time (s)

XKL
35
o2e%es

Acceleration Ratio

K
%
£

Effectiveness of Task Generator Separation. The task paral-
lelism allows all modules to execute concurrently. However,
it is limited by the first module Generator to generate two
kinds of tasks in parallel so that the following modules
can start to work at the same time. FAST-SEP solves this
problem by using more on-chip resources and duplicating data.
Compared with the average elapsed time of FAST-TASK, FAST-
SEP achieves about 30% — 40% improvements (e.g. ¢8). The
effectiveness of Task Generator Separation is consistent with
our cycle analysis in Equation [3] and Equation @] Moreover,
when % > 1, Task Generator Separation achieves the best
improvements.

Effectiveness of Software Scheduler. After partitioning CST,
CPU becomes idle, which can be utilized to share some
matching tasks. We propose a workload estimation method
of CST and restrict the proportion of the total workload of
matching tasks assigned to CPU from exceeding a threshold §.
We evaluate the effectiveness of software scheduler by varying
8. The results in Fig. [[T]indicate that this optimization achieves
biggest improvements when delta = 0.1 (e.g. 20% for DGO1).

DGO1 ¥ DG03 -+ DG10 &
INF ‘ : : :

25% r

0% |
-25% 1
-50%

Acceleration Ratio

0 0.05 0.10 0.15 0.20 0.25 030

Fig. 11. Average acceleration ratio varying &

The reason that this optimization achieves more than 10%
improvements (§ = 0.1 which means the host side shares
about 10% matching tasks) is as follows: Considering CST
that can not be fully offloaded into BRAM, in FAST-SEP, we
have to partition it until it meets the size constraints; in FAST-
SHARE, we may directly assign it to CPU, reducing the cost
of partitioning. Moreover, it can be seen from the figure that
the CPU becomes the bottleneck when delta > 0.15.

C. Comparing with Existing Algorithms
We then evaluate FAST against the existing algorithms, GSI

(391, GpSM [35]], CFL [13], DAF and CECI [12]. All
the source code comes from the original authors and is also
implemented in C++. Fig [T2] shows the experimental results.
Each query show similar trend in different data graphs, so
we only demonstrate the results of five queries for each data
graph due to the space limit. Full results can be found in our
technical report FAST outperforms all other algorithms
for all the queries and achieves 24.6x average speedup. Specif-
ically, FAST outperforms GSI by up to 36.6x (g in DGO1),
outperforms GpSM by up to 38.0x (g3 in DGO1), outperforms
CFL by up to 191.0x (gg in DG10), outperforms DAF by up to
462.0x (qo in DGO1) and outperforms CECI by up to 150.0x
(¢gs in DG10).

We noticed that the GPU-based solutions do not show better
performance over CPU-based algorithms for some queries.
More critically, both GSI and GpSM are only able to handle
the graphs that can be fit into the GPU memory. So they both
fail to solve all the queries. The reason why GSI has a higher
memory cost is that GSI pre-allocates enough memory space
instead of joining twice like GpSM to avoid the conflicts when
each processor writes results to memory in parallel.

Both DAF and CECI adopt the intersection-based method
which makes them performs better than edge verification
method CFL-Match in most cases. Although FAST adopts the
edge verification method, it can finish edge verification in one
cycle thanks to our pipelining design on FPGA, which makes
its cost even less than the intersection-based method on CPU.

Another trend in Fig. is that as data size grows, the
acceleration ratio of FAST compared with other three CPU-
based algorithms also increases, e.g., for ¢3, the average rate
is 26.0x, 33.0x and 59.0x and for gg, the average acceleration
rate is 59.0x, 86.0x and 121.0x in DGO1, DGO03 and DG10,
respectively. It is because the cost of edge verification in FAST
remains one cycle while the cost in each recursive call grows
in other three CPU-based algorithms as the data size grows.

For full comparison, the parallel version DAF-8 and CECI-8
are also evaluated. However, DAF-8 encounters out of memory
error when processing DG03 and DG10. So we only prsent
the results of CECI-8 in Fig.[T2] The average acceleration rate

FAST GS| m GpSM ez DAF zz; CFL == CECI CECI-8 ——
! & . !
— INF °
)
g a X 5‘39 5\9 1
= b
el
Q
@
©
2
w0
)
15! e

Elpased Time (s)

Elpased Time (s)

(c) DG10
Fig. 12. Elapsed time of CFL-Match, CECI, DAF and FAST

of FAST compared with CECI-8 is 5.79x, 8.51x and 9.31x in
DGO1, DGO03 and DG10, respectively.

We adopt the path-ordering matching order similar to CFL.
To evaluate the impact of matching orders, we test FAST
with the following orders: (1) CFL’s order; (2) DAF’s order;
(3) CECI’s order; (4) all other random connected orders. The
results (averaged over all queries) are illustrated in Fig. For
each query, we extract the minimum, average and maximum
elapsed time denoted as BEST, AVG and WORST orders,
respectively. It can be seen from the figure that the average
elapsed time of FAST with CFL’s, DAF’s and CECI’s orders
is very close to each other. The FAST with WORST matching
order can still outperform CFL, CECI and DAF (by 9.6x, 11.1x
and 36.3x, respectively).

& DGO1 DGO03 ©I
o INF
E mh
= 40 1
8 30

| o |
3 1 2® 2%
& 20t A © E
w 20 o 9
& 10 5 S
g) X 3™ [l % |
2 0
< FASTgest FASTqR. FASTpar FASTgegy FASTayg FASTwogst

Fig. 13. The elapsed time of FAST with different matching orders

D. Scalability Testing

In this subsection, we evaluate the scalability of our FAST
algorithm by using a billion-scale graph DG60.
Varying scale factor. We run all algorithms on the DGOI,
DGO03, DG10 and DG60. All the other three algorithms fail

q0 + q1 * g2 q3 a5

100 /
10—1 L
10° 10* 10° 10° 107 108 10° INF

#Embeddings
Fig. 14. Scalability Testing of FAST (vary x)

g6 + q7 © g8 -

Ipased Time (ms)
a_;

to finish a single query for the DG60. CECI has a segment
fault during execution. CFL-Match uses an adjacency matrix
representation of the data graph to overcome the overhead of
edge verification, resulted in out of memory errors for large
graphs like DG60. As for DAF, it encounters overflow errors
during execution. The problem is caused by the much fewer
labels of the LDBC datasets (i.e. 11 labels) which makes the
search space larger. FAST completes all queries successfully.
The experimental result of FAST is illustrated in Fig. The
elapsed time increases linearly with respect to the number of
embeddings as the scale factor of z for DGz grows.

Varying |F(G)|. We keep all vertices and sample 20%, 40%,
60%, and 80% edges of DG60 uniformly to further test the
scalability of FAST. Fig.[I3]indicates that the average elapsed
time per embedding has no apparent changing as |E(G)]
increases, which verifies the scalability of FAST. The reasons
for high elapsed time per embedding for ¢5, ¢6, and ¢8 in the
20% sample are as follows: (1) The number of embeddings is
very small for these queries, e.g., 12 for ¢6 and 36 for ¢8. (2)
The cost of data transfer and index construction affects overall
performance more apparently, when E(G) is small.

ql + q3 g6 a8 =
q2 * a5 q7 © average A

AU ——— . e
S 9 0—7 . . T .
w 20% 40% 60% 80%

Fig. 15. Scalability Testing of FAST (vary |E(G)|)

100%

E. Discussion

FAST algorithm can be easily extended to multi-FPGA envi-
ronments. Each CST structure is an independent and complete
search space. Combined with our workload estimation method,
the CPU can assign the CST structure to the FPGA with the
minimum total workload and collect final results after all the
FPGAs complete their tasks. One interesting future work is
to combine FAST in the distributed environment to accelerate
distributed subgraph matching.

VIII. CONCLUSION

In this paper, we present the first CPU-FPGA co-designed
framework to accelerate subgraph matching. Our BRAM-only
matching process significantly reduces the costly data transfer
between BRAM and DRAM on FPGAs. Moreover, with the
workload estimation method of CST, our framework can be
potentially extended to multi-FPGA environment. The exper-
imental results demonstrate that our framework significantly
outperforms the state-of-the-art algorithms. In the future, we
will investigate integrating FAST into graph database systems
and RDF engines to accelerate subgraph queries.

REFERENCES

[1] Project catapult. [Online]. Available: https://www.microsoft.com/en-us/
research/project/project-catapult/,

[2] Amazon ec2 fl instances. [Online]. Available: https://aws.amazon.com
/ec2/instance-types/f1/.

[3] Intel fpgas power acceleration-as-a-service for alibaba cloud. [On-
line]. Available: https://newsroom.intel.com/news/intel-fpgas-power-ac
celeration-as-a-service-alibaba-cloud/,

[4] Tencent fpga cloud server. [Online]. Available: https://cloud.tencent.co
m/product/fpga.

[5] Fpga-accelerated cloud server. [Online]. Available: https:/www.huawei
cloud.com/en-us/product/fcs.html.

[6] Xilinx fpgas on the nimbix cloud. [Online]. Available: https://www.ni
mbix.net/xilinx/,

[71 Ldbc benchmark. [Online]. Available: http://ldbcouncil.org/benchmarks,

[8] Neo4j. [Online]. Available: https://neo4j.com/.

[91 K. Ammar, F. McSherry, S. Salihoglu, and M. Joglekar. Distributed

evaluation of subgraph queries using worst-case optimal low-memory

dataflows. PVLDB, 11(6):691-704, 2018.

M. Besta, M. Fischer, T. Ben-Nun, J. de Fine Licht, and T. Hoefler.

Substream-centric maximum matchings on fpga. In 20/9 ACM/SIGDA

International Symposium on FPGA, pages 152-161, 2019.

M. Besta, D. Stanojevic, J. D. F. Licht, T. Ben-Nun, and T. Hoefler.

Graph processing on fpgas: Taxonomy, survey, challenges. arXiv

preprint arXiv:1903.06697, 2019.

[10]

[11]

[12] B. Bhattarai, H. Liu, and H. H. Huang. Ceci: Compact embedding
cluster index for scalable subgraph matching. In 20/9 ACM SIGMOD,
pages 1447-1462, 2019.

[13] F. Bi, L. Chang, X. Lin, L. Qin, and W. Zhang. Efficient subgraph
matching by postponing cartesian products. In 2016 ACM SIGMOD,
pages 1199-1214, 2016.

[14] L. P. Cordella, P. Foggia, C. Sansone, and M. Vento. A (sub) graph

isomorphism algorithm for matching large graphs. [EEE transactions
on pattern analysis and machine intelligence, 26(10):1367-1372, 2004.

[15]

[16]

[17]

[18]

[19]
[20]

(21]

(22]
[23]

[24]

[25]

[26]

[27]

(28]
[29]
(30]

(31]

(32]

(33]

[34]

[35]

[36]
[37]
(38]

[39]
[40]

[41]

[42]

[43]

N. Engelhardt and H. K.-H. So. Gravf: A vertex-centric distributed
graph processing framework on fpgas. In 26th International Conference
on FPL, pages 1-4. IEEE, 2016.

W. Guo, Y. Li, M. Sha, B. He, X. Xiao, and K.-L. Tan. Gpu-accelerated
subgraph enumeration on partitioned graphs. In 2020 ACM SIGMOD,
pages 1067-1082, 2020.

M. Han, H. Kim, G. Gu, and etc. Efficient subgraph matching: Harmo-
nizing dynamic programming, adaptive matching order, and failing set
together. In 2019 ACM SIGMOD, pages 1429-1446, 2019.

W.-S. Han, J. Lee, and J.-H. Lee. Turboiso: towards ultrafast and robust
subgraph isomorphism search in large graph databases. In 2013 ACM
SIGMOD, pages 337-348, 2013.

J. Hartmanis. Computers and intractability: a guide to the theory of
np-completeness). Siam Review, 24(1):90, 1982.

H. He and A. K. Singh. Graphs-at-a-time: query language and access
methods for graph databases. In 2008 ACM SIGMOD, 2008.

X. Jin, Z. Yang, X. Lin, S. Yang, L. Qin, and Y. Peng. FAST:
FPGA-based Subgraph Matching on Massive Graphs. Technical report.
Available: http://www.cse.unsw.edu.au/~zyang/FAST_Full.pdf.

L. Lai, L. Qin, X. Lin, and L. Chang. Scalable subgraph enumeration
in mapreduce. PVLDB, 8(10):974-985, 2015.

L. Lai, L. Qin, X. Lin, Y. Zhang, L. Chang, and S. Yang. Scalable
distributed subgraph enumeration. PVLDB, 10(3):217-228, 2016.

L. Lai, Z. Qing, Z. Yang, X. Jin, Z. Lai, R. Wang, K. Hao, X. Lin, L. Qin,
W. Zhang, et al. Distributed subgraph matching on timely dataflow.
PVLDB, 12(10):1099-1112, 2019.

E. Nurvitadhi, G. Weisz, Y. Wang, S. Hurkat, M. Nguyen, J. C.
Hoe, J. F. Martinez, and C. Guestrin. Graphgen: An fpga framework
for vertex-centric graph computation. In 2014 IEEE 22nd Annual
International Symposium on Field-Programmable Custom Computing
Machines, pages 25-28. IEEE, 2014.

M. Ohlrich, C. Ebeling, E. Ginting, and L. Sather. Subgemini: identi-
fying subcircuits using a fast subgraph isomorphism algorithm. In 30th
international Design Automation Conference, pages 31-37, 1993.

N. Pr7ulj, D. G. Corneil, and I. Jurisica. Efficient estimation of
graphlet frequency distributions in protein—protein interaction networks.
Bioinformatics, 22(8):974-980, 2006.

M. Qiao, H. Zhang, and H. Cheng. Subgraph matching: on compression
and computation. PVLDB, 11(2):176-188, 2017.

X. Ren and J. Wang. Exploiting vertex relationships in speeding up
subgraph isomorphism over large graphs. PVLDB, 8(5):617-628, 2015.
M. Serafini, G. De Francisci Morales, and G. Siganos. Qfrag: Distributed
graph search via subgraph isomorphism. In 2017 Symposium on Cloud
Computing, pages 214-228, 2017.

H. Shang, Y. Zhang, X. Lin, and J. X. Yu. Taming verification hardness:
an efficient algorithm for testing subgraph isomorphism. PVLDB,
1(1):364-375, 2008.

T. A. Snijders, P. E. Pattison, G. L. Robins, and M. S. Handcock.
New specifications for exponential random graph models. Sociological
methodology, 36(1):99-153, 2006.

S. Sun and Q. Luo. In-memory subgraph matching: An in-depth study.
In 2020 ACM SIGMOD, pages 1083-1098, 2020.

C. H. Teixeira, A. J. Fonseca, M. Serafini, G. Siganos, M. J. Zaki, and
A. Aboulnaga. Arabesque: a system for distributed graph mining. In
25th Symposium on Operating Systems Principles, pages 425-440, 2015.
H.-N. Tran, J.-j. Kim, and B. He. Fast subgraph matching on large graphs
using graphics processors. In International Conference on Database
Systems for Advanced Applications, pages 299-315. Springer, 2015.

J. R. Ullmann. An algorithm for subgraph isomorphism. Journal of the
ACM (JACM), 23(1):31-42, 1976.

L. Wang, Y. Wang, and J. D. Owens. Fast parallel subgraph matching
on the gpu. HPDC, 2016.

X. Yan, P. S. Yu, and J. Han. Graph indexing: a frequent structure-
based approach. In 2004 ACM SIGMOD international conference on
Management of data, pages 335-346, 2004.

L. Zeng, L. Zou, M. T. Ozsu, L. Hu, and F. Zhang. Gsi: Gpu-friendly
subgraph isomorphism. In 2020 IEEE 36th ICDE. 1EEE, 2020.

P. Zhao and J. Han. On graph query optimization in large networks.
PVLDB, 3(1-2):340-351, 2010.

S. Zhou, R. Kannan, H. Zeng, and V. K. Prasanna. An fpga framework
for edge-centric graph processing. In 15th ACM International Confer-
ence on Computing Frontiers, pages 69-77, 2018.

S. Zhou and V. K. Prasanna. Accelerating graph analytics on cpu-fpga
heterogeneous platform. In 2017 29th SBAC-PAD. IEEE, 2017.

L. Zou, J. Mo, L. Chen, M. T. Ozsu, and D. Zhao. Gstore: Answering
spargl queries via subgraph matching. PVLDB, 4(8):482-493, 2011.

https://www.microsoft.com/en- us/research/pro ject/project-catapult/
https://www.microsoft.com/en- us/research/pro ject/project-catapult/
https://aws.amazon.com/ec2/instance-types/f1/
https://aws.amazon.com/ec2/instance-types/f1/
https://newsroom.intel.com/news/intel-fpgas-power-acceleration-as-a-service-alibaba-cloud/
https://newsroom.intel.com/news/intel-fpgas-power-acceleration-as-a-service-alibaba-cloud/
https://cloud.tencent.com/product/fpga
https://cloud.tencent.com/product/fpga
https://www.huaweicloud.com/en-us/product/fcs.html
https://www.huaweicloud.com/en-us/product/fcs.html
https://www.nimbix.net/xilinx/
https://www.nimbix.net/xilinx/
http://ldbcouncil.org/benchmarks
https://neo4j.com/
http://www.cse.unsw.edu.au/~zyang/FAST_Full.pdf

	Clipboard Data(1)
	3
	Introduction
	Background
	Problem Definition
	Characteristics of FPGA

	Related Work
	Subgraph Matching
	FPGA-based Acceleration of Graph Processing

	System Overview
	Software Implementation
	CST Structure
	CST Partition
	Schedule the Matching Tasks

	Hardware Implementation
	Basic Pipeline of Subgraph Matching
	Cycle Analysis and Buffer Design
	Optimization with Task Parallelism
	Optimization for Generator

	Experiments
	The Necessity of CST Partition
	Evaluating Optimization Techniques
	Comparing with Existing Algorithms
	Scalability Testing
	Discussion

	Conclusion
	References

