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One approach to make progress on the symbolic determinant identity testing (SDIT) problem is to11

study the structure of singular matrix spaces. After settling the non-commutative rank problem12

(Garg–Gurvits–Oliveira–Wigderson, Found. Comput. Math. 2020; Ivanyos–Qiao–Subrahmanyam,13

Comput. Complex. 2018), a natural next step is to understand singular matrix spaces whose14

non-commutative rank is full. At present, examples of such matrix spaces are mostly sporadic, so it15

is desirable to discover them in a more systematic way.16

In this paper, we make a step towards this direction, by studying the family of matrix spaces17

that are closed under the commutator operation, that is, matrix Lie algebras. On the one hand, we18

demonstrate that matrix Lie algebras over the complex number field give rise to singular matrix19

spaces with full non-commutative ranks. On the other hand, we show that SDIT of such spaces can20

be decided in deterministic polynomial time. Moreover, we give a characterization for the matrix21

Lie algebras to yield a matrix space possessing singularity certificates as studied by Lovász (B. Braz.22

Math. Soc., 1989) and Raz and Wigderson (Building Bridges II, 2019).23
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1 Introduction34

1.1 Background and motivations35

Matrix spaces.36

Let F be a field. We use M(` × n,F) to denote the linear space of ` × n matrices over F,37

and let M(n,F) := M(n× n,F). The general linear group of degree n over F is denoted by38

GL(n,F). A subspace B of M(`× n,F) is called a matrix space, denoted by B ≤ M(`× n,F).39

Given B1, . . . , Bm ∈ M(n,F), 〈B1, . . . , Bm〉 is the linear span of the Bi’s. In algorithms,40

B ≤ M(n,F) is naturally represented by a linear basis B1, . . . , Bm ∈ M(n,F).41

Two major algorithmic problems about matrix spaces are as follows.42
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29:2 Symbolic determinant identity testing andnon-commutative ranks of matrix Lie algebras

The symbolic determinant identity testing problem.43

For B ≤ M(n,F), let mrk(B) be the maximum rank over all matrices in B. We say that B is44

singular, if mrk(B) < n. To decide whether B is singular is known as the symbolic determinant45

identity testing (SDIT) problem. The maximum rank problem for B then asks to compute46

mrk(B). The complexity of SDIT depends on the underlying field F. When |F| = O(1), SDIT47

is coNP-complete [3]. When |F| = Ω(n), by the polynomial identity testing lemma [23, 25],48

SDIT admits a randomized efficient algorithm. To present a deterministic polynomial-time49

algorithm for SDIT is a major open problem in computational complexity, as that would50

imply strong circuit lower bounds by the seminal work of Kabanets and Impagliazzo[18].51

The shrunk subspace problem.52

For B ≤ M(n,F) and U ≤ Fn, the image of U under B is B(U) := {Bu : B ∈ B, u ∈ U}.53

We say that U is a shrunk subspace of B, if dim(U) > dim(B(U)). The problem of deciding54

whether B admits a shrunk subspace is the shrunk subspace problem. The non-commutative55

rank problem1 [11, 16] asks to compute ncrk(B) := max{dim(U) − dim(B(U)) : U ≤ Fn}.56

That is, B admits a shrunk subspace if and only if its non-commutative rank is not full,57

i.e. < n. This problem is known for its connections to invariant theory, linear algebra,58

graph theory, and quantum information. Major progress in the past few years lead to59

deterministic efficient algorithms for the shrunk subspace problem, one by Garg, Gurvits,60

Oliveira, and Wigderson over fields of characteristic 0 [11], and the other by Ivanyos, Qiao,61

and Subrahmanyam over any field [15, 16].62

Motivations of our investigation.63

Note that if a matrix space admits a shrunk subspace, then it has to be singular. However,64

there exist singular matrix spaces without shrunk subspaces. After settling the shrunk65

subspace problem [11, 16], such matrix spaces form a bottleneck for further progress on66

SDIT. Moreover, ideas from these works are not expected to directly generalize as it was67

recently shown that the space of singular matrices cannot be seen as the null-cone of any68

reductive group action [21]69

Two classical examples of such subspaces are as follows [20].70

I Example 1. 1. Let Λ(n,F) be the linear space of alternating matrices, namely matrices71

satisfying ∀v ∈ Fn, vtAv = 0.2 When n is odd, Λ(n,F) is singular, as every alternating72

matrix is of even rank. Furthermore, it is easy to verify that Λ(n,F) does not admit73

shrunk subspaces.74

2. Let C1, . . . , Cn ∈ Λ(n,F), and let C ≤ M(n,F) consist of all the matrices of the form
[C1v, C2v, . . . , Cnv], over v ∈ Fn. As Ci’s are alternating, we have

vt[C1v, C2v, . . . , Cnv] = [vtC1v, v
tC2v, . . . , v

tCnv] = 0,

so C is singular. In [10], it is shown that when n = 4, certain choices of Ci ensure that C75

does not have shrunk subspaces.76

1 The name “non-commutative” rank comes from a natural connection between matrix spaces and symbolic
matrices over skew fields; see [11, 16] for details.

2 When F is of characteristic not 2, a matrix is alternating if and only if it is skew-symmetric.
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While there are further examples in [1, 6], the above two examples (and their certain77

subspaces) have been studied most in theoretical computer science and combinatorics, such78

as by Lovász [20] and Raz and Wigderson [22], due to their connections to matroids and79

graph rigidity.80

As far as we see from the above, examples of singular matrix spaces without shrunk81

subspaces in the literature are sporadic. Therefore, it is desirable to discover more singular82

matrix spaces without shrunk subspaces, hopefully in a more systematic way. This is the83

main motivation of this present article.84

Overview of our main results.85

Noting that the linear space of skew-symmetric matrices is closed under the commutator86

bracket, we set out to study matrix Lie algebras. Our main results can be summarized as87

follows.88

First, we show that matrix Lie algebras over C gives rise to a family of singular matrix89

spaces without shrunk subspaces. This result, partly inspired by [9], vastly generalizes90

the linear spaces of skew-symmetric matrices.91

Second, we present a deterministic polynomial-time algorithm to solve SDIT for matrix Lie92

algebras over C. This algorithm heavily relies on the structural theory of, and algorithms93

for, Lie algebras.94

Third, we examine when matrix Lie algebras are of the form in Example 1 (2) as above,95

giving representation-theoretic criteria for such matrix Lie algebras.96

In the rest of this introduction, we detail our results.97

1.2 Our results98

Recall that B ≤ M(n,F) is a matrix Lie algebra, if B is closed under the commutator bracket,99

i.e. for any A,B ∈ B, [A,B] := AB −BA ∈ B.100

We have striven to make this introduction as self-contained as possible. In an effort to101

make this article accessible to wider audience, we summarize notions and results on Lie102

algebras and representations relevant to this paper in Appendices A, B, and C.103

Two results and a message.104

We first study shrunk subspaces of matrix Lie algebras over C. To state our results, we need105

the following notions.106

Given a matrix space B ≤ M(n,F), U ≤ Fn is an invariant subspace of B, if for any107

B ∈ B, B(U) ⊆ U . We say that B is irreducible, if the only invariant subspaces of B are108

0 and Fn. The above notions naturally apply to matrix Lie algebras. The matrix space109

B = 0 ≤ M(1,F) is called the trivial irreducible matrix Lie algebra.110

In general, let B ≤ M(n,F) be a matrix Lie algebra. Then there exists A ∈ GL(n,F),111

such that A−1BA is of block upper-triangular form, and each block on the diagonal defines112

an irreducible matrix Lie algebra, called a composition factor of B. Such an A defines a113

chain of subspaces, called a composition series of the matrix Lie algebra B. By the Jordan-114

Hölder theorem, the isomorphic types of the composition factors are the same for different115

composition series.116

We then have the following criteria for the existence of shrunk subspaces of matrix Lie117

algebras over C.118

ITCS 2022
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I Theorem 2. Let B ≤ M(n,C) be a non-trivial irreducible matrix Lie algebra. Then B does119

not have a shrunk subspace.120

Let B ≤ M(n,C) be a matrix Lie algebra. Then B has a shrunk subspace, if and only if121

one of its composition factors is the trivial matrix Lie algebra.122

The proof of Theorem 2 for the irreducible case makes use of the connection of Lie algebras123

and Lie groups as summarized in Appendix B. Going from the irreducible to the general case,124

we prove some basic properties of shrunk subspaces which may be of independent interest in125

Section 2.126

After we proved Theorem 2, we learnt that Derksen and Makam independently proved it127

using a different approach via representation theory of Lie algebras [7].128

We then present a deterministic polynomial-time algorithm to solve SDIT for matrix Lie129

algebras over C. Our model of computation over C will be explained in Section 4.130

I Theorem 3. Let B ≤ M(n,C) be a matrix Lie algebra. Then there is a deterministic131

polynomial-time algorithm to solve the symbolic determinant identity testing problem for B.132

We believe that the strategy for the algorithm in Theorem 3 is interesting. It rests on the133

key observation that the maximum rank of B is equal to the maximum rank of a Cartan134

subalgebra of B. (We collect the notions and results on Cartan algebras relevant to this135

paper in Appendix C.) We then resort to the algorithm computing a Cartan subalgebra by de136

Graaf, Ivanyos and Rónyai [5] to get one. As Cartan subalgebras are upper-triangularisable,137

an SDIT algorithm can be devised easily.138

Theorems 2 and 3 together bring out the main message in this paper : we identify non-139

trivial irreducible matrix Lie algebras over C as an interesting families of matrix spaces,140

as (1) they do not admit shrunk subspaces, and (2) SDIT for such spaces can be solved in141

deterministic polynomial time.142

To see that matrix Lie algebras do form an interesting family for the maximum rank143

problem, we list some examples.144

I Example 4. 1. Note that Λ(n,F) is closed under the commutator bracket. Indeed, Λ(n,F)145

together with the commutator bracket is well-known as the orthogonal Lie algebra, and146

it is easy to see that it is irreducible.147

2. Representations of abstract Lie algebras give rise to matrix Lie algebras. For example,148

let sl(n,C) be the special linear Lie algebra, i.e, the Lie algebra of all n × n complex149

matrices with trace 0. Let Ei,j be the elementary matrix with the only non-zero entry150

being 1 in the (i, j)th entry. A linear basis of sl(n,C) consists of Ei,j , i 6= j. Consider151

for any fixed d, the vector space V spanned by all degree dn monomials in the variables152

{x1, · · · , xn}. Then, the representation is defined as ρ(Eij)(xe1
1 · · ·xenn ) = xi

∂(xe1
1 ···x

en
n )

∂xj
.153

This gives rise to an irreducible matrix Lie algebra in M(
(
dn+n−1
n−1

)
,C).154

One may wonder whether irreducible matrix Lie algebras encompass singular and non-155

singular matrix spaces. To see this, note that Λ(n,F) (as defined in Example 4) can be156

singular (for odd n) or non-singular (for even n). In fact, there is a representation-theoretic157

explanation for the maximum rank of certain irreducible matrix Lie algebras via weight158

spaces (Fact 34) as already observed by Draisma [8], from which it is evident that irreducible159

matrix Lie algebras can be singular or non-singular.160

Other singularity witnesses and matrix Lie algebras.161

After Theorem 2 and 3, we study further properties of matrix Lie algebras related to162

singularity as follows. Let B = 〈B1, . . . , Bm〉 ≤ M(n,F) be a matrix space. Let x1, . . . , xm163
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be a set of commutative variables. Then B = x1B1 + · · ·+ xmBm is a matrix of linear forms164

in xi’s. When F is large enough, the singularity of B is equivalent to that of B over the165

function field. Viewing B as a matrix over the rational function field F(x1, . . . , xn), its kernel166

is spanned by vectors whose entries are polynomials. Let v ∈ F[x1, . . . , xm]n be in ker(B).167

By splitting v according to degrees if necessary, we can assume that v is homogeneous, i.e.168

each component of v is homogeneous of degree d.169

We are interested in those vectors in the kernel whose entries are linear forms. This is170

also partly motivated by understanding witnesses for singularity of matrix spaces, as by171

[18], putting SDIT in NP ∩ coNP already implies strong circuit lower bounds. Suppose B172

admits v ∈ ker(B) whose components are homogeneous degree-d polynomials. Then, ignoring173

bit complexities, v is a singularity witness of B of size O(md × n), and the existence of a174

certificate of degree d can be checked and found in time O(md × n), by writing a linear175

system in O(md × n) variables.176

Let v1, . . . , vm ∈ Fn, and v = x1v1 + · · · + xmvm be a vector of linear forms. We say177

that v is a (left homogeneous) linear kernel vector of B, if each entry of vtB is the zero178

polynomial. Similarly, v is a right homogeneous linear kernel vector, if each entry of Bv is179

the zero polynomial.180

Clearly, whether such a nonzero v exists does not depend on the choice of bases. Indeed,181

we can give a basis-free definition of a linear kernel vector for a matrix space B ≤ M(n,F) as182

a non-zero linear map ψ : B → Fn such that for each A, ψ(A)tA = 0.183

Matrix spaces with linear kernel vectors have appeared in papers by Lovász [20] and Raz184

and Wigderson [22]. To see this, note that matrix spaces with linear kernel vectors can be185

constructed from alternating matrices as exhibited in Example 1 (2).186

One approach for Lie algebras to yield matrix spaces with linear kernel vectors is through187

adjoint representations.188

Recall that, given a Lie algebra [−,−] : g × g → g, the adjoint representation of g is189

ad : g → gl(g) defined as adx(y) = [x, y] for x, y ∈ g. The image of ad is a matrix space190

A ≤ M(d,F) where d = dim(g). As the Lie bracket [, ] is alternating, A admits a linear191

kernel vector by the construction in Example 1 (2).192

Our next theorem characterizes Lie algebra representations with linear kernel vectors.193

(We collect some basic notions of Lie algebra representations relevant to this paper in194

Appendix A.) Since we are concerned with matrix spaces which are images of Lie algebra195

representations, i.e. B = ρ(g) where ρ is a representation of the Lie algebra g, we can assume196

without generality that ρ is faithful.197

I Theorem 5. Let B be the image of a faithful irreducible representation φ of a semisimple198

Lie algebra g over algebraically closed fields of characteristic not 2 or 3. Then B admits199

a linear kernel vector if and only if B is trivial, or g is simple and φ is isomorphic to the200

adjoint representation.201

1.3 Open questions.202

Several questions can be asked after this work. First, can we identify more families of singular203

matrix spaces without shrunk subspaces? Second, our algorithm for SDIT of matrix Lie204

algebras heavily relies on the structure theory of Lie algebras and works over C. It will205

be interesting to devise an alternative algorithm that is of a different nature, and works206

for matrix Lie algebras over fields of positive characteristics. Third, characterize those207

representations of non-semisimple Lie algebras with linear kernel vectors.208

ITCS 2022



29:6 Symbolic determinant identity testing andnon-commutative ranks of matrix Lie algebras

The structure of the paper.209

In Section 2 we prove some results on shrunk subspaces that will be useful to prove Theorem 2.210

In Section 3 we prove Theorem 2. In Section 4 we prove Theorem 3. In Section 5 we prove211

Theorem 5.212

2 On shrunk subspaces of matrix spaces213

In this section we present some basic results and properties regarding shrunk subspaces and214

non-commutative ranks of matrix spaces.215

2.1 Canonical shrunk subspaces216

Let B ≤ M(n,F). For a subspace U of Fn define sdB(U) as the difference dim(U)−dim(B(U)).217

Thus sdB(U) is positive for a shrunk subspace U and negative if B expands U . We then have218

the following.219

I Lemma 6. The function sdB is supermodular. More specifically, if U1 and U2 are two220

subspaces of Fn, then,221

sdB(U1 ∩ U2) + sdB(〈U1 ∪ U2〉) ≥ sdB(U1) + sdB(U2). (1)222

Proof. By modularity of the dimension, we have223

dim(U1 ∩ U2) + dim(〈U1 ∪ U2〉) = dim(U1) + dim(U2)224

and225

dim(B(U1) ∩ B(U2)) + dim(〈B(U1) ∪ B(U2)〉) = dim(B(U1)) + dim(B(U2)).226

The second equality, using also that B(〈U1 ∪ U2〉) = 〈B(U1) ∪ B(U2)〉 and B(U1 ∩ U2) ≤227

B(U1) ∩ B(U2), gives,228

dim(B(U1 ∩ U2)) + dim(B(〈U1 ∪ U2〉)) ≤ dim(B(U1)) + dim(B(U2)).229

Subtracting the last inequality from the first equality gives (1). J230

I Proposition 7. Let B ≤ M(n,F). Suppose ncrk(B) = n− c for c > 0. Then there exists231

a unique subspace U ≤ Fn of the smallest dimension satisfying dim(U) − dim(B(U)) = c,232

and there exists a unique subspace U ′ ≤ Fn of the largest dimension such that dim(U ′) −233

dim(B(U ′)) = c.234

Proof. We use the supermodular function sdB defined in Lemma 6. Let U1 and U2 be235

subspaces with sdB(Ui) = c. Then Lemma 6 gives sdB(U1 ∩ U2) + sdB(〈U1 ∪ U2〉) ≥ 2c.236

On the other hand, by the definition of the noncommutative rank, sdB(U1 ∩ U2) ≤ c and237

sdB(〈U1 ∪ U2〉) ≤ c. It follows that all the three inequalities are in fact equalities. Thus238

the intersection as well as the span of all the subspaces U with sdB(U) = c also have this239

property. J240

By Proposition 7, in the case ncrk(B) = n− c for c > 0, we shall refer to the subspace U241

of the smallest dimension satisfying dim(U)−dim(B(U)) = c as the (lower) canonical shrunk242

subspace. The algorithm from [15, 16] actually computes the canonical shrunk subspace.243

A natural group action on matrix spaces is as follows. Let G = GL(n,F) × GL(n,F).244

Then (A,C) ∈ G sends B ≤ M(n,F) to ABC−1 = {ABC−1 : B ∈ B}. The stabilizer group245

of this action on B is denoted as Stab(B) = {(A,C) ∈ G : ABC−1 = B}. We then have the246

following proposition.247
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I Proposition 8. Let B ≤ M(n,F). Suppose ncrk(B) = n − c3 for c > 0. Then for248

∀(A,C) ∈ Stab(B), the canonical shrunk subspace U is invariant under C, i.e., C(U) = U .249

Proof. From the definition of Stab(B), we have ABC−1 = B and thus, AB = BC. Consider250

the subspace A(U). Then, B(C(U)) = (BC)(U) = (AB)(U) = A(B(U)). Since A,C ∈251

GL(n,F), dim(C(U)) = dim(U) and dim(A(B(U))) = dim(B(U)). It follows that C(U) is252

also a c-shrunk subspace of the same dimension as U . We then conclude that C(U) = U by253

Proposition 7. J254

2.2 Shrunk subspaces of block upper-triangular matrix spaces255

Consider the following situation. Suppose B ≤ M(n,F) satisfies that any B ∈ B is in the256

block upper-triangular form, i.e.257

B =


C1 D1,2 . . . D1,d
0 C2 . . . D2,d
...

...
. . .

...
0 0 . . . Cd

 ,258

where Ci is of size ni × ni. Let259

Ci = 〈Ci ∈ M(ni,F) : Ci appears as the ith diagonal block of some B ∈ B〉.260

I Lemma 9. Let B ≤ M(n,F), and let V ≤ Fn such that B(V ) ≤ V . If there exists a shrunk261

subspace for B, then there also exist one which is either included in V or contains V .262

Proof. Assume that V itself is not a shrunk subspace. Then B(V ) = V . Let U be a shrunk263

subspace of B. By Lemma 6, we have sdB(V ∩ U) + sdB(〈V ∪ U〉) ≥ sdB(V ) + sdB(U) =264

0 + sdB(U) > 0. Thus either sdB(V ∩ U) or sdB(〈V ∪ U〉) must be positive. J265

The following proposition characterizes the existence of shrunk subspaces in block upper-266

triangular matrix spaces.267

I Proposition 10. Let B ≤ M(n,F) and Ci ≤ M(ni,F), i ∈ [d], as above. Then B has a268

shrunk subspace if and only if there exists i ∈ [d] such that Ci has a shrunk subspace.269

Proof. The if direction can be verified easily. For the only if direction, we induct on d. When270

d = 1, this is clear. Suppose this holds for d < k. Consider d = k, and suppose B admits271

a shrunk subspace. Let V ≤ Fn be the subspace spanned by those standard basis vectors272

en1+1, en1+2, . . . , en. We then have two cases.273

1. There exists a shrunk subspace W ≤ V . In this case, by the induction hypothesis, there274

exists i ∈ {2, . . . , n} such that Ci has a shrunk subspace.275

2. There are no shrunk subspacesW ≤ V . Then by Lemma 9, there exists a shrunk subspace276

W such that W > V . Then by considering W/V , we obtain a shrunk subspace for C1.277

This concludes the proof of Proposition 10. J278

3 Recall that ncrk(B) := max{dim(U)− dim(B(U)) : U ≤ Fn}.

ITCS 2022
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3 Shrunk subspaces of matrix Lie algebras over C279

In this section, we will give a characterization of those matrix Lie algebras over C with280

shrunk subspaces, proving Theorem 2. The main reason for working over C is to make use of281

the connections between Lie algebras and Lie groups as described in Appendix B.282

We will first give such a characterization for irreducible matrix Lie algebras. The general283

case then follows by combining this with the results in Section 2.2.284

The key to understanding the irreducible case lies in the following lemma; for notions285

such as matrix exponentiation and derivation, cf. Appendix B.286

I Lemma 11 ([12, Proposition 4.5 (1)]). Let B ≤ M(n,C) be an irreducible matrix Lie algebra.287

Let W ≤ Cn and M ∈ B. If etM (W ) ≤W for all t ∈ R, then M(W ) ≤W .288

Proof. Take any w ∈ W . Note that d(etM )
dt (w) = (MetM )(w) = M(etM (w)), and d(etM )

dt =289

limh→t
ehM−etM

h−t . So at t = 0, we have M(w) = limh→0
ehM (w)−w

h . Since etM (w) ∈W for all290

t ∈ R, e
hM (w)−w

h lies in W for any h, and so does the limit which is M(w). J291

We will also need the following result.292

I Lemma 12. Given a matrix Lie algebra B ≤ M(n,C), we have that ∀t ∈ R and M ∈ B,293

etMBe−tM = B.294

Proof. By the connection between Lie groups and Lie algebras (cf. Theorem 25), there295

exists some Lie group G whose associated Lie algebra is B. This implies that for any M ∈ B,296

etM ∈ G. Then by the fact that the conjugation of g ∈ G stabilizes B (cf. Theorem 26), we297

have etMBe−tM = B. J298

We are now ready to prove Theorem 2.299

I Theorem 2. Let B ≤ M(n,C) be a non-trivial irreducible matrix Lie algebra. Then B does300

not have a shrunk subspace.301

Let B ≤ M(n,C) be a matrix Lie algebra. Then B has a shrunk subspace, if and only if302

one of its composition factors is the trivial matrix Lie algebra.303

Proof. We first handle the irreducible case.304

For the sake of contradiction, suppose B has a shrunk subspace. Then let V = Cn, and305

let U ≤ V be the canonical shrunk subspace of B. By Lemma 12, for any M ∈ B, we have306

that (etM , etM ) ∈ Stab(B). By Proposition 8, U is invariant under etM . By Lemma 11, U is307

an invariant subspace of B.308

Since B is irreducible as a matrix Lie algebra, the only invariant subspaces are 0 and V .309

Since U is a shrunk subspace, it cannot be 0. If U = V , then B(V ) is a proper subspace of V .310

If B(V ) is non-zero, then B(B(V )) ≤ B(V ). This implies that B(V ) is a proper and non-zero311

invariant subspace of B, which is impossible as B is irreducible. It follows that U = V and312

B(V ) = 0. In this case, V must be of dimension 1, as any non-zero proper subspace of V is313

an invariant subspace. It follows that B has to be the trivial matrix Lie algebra. We then314

arrive at the desired contradiction.315

The general case follows from the irreducible case as shown above, and Proposition 10. J316
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4 SDIT for matrix Lie algebras over C317

In this section, we present a deterministic polynomial-time algorithm that solves SDIT for318

matrix Lie algebras over C, proving Theorem 3.319

The basic idea is to realize that B is singular if and only if every Cartan subalgebra of B320

is singular. Furthermore, a Cartan subalgebra is nilpotent, so in particular it is solvable. It321

follows, by Lie’s theorem (Theorem 28), that a Cartan subalgebra of a matrix Lie algebra is322

upper-triangularisable by the conjugation action. A key task here is to compute a Cartan323

subalgebra of B. This problem has been solved by de Graaf, Ivanyos, and Rónyai in [5].324

Computation model over C.325

We adopt the following computation model over C, in consistent with that in [5]. That is,326

we assume the input matrices are over a number field E. Therefore E is a finite-dimensional327

algebra over Q. If dimQ(E) = d, then E is the extension of F by a single generating element328

α, so E can be represented by the minimal polynomial of α over F, together with an isolating329

rectangle for α in the case of C.330

4.1 Cartan subalgebras.331

We collect notions and results on Cartan subalgebras useful to us in Appendix C. Here, we332

recall the following. Let g be a Lie algebra. A subalgebra h ⊆ g is a Cartan subalgebra, if it333

is nilpotent and self-normalizing.334

In [5], de Graaf, Ivanyos, and Rónyai studied the problem of computing Cartan subalgebras.335

We state the following version of their main result in our context as follows. For a more336

precise statement, see Theorem 30.337

I Theorem 13 ([5, Theorem 5.8]). Let B ≤ M(n,C) be a matrix Lie algebra. Then there338

exists a deterministic polynomial-time algorithm that computes a linear basis of a Cartan339

subalgebra A of B.340

4.1.1 Maximum ranks of Cartan subalgebras.341

The key lemma that supports our algorithm is the following.342

I Lemma 14. Let B ≤ M(n,C) be a matrix Lie algebra. Let A ≤ B be a Cartan subalgebra.343

Then, mrk(B) = mrk(A).344

Proof. We shall utilise two results about Cartan subalgebras; for details see Appendix C.345

First, let g be a Lie algebra over a large enough field. Then there exists a set of346

generic4 elements R ⊆ g, such that for any x ∈ R, the Fitting null component of adx,347

F0(adx) = {y ∈ g : ∃m > 0, admx (y) = 0}, is a Cartan subalgebra. For a precise statement,348

see Theorem 29.349

Second, let B be a matrix Lie algebra over C. Then for any two Cartan subalgebras A,350

A′ of B, they are conjugate, namely there exists T ∈ GL(n,C) such that TAT−1 = A′. For351

a precise statement, see Theorem 27.352

By the first result, in particular by the fact that elements in R are generic, there exists a353

matrix C ∈ B of rank mrk(B), such that C := F0(adC) is a Cartan subalgebra. Noting that354

4 This means that after identifying g with Fdim(g), these elements form a Zariski open set.
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C ∈ C, mrk(C) = mrk(B). By the second result, for any Cartan subalgebra A of B, A and C355

are conjugate, which implies that mrk(A) = mrk(C) = mrk(B). J356

4.2 Upper-triangularisable matrix spaces.357

Let B ≤ M(n,F). We say that B is upper-triangularisable, if there exists S, T ∈ GL(n,F),358

such that for any B ∈ B, SBT is upper-triangular. Upper-triangularisable matrix spaces359

are of interest to us, because solvable matrix Lie algebras can be made simultaneously360

upper-triangular via conjugation by Lie’s theorem (Theorem 28).361

If a matrix space is upper-triangularisable, then we can decide if B is singular in a362

black-box fashion, as its singularity is completely determined by the diagonals of the resulting363

upper-triangular matrix space. The following lemma is well-known and we include a proof364

for completeness.365

I Lemma 15. Let n, k ∈ N. Let F be a field such that |F| > (k − 1)n. There exists a366

deterministic algorithm that outputs in time poly(n, k) a set H ⊆ Fk, such that any non-zero367

k-variate degree-n polynomial, which is a product of linear forms, evaluates to a non-zero368

value on at least one point in H.369

Proof. Let `1, . . . , `n be n non-zero linear forms in k variables. We can also identify them370

as vectors in Fk by taking their coefficients. Fix a subset S ⊆ F of size (k − 1)n + 1. Let371

H = {(1, α, · · · , αk−1) | α ∈ S}. This is clearly a set of size (k − 1)n+ 1.372

We claim that any non-zero linear form `i vanishes on at most k − 1 points in H. This373

is because if it vanishes on k points, we have A`i = 0 where A is the Vandermonde matrix374

corresponding to those k points. This is impossible because the Vandermonde matrix is375

invertible and `i is non-zero.376

It follows that there is at least one point in H such that every `i has a non-zero evaluation377

at this point. This concludes the proof.378

J379

4.3 The algorithm.380

Given the above preparation, we present the following algorithm for computing the commut-381

ative rank of a matrix Lie algebra.382

Input: B = 〈B1, . . . , Bm〉 ≤ M(n,C), such that B is a matrix Lie algebra.383

Output: “Singular” if B is singular, and “Non-singular” otherwise.384

Algorithm: 1. Use Theorem 13 to obtain C = 〈C1, . . . , Ck〉 ≤ B, such that C is a Cartan385

subalgebra of B.386

2. Use Lemma 15 to obtain H ⊆ Ck, |H| = (k − 1)n+ 1.387

3. For any (α1, . . . , αk) ∈ H, if
∑
i∈[k] αiCi is non-singular, return “Non-singular”.388

4. Return “Singular”.389

The above algorithm clearly runs in polynomial time. The correctness of the above390

algorithm follows from Lemmas Lemmas 14 and 15, as well as Lie’s theorem on solvable Lie391

algebras (Theorem 28). This concludes the proof of Theorem 3.392

I Remark 16. We do not solve the maximum rank problem for matrix Lie algebras in general.393

While the maximum rank problem for matrix Lie algebras reduces to the maximum rank394

problem for upper-triangularisable matrix spaces through Cartan subalgebras, to compute the395

maximum rank for the latter deterministically seems difficult. This is because the maximum396
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rank problem for upper-triangularisable matrix spaces is as difficult as the general SDIT397

problem, an observation already in [14].398

There is one case where we do solve the maximum rank problem, that is, when the matrix399

Lie algebra over C is semisimple. In this case, Cartan subalgebras are diagonalizable [13,400

Theorem in Chapter 6.4]. Therefore, in the above algorithm we can output the maximum401

rank over
∑
i∈[k] αiCi where (α1, . . . , αk) ∈ H as the maximum rank of B.402

5 Linear kernel vectors of matrix Lie algebras403

The goal of this section is to study existence of linear kernel vectors for matrix spaces arising404

from representations of Lie algebras.405

Let g be a Lie algebra and (ρ, V ) be a representation of g, where V ∼= Fn. Let B = ρ(g) ≤406

M(n,F).407

First, note that B admits a common kernel vector5 if and only if (ρ, V ) has a trivial408

subrepresentation. We view this as a degenerate case, so in the following we shall mainly409

consider representations without trivial subrepresentations.410

By the basis-free definition of linear kernel vectors in Section 1.2, B = ρ(g) has a linear411

kernel vector if we have a linear map β : ρ(g) → V such that ρ(x)β(ρ(x)) = 0. For our412

purposes, it will be more convenient to work with a map from g itself to V . This leads us to413

define that for a representation (ρ, V ), the linear map ψ : g→ V is a linear kernel vector if414

ρ(x)ψ(x) = 0 (2)415

for every x ∈ g. We further assume that ψ is not identically zero.416

I Remark 17. The definition of linear kernel vectors above is a generalization that allows417

for possibly more linear kernel vectors. This is because a linear kernel vector β yields a418

generalized one by taking ψ = β ◦ ρ. However, when ρ is not injective, we can have many419

more generalized maps. For example, for a trivial representation (0, V ), β has to be 0 but420

any linear map from g to V is a generalized linear kernel vector.421

Applying Equation (2) to x, y and x+ y one obtains for every x, y ∈ g,422

ρ(x)ψ(y) + ρ(y)ψ(x) = 0 (3)423

Since [x, x] = 0 for the adjoint representation, the identity map of g and its scalar424

multiples are generalized linear kernel vectors.425

Assume that ψ : g → V is a linear kernel vector for (ρ, V ). Let (ρ′, V ′) be another426

representation of g. Then, if φ : V → V ′ is a non-zero linear map such that φ ◦ ρ = ρ′ ◦ φ427

(that is, φ is a homomorphism between the two representations) then φ ◦ ψ is a linear kernel428

vector for (ρ′, V ′). Indeed, ρ′(x)φ(ψ(x)) = φ(ρ(x)(ψ(x)) = φ(0) = 0.429

Our aim is to show that for many of Lie algebras g, unless the representation (ρ, V )430

includes a trivial subrepresentation, every linear kernel vector ψ : g→ V can be obtained as431

the composition of the adjoint representation and a homomorphism.432

I Theorem 18. Let g be a semisimple Lie algebra g over an algebraically closed field F of433

characteristic not 2 or 3. Assume that that the trivial representation is not a subrepresentation434

of the representation (ρ, V ) of g. Then any linear kernel vector ψ defines a homomorphism435

ψ : (ad, g)→ (ρ, V ) i.e., for every x, y ∈ g,436

ψ([x, y])− ρ(x)ψ(y) = 0. (4)437

5 That is v ∈ Fn such that for any B ∈ B, Bv = 0.

ITCS 2022



29:12 Symbolic determinant identity testing andnon-commutative ranks of matrix Lie algebras

We defer the proof of Theorem 18 in Section 5.1. We now derive a corollary of Theorem 18438

and use it to prove Theorem 5.439

I Corollary 19. Let g, (ρ, V ) satisfy the condition in Theorem 18. Then, (ρ, V ) ∼= ⊕i(ad, gi)⊕440

(ρ′, V ′) where gi are not necessarily disjoint or distinct quotient algebras of g, and (ρ′, V ′)441

has no linear kernel vectors.442

Proof. Let ψ be a linear kernel vector (ρ, V ). Let V1 = im(ψ) ∼= g/ kerψ =: g1. Then443

V1 is invariant under ρ as for any x ∈ g, ψ(y) ∈ V1, ρ(x)ψ(y) = ψ([x, y]) ∈ V1. Therefore,444

(ρ, V ) ∼= (ad, g1)⊕ (ρ′, V ′) by the semisimplicity of g. We can then repeat till we no longer445

have linear kernel vectors. J446

I Theorem 5. Let B be the image of a faithful irreducible representation φ of a semisimple447

Lie algebra g over algebraically closed fields of characteristic not 2 or 3. Then B admits448

a linear kernel vector if and only if B is trivial, or g is simple and φ is isomorphic to the449

adjoint representation.450

Proof. When B is trivial it clearly has a linear vector kernel. So assume it is not. Applying451

Corollary 19 in the case of ρ being irreducible, we get (ρ, V ) ∼= (ad, g′) for some quotient452

algebra g′ of g. Since ρ is faithful, we must have g = gi. By definition, subrepresentations453

of the adjoint representation are the same as ideals. Thus irreducibility of the adjoint454

representation implies that g is simple. J455

I Remark 20. 1. Theorem 18 and Theorem 5 also hold over sufficiently large perfect fields as456

a semisimple Lie algebra over a perfect field remains semisimple over the algebraic closure457

of such fields. However, passing over to the closure need not preserve semisimplicity in458

general and thus, the current proof of Theorem 24 does not work for any sufficiently large459

field.460

2. Initially we proved a fact equivalent to (Equation (4)) for irreducible representations461

of classical Lie algebras using Chevalley bases. In an attempt to simplify the proof by462

reducing to certain subalgebras and taking trivial subrepresentations into account, we463

discovered relevance of equalities (5) and (6) below. We include the previous proof in464

Appendix E, as some ideas and techniques there may be useful for future references.465

5.1 Proof of Theorem 18466

To prove Theorem 18, we need the following preparations.467

I Proposition 21. Let ψ : g→ V be a linear kernel vector for the representation (ρ, V ) of a468

Lie algebra g. Then,469

ρ(x)
(
ψ([x, y])− ρ(x)ψ(y)

)
= 0 (5)470

and471

ρ(y)
(
ψ([x, y])− ρ(x)ψ(y)

)
= 0 (6)472

Consequently, the difference ψ([x, y])− ρ(x)ψ(y) is annihilated by ρ(z) for every element z473

of the Lie subalgebra of g generated by x and y.474
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Proof.

ρ(x)ψ([x, y]) = −ρ([x, y])ψ(x) Applying (3) to [x, y], x475

= −ρ(x)ρ(y)ψ(x) + ρ(y)ρ(x)ψ(x) (ρ, V ) is a representation476

= −ρ(x)ρ(y)ψ(x) Applying (2) to x477

= ρ(x)ρ(x)ψ(y) Applying (3) to x, y478
479

Similarly (Equation (6)) follows because480

ρ(y)ψ([x, y]) = −ρ([x, y])ψ(y) = −ρ(x)ρ(y)ψ(y) + ρ(y)ρ(x)ψ(y) = ρ(y)ρ(x)ψ(y). J481

The following statement follows from standard density arguments but we provide a proof482

in Appendix D.483

I Proposition 22 (Proposition 31). Let g be an m-dimensional Lie algebra over a large484

enough field F, such that there exist two elements x0, y0 ∈ F that generate g. Then there485

are elements xi, yi ∈ g, (i = 1, . . . ,m2) such that xi and yi generate g for every i and that486

xi ⊗ yi span g⊗ g.487

The following lemma is a major step to prove Theorem 18.488

I Lemma 23. Let ψ : g→ V be a linear kernel vector for the representation (ρ, V ) of a Lie489

algebra g over a large enough field F. Suppose g can be generated by two elements, and the490

trivial representation is not a subrepresentation of the representation (ρ, V ) of g. Then for491

every x, y ∈ g,492

ψ([x, y])− ρ(x)ψ(y) = 0.493

Proof. By standard arguments, it is sufficient to prove the theorem for the special case494

when F is algebraically closed. We assume that. By Proposition 22, we have {(xi, yi)}495

that each generate g as a Lie algebra and collectively linearly span g ⊗ g. For each i, by496

Proposition 21, ρ(z)
(
ψ([xi, yi])−ρ(xi)ψ(yi)

)
= 0 for every z ∈ g. This equality is trilinear and497

therefore it holds for every z⊗ x⊗ y for (z, x, y) ∈ g× (spani{(xi⊗ yi)}). By Proposition 22,498

spani{(xi⊗ yi)} = g⊗ g and thus, ρ(z)
(
ψ([x, y])− ρ(x)ψ(y)

)
is identically zero on g⊗3. Now499

for every fixed (x, y) the vector ψ([x, y])− ρ(x)ψ(y) is annihilated by all of ρ(g). It follows500

that the vector must be zero, as otherwise it would span a trivial subrepresentation. J501

To deduce Theorem 18 from Lemma 23, we need a result for the number of generators of502

certain Lie algebras. We recall some classical results on this topic. First, Kuranishi gave a503

simple proof that over characteristic 0, there exists two elements that generate any semisimple504

Lie algebra [19, Thm. 6]. The proof of the statement works directly in positive characteristic505

(> 3) for sum of classical simple lie algebras, i.e. those obtained from a Chevalley basis. This506

was extended in [2] to other kinds of simple Lie algebras over positive characteristic (> 3).507

This can be extended to the semisimple case based on a density argument which is standard.508

However, we couldn’t find a reference for this, so we include a proof in Appendix D (see509

Lemma 32).510

I Theorem 24 ([19, 2]+ Lemma 32). Let g be a semisimple Lie algebra g over an algebraically511

closed field F of characteristic not 2 or 3. Then g can be generated by two elements.512

Theorem 18 follows from Lemma 23 and Theorem 24. J513
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A Basic notions for Lie algebras and its representations514

A Lie algebra is vector space g with an alternating bilinear map, called a Lie bracket, [−,−] :515

g× g→ g that satisfies the Jacobi identity ∀x, y, z ∈ g, [x, [y, z]] + [z, [x, y]] + [y, [z, x]] = 0.516

A subalgebra of a Lie algebra g is a vector subspace which is closed under the Lie bracket.517

Given two Lie algebras g and h, a Lie algebra homomorphism is a linear map respecting518

the Lie bracket, i.e., a linear map φ : g→ h such that φ([a, b]) = [φ(a), φ(b)].519

Given a vector space V , we use gl(V ) to denote the Lie algebra, which consists of linear520

endomorphisms of V with the Lie bracket [A,B] = AB −BA for A,B ∈ gl(V ).521

A representation of a Lie algebra g is a Lie algebra homomorphism φ : g → gl(V ) for522

some vector space V . A subspace U ≤ V is invariant under φ, if for any a ∈ g, φ(a)(U) = U .523

We say that φ is irreducible, if the only invariant subspaces under φ are the zero space and524

the full space. We say that φ is completely reducible, if there exists a proper direct sum525

decomposition of V = V1 ⊕ · · · ⊕ Vc, such that each Vi is invariant under φ.526

A representation φ : g → gl(V ) is trivial, if φ(x) = 0 ∈ gl(V ) for any x ∈ g. In this527

case, when V is of dimension 1, φ is the trivial irreducible representation. The adjoint528

representation of g, ad : g→ gl(g) is defined as adx(y) = [x, y] for x, y ∈ g.529

Suppose V is of dimension n over a field F. After fixing a basis of V , gl(V ) can be530

identified as M(n,F). Then the image of a Lie algebra representation φ is a matrix subspace531

B ≤ M(n,F) that is closed under the natural Lie bracket [A,B] = AB −BA for A,B ∈ B.532

B Correspondences between Lie algebras and Lie groups533

Lie algebras are closely related to Lie groups. In the case of finite dimensional complex and534

real Lie algebras, there is a tight correspondence. Since matrix Lie algebras are the main535

object of study in this article, we only need results for matrix Lie algebras and matrix Lie536

groups, and not the most general definitions. In the following, we present some basic facts537

about the correspondence between Lie algebras and Lie groups in the matrix setting.538

We follow [12] for the definitions and some basic results about matrix Lie groups and Lie539

algebras over C that we will use later.540

A matrix Lie group is a subgroup G of GL(n,C) with the property that if (Am)m∈N is541

any sequence of matrices in G, and Am converges to some matrix A, then either A is in G or542

A is non-invertible.543

For X ∈ M(n,C), define the exponential by the usual power series, that is, eX =
∑∞
i=0

Xi

i! .544

By [12, Proposition 2.1], this power series converges absolutely for any X ∈ M(n,C), and eX545

is a continuous function of X. A straightforward consequence of the absolute convergence is546

that we can differentiate term by term, which implies that d
dte

tX = XetX = etXX.547

Given a matrix Lie group G, the associated Lie algebra Lie(G) is defined as Lie(G) =548

{X ∈ M(n,C) | ∀t ∈ R, etX ∈ G}. Let g denote Lie(G); this notation is consistent with549

our previous notation. Clearly, for any M ∈ g, the one-parameter group {etM | t ∈ R} is a550

subgroup of G.551

We need the following two classical results relating matrix Lie groups and matrix Lie552

algebras in Section 3.553

I Theorem 25 ([12, Theorem 5.20]). Let G be a matrix Lie group with Lie algebra g and let554

h be a Lie subalgebra of g. Then there exists a unique connected Lie subgroup H of G with555

Lie algebra h. In particular, every matrix Lie algebra g is the Lie algebra of a Lie group.556

I Theorem 26 ([12, Theorem 3.20 (1)]). Let G be a matrix Lie group, and let g = Lie(G).557

Then for any X ∈ g and g ∈ G, we have gXg−1 ∈ g.558
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C Some results about Cartan subalgebras559

Cartan subalgebras.560

Let g be a Lie algebra. A subalgebra h ⊆ g is a vector subspace that is closed under the Lie561

bracket (inherited from g). In other words, [h, h] ⊆ h. An ideal i ⊆ g is a subalgebra such562

that [g, i] ⊆ i. Let g1 and g2 be ideals of g. Define [g1, g2] = span ([x, y] | x ∈ g1, y ∈ g2). Let563

g1 = g and inductively define gi = [gi−1, g]. An algebra g is called nilpotent if there is an n564

such that gn = 0. Similarly, define g(1) = g and g(i) = [g(i−1), g(i−1)]. An algebra g is called565

solvable if there is an n such that g(n) = 0. The normalizer of a subspace a of g is defined as566

ng(a) = {x ∈ g | [x, a] ⊆ a}. A subalgebra h of g is a Cartan subalgebra if it is nilpotent and567

ng(h) = h.568

We shall need the following classical result on Cartan subalgebras. For x ∈ g, recall569

that adx : g → g is the linear map defined by adx(y) = [x, y] for y ∈ g. In particular, the570

exponentiation eadx is a linear map from g to g, and it is a Lie algebra automorphism if adx571

is nilpotent, called an inner automorphism. The group generated by inner automorphisms is572

denoted by Int(g).573

I Theorem 27 (See e.g. [4, Chapter 3.5]). Let g be a Lie algebra over an algebraically574

closed field F of characteristic zero. For any two Cartan subalgebras h1 and h2, there exists575

g ∈ Int(g) such that h1 = g(h2).576

To recover the statement in Lemma 14, note that for a matrix Lie algebra B ≤ M(n,C), an577

inner automorphism takes the form as a conjugation by an invertible matrix. This is because578

Ad(ex) = eadx , where Ad is the conjugation by matrices. This can be seen, e.g., by taking579

the derivative of Ad(ex)Y = etxY e−tx at t = 0.580

I Theorem 28 (Lie’s theorem on solvable Lie algebras). Let F be an algebraically closed field581

of characteristic zero. Let B ≤ M(n,F) be a solvable matrix Lie algebra over F. Then there582

exists T ∈ GL(n,F), such that for any B ∈ B, TBT−1 is upper triangular.583

Regular elements of Lie algebras.584

Let λ be a formal variable, and let
∑
i ci,xλ

i be the characteristic polynomial of adx. The585

smallest r such that cr,x is not identically zero over all x ∈ g is called the rank of g. The586

open set of points {x ∈ g | cr(x) 6= 0} is the set of regular points. A simple observation is587

that the set of regular elements is Zariski open and thus it is dense.588

For x ∈ g, the Fitting null component of adx is F0(adx) = {y ∈ g : ∃m > 0, admx (y) = 0}.589

Regular elements and Cartan subalgebras are closely related as the following theorem590

shows.591

I Theorem 29 ([4, Corollary 3.2.8]). Let g be a Lie algebra over a field of order larger than592

dim(g). For a regular x ∈ g, F0(adx) is a Cartan subalgebra.593

Computing Cartan subalgebras.594

We shall need the following result of de Graaf, Ivanyos, and Rónyai [5] regarding computing595

Cartan subalgebras. In algorithms, Lie algebras are often given by structure constants.596

That is, let g be a Lie algebra of dimension n over a field F, and let a1, . . . , an be a linear597

basis of g. The structure constants αijk (i, j, k ∈ {1, . . . , n}) are field elements such that598

[ai, aj ] =
∑n
k=1 αijkak.599
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I Theorem 30 ([5, Theorem 5.8]). Let g be a Lie algebra of dimension n over a field F with600

|F| > n. Suppose g is given by its structure constants with respect to a basis a1, . . . , an, and fix601

Ω ⊆ F such that |Ω| = n+ 1. Then there is a deterministic polynomial-time algorithm which602

computes a regular element x =
∑
αiai, αi ∈ Ω, such that F0(adx) is a Cartan subalgebra of603

g.604

Note that to obtain Theorem 13, we start with a matrix Lie algebra B = 〈B1, . . . , Bm〉 ≤605

M(n,F), compute structure constants by expanding [Bi, Bj ] =
∑
k∈[m] αi,j,kBk, apply The-606

orem 30, and use its output to obtain a subspace of B which is a Cartan subalgebra.607

D Density arguments and the generation of Lie algebras608

In this part we prove some facts based on standard density arguments.609

Let U be an m-dimensional vector space over an infinite field F. By choosing a basis610

we identify U with Fm. We say that a nonempty subset D of U is huge if there exists a611

nonzero polynomial f(t1, . . . , tm) ∈ F[t1, . . . , tm] such that if u = (u1, . . . , um)T 6∈ D then612

f(u1, . . . , um) = 0. (Thus, huge subsets are those that contain Zariski open subsets.) It is613

easy to see that hugeness is independent of the choice of the basis and that the intersection614

of finitely many huge subsets is huge as well. As a hyperplane of U consists of the zeros of a615

linear function on U , we have that any huge subset of U spans U .616

Let g be an m-dimensional Lie algebra over F. Let u1, . . . , um be a basis for g. Recall617

that the structure constants αijk (i, j, k ∈ {1, . . . ,m}) are field elements such that such618

that [ui, uj ] =
∑m
k=1 αijkuk. A Lie expression or Lie polynomial E(z1, . . . , z`) in ` variables619

z1, . . . , z` is an expression that can be recursively built using linear combinations and the620

bracket symbol. Let xi =
∑m
j=1 xijuj (i = 1, . . . , `). Then the structure constants can621

be used to expand E(x1, . . . , x`) as a vector whose coordinates are polynomials in xij . If622

we assign m − 1 elements of g to the variables z2, . . . , z` then E expands to an a vector623

whose coordinates are polynomials in x11, . . . , x1` that may include nonzero constant terms.624

Therefore it will be convenient to also consider Lie expressions over g: these are expressions625

which may include constant elements from g. From the definition of density it follows626

that if E is an expression in a single variable z that is not identically zero on g then the627

elements x of g on which E evaluates to a nonzero element of g is huge. Furthermore, if628

there are m expressions E1(z), . . . , Em(z) such that there exists an element x ∈ g such that629

E1(x), . . . , Em(x) are linearly independent then such elements are a huge subset of g. To see630

this, just consider the determinant expressing that E1(x) . . . , Em(x) are linearly dependent.631

I Proposition 31. Let g be an m-dimensional Lie algebra over a large enough field F such632

that there exist two elements x0, y0 ∈ F that generate g. Then there are elements xi, yi ∈ g,633

(i = 1, . . . ,m2) such that xi and yi generate g for every i and that xi ⊗ yi span g⊗ g.634

Proof. Pick expressions Ei(z, w) (i = 1, . . . ,m) such that Ei(x0, y0) are linearly independent.635

Then the set of elements x such that Ei(x, y0) are linearly independent is huge and hence636

contains a basis x1, . . . , xm of g. For each j, the subset consisting of those y for which637

Ei(xj , y) are linearly independent is a huge set Dj ⊂ g whence there exist elements yjk ∈ Dj638

(k = 1, . . . ,m) that are a basis for g. Each of the m2 pairs xj , yjk generate g. To see that639

they span g ⊗ g, write an element z ∈ g ⊗ g in the form z =
∑
xj ⊗ y′j and express y′j as640

y′j =
∑
k αjkyjk. Then z =

∑
j,k αjkxj ⊗ yjk. J641

I Lemma 32. Let g1, . . . , gm be finite dimensional simple Lie algebras over a large enough642

field F, each generated by 2 elements. Then g1 ⊕ . . .⊕ gm is also generated by two elements.643
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Proof. Assume that xi and yi generate gi (i = 1, . . . ,m). We claim that we may further644

assume that ad(x)diyi 6= 0 where di = dimF(gi). Indeed, if ad(x)diyi = 0 then, by Engel’s645

theorem, there exists a pair (wi, zi) ∈ g × g such that ad(wi)dizi 6= 0. If we fix zi from646

such a pair then the elements wi such that ad(wi)dizi 6= 0 is a huge set. There exist di Lie647

expressions E1, . . . , Edi in in two variables such that E1(xi, yi), . . . , Edi(xi, yi) are linearly648

independent elements of gi. The elements wi such that E1(wi, yi), . . . , Edi(xi, yi) are linearly649

independent form a huge set. The intersection of these two huge sets is still huge and hence650

non-empty. We replace xi with an element from the intersection. Now the set of wi such651

that ad(xi)diwi 6= 0 is huge as well as these set of those for which Ej(xi, wi) are linearly652

independent. We can replace yi with an element from the intersection.653

Let fi = fi(t) be the monic polynomial of smallest degree such that fi(ad(xi))yi = 0.654

Note that fi has degree at most di and the assumption on xi and yi implies that fi is not a655

divisor of tdi . Therefore each fi has a nonzero root (in the algebraic closure F of F). Let656

Ri be the set of nonzero roots of fi in F. There exist field elements α1, . . . , αm ∈ F such657

that the sets αiRi are pairwise disjoint. Replacing xi with αixi we arrange that the sets Ri658

become pairwise disjoint. Then for each i, put hi =
∏
j 6=i fj . We have that hi(ad(xj))yj = 0659

for every j 6= i, while hi(ad(xj))yi 6= 0 as hi is not divisible by fi.660

Put x =
∑m
i=1 xi and y =

∑m
i=1 yi. Then hi(x)y is a nonzero element of gi. Let M661

be the subalgebra of g generated by x and y. We see that M has a nonzero element, say662

zi contained in gi. The projection of M on the ith component is clearly gi and xi and yi663

generate gi. As gi is simple we have that the ideal of M generated by zi is gi. This holds for664

all i = 1, . . . ,m, showing that M = g. J665

E Linear kernel vectors of matrix Lie algebras666

In this section, we will give an alternative proof of Lemma 23, which doesn’t use density667

arguments, but instead uses weight decomposition of representations of semi-simple Lie668

algebras over C.669

E.1 Weight decomposition of Lie algebra representations670

Fix a Cartan subalgebra h of a semisimple Lie algebra g over C. By definition h is nilpotent.671

If g is semisimple, h is abelian [24, Thm3, Ch.3]. Similar to the notion of eigenvalues and672

eigenspaces is the concept of a weight and its weight space. Intuitively, it can be thought673

of as a linear function that captures the eigenvalues of a set of matrices simultaneously.674

Formally, a weight is an element of h∗. If w ∈ h∗, then the w-weight space of V is defined as675

Vw = {v ∈ V | ∀ h ∈ h, ρ(h) · v = w(h)v }.676

I Theorem 33. If g is a complex semi-simple Lie algebra, then every representation (ρ, V )677

can be decomposed into weight spaces V = ⊕wVw.678

Using this decomposition we have a basis such that for any h ∈ h, ρ(h) is a diagonal679

matrix with w(h) as diagonal elements where w runs over all weights of V .680

I Fact 34. The matrix space defined by the image ρ(g) of the representation (ρ, V ) is singular681

iff 0 is a weight of the representation, i.e. V0 occurs with multiplicity at least one.682

Proof. This follows easily from the observation about ρ(hi) which implies that ρ(h) is singular683

if 0 is a weight. From Section 4, we know that the entire algebra is singular if any of its684

Cartan subalgebra is. If 0 is not a weight, then it is easy to construct a element h ∈ h such685

that w(h) 6= 0 for every weight. Thus, ρ(h) has full rank. J686
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If we decompose the adjoint representation, the weights we obtain are called roots usually687

denoted by Φ. It is also a fact that if α ∈ Φ, then −α ∈ Φ. We thus can write g = h⊕α∈Φ gα.688

Moreover, each of the spaces gα is one-dimensional. We denote an element of gα by gα which689

is unique upto a scalar. Such a decomposition of the Lie algebra is very useful as we can690

understand the action under any representation of these subspaces gα as follows .691

I Proposition 35. [24, Prop.1, Chapter 7] For any representation (ρ, V ) of g, ρ(gα)Vw ⊂692

Vw+α for every weight w and every root α.693

E.2 Notation694

Fix a complex semi-simple Lie algebra g and a Cartan subalgebra h. Let Φ be its set of roots.695

We choose a Cartan-Weyl basis6 for g (cf. e.g. [24, pp. 48]). This means that we have a set696

of simple roots7 S = {α1, · · ·αn} and a basis of h, {h1, · · ·hn} such that the following hold,697

[hi, gαj ] = αj(hi)gαj ∀i, j ∈ [n]698

[gα, gβ ] = cαβgα+β (cαβ 6= 0) α+ β ∈ Φ699

[gα, gβ ] = 0 if α+ β 6∈ Φ700

[gαi , g−αi ] = hi ∀i ∈ [n]701
702

Choose a basis of V ∼= FN , such that ρ(h) is diagonal. Let W be the set of weights of V703

and thus V = ⊕w∈WVw such that Vw is the w weight space of h. Note that we are assuming704

that 0 ∈W as non-singular spaces anyway cannot have a linear kernel.705

E.3 Main proof706

We recall that given a Lie algebra g and a representation (ρ, V ) a linear kernel vector707

φ : g→ V is a linear map such that ρ(x)ψ(x) = 0 for every x ∈ g. We state the main lemma708

we need and will prove it later.709

I Lemma 36. Assume that trivial representation is not a subrepresentation of the represent-710

ation (ρ, V ) of g. Let ψ : g→ V be a linear kernel vector. Then for any α, β ∈ Φ such that711

α+ β 6= 0 and h ∈ h we have712

ψ(h) ∈ V0, ψ(gα) ∈ Vα and713

ψ([gα, gβ ]) = ρ(gα)ψ(gβ)714

ψ([h, gα]) = ρ(h)ψ(gα)715
716

I Theorem 37. Assume that trivial representation is not a subrepresentation of the repres-717

entation (ρ, V ) of g. Then for every x, y ∈ g,718

ψ([x, y])− ρ(x)ψ(y) = 0719

Proof. By linearity, it suffices to show this for the basis vectors hi, gα. Lemma 36 shows720

it in every except when we have (x, y) = (gα, g−α). Fix any root α. By Lemma 36 and721

Proposition 35, the vector ψ([gα, g−α])− ρ(gα)ψ(g−α) ∈ V0 and thus is annihilated by ρ(h).722

6 Cartan-Weyl basis and the Chevally basis differ only by a normalization. We do not need properties of
the coefficients cα,β and thus either basis works well.

7 Simple roots are just a basis of h∗ while the set of all roots can be linearly dependent.
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We now wish to show that it is annihilated by ρ(gβ) for any root β. The assumption that723

there are no trivial subrepresentations then implies that this vector must be zero.724

Proposition 21 already shows it if β ∈ {α,−α} and so we assume that’s not the case.725

ρ(gβ)ρ(gα)ψ(g−α) = ρ([gβ , gα])ψ(g−α) + ρ(gα)ρ(gβ)ψ(g−α) ρ is a representation726

= ρ([gβ , gα])ψ(g−α) + ρ(gα)ψ([gβ , g−α]) Lemma 36 for (β,−α)727

= ψ([[gβ , gα], g−α]) + ψ([gα, [gβ , g−α]]) 36 for (α+ β,−α), (α, β − α)728

= ψ ([gβ , gα], g−α] + [gα, [gβ , g−α]]) By linearity729

= ψ ([gβ , [gα, g−α]]) By Jacobi identity730

= ρ(gβ)ψ ([gα, g−α]) 36 for (β, h), h = [gα, g−α] ∈ h731732

Here, we have used Lemma 36 formally even if one of them is not a root to prevent dividing733

into cases. For example, if β − α is not a root then that term is anyway 0 and we can734

represent 0 as ψ(0) = ψ([gβ , g−α]). J735

E.4 Proof of Lemma 36736

For ease of notation, we label Hi = ρ(hi) for 1 ≤ i ≤ n and Xα = ρ(gα), α ∈ Φ. Similarly,737

we will have vi := ψ(hi), vα := ψ(gα). We restate Equation (3) in more verbose terms,738

Hivi = 0 ∀i ∈ [n] (7)739

Xαvα = 0 ∀α ∈ Φ (8)740

Hivj +Hjvi = 0 ∀i, j ∈ [n], i 6= j (9)741

Hivα +Xαvi = 0 ∀i ∈ [n], α ∈ Φ (10)742

Xβvα +Xαvβ = 0 ∀α, β ∈ Φ (11)743
744

I Lemma 38 (Structure). For every i ∈ [n], vi ∈ V0, and for every root α, vα ∈ Vα if α is a745

weight and is 0 otherwise.746

Proof. i) Let vj =
∑
w∈W uw where uw ∈ Vw. Since 0 = Hjvj =

∑
w∈W w(hj)uw, we have747

that w(hj)uw = 0. For any w 6= 0 such that uw 6= 0 we have w(hj) = 0. Pick k ∈ [n] such that748

w(hk) 6= 0. Then, Hkvj +Hjvk = 0. Looking at the Vw component w(hk)uw + w(hj)vk = 0.749

Since, w(hj) = 0, we get that w(hk)uw = 0. But k is chosen such that w(hk) 6= 0 and thus,750

uw = 0.751

ii) Fix an α. We just proved that ∀i, vi ∈ V0 and using Proposition 35 we get Xαvi ∈ Vα.752

Suppose vα =
∑
w∈W uw, where uw ∈ Vw. For any non-zero w 6= α, pick i such that753

w(hi) 6= 0. Then, Hivα + Xαvi = 0. But we already know that Xαvi ∈ Vα and thus754

Hivα ∈ Vα. Suppose Hivα =
∑
w∈W w(hi)uw ∈ Vα.755

Then, the Vw component should be zero but w(hi) 6= 0 =⇒ uw = 0. It follows that756

vα ∈ Vα ⊕ V0 for every root α. Fix α and now for every β 6= α, we have Xαvβ +Xβvα = 0.757

Comparing the Vβ component we get that Xβu0 = 0. This is true for every β and since758

u0 ∈ V0, it is also true for ρ(h) for every h ∈ h. Thus, for every x ∈ g, ρ(x)uw and since759

there are no trivial submodules, u0 = 0. Thus, vα ∈ Vα J760

I Lemma 39. For all pairs of roots α, β such that 0 6= β + α ∈ Φ, Xβvα = cαβvα+β.761

Proof. We have that Hivα+β + Xα+βvi = 0. Similarly, Xαvi = −Hivα = −α(hi)vα and762

Xβvi = −Hivβ = −β(hi)vβ . Moreover, Xβvα +Xαvβ = 0.763
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Now, Xα+β = ρ(gα+β) = cρ([gα, gβ ]) = c(XαXβ −XβXα) where c = 1
cαβ

. Thus,764

−(α+ β)(hi)vα+β = Xα+βvi765

= c(XαXβ −XβXα)vi766

= c(Xα(Xβvi)−Xβ(Xαvi))767

= c(Xα(−β(hi)vβ)−Xβ(−α(hi)vα)768

= −c (β(hi)Xαvβ − α(hi)Xβvα)769

= −c (−β(hi)Xβvα − α(hi)Xβvα)770

= c · (α+ β)(hi) ·Xβvα.771
772

Thus, picking hi such that (α+ β)(hi) 6= 0, we get that Xβvα = 1
cvα+β . J773

I Lemma 40. Let α, β be roots such that β 6= −α, α+ β 6∈ Φ Then. we have that Xαvβ = 0.774

Proof. Since, α+ β 6∈ Φ, [gα, gβ ] = 0 which implies that ρ([gα, gβ ]) = 0 and thus, XαXβ =775

XβXα. Moreover, ∃hi such that α(hi) 6= −β(hi) because the hi form a basis for h. We fix our i776

to be one such. Now, from Equation (11), we get that Xαvβ+Xβvα = 0. From Equation (10),777

we get that Hivα +Xαvi = 0 and multiplying it by Xβ we obtain, α(hi)Xβvα +XβXαvi = 0.778

Repeating it with β and α switched, we get, β(hi)Xαvβ +XαXβvi = 0. Subtracting these779

2 equations, we get α(hi)Xβvα − β(hi)Xαvβ = 0. We already have another equation i.e.780

Xαvβ +Xβvα = 0. Since β(hi) 6= −α(hi), these two homogeneous equations are independent781

and thus, the only solution is that Xαvβ = Xβvα = 0. J782

The structure lemma establishes Lemma 36 when y ∈ h i.e. for any x ∈ g, h ∈ h we783

have ρ(h)ψ(x) = ψ([h, x]). To see this notice that ρ(h)ψ(gα) = α(h)ψ(gα) = ψ(α(h)gα)) =784

ψ([h, gα]) where the first equality uses that ψ(gα) ∈ Vα and the last by the property of the785

basis. And the other two lemmas extend it to α, β as cαβvα+β = cαβψ(gα+β) = ψ([gα, gβ ]).786
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