
On p-Group Isomorphism: search-to-decision,
counting-to-decision, and nilpotency class reductions via tensors

Joshua A. Grochow ∗ Youming Qiao †

February 16, 2021

Abstract

In this paper we study some classical complexity-theoretic questions regarding Group Iso-
morphism (GpI). We focus on p-groups (groups of prime power order) with odd p, which are
believed to be a•1 bottleneck case for GpI, and work in the model of matrix groups over finite
fields. Our main results are as follows.

• Although search-to-decision and counting-to-decision reductions have been known for over
four decades for Graph Isomorphism (GI), they had remained open for GpI, explic-
itly asked by Arvind & Torán (Bull. EATCS, 2005). Extending methods from Tensor
Isomorphism (Grochow & Qiao, ITCS 2021), we show moderately exponential-time such
reductions within p-groups of class 2 and exponent p.

• Despite the widely held belief that p-groups of class 2 and exponent p are the hardest cases
of GpI, there was no reduction to these groups from any larger class of groups. Again using
methods from Tensor Isomorphism (ibid.), we show the first such reduction, namely
from isomorphism testing of p-groups of “small” class and exponent p to those of class two
and exponent p.

For the first results, our main innovation is to develop linear-algebraic analogues of classical
graph coloring gadgets, a key technique in studying the structural complexity of GI. Unlike the
graph coloring gadgets, which support restricting to various subgroups of the symmetric group,
the problems we study require restricting to various subgroups of the general linear group, which
entails significantly different and more complicated gadgets. The analysis of one of our gadgets
relies on a classical result from group theory regarding random generation of classical groups
(Kantor & Lubotzky, Geom. Dedicata, 1990). For the nilpotency class reduction, we combine
a constructive version of the Lazard correspondence with Tensor Isomorphism-completeness
results (Grochow & Qiao, ibid.).

∗Departments of Computer Science and Mathematics, University of Colorado, Boulder. jgrochow@colorado.edu
†Centre for Quantum Software and Information, University of Technology Sydney. youming.qiao@uts.edu.au
1Youming: Was: the

1 Introduction

In this paper, we study the algorithmic problem of deciding whether two finite groups are isomorphic,
known as the Group Isomorphism problem (GpI). Different variants of the GpI problem arise,
with correspondingly different complexities, when the groups are given in different ways, e.g. by
a generating set of permutations, a generating set of matrices, a full multiplication table, or a
black box oracle. In its various incarnations, GpI is a fundamental problem in computational
algebra and computational complexity. The generator-enumerator algorithm solves isomorphism
in |G|log |G|+O(1)-time [FN70,Mil78]2, and even the current state of the art for general groups—in
any of the aforementioned input models—is still |G|Θ(log |G|) [Ros13b,LQ17,CH03,BE99,ELGO02,
BEO02,Wil14]. Nonetheless, over the past 15 years there has been significant progress on efficient
isomorphism tests in various classes of groups: here is an incomplete list of references [LG09,
BCGQ11,QST11,LW12,BQ12,BCQ12,Ros13a,Ros13b,BMW17,GQ15,GQ17,BGL+19,BLQW20].

When given by multiplication tables, GpI reduces to GI [KST93], and in the other, more
realistic (for computer algebra systems) and more succinct models, we get a reduction in the other
direction [Mek81,Luk93,GQ21,HQ20]. As a result, the techniques and complexity of GpI are closely
bound up with GI. However, since the techniques used in GpI are often agnostic to the input model,
we are often free to focus on the abstract structure of the groups in question, and the choice of input
model is then essentially just a choice of how we measure and report the running time. For example,
if GI is in P, then GpI can be solved in poly(|G|) time; if GpI for groups given by a generating set
of m matrices of size n× n over Fp can be solved in pO(n+m) time, then GI is in P.

For GI, a wide variety of algorithmic and structural complexity results are known (see, e.g.,
[KST93,Bab16,GS20]). In particular, there are polynomial-time search-to-decision and counting-
to-decision reductions [Mat79], so search, counting, and decision are all equivalent for GI. (This was
an early piece of evidence that GI was not likely to be NP-complete, since for NP-complete problems,
their counting variants are typically #P-complete, hence at least as hard as all of PH [Tod91].) For
GpI, no such reductions are known, even in restricted classes of groups; Arvind and Torán [AT05,
Problem 16] explicitly asked for such reductions. Additionally, for GI, there are many classes of
graphs for which the isomorphism problem remains GI-complete—such as graphs of diameter 2 and
radius 1, directed acyclic graphs, regular graphs, line graphs, polytopal graphs [ZKT85]—but no
such analogous results are known for GpI.

In this paper, we make progress on all three of these questions, within the class of groups widely
believed to be hardest cases of GpI, namely the p-groups of nilpotency class 2 and exponent p; these
are groups of order a power of the prime p, such that G modulo its center is abelian, and such that
gp = 1 for all g ∈ G. (Throughout most of this paper we assume p is an odd prime.) For each of
our three main results, we now give further motivation before stating it formally.

1.1 Main results

Search-to-decision reductions. The “decision versus search” question is a classical one in com-
plexity theory, having attracted the attention of researchers since the introduction of NP. Efficient
search-to-decision reductions for SAT and GI are now standard. Valiant first showed the existence of
an NP relation for which search does not reduce to decision in polynomial time [Val76]. A celebrated
result of Bellare and Goldwasser shows that, assuming DTIME(22O(n)

) 6= NTIME(22O(n)
), there exists

an NP language for which search does not reduce to decision in polynomial time [BG94]. However, as
usual for such statements based on complexity-theoretic assumptions, the problems constructed by

2Miller [Mil78] attributes this algorithm to Tarjan.

1

such a proof are considered somewhat unnatural, and natural problems for which search seems not
reducible to decision are rare. The most famous candidate may be Factoring (with the decision
version being Primality)3 and Nash Equilibrium [CDT09] (the decision version is trivial).

Theorem A. Let p be an odd prime, and let GpIso2Exp(p) denote the isomorphism problem for
p-groups of class 2 and exponent p in the model of matrix groups over Fp. For groups of order pn,
there is a search-to-decision reduction for GpIso2Exp(p) running in time pO(n) = poly(|G|).

Remark 1.1. This runtime is really only square-root (moderately) exponential: The running time
of the best-known algorithm for GpIso2Exp(p) is essentially pΘ(n2), and the best-known witness
size, if we think in terms of nondeterministic algorithms, is Θ(n2) [LSZ77]. So our search-to-decision
reduction in time pO(n) is akin to having such a reduction running in time 2Θ(

√
N) for a problem

that is solvable in 2Θ(N) time (resp., has witness size Θ(N)).

We note that that GpIso2Exp(p) seems different from all the problems listed above in terms
of search-to-decision reductions. First, unlike SAT and GI, a polynomial-time search-to-decision
reduction seems beyond reach, despite our moderately exponential-time reduction. Note that a
polynomial-time reduction would need to run in time poly(n, log p), and we find it unlikely that the
time complexity of our reduction can be brought down this far with current techniques. Second,
unlike Factoring and Nash Equilibrium, its decision version also seems difficult. Indeed, it is
a long-standing open problem to test isomorphism of p-groups of class 2 and exponent p in time
polynomial in the group order, which already can be exponential in the input size if the input is
given by a generating set of matrices.

Counting-to-decision reductions. Counting-to-decision reductions are also of great interest in
complexity theory. An efficient counting-to-decision reduction for GI is also a well-known result
[Mat79]. In contrast, for SAT, a polynomial-time counting-to-decision reduction would imply that
PH collapses [Tod91].

Theorem B. For p an odd prime, p ≥ nΩ(1), there is a randomized counting-to-decision reduction
for GpIso2Exp(p) for groups of order pn, running in time pO(n) = poly(|G|).

As with Theorem A, the runtime here is only moderately exponential, see Remark 1.1.
Also as in the case of search-to-decision, GpIso2Exp(p) seems different from the problems listed

above in terms of reducing counting to decision. First, unlike GI, a polynomial-time counting-to-
decision reduction for GpIso2Exp(p) seems beyond current reach. Second, unlike SAT, for which
there have been no non-trivial algorithms to reduce exact counting to decision, we show a moderately
exponential-time algorithm for GpIso2Exp(p). As Ryan Williams pointed out to us, asking for the
existence of subexponential-time counting-to-decision reduction for SAT seems to lead to asking for
the relation between the decision [IP01] and the counting [DHM+14] versions of the Exponential
Time Hypothesis.

Nilpotency class reduction. Unlike the case of Graph Isomorphism, for GpI essentially the
only class of groups for which isomorphism is known to be as hard as the general case are those
which are directly indecomposable, that is, they cannot be written as a direct product A×B with
both A,B nontrivial [Wil12,Wil10,KN09]. However, this result is the group analogue of saying that
isomorphism of connected graphs is GI-complete, so although useful (and much less trivial than in
the case of graphs vs connected graphs), from a structural perspective it is more like a zero-th step.

3Here we are thinking of Factoring as the search problem corresponding to the relation {(n, d) :
d is a proper divisor of n} ⊆ N× N, so that the existence problem is then precisely Primality.

2

For a variety of reasons [Exc], p-groups of nilpotency class 2 and exponent p are widely believed
to be the hardest cases of GpI, but to date there is no known reduction from isomorphism in any
larger class of groups to this class. The Tensor Isomorphism-completeness of testing isomorphism
in this class of groups (when given by generating matrices over Fp) suggests an additional reason
for hardness [GQ21] (see also Section 6.1). Here, we leverage that completeness result to give a
reduction within GpI itself. While it falls short of being GpI-complete (equivalent to GpI), this is
the first such reduction that we are aware of.

To state our result, we need to first recall the definition of nilpotency class. We will give an
inductive definition: a group G is nilpotent of class 1 if it is abelian, and nilpotent of class c > 1
if G/Z(G) (G modulo its center) is nilpotent of class c − 1. Recall that a finite group is nilpotent
iff it is the direct product of its Sylow p-subgroups, so from the comment above, isomorphism of
nilpotent groups is polynomial-time equivalent to isomorphism of p-groups (for varying p).

Theorem P. Let p be an odd prime. For groups given by generating sets of m matrices of size
n×n over Fpe, Group Isomorphism for p-groups of exponent p and class c < p reduces to Group
Isomorphism for p-groups of exponent p and class 2 in time poly(n,m, log p).

For example, as a consequence of Thm. P, testing isomorphism of 5-groups of class 4 reduces to
testing isomorphism of 5-groups of class 2 in the matrix group model over fields of characteristic 5.

Remark 1.2. Two new results would suffice to get the analogous result in the Cayley table model.
The first is to compute the Lazard correspondence in the Cayley table model in time poly(|G|).
The second is to improve the blow-up in the reduction from (Lie) Algebra Isomorphism to 3TI
from [FGS19]. Currently this reduction increases the dimension quadratically, which means the
size of the group becomes |G|O(log |G|) after the reduction; instead, we would need a reduction that
increases the dimension only linearly.

Remark 1.3. One may also ask whether our theorems can be combined, in order to get search-to-
decision and counting-to-decision reductions for p-groups of class c < p instead of only class 2. We
believe this should be approachable, but again the quadratic increase in dimension in reductions,
mentioned in the previous remark, gets in the way. The quadratic increase makes the square-root
exponential reductions into ordinary exponential reductions, negating any gains.

1.2 Main techniques and proof strategies

All our results are based on the connection with Tensor Isomorphism (TI) [GQ21]. Let Λ(n,F)
denote the space of n×n skew-symmetric (alternating) matrices over F. Then the Baer Correspon-
dence [Bae38] gives an equivalence between{

p-groups of class 2, exponent p,
G/Z(G) ∼= Znp , Z(G) ∼= Zmp

}
←→

{A ≤ Λ(n,Fp)
dimA = m

}
←→

Nilpotent Fp-Lie algebras
of class 2, L/Z(L) ∼= Fnp ,
Z(L) ∼= Fmp

in such a way that two such groups are isomorphic iff the corresponding Lie algebras are isomorphic
iff the corresponding matrix spaces A,B ≤ Λ(n,Fp) are isometric. Here, we say that two such linear
subspaces are isometric if there is an invertible matrix L ∈ GL(n,Fp) such that B = LtAL :=
{LtAL : A ∈ A}. The corresponding computational problem is:

Definition 1.4 (The Alternating Matrix Space Isometry problem).
Input: A1, . . . , Am and B1, . . . , Bm, n× n alternating4 matrices over a field F,

4An n× n matrix A over F is alternating if for every v ∈ Fn, vtAv = 0. When F is not of characteristic 2, this is
equivalent to being skew-symmetric At = −A.

3

Decide: Is there a L ∈ GL(n,F), such that the linear span of {Ai : i ∈ [m]} is equal to the linear
span of {LtBiL : i ∈ [m]}?

Our search- and counting-to-decision reductions (Thms. A and B) actually follow from analogous
results on Alternating Matrix Space Isometry (Thms. A′ and B′), using a constructive version
of the Baer Correspondence communicated to us by James B. Wilson (Lem. 6.2). The viewpoint of
alternating matrix spaces made the constructions much easier to find and reason about.

Our nilpotency class reduction uses a constructive version of the Lazard Correspondence (Prop. 6.4),
which generalizes the Baer correpsondence to nilpotency class c < p; the TI-completeness of Lie Al-
gebra Isomorphism for nilpotent Lie algebras of class 2 (a combination of reductions from [FGS19]
and [GQ21]); and finally the aforementioned constructive Baer Correspondence to go back to p-
groups of class 2.

In the remainder of this section we give more details of the techniques involved.

1.2.1 Linear algebraic coloring gadgets

Our most novel technique is to devise linear algebraic analogues for Alternating Matrix Space
Isometry of the graph coloring gadget, a key technique in the structural complexity study of
Graph Isomorphism (see, e. g., [KST93]). This technique is crucial in the following theorems,
used to prove Thms. A and B, respectively.

Theorem A′. Let q be a prime power. There is a search-to-decision reduction for Alternating
Matrix Space Isometry which, given n×n alternating matrix spaces A,B over Fq of dimension
m, computes an isometry between them if they are isometric, in time qÕ(n) or in time qO(n+m). The
reduction queries the decision oracle with inputs of dimension at most O(n2).

Theorem B′. For q a prime power with q = nΩ(1), there is a randomized counting-to-decision
reduction for Alternating Matrix Space Isometry which, given n × n alternating matrix
spaces A,B over Fq of dimension m, computes the number of isometries from A to B in time qO(n).
The reduction queries the decision oracle with inputs of dimension at most O(n2).

Let us first briefly review the graph coloring gadgets. Suppose we have a graph G = (V,E)
with the vertices colored, i. e., there is a map f : V → {1, . . . , c} =: [c], where we view [c] as the
set of colors. Let n = |V |. Suppose we want to construct an uncolored graph G̃, in which the
color information carried by f is encoded. One way to achieve this is the following. (See [KST93]
for other more efficient constructions.) For every v ∈ V , if v ∈ V is assigned color k ∈ [c], then
attach a “star” of size kn to v, that is add kn new vertices to G and attach them all to v. We then
get a graph G̃ with O(cn2) vertices, and we see that an automorphism of G̃, when restricting to
V , has to map v ∈ V to another v′ ∈ V of the same color, as degrees need to be preserved under
automorphisms.

Such an idea can be carried out in the 3-tensor context as in [FGS19], but with a significant loss
of efficiency•5, which prevents its use for search- and counting-to-decision reductions and indicates
the needs for new techniques. To illustrate the situation, we consider a toy problem. To ease the
presentation, we adopt a perspective on 3-tensors that we hope is clear on its own; the analogy with
the graph case is fairly close, but not immediately obvious, and we present it in full detail in Sec. 3.
Note that by slicing a 3-tensor along one direction, we get a tuple of matrices (see also Sec. 2); in
the following of this subsection we shall mostly work with matrix tuples.

5Youming: Added:

4

Let A = (A1, . . . , Am) ∈ M(n,F)m be a tuple of matrices, where Ai’s are linearly independent.
There are two natural actions on A. The first action is S = (si,j) ∈ GL(m,F) on A by sending
Aj to

∑
i∈[m] si,jAi. Denote the resulting matrix tuple by AS . The second action is (L,R) ∈

GL(n,F) ×GL(n,F) on A by sending Aj to LAjRt for j = 1, . . . ,m. Denote the resulting matrix
tuple by LARt. For two tuples A,B, and for the purposes of this illustration, let us define the set
of isomorphisms as Iso(A,B) = {S ∈ GL(m,F) : ∃L,R ∈ GL(n,F), LARt = BS}.

In the counting-to-decision reduction we will need to test isomorphism of such tuples under
the action by diagonal matrices. •6 Let diag(m,F) denote the subgroup of GL(m,F) consisting
of diagonal matrices. Our goal then is to construct Ã = (Ã1, Ã2, Ã3) ∈ M(N,F)3 and B̃, such
that Iso(Ã, B̃) = Iso(A,B) ∩ diag(3,F). The construction we use, from [FGS19], is as follows. Let
N = 23 · n = 8n, and let

Ã1 =

A1 0 0 0
0 In 0 0
0 0 0 0
0 0 0 0

 , Ã2 =

A2 0 0 0
0 0 0 0
0 0 I2n 0
0 0 0 0

 , Ã3 =

A3 0 0 0
0 0 0 0
0 0 0 0
0 0 0 I4n

 , (1)

where Is denotes the identity matrix of size s, and 0’s denote all-zero matrices of appropriate sizes,
and define B̃ similarly. By [FGS19, Lemma 2.2], we have Iso(Ã, B̃) = Iso(A,B) ∩ diag(3,F). The
proof, while not difficult, relies on certain algebraic machineries like the Krull–Schmidt Theorem
for quiver representations. For our purpose, we only point out that a key in the proof is that
Iso(Ã, B̃) ⊆ diag(3,F), which can be easily checked by comparing the ranks of the Ãi, B̃i.

The preceding gadget construction can be generalized to handle subgroups of GL(n,F) of the

form {

S1 0 . . . 0
0 S2 . . . 0
...

...
. . .

...
0 0 . . . Sc

 : Si ∈ GL(ni,F)}, where c = O(log n). We shall refer to this gadget as the

Futorny–Grochow–Sergeichuk gadget, or FGS gadget for short.
However, the FGS gadget cannot be used for search- and counting-to-decision reductions in

Thms. A and B. The key bottleneck is the restriction that c = O(log n). To check why this is so
reveals an interesting distinction between the combinatorial and the linear algebraic worlds. Recall
that in the graph setting, if there are c colors, we need stars of size at most cn. While in the
linear algebraic setting, if there are c components, the biggest identity matrix needs to be of size
2c · n × 2c · n. The reason is that we can do non-trivial linear combinations of the matrices Ãi, so
several matrices of small ranks might be combined to get a matrix of large rank. Indeed, in Eq. 1,
if Ã3 was accompanied with I3n instead of I4n, then a non-trivial linear combination of Ã1 and
Ã2 could be of rank the same as Ã3, and the argument that Iso(Ã, B̃) ⊆ diag(m,F) would not go
through. That’s why we need such exponential growth as the number of components grow.

To address this challenge, we devise two new gadgets, which restrict to the monomial group and
the diagonal group, respectively. •7

The monomial group of GL(n,F), denoted as Mon(n,F), consists of monomial matrices, i.e. a
matrix with exactly one non-zero entry in each row and each column. We design a gadget that
restricts to Mon(n,F), which is the key in the search-to-decision reduction (Thm. A′).

In the case of F = Fq and q = nΩ(1), we design a gadget that restricts to diag(n, q), which is
the key in the counting-to-decision reduction (Thm. B′). The gadget for restricting to monomial

6Youming: Removed: “; here we focus on this piece of the overall reduction to illustrate some features of our proof
technique.” This is because we already stated our intention two paragraphs before.

7Youming: Removed: The constructions of these gadgets are quite different from the FGS gadget. As the monomial
restricting gadget is actually somewhat similar to the FGS gadget.

5

groups cannot be used in the counting-to-decision reduction. Its construction is already delicate,
and the analysis is involved, relying on a celebrated result of Kantor and Lubotzky regarding random
generation of classical groups [KL90].

1.2.2 Constructive Lazard correspondence

In light of the TI-completeness of isomorphism of class 2 p-groups given by matrices over finite
fields of characteristic p [GQ21], the key idea here is how to reduce isomorphism for other classes
of groups to some tensor problem. For groups in general this seems quite difficult, as tensors are
multilinear and groups are fundamentally not. But for p-groups of nilpotency class < p, the Lazard
correspondence gives an equivalence between the category of such groups and a corresponding cat-
egory of Lie algebras (over the same field, nilpotent of the same class). If we could make this
correspondence computationally efficient, we would then be in the fortunate setting in which Lie
Algebra Isomorphism is multilinear, and is in TI [FGS19], so we can then reduce back to isomor-
phism of class 2 p-groups. Showing that the Lazard correspondence can be calculated efficiently,
when the groups are given by matrices in characteristic p, is indeed the technical heart of our result
here. The Lazard correspondence generalizes the Baer correspondence (the latter is between class 2
p-groups and nilpotent Lie algebras of class 2); although making the Baer correspondence effective
is essentially classical, for the Lazard correspondence this appears to be new.

The restriction to groups of nilpotency class c < p comes entirely from the Lazard correspon-
dence, which is also known only to work under this same assumption (see [Nai13] for details, and
what can be said when c = p, but unfortunately already when c = p one no longer gets an equiv-
alence up to isomorphism). Despite this restriction, we note that we know of no prior reductions
from any class of groups to p-groups of class 2.

In Rmk. 1.2 we discuss the ingredients necessary to get the same result for GpI in the Cayley
table model, which seems approachable.

1.3 Organization of the paper

In Sec. 2 we present preliminaries and notation. In Sec. 3 we present more details of the analogy
with individualizing vertices in graphs by attaching stars, using the example of reducing Monomial
Code Equivalence to Tensor Isomorphism. In Sec. 4 we present our gadget to restrict to
the monomial subgroup, an example use of this to reduce GI to Alternating Matrix Space
Isometry, and Thm. A′. In Sec. 5 we prove Thm. B′. In Sec. 6 we present the constructive
Baer and Lazard Correspondences, and use them to derive Thms. A and B from Thms. A′ and B′,
respectively, as well as proving Thm. P. Finally, in Sec. 7 we conclude with open questions and
discuss the relationship between this work and the authors’ line of work on Tensor Isomorphism.

2 Preliminaries

Font Object Space of objects
A,B, . . . matrix M(n,F) or M(`× n,F)
A,B, . . . matrix tuple M(n,F)m or M(`× n,F)m

A,B, . . . matrix space [Subspaces of M(n,F) or Λ(n,F)]
A, B, . . . 3-way array T(`× n×m,F)

Table 1: Summary of notation related to 3-way arrays and tensors.

6

Vector spaces. Let F be a field. In this paper we only consider finite-dimensional vector spaces
over F. We use Fn to denote the vector space of length-n column vectors. The ith standard basis
vector of Fn is denoted ~ei. Depending on the context, 0 may denote the zero vector space, a zero
vector, or an all-zero matrix. For S a set of vectors, we use 〈S〉 to denote the subspace spanned by
elements in S.

Some groups. The general linear group of degree n over a field F is denoted by GL(n,F). The
symmetric group of degree n is denoted by Sn. The natural embedding of Sn into GL(n,F) is to
represent permutations by permutation matrices. The subgroup of GL(n,F) consisting of diagonal
matrices is called the diagonal subgroup, denoted by diag(n,F). A monomial matrix is a product
of a diagonal and a permutation matrix; equivalently, each row and each column has exactly one
non-zero entry. The collection of monomial matrices forms a subgroup of GL(n,F), which we call
the monomial subgroup and denote by Mon(n,F). It is the semi-direct product diag(n,F) o Sn ∼=
(F∗)n o Sn.

Nilpotent groups. If A,B are two subsets of a group G, then [A,B] denotes the subgroup
generated by all elements of the form [a, b] = aba−1b−1, for a ∈ A, b ∈ B. The lower central series
of a group G is defined as follows: γ1(G) = G, γk+1(G) = [γk(G), G]. A group is nilpotent if there is
some c such that γc+1(G) = 1; the smallest such c is called the nilpotency class of G, or sometimes
just “class” when it is understood from context. A finite group is nilpotent if and only if it is the
product of its Sylow subgroups; in particular, all groups of prime power order are nilpotent.

Matrices. Let M(`×n,F) be the linear space of `×n matrices over F, and M(n,F) := M(n×n,F).
Given A ∈ M(`× n,F), At denotes the transpose of A.

A matrix A ∈ M(n,F) is alternating, if for any u ∈ Fn, utAu = 0. That is, A represents an
alternating bilinear form. Note that in characteristic 6= 2, alternating is the same as skew-symmetric,
but in characteristic 2 they differ (in characteristic 2, skew-symmetric=symmetric). The linear space
of n× n alternating matrices over F is denoted by Λ(n,F).

The n× n identity matrix is denoted by In, and when n is clear from the context, we may just
write I. The elementary matrix Ei,j is the matrix with the (i, j)th entry being 1, and other entries
being 0. The (i, j)-th elementary alternating matrix is the matrix Ei,j − Ej,i.

Matrix tuples. We use M(` × n,F)m to denote the linear space of m-tuples of ` × n matrices.
Boldface letters like A and B denote matrix tuples. Let A = (A1, . . . , Am),B = (B1, . . . , Bm) ∈
M(`×n,F)m. Given P ∈ M(`,F) and Q ∈ M(n,F), PAQ := (PA1Q, . . . , PAmQ) ∈ M(`,F). Given
R = (ri,j)i,j∈[m] ∈ M(m,F), AR := (A′1, . . . , A

′
m) ∈ M(m,F) where A′i =

∑
j∈[m] rj,iAj .

Remark 2.1. In particular, note that the coefficients in the formula of defining A′i correspond
to the entries in the ith column of R. While this choice is immaterial (we could have chosen the
opposite convention), all of our later calculations are consistent with this convention.

Given A,B ∈ M(` × n,F)m, we say that A and B are isometric, if there exists P ∈ GL(n,F),
such that P tAP = B. Finally, A and B are pseudo-isometric if there exist P ∈ GL(n,F) and
R ∈ GL(m,F), such that P tAP = BR.

Matrix spaces. Linear subspaces of M(`× n,F) are called matrix spaces. Calligraphic letters like
A and B denote matrix spaces. By a slight abuse of notation, for A ∈ M(`× n,F)m, we use 〈A〉 to
denote the subspace spanned by those matrices in A. For A,B ∈ M(n,F)m, we say that the spaces
〈A〉, 〈B〉 are isometric iff the tuples A,B are pseudo-isometric.

3-way arrays. Let T(`× n×m,F) be the linear space of `× n×m 3-way arrays over F. We use
the fixed-width teletypefont for 3-way arrays, like A, B, etc..

7

Given A ∈ T(`×n×m,F), we can think of A as a 3-dimensional table, where the (i, j, k)th entry
is denoted as A(i, j, k) ∈ F. We can slice A along one direction and obtain several matrices, which
are then called slices. For example, slicing along the first coordinate, we obtain the horizontal slices,
namely ` matrices A1, . . . , A` ∈ M(n ×m,F), where Ai(j, k) = A(i, j, k). Similarly, we also obtain
the lateral slices by slicing along the second coordinate, and the frontal slices by slicing along the
third coordinate.

We will often represent a 3-way array as a matrix whose entries are vectors. That is, given
A ∈ T(`× n×m,F), we can write

A =

w1,1 w1,2 . . . w1,n

w2,1 w2,2 . . . w2,n
...

.
...

w`,1 w`,2 . . . w`,n

 ,
where wi,j ∈ Fm, so that wi,j(k) = A(i, j, k). Note that, while wi,j ∈ Fm are column vectors, in the
above representation of A, we should think of them as along the direction “orthogonal to the paper.”
Following [KB09], we call wi,j the tube fibers of A. Similarly, we can have the row fibers vi,k ∈ Fn
such that vi,k(j) = A(i, j, k), and the column fibers uj,k ∈ F` such that uj,k(i) = A(i, j, k).

Given P ∈ M(`,F) and Q ∈ M(n,F), let PAQ be the ` × n ×m 3-way array whose kth frontal
slice is PAkQ. For R = (ri,j) ∈ GL(m,F), let AR be the ` × n ×m 3-way array whose kth frontal
slice is

∑
k′∈[m] rk′,kAk′ . Note that these notations are consistent with the notations for matrix

tuples above, when we consider the matrix tuple A = (A1, . . . , Ak) of frontal slices of A.

3 Warm up: reducing Monomial Code Equivalence to Tensor
Isomorphism

The purpose of this section is to present a concrete example that illustrates what we mean by a
gadget restricting to monomial subgroups. We also explain why the gadget would be viewed as a
linear algebraic analogue of attaching stars in the graph setting as mentioned in Section 1.2.1.

We will give a reduction here to the Tensor Isomorphism (TI) problem, so we begin by
recalling its definition:

Definition 3.1 (The d-Tensor Isomorphism problem). d-Tensor Isomorphism over a field F
is the problem: given two d-way arrays A = (ai1,...,id) and B = (bi1,...,id), where ik ∈ [nk] for k ∈ [d],
and ai1,...,id , bi1,...,id ∈ F, decide whether there are Pk ∈ GL(nk,F) for k ∈ [d], such that for all
i1, . . . , id,

ai1,...,id =
∑

j1,...,jd

bj1,...,jd(P1)i1,j1(P2)i2,j2 · · · (Pd)id,jd .

Let A be an ` × n ×m 3-way array, with lateral slices L1, L2, . . . , Ln (each an ` ×m matrix).
For any vector v ∈ Fn, we get an associated lateral matrix Lv, which is a linear combination of the
lateral slices as given, namely Lv :=

∑n
j=1 vjLj (note that when v = ~ej is the j-th standard basis

vector, the associated lateral matrix is indeed Lj). By analogy with adjacency matrices of graphs,
Lv is a natural analogue of the neighborhood of a vertex in a graph. Correspondingly, we get a
notion of “degree,” which we may define as

degA(v) := rkLv = rk(

n∑
j=1

vjLj) = dim span{Lvw : w ∈ Fm} = dim span{utLv : u ∈ F`}.

8

The last two characterizations are analogous to the fact that the degree of a vertex v in a graph
G may be defined as the number of “in-neighbors” (nonzero entries the corresponding row of the
adjacency matrix) or the number of “out-neighbors” (nonzero entries in the corresponding column).

To “individualize” v, we can enlarge A with a gadget to increase degA(v), as in the graph case.
Note that degA(v) ≤ min{`,m} because the lateral matrices are all of size ` ×m. For notational
simplicity, let us individualize v = ~e1 = (1, 0, . . . , 0)t. To individualize v, we will increase its
degree by d = min{`,m} + 1 > maxv∈Fn degA(v). Extend A to a new 3-way array Av of size
(`+ d)× n× (m+ d); in the “first” `× n×m “corner”, we will have the original array A, and then
we will append to it an identity matrix in one slice to increase deg(v). More specifically, the lateral
slices of Av will be

L′1 =

[
L1 0
0 Id

]
and L′j =

[
Lj 0
0 0

]
(for j > 1).

Now we have that degAv(v) ≥ d. This almost does what we want, but now note that any vector
w = (w1, . . . , wn) with w1 6= 0 has degAv(w) = rk(w1L

′
1 +

∑
j≥2wjLj) ≥ d. We can nonetheless

consider this a sort of linear-algebraic individualization.
Leveraging this trick, we can then individualize an entire basis of Fn simultaneously, so that

d ≤ deg(v) < 2d for any vector v in our basis, and deg(v′) ≥ 2d for any nonzero v′ outside the basis
(not a scalar multiple of one of the basis vectors), as we do in the following result. This is also a
3-dimensional analogue of the reduction from GI to CodeEq [Luk93,Miy96,PR97] (where they use
Hamming weight instead of rank).

We now come to the concrete result. Given two d × n matrices A,B over F of rank d, the
Monomial Code Equivalence problem is to decide whether there exist Q ∈ GL(d,F) and a
monomial matrix P ∈ Mon(n,F) ≤ GL(n,F) (product of a diagonal matrix and a permutation
matrix) such that QAP = B. Monomial equivalence of linear codes is a basic notion in coding
theory [BBF+06], and Monomial Code Equivalence was recently studied in the context of
post-quantum cryptography [SS13].

Proposition 3.2. Monomial Code Equivalence reduces to 3-Tensor Isomorphism.

Proof. Without loss of generality we assume d > 1, as the problem is easily solvable when d = 1.
We treat a d× n matrix A as a 3-way array of size d× n× 1, and then follow the outline proposed
above, of individualizing the entire standard basis ~e1, . . . , ~en. Since the third direction only has
length 1, the maximum degree of any column is 1, so it suffices to use gadgets of rank 2. More
specifically, (see Figure 1) we build a (d+ 2n)× n× (1 + 2n) 3-way array A whose lateral slices are

Lj =

a1,j 01×2 01×2 · · · 01×2 · · · 01×2
...

...
...

. . .
...

. . .
...

ad,j 01×2 01×2 · · · 01×2 · · · 01×2

02×1 02×2 02×2 · · · 02×2 · · · 02×2
...

...
...

. . .
...

. . .
...

02×1 02×2 02×2 · · · I2 · · · 02×2
...

...
...

. . .
...

. . .
...

02×1 02×2 02×2 · · · 02×2 · · · 02×2

where the I2 block is in the j-th block of size 2 (that is, rows d + 2(j − 1) + {1, 2} and columns
2(j − 1) + {1, 2}).

9

It will also be useful to visualize the frontal slices of A, as follows. Here each entry of the “matrix”
below is actually a (1 + 2n)-dimensional vector, “coming out of the page”:

A =

ã1,1 ã1,2 . . . ã1,n
...

...
. . .

...
ãd,1 ãd,2 . . . ãd,n
e1,1 0 . . . 0
e1,2 0 . . . 0
0 e2,1 . . . 0
0 e2,2 . . . 0
...

...
. . .

...
0 0 . . . en,1
0 0 . . . en,2

,

where

ãi,j =

[
ai,j

02n×1

]
∈ F1+2n

ei,j = ~e1+2(i−1)+j ∈ F1+2n for i ∈ [n], j ∈ [2]

and the frontal slices are

A1 =

[
A

02n×n

]
A1+2(i−1)+j = Ed+2(i−1)+j,i for i ∈ [n], j ∈ [2]

(In A we turn the vectors ãi,j and ei,j “on their side” so they become perpendicular to the page.)

A

I2

I2

Figure 1: Pictorial representation of the reduction for Proposition 3.2.

We claim that A and B are monomially equivalent as codes if and only if A and B are isomorphic
as 3-tensors.

(⇒) Suppose QADP = B where Q ∈ GL(n,F), D ∈ diag(n,F) and P ∈ Sn ≤ GL(n,F).

Then by examining the frontal slices it is not hard to see that for Q′ =

[
Q 0
0 (DP)−1 ⊗ I2

]
(where

(DP)−1⊗I2 denotes a 2n×2n block matrix, where the pattern of the nonzero blocks and the scalars
are governed by (DP)−1, and each 2 × 2 block is either zero or a scalar multiple of I2) we have
Q′A1DP = B1 and Q′A1+2(i−1)+jDP = B1+2(π(i)−1)+j , where π is the permutation corresponding
to P . Thus A and B are isomorphic tensors, via the isomorphism (Q′, DP, diag(I1, P)).

(⇐) Suppose there exist Q ∈ GL(d + 2n,F), P ∈ GL(n,F), and R ∈ GL(1 + 2n,F), such that
QAP = BR. First, note that every lateral slice of A is of rank either 2 or 3, and the actions of Q and
R do not change the ranks of the lateral slices. Furthermore, any non-trivial linear combination
of more than 1 lateral slice results in a lateral matrix of rank ≥ 4. It follows that P cannot take
nontrivial linear combinations of the lateral slices, hence it must be monomial.

10

Now consider the frontal slices. Note that, as we assume d > 1, every frontal slice of QAP ,

except the first one, is of rank 1. Therefore, R must be of the form
[
r1,1 01×(n−1)
~r′ R′

]
where R′ is

(n − 1) × (n − 1). Since R is invertible, we must have r1,1 6= 0, and the first frontal slice of BR

contains all the rows of B scaled by r1,1 in its first d rows. The first frontal slice of QAP is a matrix
that generates, by definition (and since we’ve shown P is monomial), a code monomially equivalent
to A. Since the first frontal slices of QAP and BR are equal, and the latter is just a scalar multiple
of B1, we have that A and B are monomially equivalent as codes as well.

4 Search-to-decision reduction by restricting to monomial groups

4.1 The gadget restricting to the monomial group

In this section, we present the gadget that restricts to the monomial group in the setting of Alter-
nating Matrix Space Isometry. To show this, we will need the concept of monomial isometry;
see Some Groups above. Recall that a matrix is monomial if, equivalently, it can be written as DP
where D is a nonsingular diagonal matrix and P is a permutation matrix. We say two matrix spaces
A,B are monomially isometric if there is some M ∈ Mon(n,F) such that M tAM = B.

Lemma 4.1. Alternating Matrix Space Monomial Isometry reduces to Alternating
Matrix Space Isometry.

More specifically, there is a poly(n,m)-time algorithm r taking alternating matrix tuples to
alternating matrix tuples, such that for A,B ∈ Λ(n,F)m, the matrix spaces A = 〈A〉 and B = 〈B〉
are monomially isometric if and only if the matrix spaces 〈r(A)〉 and 〈r(B)〉 are isometric.

The gadget used in Lemma 4.1 is essentially to apply the gadget in Proposition 3.2 “in two
directions.” Still, to prove the correctness requires some work.

Proof. For A = (A1, . . . , Am) ∈ Λ(n,F)m, define r(A) to be the alternating matrix tuple Ã =
(Ã1, . . . , Ãm+n2) ∈ Λ(n+ n2,F)m+n2 , where

1. For k = 1, . . . ,m, Ãk =

[
Ak 0
0 0

]
.

2. For k = m + (i − 1)n + j, i ∈ [n], j ∈ [n], Ãk is the elementary alternating matrix Ei,in+j −
Ein+j,i.

At this point, some readers may wish to look at the large matrix in Equation 2 and/or at Figure 2.
It is clear that r can be computed in time Õ((m+n2)(n2 +n)) = poly(n,m). Given alternating

matrix tuples A,B, let A,B be the corresponding matrix spaces they span, and let Ã = 〈r(A)〉 and
B̃ = 〈r(B)〉. We claim that A and B are monomially isometric if and only if Ã and B̃ are isometric.

To prove this, it will help to think of our matrix tuples A, Ã, etc. as (corresponding to) 3-way
arrays, and to view these 3-way arrays from two different directions. Towards this end, write the
3-way array corresponding to A as

A =

0 a1,2 a1,3 . . . a1,n

−a1,2 0 a2,3 . . . a2,n

−a1,3 −a2,3 0 . . . a3,n
...

.
...

−a1,n −a2,n −a3,n . . . 0

 ,

11

where ai,j are vectors in Fm (“coming out of the page”), namely ai,j(k) = Ak(i, j). The frontal slices
of this array are precisely the matrices A1, . . . , Am.

The 3-way array corresponding to Ã = r(A) is then the (n+ 1)n× (n+ 1)n× (m+ n2) array:

Ã =

0 ã1,2 ã1,3 . . . ã1,n e1,1 . . . e1,n 0 . . . 0 . . . 0 . . . 0
−ã1,2 0 ã2,3 . . . ã2,n 0 . . . 0 e2,1 . . . e2,n . . . 0 . . . 0

...
.

...
. .

.
...

−ã1,n −ã2,n −ã3,n . . . 0 0 . . . 0 0 . . . 0 . . . en,1 . . . en,n
−e1,1 0 0 . . . 0 0 . . . 0 0 . . . 0 . . . 0 . . . 0

...
...

... . . .
...

... . . .
...

... . . .
... . . .

... . . .
...

−e1,n 0 0 . . . 0 0 . . . 0 0 . . . 0 . . . 0 . . . 0

0 −e2,1 0 . . . 0 0 . . . 0 0 . . . 0 . . . 0 . . . 0
...

...
... . . .

...
... . . .

...
... . . .

... . . .
... . . .

...
0 −e2,n 0 . . . 0 0 . . . 0 0 . . . 0 . . . 0 . . . 0
...

...
... . . .

...
... . . .

...
... . . .

... . . .
... . . .

...
0 0 0 . . . −en,1 0 . . . 0 0 . . . 0 . . . 0 . . . 0
...

...
... . . .

...
... . . .

...
... . . .

... . . .
... . . .

...
0 0 0 . . . −en,n 0 . . . 0 0 . . . 0 . . . 0 . . . 0

,

(2)

where ãi,j =

[
ai,j
0

]
∈ Fm+n2 (here think of the vector ai,j as a column vector, not coming out of

the page; in the above array we then lay the column vector ãi,j “on its side” so that it is coming

out of the page), and ei,j := em+(i−1)n+j ∈ Fm+n2 , which we can equivalently write as
[

0m
ei ⊗ ej

]
,

where we think of ei⊗ ej here as a vector of length n2. Note that all the the nonzero blocks besides
upper-left “A” block only have nonzero entries that are strictly behind the nonzero entries in the
upper-left block.

A
In

In

-In

-In

Figure 2: Pictorial representation of the reduction for Lemma 4.1.

12

The second viewpoint, which we will also use below, is to consider the lateral slices of A, or
equivalently, to view A from the side. When viewing A from the side, we see the (n + 1)n × (m +
n2)× (n+ 1)n 3-way array:

Alat =

`1,1 `1,2 . . . `1,m en+1 . . . e2n . . . 0 . . . 0
...

.
...

...
. . .

...
. . .

...
. . .

...
`n,1 `n,2 . . . `n,m 0 . . . 0 . . . en2+1 . . . en2+n

0 0 . . . 0 e1 . . . 0 . . . 0 . . . 0
...

...
. . .

...
...

. . .
... . . .

...
. . .

...
0 0 . . . 0 0 . . . e1 . . . 0 . . . 0
...

.
...

...
. . .

...
. . .

...
. . .

...
0 0 . . . 0 0 . . . 0 . . . en . . . 0
...

...
. . .

...
...

. . .
... . . .

...
. . .

...
0 0 . . . 0 0 . . . 0 . . . 0 . . . en

, (3)

where every `i,k ∈ Fn2+n has only the first n components being possibly non-zero, namely, `i,k(j) =
Ak(i, j) for i ∈ [n], j ∈ [n], k ∈ [m] and `i,k(j) = 0 for any j > n.

For the only if direction, suppose there exist P ∈ Mon(n,F) and Q ∈ GL(m,F), such that
P tAP = BQ. We can construct P̃ ∈ Mon(n+n2,F) and Q̃ ∈ GL(m+n2,F) such that P̃ tÃP̃ = B̃Q̃.

In fact, we will show that we can take P̃ =

[
P 0
0 P ′

]
where P ′ ∈ Mon(n2,F), and Q̃ =

[
Q 0
0 Q′

]
where Q′ ∈ Mon(n2,F). It is not hard to see that this form already ensures that the first m matrices
in the vector P̃ tÃP̃ and those of B̃Q̃ are the same, since when P̃ , Q̃ are of this form, those first m
matrices are controlled entirely by the P (resp., Q) in the upper-left block of P̃ (resp., Q̃).

The remaining question is then how to design appropriate P ′ and Q′ to take care of the last n2

matrices in these tuples. This actually boils down to applying the following simple identity, but “in
3 dimensions:” Let P be the permutation matrix corresponding to σ ∈ Sn, so that Pei = eσ(i), and
etiP = etσ−1(i). Let D = diag(α1, . . . , αn) be a diagonal matrix. Then

P tDP = diag(ασ−1(1), . . . , ασ−1(n)). (4)

To see how Equation 4 helps in our setting, it is easier to focus attention on the lower right
n2 × n2 sub-array of Alat, which can be represented as a symbolic matrix

M =

x1In 0 . . . 0
0 x2In . . . 0
...

.
...

0 0 . . . xnIn

 .
Here we think of the xi’s as independent variables, whose indices correspond to “how far into the
page” they are. That is, xi corresponds to the vector ~ei in Alat, which is coming out of the page and
has its only nonzero entry i slices back from the page.

Then the action of P permutes the xi’s and multiplies them by some scalars, the action of P ′

is on the left-hand side, and the action of Q′ is on the right-hand side. Let σ be the permutation

13

supporting P . Then P sends M to

MP =

ασ(1)xσ(1)In 0 . . . 0

0 ασ(2)xσ(2)In . . . 0
...

.
...

0 0 . . . ασ(n)xσ(n)In

 .
So setting P ′ = σ ⊗ In, Q′ the monomial matrix supported by σ ⊗ In with scalars being 1/αi’s, we
have P ′tMPQ′ = M by Equation 4.

For the if direction, suppose there exist P̃ ∈ GL(n + n2,F) and Q̃ ∈ GL(m + n2,F), such that
P̃ tÃP̃ = B̃Q̃. The key feature of these gadgets now comes into play: consider the lateral slices of Ã,
which are the frontal slices of Alat (which may be easier to visualize by looking at Equation 3 and
Figure 2). The first n lateral slices of Ã and B̃ are of rank ≥ n and < 2n, while the other lateral slices
are of rank < n (in fact, they are of rank 1; note that without loss of generality we may assume
n > 1, for the only 1× 1 alternating matrix space is the zero space). Furthermore, left multiplying
a lateral slice by P̃ t and right multiplying it by Q̃ does not change its rank. However, the action
of P̃ here is by P̃ tÃP̃ , and while the P̃ t here corresponds to left multiplication on the lateral slices
(=frontal slices of Alat), the P̃ on the right here corresponds to taking linear combinations of the
lateral slices. In other words, just as Alat is the “side view” of Ã, (P̃ tAlatQ̃)P̃ is the side view of
(P̃ tÃP̃)Q̃. Taking linear combinations of the lateral slices could, in principle, alter their rank; we
will use the latter possibility to show that P̃ must be of a constrained form.

Write P̃ =

[
P1,1 P1,2

P2,1 P2,2

]
where P1,1 is of size n×n. We first claim that P1,2 = 0. For if not, then

in (Alat)P̃ (the side view), one of the last n2 frontal slices receives a nonzero contribution from one of
the first n frontal slices of Alat. Looking at the form of these slices from Equation 3, we see that any
such nonzero combination will have rank ≥ n, but this is a contradiction since the corresponding
slice in Blat has rank 1. Thus P1,2 = 0, and therefore P1,1 must be invertible, since P̃ is.

Finally, we claim that P1,1 has to be a monomial matrix. If not, then some frontal slice of (Alat)P̃

among the first n would have a contribution from more than one of these n slices. Considering the
lower-right n2 × n2 sub-matrix of such a slice, we see that it would have rank exactly kn for some
k ≥ 2, which is again a contradiction since the first n slices of Blat all have rank < 2n. It follows
that P t1,1AiP1,1, i ∈ [m], are in B, and thus A and B are monomially isometric via P1,1.

4.1.1 Application: reducing Graph Isomorphism to Alternating Matrix Space Isom-
etry

An application of the monomial-restricting gadget is to give an immediate reduction from Graph
Isomorphism to Alternating Matrix Space Isometry. While a reduction between these two
problems is already known (cf. [GQ21] for details), we choose to present it as an illustration of using
this gadget.

Proposition 4.2. Graph Isomorphism reduces to Alternating Matrix Space Isometry.

Proof. For a graph G = ([n], E), let AG be the alternating matrix tuple AG = (A1, . . . , A|E|)
with Ae = Ei,j − Ej,i where e = {i, j} ∈ E, and let AG = 〈AG〉 be the alternating matrix space
spanned by that tuple. If P is a permutation matrix giving an isomorphism between two graphs
G and H, then it is easy to see that P tAGP = AH , and thus the corresponding matrix spaces are
isometric. The converse direction is not clear, though it is recently shown to be true in [HQ20] with

14

a rather intricate proof. Instead, we will provide a conceptually simpler proof, by showing that
this construction gives a reduction to monomial isometry, and then using Lemma 4.1 to reduce to
ordinary Alternating Matrix Space Isometry.

Let us thus establish that the preceding construction gives a reduction from GI to Alternating
Matrix Space Monomial Isometry. We will show that G ∼= H if and only if AG and AH
are monomially isometric. The forward direction was handled above. For the converse, suppose
P tDtAGDP = AH where D is diagonal and P is a permutation matrix. We claim that in this case,
P in fact gives an isomorphism from G to H. First let us establish that P alone gives an isometry
between AG and AH . Note that for any diagonal matrix D = diag(α1, . . . , αn) and any elementary
alternating matrix Ei,j−Ej,i, we have Dt(Ei,j−Ej,i)D = αiαj(Ei,j−Ej,i). Since AG has a basis of
elementary alternating matrices, the action of D on this basis is just to re-scale each basis element,
and thus DtAGD = AG. Thus, we have P tAGP = AH .

Finally, note that P t(Ei,j − Ej,i)P = Eπ(i),π(j) − Eπ(j),π(i) = Aπ(e), where π ∈ Sn is the per-
mutation corresponding to P , and by abuse of notation we write π(e) = π({i, j}) = {π(i), π(j)}
as well. Since the elementary alternating matrices are linearly independent, and AH has a basis of
elementary alternating matrices, the only way for Aπ(e) to be in AH is for it to be equal to one of
the basis elements (one of the matrices in AH). In other words, π(e) must be an edge of H. As P
is invertible, we thus have that P gives an isomorphism G ∼= H.

4.2 Search-to-decision reduction for Alternating Matrix Space Isometry

Theorem A′. Given an oracle deciding Alternating Matrix Space Isometry, the task of
finding an isometry between two alternating matrix spaces A,B ∈ Λ(n,Fq), if it exists, can be solved
using at most qO(n) oracle queries each of size at most O(n2), and in time either qO(n) · n! = qÕ(n),
or qO(n+m).

Proof. We first present the gadget construction. Then based on this gadget, we present the search-
to-decision reduction.

Gadget construction. Let A = (A1, . . . , Am) be an ordered linear basis of A, and let A ∈
M(n× n×m,Fq) be the 3-way array constructed from A, so we can write

A =

0 a1,2 a1,3 . . . a1,n

−a1,2 0 a2,3 . . . a2,n

−a1,3 −a2,3 0 . . . a3,n
...

.
...

−a1,n −a2,n −a3,n . . . 0

 ,

where ai,j ∈ Fm, 1 ≤ i < j ≤ n thought of as a vector coming out of the page.

15

We first consider a 3-way array Ãi constructed from A, for any 1 ≤ i ≤ n− 1, as Ãi =

0 a1,2 . . . a1,i a1,i+1 . . . a1,n −e1,1 . . . −e1,2n 0 . . . 0 0 . . . 0 0 . . . 0
−a1,2 0 . . . a2,i a2,i+1 . . . a2,n 0 . . . 0 −e2,1 . . . −e2,2n 0 . . . 0 0 . . . 0

...
...

. . .
...

...
. . .

...
...

. . .
...

...
. . .

...
...

. . .
...

...
. . .

...
−a1,i −a2,i . . . 0 ai,i+1 . . . ai,n 0 . . . 0 0 . . . 0 −ei,1 . . . −ei,2n 0 . . . 0

−a1,i+1 −a2,i+1 . . . −ai,i+1 0 . . . ai+1,n 0 . . . 0 0 . . . 0 0 . . . 0 −f1,1 . . . −f1,n

...
...

. . .
...

...
. . .

...
...

. . .
...

...
. . .

...
...

. . .
...

...
. . .

...
−a1,n −a2,n . . . −ai,n −ai+1,n . . . 0 0 . . . 0 0 . . . 0 0 . . . 0 −fn−i,1 . . . −fn−i,n

e1,1 0 . . . 0 0 . . . 0 0 . . . 0 0 . . . 0 0 . . . 0 0 . . . 0
...

...
. . .

...
...

. . .
...

...
. . .

...
...

. . .
...

...
. . .

...
...

. . .
...

e1,2n 0 . . . 0 0 . . . 0 0 . . . 0 0 . . . 0 0 . . . 0 0 . . . 0

0 e2,1 . . . 0 0 . . . 0 0 . . . 0 0 . . . 0 0 . . . 0 0 . . . 0
...

...
. . .

...
...

. . .
...

...
. . .

...
...

. . .
...

...
. . .

...
...

. . .
...

0 e2,2n . . . 0 0 . . . 0 0 . . . 0 0 . . . 0 0 . . . 0 0 . . . 0

0 0 . . . ei,1 0 . . . 0 0 . . . 0 0 . . . 0 0 . . . 0 0 . . . 0
...

...
. . .

...
...

. . .
...

...
. . .

...
...

. . .
...

...
. . .

...
...

. . .
...

0 0 . . . ei,2n 0 . . . 0 0 . . . 0 0 . . . 0 0 . . . 0 0 . . . 0

0 0 . . . 0 f1,1 . . . fn−i,1 0 . . . 0 0 . . . 0 0 . . . 0 0 . . . 0
...

...
. . .

...
...

. . .
...

...
. . .

...
...

. . .
...

...
. . .

...
...

. . .
...

0 0 . . . 0 f1,n . . . fn−i,n 0 . . . 0 0 . . . 0 0 . . . 0 0 . . . 0

,

where ej,k is the (m+2n(j−1)+k)th standard basis vector, and fj,k is the (m+2ni+n(j−1)+k)th
standard basis vector. A pictorial description can be seen by combining Figure 2 (for the ej,k)
and [GQ21, Figure 3] (for the fj,k).

We claim the following.

Claim 4.3. If there exist invertible matrices P and Q to satisfy P tÃiP = B̃
Q
i , then P must be in the

form

P1,1 0 0
0 P2,2 0
P3,1 P3,2 P3,3

, where P1,1 is a monomial matrix of size i×i, P2,2 is of size (n−i)×(n−i),

and P3,3 is of size (2ni+ n)× (2ni+ n).
Furthermore, there exist such P and Q if and only if A and B are isometric by a matrix of the

form
[
P1,1 0
0 P2,2

]
where P1,1 is a monomial matrix of size i× i.

Proof. This claim is immediate by combining the arguments for the FGS gadget [FGS19] as used
in [GQ21], and the monomial-restricting gadget introduced in Section 4.1. We only outline the
argument and point out some subtle issues here.

First, observe that for the lateral slices of Ãi:

• The first i lateral slices have rank in [2n, 3n). Note that the rank is strictly less than 3n
because some tube fibers (coming out of the page) are 0 in the upper-left n× n sub-array.

• The next n− i lateral slices have rank in [n, 2n).

• The remaining 2ni+ n lateral slices have rank in [1, n) (since i ≥ 1.)

Because of the above, for P and Q to satisfy P tÃiP = B̃
Q
i , P must be in the required form.

It is the furthermore statement that requires certain care. The only if direction is straightforward:

after observing that P has to be of the above form, we can easily verify that
[
P1,1 0
0 P2,2

]
is an

16

isometry from A to B. For the if direction, starting from
[
P1,1 0
0 P2,2

]
and Q1,1 ∈ GL(m,F), we

need to design P3,3 ∈ GL(2ni + n,F) and Q2,2 ∈ GL(2ni + n(n − i),F) such that letting P =P1,1 0 0
0 P2,2 0
0 0 P3,3

 and Q =

[
Q1,1 0

0 Q2,2

]
, we have P tÃiP = B̃

Q
i . This can be achieved by combining

the arguments for the only if directions in the proofs of Lemma 4.1 and [GQ21, Proposition 3.3].

The search-to-decision reduction. Given these preparations, we now present the search-to-
decision reduction for Alternating Matrix Space Isometry. Recall that this requires us to
use the decision oracle O to compute an explicit isometry transformation P ∈ GL(n, q), if A and
B are indeed isometric. Think of P as sending the standard basis (~e1, . . . , ~en) to another basis
(v1, . . . , vn), where ~ei and vi are in Fnq .

In the first step, we guess v1, the image of ~e1, and a complement subspace of 〈v1〉, at the cost
of qO(n). For each such guess, let P1 be the matrix which sends ~e1 7→ v1 and sends 〈~e2, . . . , ~en〉 to
the chosen complementary subspace arbitrarily. We apply P1 to A, and still call the resulting 3-way
array A in the following. Then construct Ã1 and B̃1, and feed these two instances to the oracle O.
Note that, since P1,1 (using notation as above) must be monomial, any equivalence between Ã1 and
B̃1 must preserve our choice of v1 up to scale. Thus, clearly, if A and B are indeed isometric and we
guess the correct image of e1, then the oracle O will return yes (and conversely).

In the second step, we guess v2, the image of ~e2, and a complement subspace of 〈v2〉 within
〈~e2, . . . , ~en〉, at the cost of qO(n). Note here that the previous step guarantees that there is an
isometry respecting the direct sum decomposition 〈v1〉 ⊕ 〈~e2, . . . , ~en〉, so we need only search for a
complement of v2 within 〈~e2, . . . , ~en〉, and not a more general complement of 〈v1, v2〉 in all of Fnq .
This is crucial for the runtime, as at the n/2 step, the latter strategy would result in searching
through qΘ(n2) possibilities.

For each such guess, we apply the corresponding transformation to A (and again call the resulting
3-way array A). Then construct Ã2 and B̃2, and feed these two instances to the oracle O. Clearly, if
A and B are indeed isometric and we guess the correct image of ~e2 (and ~e1 from the previous step),
then the oracle O will return yes. However, there is a small caveat here, namely we may guess some

image of e2, such that A and B are actually isometric by some matrix P of the form
[
P1,1 0
0 P2,2

]
where P1,1 is a monomial matrix of size 2 (instead of the more desired diagonal matrix). But this
is fine, as it still ensures P1,1 to be monomial, which is the key property to keep. This means that
our choices of {v1, v2} is correct as a set up to scaling, so we proceed.

In general, in the ith step, we maintain the property that A and B are isometric by some

P =

[
P1,1 0
0 P2,2

]
where P1,1 is a monomial matrix of size (i−1)× (i−1). We guess vi, the image of

~ei in 〈~ei, . . . , ~en〉, and a complement subspace of 〈vi〉 within 〈~ei, . . . , ~en〉. This cost is qO(n). For each
such guess, we apply the corresponding transformation to A (and call the resulting 3-way array A).
Then construct Ãi and B̃i, and feed these two instances to the oracle O. Once we guess correctly,

we ensure that A and B are isometric by P =

[
P1,1 0
0 P2,2

]
where P1,1 is a monomial matrix of size

i× i.
So after the (n− 1)th step, we know that A and B are isometric by a monomial transformation.

As the number of all monomial transformations is (q−1)n ·n! ≤ qn ·2n logn = qÕ(n), we can enumerate
all monomial transformations and check correspondingly. This gives an algorithm in time qÕ(n). By

17

resorting to Prop. 4.4 which solves Alternating Matrix Space Monomial Isometry in time
qO(n+m), we have an algorithm in time qO(n+m).

Note that all the instances we feed into the oracle O are of size O(n2). This concludes the
proof.

4.3 A simply-exponential algorithm for monomial isometry of alternating ma-
trix spaces

We now state the algorithm for monomial isometry used in Theorem A′.

Proposition 4.4. Let A,B ≤ Λ(n, q) be m-dimensional. Then there exists a qO(n+m)-time al-
gorithm that decides whether A and B are monomially isometric, and if so, computes an explicit
monomial isometry.

Proof. Let A,B ≤ Λ(n, q) be two m-dimensional alternating matrix spaces. Clearly, by incurring
a multiplicative factor of qn, we can reduce to the problem of testing whether A and B are per-
mutationally isometric, i.e. whether there exists a permutation matrix T ∈ GL(n, q), such that
T tAT = B. We will solve this problem in time 2O(n) · qO(m). This would give an algorithm with
total running time qn · 2O(n) · qO(m) = qO(n+m). The basic idea of the algorithm comes from Luks’s
dynamic programming technique for Hypergraph Isomorphism [Luk99].

Reducing to a generalized linear code equivalence problem. Suppose A = 〈A1, . . . , Am〉,
and B = 〈B1, . . . , Bm〉. Let A and B be the n× n×m 3-way arrays formed by the given bases of A
and B. For S ⊆ [n] of size s, let (Ai)S be the submatrix of Ai with row and column indices in S.
Then let AS be the s × s ×m 3-way array formed by ((A1)S , . . . , (Am)S). Similarly we can define
BS for S ⊆ [n].

For each S ⊆ [n] of size s, let Iso(A[s], BS) be the coset in Sn × GL(m, q), such that (A,B) ∈
Sn × GL(m, q) if and only if the natural action of (A,B) sends A[s] to BS . Since all the matrices
are alternating, their diagonal entries are zero, and thus A{i} and B{i} are both the 1× 1×m zero
vector for any i. It follows that if s = 1 and S = {i}, Iso(A[1], BS) = G×GL(m, q), where G is the
coset of Sn consisting of permutations sending 1 to i.

Suppose we have computed Iso(A[s], BS) for all s < t. Fix T ⊆ [n], |T | = t, and let us compute
Iso(A[t], BT). For any (A,B) ∈ Iso(A[t], BT), A sends [t− 1] to some T ′ ⊆ T of size t− 1. So in this
case, (A,B) ∈ Iso(A[t−1], BT ′), which has been computed. Let T \ T ′ = {t′}. On the other hand, for
(A,B) ∈ Iso(A[t−1], BT ′) to be in Iso(At, BT), (A,B) needs to send the tth horizontal slice of A[t] to
the t′th horizontal slice of BT .

We first identify T ′ with [t − 1]. We then note that every horizontal slice of A[t] has a row of
zeros. So the problem now becomes: given two (t−1)×m matrices P and Q over Fq, decide whether
P and Q are the same under G ≤ St−1 × GL(m, q). (Note that G = Iso(A[t−1], BT ′) from above.)
Clearly, this is a generalization of the Linear Code Equivalence problem. Furthermore, if we
could solve this problem in time 2O(n) · qO(m), we would have achieved our original goal.

Solving the generalized linear code equivalence problem. We solve the above problem again
by a dynamic programming scheme as follows. For R ⊆ [t − 1] of size r, PR denotes the r × m
submatrix of P with row indices from R. Let Iso′(P[r], QR) be the coset in St−1 × GL(m, q), such
that (C,D) ∈ Iso′(P[r], QR) if and only if the natural action of (C,D) sends P[r] to QR. If r = 0,
then Iso′(P∅, Q∅) = G where G ≤ St−1 ×GL(m, q) is given as an input.

Suppose we have computed Iso′(P[r], QR) for any r < u. Fix U ⊆ [t − 1], |U | = u, and let us
compute Iso′(P[u], QU). For any (C,D) ∈ Iso′(P[u], QU), C sends [u − 1] to some U ′ ⊆ U of size
u− 1. So in this case, (A,B) ∈ Iso(P[u−1], QU), which has been computed. Let U \ U ′ = {u′}. On

18

the other hand, for (C,D) ∈ Iso(P[u−1], QU ′) to be in Iso(P[u], QU), D needs to send the uth row
of P[u] to the u′th row of QU . This subcoset of Iso(P[u−1], QU ′) can be computed in time qO(m), by
treating GL(m, q) as a permutation group on Fmq . We then take a union over size-(u − 1) subsets
U ′ to obtain a generating set for Iso(P[u], QU). If necessary, we can reduce the generating set size
by applying the standard permutation group machinery, as our time bound is 2O(n) · qO(m), which
is quite generous.

5 Counting-to-decision reduction by restricting to diagonal groups

In this section, we devise a gadget to achieve the restriction to the group of diagonal matrices, and
use it to do the counting to decision reduction for Alternating Matrix Space Isometry.

5.1 Preliminaries

Some preparations are in order.

Observation 5.1. Let n ≥ 23. Then any permutation σ ∈ Sn either fixes a set of 6 points P ⊆ [n],
or moves a set of 6 points P ⊆ [n] to another set of 6 points Q ⊆ [n] such that these two sets are
disjoint.

Proof. Suppose σ fixes at most 5 points. Then there are at least 18 points that are not fixed by σ.
Suppose σ has t non-trivial cycles of length l1, . . . , lt, such that

∑
i li ≥ 18. For a cycle (p1, . . . , ps),

we can choose p1, . . . , p2·bs/2c−1 and put them in P , and p2, . . . , p2·bs/2c in Q. Do this for every cycle,
we obtain the desired P and Q. The worst case is when every cycle is of length 3. Since there are
at least 18 points not fixed by σ, P is of size ≥ 6.

We shall make repeated uses of the following facts.

Fact 5.2. 1. Given ai ∈ R, 0 ≤ ai ≤ 1, i ∈ [m],
∏
i∈[m](1− ai) ≥ 1−

∑
i∈[m] ai.

2. Let m,N ∈ N and 1 ≤ m ≤ N . A random matrix A ∈ M(N × m, q) is of rank m with
probability ≥ 1− 2/qN−m+1.

3. For d ≤ N, 0 ≤ d ≤ n, the number of dimension-d subspaces of Fnq is equal to the Gaussian
binomial coefficient (

n

d

)
q

:=
(qn − 1) · (qn − q) · . . . · (qn − qd−1)

(qd − 1) · (qd − q) · . . . · (qd − qd−1)
.

4. The Gaussian binomial coefficient satisfies:

q(n−d)d ≤
(
n

d

)
q

≤ q(n−d)d+d.

5. For d ∈ N, the number of complement subspaces of a fixed dimension-d subspace of Fnq is
qd(n−d).

Proof. For (2), Pr[rk(A) = m] = (1− 1
qN

) · (1− q
qN

) · . . . · (1− qm−1

qN
). By (1), we have Pr[rk(A) =

m] ≥ 1−
∑N

i=N−m+1
1
qi

= 1− 1
qN−m+1 −

∑N
i=N−m+2

1
qi
≥ 1− 2

qN−m+1 .

19

5.2 Describing the gadget

Let A ≤ Λ(n, q) be an alternating matrix space, and let A = (A1, . . . , Am) ∈ Λ(n, q)m be an ordered
linear basis of A. Let A ∈ M(n × n ×m,Fq) be the 3-way array constructed from A, i.e. the ith
frontal slice of A is Ai.

We shall assume n = Ω(1), and q = nΩ(1) throughout the remainder of this section.

The form of the gadget. To describe the gadget, it is easier to view A from the lateral viewpoint.
That is, for i ∈ [n], let Ci = [A1ei, . . . , Amei] ∈ M(n×m, q). Let C = (C1, . . . , Cn) ∈ M(n×m, q)n.

Then construct C′ = (C ′1, . . . , C
′
n), C ′i =

[
Ci 0
0 Gi

]
, where Gi is of size 6n × 4n2. For i ∈ [n],

Gi =
[
0 . . . 0 Hi 0 . . . 0

]
, where Hi is of size 6n × 4n in the ith block, and 0 denotes an

all-zero matrix of size 6n× 4n.
Note that from the frontal viewpoint of looking at A, Gi’s are inserted, vertically, below and

behind A. So to preserve the alternating structure, −Gi’s also need to be inserted, horizontally, on
the right and behind A. We therefore get Ã, which is of size 7n× 7n× (m+ 4n2).

Conditions imposed on the Hi’s. Of course, the key to the construction above lies in the
properties of the Hi’s. Let Vi ≤ F6n

q be the subspace spanned by the columns of Hi. We shall
impose the following conditions on Hi.

1. For any i ∈ [n], rk(Hi) = dim(Vi) = 4n.

2. For any i, j ∈ [n], i 6= j, rk([HiHj]) = dim(Vi ∪ Vj) = 6n.

3. For any (i1, i2, i3, i4, i5, i6) ∈ [n]6 and (j1, j2, j3, j4, j5, j6) ∈ [n]6, such that |{i1, . . . i6} ∪
{j1, . . . , j6}| = 12, i.e. ik and j` all different, the coset C = {T ∈ GL(6n, q) : ∀k ∈ [6], T (Vik) =
Vjk} is empty. Note that for any i ∈ [n], T (Vi) is spanned by the columns of THi.

4. For any (i1, i2, i3, i4, i5, i6) ∈ [n]6, ik all different, the group S = {T ∈ GL(6n, q) : ∀k ∈
[6], T (Vik) = Vik} consists of only of scalar matrices.

Remark 5.3. Given H1, . . . ,Hn ∈ M(6n× 4n, q), whether they satisfy the four conditions can be
verified in polynomial time.

Conditions (1) and (2) are easily verified in deterministic polynomial time.
For condition (3), it can be formulated as a linear algebraic problem as follows. Let X be a

6n × 6n variable matrix. Let Yk, k ∈ [6], be 4n × 4n variable matrices. Set up the equations
XHik = HjkYk, and solve the linear equations to get a subspace of F(6n)2+6·(4n)2

q . The question
is then whether this subspace contains (T,R1, . . . , R6) where T ∈ GL(6n, q) and Ri ∈ GL(4n, q).
This is an instance of the symbolic determinant identity testing (SDIT) problem, so it admits a
randomized efficient algorithm when q = nΩ(1).

In fact, this instance of SDIT problem can be solved in deterministic polynomial time. For this
let us also check out condition (4). Here, let X and Yi be from above, and set up the equations
XHik = HikYk. Solve the linear equations to get a subspace of F(6n)2+6·(4n)2

q . This subspace turns
out to be an algebra under the natural multiplications. Indeed, if AHik = HikBk and A′Hik =
HikB

′
k, then AA′Hik = HikBkB

′
k. To compute the unit group in a matrix algebra can be solved

by a polynomial-time Las Vegas algorithm by [BO08]. Given the unit group, whether it consists of
only scalar matrices can be verified easily in deterministic polynomial time.

Then the linear space in condition (3) is a module over the algebra defined in the last paragraph.
Because of this structure, the SDIT problem for such instances can be solved in deterministic
polynomial time [CIK97,BL08, IKS10].

20

5.3 Construction and properties of the gadget

The following three propositions reveal the construction and functions of the gadget described above.
First about the construction. Instead of constructing the above Hi’s explicitly in a deterministic

way, we shall show that random choices suffice.

Proposition 5.4. Let Hi ∈ M(6n× 4n, q), i ∈ [n], be random matrices. Then Hi’s satisfy the four
conditions in Section 5.2 with probability ≥ 1− nO(1)

qΩ(1) .

Second about the functionality. The following proposition formally explains this.

Proposition 5.5. Suppose A and B are two 3-tensors constructed from ordered bases ofm-dimensional
alternating matrix spaces A,B ≤ Λ(n, q). Let Ã and B̃ be constructed as above, and let Ã and B̃ are
alternating matrix spaces corresponding to Ã and B̃, respectively. Then A and B are isometric via a
diagonal matrix if and only if Ã and B̃ are isometric.

Finally we shall use this gadget to achieve counting-to-decision reduction for Alternating
Matrix Space Isometry. Formally, we have the following.

Proposition 5.6. Suppose we are given A,B ≤ Λ(n, q) and a decision oracle for Alternating
Matrix Space Isometry. Then there exists a Las Vegas randomized algorithm that computes the
number of isometries from A to B in time qO(n).

The next three subsections are devoted to the proofs of Propositions 5.4 (Section 5.3.3), 5.5
(Section 5.3.1), and 5.6 (Section 5.3.2) respectively. Note that, because the proof of Proposition 5.4
is more complicated compared to the other two, we postpone it to the last.

Remark 5.7. In fact, we expect that this construction to work even for small finite fields. The
bottleneck lies in Proposition 5.4. If the probability nO(1)

qΩ(1) could be improved to nO(1)

qΩ(n) , then we would
be done. We believe it possible to utilize the structure of invariant subspaces under matrix actions
over Fq to achieve this. However, we expect that the calculations will be tedious and heavy, so we
hope to leave this to a future work.

5.3.1 Restricting to the diagonal group

Briefly speaking, conditions 1 and 2 ensure that we first restrict to monomial matrices. Conditions
3 and 4 prevent non-trivial permutations due to the following. As we assume n = Ω(1), by Obser-
vation 5.1, σ ∈ Sn either fixes 6 elements in [n], or moves a set of 6 elements to another, disjoint,
set of 6 elements. Condition 3 ensures that the second case could not happen. Condition 4 ensures
that in the first case, the only possible invertible matrices that “preserves” the matrices Gi for i ∈ P
when multiplying from the left are scalar matrices.

We now prove Proposition 5.5.

Proof of Proposition 5.5. Recall that we construct such Ã and B̃ from A and B, respectively, using
the method in Section 5.2. Let Ã and B̃ be alternating matrix spaces in Λ(7n, q), spanned by the
frontal slices of Ã and B̃, respectively.

We want to show that Ã and B̃ are isometric if and only if A and B are isometric via diagonal
matrices. The if direction is straightforward. Suppose there exist P = diag(α1, . . . , αn) ∈ diag(n, q)

and Q ∈ GL(m, q) such that P tAP = BQ. Let P̃ =

[
P 0
0 I6n

]
∈ GL(6n, q). Let Q̃ =

[
Q 0
0 Q′

]
∈

GL(m+ 4n2), where Q′ = diag(α1I4n, . . . , αnI4n). Then it is easy to verify that P̃ tÃP̃ = B̃Q̃.

21

Now we turn to the only if direction. If Ã and B̃ are isometric, then there exists P̃ ∈ GL(7n, q)

and Q̃ ∈ GL(m+ 4n2, q), such that P̃ tÃP̃ = B̃Q̃. Let P̃ =

[
P1,1 P1,2

P2,1 P2,2

]
, where P1,1 is of size n× n.

It can be checked easily, from the lateral viewpoint, that P1,2 = 0. As if not, then some Hi would
appear in one of the last 6n lateral slices in ÃP̃ . This would set this slice to be of rank ≥ 4n by
condition (1), which contradicts that the corresponding lateral slice of B̃Q̃ is of rank ≤ n. It follows
that P1,1 ∈ GL(n, q) and P2,2 ∈ GL(6n, q).

We first claim that P1,1 has to be a monomial matrix. If not, then one of the first n lateral slice
of ÃP̃ has two distinct Hi and Hj . By condition (2), this slice is of rank ≥ 6n, which contradicts
that the corresponding lateral slice of B̃Q̃ is of rank ≤ 5n.

We further claim that P1,1 has to be a diagonal matrix. If not, then suppose the non-trivial
permutation underlying P1,1 is σ ∈ Sn. Since we assumed n = Ω(1), by Observation 5.1, one of the
following two cases has to happen.

• ∃{i1, . . . , i6} ⊆ [n], {j1, . . . , j6} ⊆ [n], |{i1, . . . , i6} ∪ {j1, . . . , j6}| = 12, such that σ(ik) = jk
for k ∈ [6]. We then claim the following.

Claim 5.8. For P̃ tÃP̃ = B̃Q̃ to hold, a necessary condition is that ∀k ∈ [6], P2,2Hjk and Hik

have the same linear span.

Proof. To see this, note that the ikth lateral slice of P̃ tÃP̃ is the jkth lateral slice of P̃ tÃ (up
to a scalar multiple). It is equal to the ikth lateral slice of B̃Q̃. Then P̃ t acts on the left

on the jkth lateral slice of Ã. Noting that P t =

[
P t1,1 P t2,1

0 P t2,2

]
and the jkth lateral slice of Ã

is C ′jk =

[
Cjk 0
0 Gjk

]
, we see that P tC ′jk =

[
∗ ∗
0 P t2,2Gjk

]
. (Here, Ci and Gi are defined in

Section 5.2.) On the other hand, we see that the ikth lateral slice of B̃Q̃ is the ikth lateral slice
multiplied from the right by Q̃. Our claim follows then by comparing the last 6n rows.

But the condition (3) excludes the existence of such P2,2, so this cannot happen.

• ∃{i1, . . . , i6} ⊆ [n], ik all different, such that σ(ik) = ik. In this case, for P̃ tÃP̃ = B̃Q̃ to hold,
by the same argument as in the proof of Claim 5.8, a necessary condition is that P2,2Hik and
Hik have the same linear span. Then the condition (4) ensures that P2,2 = λI6n for some
λ 6= 0 ∈ F in this setting. Then because σ is non-trivial, σ moves some i ∈ [n] to j ∈ [n],
i 6= j. By comparing the jth lateral slice of P̃ tÃ and the ith lateral slice of B̃Q̃, P2,2Hi = λHi

and Hj have the same linear span, which is not possible because the condition (2) ensures
that Hi and Hj span different subspaces.

We then have shown that P1,1 must be a diagonal matrix. By comparing the top-left-front sub-
tensors of size n × n ×m of P̃ tÃP̃ and B̃Q̃, we arrive at the desired conclusion that A and B are
isometric via the diagonal matrix P1,1.

5.3.2 Using the gadget for counting-to-decision reduction

The strategy follows closely the counting to decision reduction for graph isomorphism.
We first review the strategy for counting to decision reduction for graph isomorphism [Mat79].

Suppose we are given two graphs with the vertex set being [n], i.e. G,H ⊆
(

[n]
2

)
. We first use the

22

decision oracle to decide whether G and H are isomorphic. If not, the number of isomorphisms is 0.
If so, we turn to compute the order of Aut(G). Let A = Aut(G). For i ∈ [n], let Ai = {σ ∈ A : ∀1 ≤
j ≤ i, σ(j) = j}. Set A0 = A. We then have the tower of subgroups A0 ≥ A1 ≥ · · · ≥ An = {id}.
The order of A0 is then the product of [Ai : Ai+1], the index of Ai+1 in Ai, for i = 0, 1, . . . , n − 1.
Let Gi be the graph with the first i vertices in G individualized. Then Aut(Gi) ∼= Ai. To compute
[Ai : Ai+1], we note that it is equal to the size of the orbit of the vertex i + 1 under Ai. For each
j ≥ i+ 1, construct from Gi two graphs G′i and G

′′
i as follows. In G′i, individualize i+ 1, and in G′′i ,

individualize j. Then j is in the orbit of i + 1 under Ai if and only if G′i and G
′′
i are isomorphic.

Enumerating over j ≥ i+ 1 gives us the size of the orbit of i+ 1 under Ai. This finishes an overview
of the idea for counting to decision reduction for graph isomorphism.

We then apply the above strategy to get a counting to decision reduction for alternating matrix
space isometry to prove Proposition 5.6.

Proof of Proposition 5.6. Our goal is to compute the number of isomorphisms from A to B, where
A,B ≤ Λ(n, q) are of dimension m. First, we use the decision oracle first to decide whether A and
B are isometric. If not, the number of isometries is 0. If so, we need to caculate the order of the
autometry group of A, Aut(A). To do that, we first randomly sample n 6n×4n matrices H1, . . . ,Hn

over Fq, and verify whether they satisfy the four conditions in Section 5.2 using Remark 5.3. Note
that this is where the algorithm needs to be a Las Vegas algorithm.

Let A = Aut(A). Recall that ei denotes the ith standard basis vector in Fnq . For i ∈ [n], let
Ai = {T ∈ A : ∀1 ≤ j ≤ i, T (ei) = λiei, λi 6= 0 ∈ Fq}. Note that An = A ∩ diag(n, q). We
can calculate the order of An in time qO(n) by brute-force, i.e., enumerating all invertible diagonal
matrices. Set A0 = A. We then have the tower of subgroups A0 ≥ A1 ≥ · · · ≥ An.

To compute the order of A0, it is enough to compute [Ai : Ai+1]. Note that for T, T ′ ∈ Ai,
TAi+1 = T ′Ai+1 as left cosets in Ai if and only if T (ei+1) = λT ′(ei+1) for some λ 6= 0 ∈ Fq. So
[Ai : Ai+1] is equal to the size of the orbit of ei+1 under Ai in the projective space. Let v ∈ Fnq . To
test whether v is in the orbit of ei+1 under Ai in the projective space, we tranform A by P t · P ,
where P ∈ GL(n, q) sends ei+1 to v and ej to ej for j 6= i+ 1, to get A′. We then add the diagonal
restriction gadget to the first i+ 1 lateral slices and the first i+ 1 horizontal slices of A and A′, to
obtain Ã and Ã′ respectively. Then feed A and A′ to the decision oracle. By the functionality of
the diagonal restriction gadget, v is in the orbit of ei+1 in the projective space if and only if Ã and
Ã′ are isometric. Enumerating v ∈ Fnq up to scalar multiples gives us the size of the orbit of ei+1

under Ai in the projective space. This finishes the description of the algorithm.
A small caveat in the above is that our gadget requires n = Ω(1), so we cannot start from A0

at the beginning. This issue can be revolved by noting that the order of Ac, for any constant c, can
be computed in time qO(n), by enumerating all possible images of e1, . . . , ec in time qO(n), adding
the diagonal restriction gadget, and utilizing the decision oracle.

5.3.3 Random Hi’s satisfy the requirements when q = nΩ(1)

In the following we will encounter random matrices over Fq as well as random subspaces in Fnq .
There is a subtle point which we want to clarify now. Let m ≤ n. Note that there are

(
n
m

)
q

subspaces of Fnq , and there are N1 = (qn−1) · . . . · (qn− qm−1) rank-m matrices of size n×m. It can
be seen easily that each m-dimensional subspace V of Fnq has N2 = (qm−1) · . . . · (qm− qm−1) many
representations as rank-m matrices of size n×m, i.e. the columns of the matrix span V . It follows
that we can work with random rank-m matrices of size n ×m as if we are working with random
m-dimensional subspaces of Fnq . Such correspondences will be used implicitly for other structures,
including direct sum decompositions.

23

Now let us get back to our question. We shall show that a random choice of Hi, i ∈ [n], would
satisfy the four conditions we imposed on Hi’s. We will prove that for conditions k = 1, 2, 3,

Pr[random Hi not satisfy condition k] ≤ nO(1)

qΩ(n)
.

Once these hold, by a union bound, we have

Pr[∃i ∈ [3], random Hi not satisfy condition i] ≤ nO(1)

qΩ(n)
.

For condition (4), we will prove that

Pr[random Hi not satisfy condition 4 | Hi satisfy conditions 1, 2, 3] ≤ nO(1)

qΩ(1)
.

This then would allow us to conclude that when q = nΩ(1), random Hi’s satisfy all the four condi-
tions.

We examine the first three conditions one by one.

1. For condition (1), by Fact 5.2 (2), we have Pr[∃i ∈ [n], rk(Hi) < 4n] ≤ n · Pr[rk(Hi) < 4n] ≤
2n

q2n+1 .

2. For condition (2), noting that [Hi, Hj] is a random 6n × 8n matrix over Fq, by Fact 5.2 (2),
we have Pr[∃i 6= j ∈ [n], rk([HiHj]) < 6n] ≤

(
n
2

)
· 2
q8n−6n+1 ≤ n2

q2n+1 .

3. For condition (3), let I = [Hi1 . . . Hi6], and J = [Hj1 . . . Hj6]. We see that C is non-empty if
and only if there exists L ∈ GL(6n,Fq) and Rk ∈ GL(4n, Fq), k ∈ [6], such that LHikRk =

Hjk . Note that the orbit of I under this group action is of size at most q(6n)2+6·(4n)2
= q132n2 .

Since ik and j` are all different, the probability of J belonging to this orbit is ≤ q132n2

q144n2 = 1

q12n2 .

We then have Pr[∃ik, jk ∈ [n], k ∈ [6], ik, jk all different, C = ∅] ≤
(
n
12

)
2

q12n2 ≤ n12

q12n2 .

We now focus on condition (4). For condition (4), we first assume that the conditions (1) and
(2) as above hold. Then Vi’s are random 4n-dimensional subspaces of F6n

q . Note that

Pr[∃ik ∈ [n], k ∈ [6], ik all different, S non-scalar] ≤ n6 · Pr[S non-scalar for V1, . . . , V6].

So we turn to study Pr[S non-scalar for V1, . . . , V6], and will show that it is ≤ 1
qΩ(1) .

Let U1 = V1 ∩ V2, U2 = V2 ∩ V3, and U3 = V1 ∩ V3. Let W1 = V4 ∩ V5, W2 = V5 ∩ V6, and
W3 = V4 ∩ V6. Since conditions (1) and (2) hold, we have dim(Ui) = dim(Wi) = 2n. We claim that
with probability ≥ 1 − 2/q, F6n

q = U1 ⊕ U2 ⊕ U3, i.e., U1 ∪ U2 ∪ U3 span F6n
q . This can be seen as

follows. Since we assumed conditions (1) and (2), this happens if and only if V1∩V2 and V3 together
span F6n

q . Therefore we calculate, using Fact 5.2 (1), (3), and (5), that

Pr[V3 is a complement subspace of V1 ∩ V2]

= q2n·4n/

(
6n

4n

)
q

=
(q6n − q2n)(q6n − q2n+1) . . . (q6n − q6n−1)

(q6n − 1)(q6n − q) . . . (q6n − q4n−1)

≥ (q6n − q2n)(q6n − q2n+1) . . . (q6n − q6n−1)

q6n · q6n · · · · · q6n
= (1− 1/q4n)(1− 1/q4n−1) . . . (1− 1/q)

≥ 1−
4n∑
i=1

1/qi ≥ 1− 2/q.

24

It follows that with probability ≥ 1 − 4/q, we can assume in addition that Wi form a direct sum
decomposition of F6n

q .
Therefore, we turn to bound the probability that there exists a non-scalar invertible matrix

stabilizing these two direct sum decompositions of F6n
q . Since ik are all different, the two direct sum

decompositions U1 ⊕ U2 ⊕ U3 and W1 ⊕W2 ⊕W3 are independent. So we can assume that Ui is
spanned by those standard basis vectors ~e2n(i−1)+1, . . . , ~e2ni, i = 1, 2, 3. The group that stabilizes

this direct sum decomposition U1 ⊕ U2 ⊕ U3 consists of

D1 0 0
0 D2 0
0 0 D3

 ∈ GL(6n,Fq) where Di is

of size 2n× 2n.
The question then becomes to bound the probability for a randomW1⊕W2⊕W3 to be stabilized

by a non-scalar matrix of the above form. This can be formulated as the following linear algebraic
problem. (Recall the correspondence between randomm-dimensional subspaces and random rank-m

matrices as discussed at the beginning of the subsection.) LetW =

W11 W12 W13

W21 W22 W23

W31 W32 W33

 ∈ GL(6n, q)

be a block matrix where Wij is of size 2n × 2n. Suppose the columns of

W1i

W2i

W3i

 span Wi. Then

D = diag(D1, D2, D3) stabilizes W1 ⊕W2 ⊕W3 if and only if there exists a block diagonal matrix
E = diag(E1, E2, E3), Ei ∈ GL(2n, q), such thatD1 0 0

0 D2 0
0 0 D3

W11 W12 W13

W21 W22 W23

W31 W32 W33

 =

W11 W12 W13

W21 W22 W23

W31 W32 W33

E1 0 0
0 E2 0
0 0 E3

 . (5)

Note that each direct sum decomposition W1 ⊕W2 ⊕W3, dim(Wi) = 2n, has 6 · |GL(2n, q)|3 such
matrix representations. (The factor 6 takes care of the orders of the three summands.) So the
question becomes to bound the probability for a random invertible matrix to have a non-scalar D
and E satisfying Equation 5.

First, note that Equation 5 holds if and only if DiWi,j = Wi,jEj for i, j ∈ [3].

Claim 5.9. When q = Ω(1), we have Pr[∀i, j ∈ [3], rk(Wi,j) = 2n] ≥ 1− 20
q .

Proof. Let us work in the setting when W is a random matrix, not necessarily a random one. Then
Pr[rk(W) = 6n] ≥ 1 − 2

q . For any i, j ∈ [3], Pr[rk(Wi,j) < 2n] ≤ 2
q , so Pr[∃i, j ∈ [3], rk(Wi,j) <

2n] ≤ 18
q . It follows that Pr[∃i, j ∈ [3], rk(Wi,j) < 2n | rk(W) = 6n] = Pr[∃i, j ∈ [3], rk(Wi,j) <

2n ∧ rk(W) = 6n]/Pr[rk(W) = 6n] ≤ 18/q
1−2/q = 18

q−2 ≤
20
q , where the last inequality uses that

q = Ω(1).

So we assume that rk(Wi,j) = 2n for all i, j ∈ [3] in the following, with a loss of probability
≤ 20

q .
For i ∈ [3], by DiWii = WiiEi, we have Di = WiiEiW

−1
ii . For i 6= j, by (WjjEjW

−1
jj)Wji =

DjWji = WjiEi, we have Ej = W−1
jj WjiEiW

−1
ji Wjj . Again for i 6= j, we have WiiEiW

−1
ii Wij =

DiWij = WijEj = WijW
−1
jj WjiEiW

−1
ji Wjj . It follows that

∀i, j ∈ [3], i 6= j, EiW
−1
ii WijW

−1
jj Wji = W−1

ii WijW
−1
jj WjiEi.

25

In particular, E3 commutes with X = W−1
33 W32W

−1
22 W23 and Y = W−1

33 W31W
−1
11 W13. Since Wij

are independent random invertible matrices, X and Y are independent random invertible matrices.
We now resort to the following classical result.

Theorem 5.10 ([KL90], cf. also [Kan90,EV20]). Let X and Y be two random matrices in SL(n, q).
Then the probability of X and Y not generating SL(n, q) is ≤ 1

qΩ(n) .

Back to our setting, the above theorem implies that the group G generated by random X and
Y from GL(2n, q) contains SL(2n, q) with probability ≥ 1 − 1

qΩ(n) . It follows that E3 belongs to
the centralizer of G, so E3 must be a scalar matrix. Then note that Di’s and other Ei’s are all
conjugates of E3. So we have ∀i ∈ [3], Di = Ei = λI2n for some λ 6= 0 ∈ Fq.

Summarizing the above, we have

Pr[S non-scalar for V1, . . . , V6]

≤ Pr[S non-scalar for Vi ∧ F6n
q = U1 ⊕ U2 ⊕ U3 = W1 ⊕W2 ⊕W3] +

4

q

≤ Pr[S non-scalar for Vi | F6n
q = U1 ⊕ U2 ⊕ U3 = W1 ⊕W2 ⊕W3] +

4

q

≤ Pr[D non-scalar for W ∧ ∀i, j ∈ [3], rk(Wij) = 2n] +
20

q
+

4

q

≤ Pr[D non-scalar for W | ∀i, j ∈ [3], rk(Wij) = 2n] +
24

q

≤ 1

qΩ(n)
+

24

q

≤ 1

qΩ(1)
,

when q = nΩ(1). This concludes the proof of Proposition 5.4.

6 Application to p-Group Isomorphism, using constructive Baer
and Lazard correspondences

The applications to p-Group Isomorphism rely on the following well-known connections between
alternating bilinear maps and Lie algebras on the one hand, and p-groups of “small” class on the
other. We present these connections here, partly for audiences not from computational group theory,
and partly because we will need to address some computational aspects of these procedures. We
begin with some preliminaries.

6.1 Preliminaries

TI-completeness. As the proof of Thm. P in Sec. 6.3.1 uses a result on TI-completeness from
[GQ21], here we recall the definition of TI; see Definition 3.1 for the d-Tensor Isomorphism
problem.

Definition 6.1 (dTI,TI). For any field F, dTIF denotes the class of problems that are polynomial-
time Turing (Cook) reducible to d-Tensor Isomorphism over F. Also let TIF =

⋃
d≥1 dTIF.

26

The relationship between TI over different fields remains an intriguing open question [GQ21],
but here we will only need TI over Fp. One of the the main results of [GQ21] is that TI = dTI for
any fixed d ≥ 3.

Algebras and their algorithmic representations. A Lie algebra A consists of a vector space
V and a bilinear map [,] : V × V → V that is alternating ([v, v] = 0 for all v ∈ V ; this is
equivalent to skew-symmetry [u, v] = −[v, u] in characteristic not 2) and satisfies the Jacobi identity
[x, [y, z]]+[z, [x, y]]+[y, [z, x]] = 0. The Jacobi identity is essentially the “derivative” of associativity.

After choosing an ordered basis (b1, . . . , bn) where bi ∈ Fn of V ∼= Fn, this bilinear map [,] can
be represented by an n × n × n 3-way array A, such that [bi, bj] =

∑
k∈[n] A(i, j, k)bk. This is the

structure constant representation of A. Algorithms for Lie algebras have been studied intensively
in this model, e. g., [IR99,dG00].

It is also natural to consider matrix spaces that are closed under commutator. More specifically,
let A ≤ M(n,F) be a matrix space. If A is closed under commutator, that is, for any A,B ∈ A,
[A,B] = AB − BA ∈ A, then A is a matrix Lie algebra with the product being the commutator.
(Protip: one way to remember the Jacobi identity is to derive it as the natural identity among
nested commutators of three matrices.) Algorithms for matrix Lie algebras have also been studied,
e. g., [EG00, Iva00, IR99].

6.2 Constructive Baer Correspondence and Theorems A and B

Let us review Baer’s correspondence [Bae38], which connects alternating bilinear maps with p-
groups of class 2 and exponent p. Let P be a p-group of class 2 and exponent p, p > 2. Suppose
the commutator subgroup [P, P] ∼= Zmp and P/[P, P] ∼= Znp . Then the commutator map [,] :
P/[P, P] × P/[P, P] → [P, P] is an alternating bilinear map. Conversely, let φ : Znp × Znp → Zmp
be an alternating bilinear map. Then a p-group of class 2 and exponent p, denoted as Pφ can be
defined as follows. The group elements are from Znp × Zmp , and the group product · is defined as

(u, v) · (u′, v′) = (u+ u′, v + v′ +
1

2
φ(u, u′)).

We say that (A,B) ∈ GL(n, p) × GL(m, p) is a pseudo-autometry of φ, if φ = B ◦ φ ◦ A. Clearly,
there is a one-to-one correspondence between automorphisms of Pφ and pseudo-autometries of φ.

We then state a lemma which can be viewed as a constructive version of Baer’s correspondence,
communicated to us by James B. Wilson.

Lemma 6.2 (Constructive version of Baer’s correspondence for matrix groups). Let p be an odd
prime. Over the finite field F = Fpe, Alternating Matrix Space Isometry is equivalent to
Group Isomorphism for matrix groups over F that are p-groups of class 2 and exponent p. More
precisely, there are functions computable in time poly(n,m, log |F|):

• G : Λ(n,F)m → M(n+m+ 1,F)n+m and

• Alt : M(n,F)m → Λ(m,F)O(m2)

such that: (1) for an alternating bilinear map A, the group generated by G(A) is the Baer group
corresponding to A, (2) G and Alt are mutually inverse, in the sense that the group generated by
G(Alt(M1, . . . ,Mm)) is isomorphic to the group generated byM1, . . . ,Mm, and conversely Alt(G(A))
is pseudo-isometric to A.

27

Proof. First, let G be a p-group of class 2 and exponent p given by m generating matrices of
size n × n over F. Then from the generating matrices of G, we first compute a generating set of
[G,G], by just computing all the commutators of the given generators. We can then remove those
redundant elements from this generating set in time poly(log |[G,G]|, log |F|), using Luks’ result on
computing with solvable matrix groups [Luk92]. We then compute a set of representatives of a
non-redundant generating set of G/[G,G], again using Luks’s aforementioned result. From these
data we can compute an alternating bilinear map representing the commutator map of G in time
poly(n,m, log |F|).

Conversely, let an alternating bilinear map be given by A = (A1, . . . , Am) ∈ Λ(n,F)m. From A,
for i ∈ [n], construct Bi = [A1ei, . . . , Amei] ∈ M(n×m,F), where ei is the ith standard basis vector
of Fn. That is, the jth column of Bi is the ith column of Aj . Then for i ∈ [n], construct

B̃i =

1 eti 0
0 In Bi
0 0 Im

 ∈ GL(1 + n+m,F),

where ei ∈ Fn, and for j ∈ [m], construct

C̃j =

1 0 etj
0 In 0
0 0 Im

 ∈ GL(1 + n+m,F),

where ej ∈ Fm. Let G(A) be the matrix group generated by B̃i and C̃j . Then it can be verified easily
that, G(A) is isomorphic to the Baer group corresponding to the alternating bilinear map defined by
A. In particular, [G,G] ∼= Fm ∼= Zemp (isomorphism of abelian groups), and G/[G,G] ∼= Fn ∼= Zenp .
This construction can be done in time poly(n,m, log |F|).

Given the above lemma, we can present search- and counting-to-decision reductions for testing
isomorphism of a class of p-groups, proving Theorems A and B.

Proof of Theorem A. The search-to-decision reduction follows from Theorem A′, using the qO(n+m)-
time algorithm, with the constructive version of Baer’s Correspondence in the model of matrix
groups over finite fields (Lemma 6.2).

In more detail, given Lemma 6.2 we can follow the procedure in the proof of Theorem A′.
For the given p-groups, we compute their commutator maps. Then whenever we need to feed the
decision oracle, we transform from the alternating bilinear map to a generating set of a p-group of
class 2 and exponent p with this bilinear map as the commutator map. After getting the desired
pseudo-isometry for the alternating bilinear maps, we can easily recover an isomorphism between
the originally given p-groups.

Proof of Theorem B. For the counting-to-decision reduction, we basically follow the above routine,
but with a twist, because of the minor distinction between alternating matrix space isometry,
and alternating bilinear map pseudo-isometry. Let us briefly explain this issue. Suppose from an
alternating bilinear map φ : Znp ×Znp → Zmp we constructed a p-group of class 2 and exponent p Pφ,
and there is a one-to-one correspondence between automorphisms of Pφ and pseudo-autometries of
φ. Let (C1, . . . , Cm) ∈ Λ(n, p) be a matrix representation of φ. If Ci’s are linearly independent, then
for a pseudo-autometry (A,B) ∈ GL(n, p)×GL(m, p), given A there exists a unique B that makes
(A,B) a pseudo-autometry. If Ci’s are not linearly independent, say the linear span of Ci’s is of
dimensionm′, then the number of B such that (A,B) is a pseudo-autometry is |GL(m−m′, p)|. The
counting to decision reduction for Alternating Matrix Space Isometry computes the number

28

of A ∈ GL(n, p) so that there exists some B ∈ GL(m, p) such that (A,B) is a pseudo-autometry.
So it needs to be multiplied by a factor of |GL(m−m′, p)| to get the number of automorphisms of
Pφ.

6.3 Constructive Lazard’s correspondence and Thm. P

The Lazard correspondence is a correspondence between certain classes of groups and Lie algebras,
which extends the usual correspondence between Lie groups and Lie algebras (say, over R) to some
groups and Lie algebras in positive characteristic. Here we state just enough to give a sense of it; for
further details we refer to Khukhro’s book [Khu98] and Naik’s thesis [Nai13]. While Naik’s thesis is
quite long, it also includes a reader’s guide, and collects many results scattered across the literature
or well-known to the experts in one place, building the theory from the ground up and with many
examples.

Recall that a Lie ring is an abelian group L equipped with a bilinear map [,], called the Lie
bracket, which is (1) alternating ([x, x] = 0 for all x ∈ L) and (2) satisfies the Jacobi identity
[x, [y, z]] + [y, [z, x]] + [z, [x, y]] = 0 for all x, y, z ∈ L. Let L1 = L, and Li+1 = [L,Li], which is
the subgroup (of the underlying additive group) generated by all elements of the form [x, y] for
x ∈ L, y ∈ Li. Then L is nilpotent if Lc+1 = 0 for some finite c; the smallest such c is the nilpotency
class. (Lie algebras are just Lie rings over a field.)

The correspondence between Lie algebras and Lie groups over R uses the Baker–Campbell–
Hausdorff (BCH) formula to convert between a Lie algebra and a Lie group, so we start there. The
BCH formula is the solution to the problem that for non-commuting matrices X,Y , eXeY 6= eX+Y

in general (where the matrix exponential here is defined using the power series for ex). Rather,
using commutators [A,B] = AB −BA, we have

exp(X) exp(Y) = exp

(
X + Y +

1

2
[X,Y] +

1

12
([X, [X,Y]]− [Y, [X,Y]])− 1

24
[Y, [X, [X,Y]]] + · · ·

)
,

where the remaining terms are iterated commutators that all involve at least 5 Xs and Y s, and
successive terms involve more and more. Applying the exponential function to a Lie algebra in
characteristic zero yields a Lie group. The BCH formula can be inverted, giving the correspondence
in the other direction.

In a nilpotent Lie algebra, the BCH formula has only finitely many nonzero terms, so issues of
convergence disappear and we may consider applying the correspondence over finite fields or rings;
the only remaining obstacle is that the denominators appearing in the formula must be units in the
ring. It turns out that the correspondence continues to work in characteristic p so long as one does
not need to use the p-th term of the BCH formula (which includes division by p), and the latter is
avoided whenever a nilpotent group has class strictly less than p. While the correspondence does
apply more generally, here we only state the version for finite groups. For any fixed nilpotency class
c, computing the Lazard correspondence is efficient in theory; for how to compute it in practice
when the groups are given by polycyclic presentations, see [CdGVL12].

Let Grpp,n,c denote the set of finite groups of order pn and class c, and let Liep,n,c denote the
set of Lie rings of order pn and class c. We note that for nilpotency class 2, the Baer correspondence
is the same as the Lazard correspondence.

Theorem 6.3 (Lazard Correspondence for finite groups, see, e. g., [Khu98, Ch. 9 & 10] or [Nai13,
Ch. 6]). For any prime p and any 1 ≤ c < p, there are functions log : Grpp,n,c ↔ Liep,n,c :
exp such that (1) log and exp are inverses of one another, (2) two groups G,H ∈ Grpp,n,c are
isomorphic if and only if log(G) and log(H) are isomorphic, and (3) if G has exponent p, then

29

the underlying abelian group of log(G) has exponent p. More strongly, log is an isomorphism of
categories Grpp,n,c

∼= Liep,n,c.

Part (3) can be found as a special case of [Nai13, Lemma 6.1.2].
For p-groups given by d × d matrices over the finite field Fpe , we will need one additional fact

about the correspondence, namely that it also results in a Lie algebra of d × d matrices. (Being
able to bound the dimension of the Lie algebra and work with it in a simple linear-algebraic way
seems crucial for our reduction to work efficiently.) In fact, the BCH correspondence is easier to see
for matrix groups using the matrix exponential and matrix logarithm; most of the work for BCH
and Lazard is to get the correspondence to work even without the matrices. In some sense, this is
thus the “original” setting of this correspondence. Though it is surely not new, we could not find a
convenient reference for this fact about matrix groups over finite fields, so we state it formally here.

Proposition 6.4. Let G ≤ GL(d,Fpe) be a finite p-subgroup of exponent p, consisting of d × d
matrices over a finite field of characteristic p. Then log(G) (from the Lazard correspondence) can
be realized as a finite Lie subalgebra of d× d matrices over Fpe. Given a generating set for G of m
matrices, a generating set for log(G) can be constructed in poly(d, n, log p) time.

Proof sketch. G is conjugate in GL(d,Fpe) to a group of upper unitriangular matrices (upper tri-
angular with all 1s on the diagonal); this is a standard fact that can be seen in several ways, for
example, by noting that the group U of all upper unitriangular matrices in GL(d,Fpe) is a Sylow
p-subgroup, and applying Sylow’s Theorem. (Note that we do not need to do this conjugation
algorithmically, though it is possible to do so [FR85,Rón90,Iva00]; this is only for the proof.) Thus
we may write every g ∈ G as 1 + n, where the sum here is the ordinary sum of matrices, 1 denotes
the identity matrix, and n is strictly upper triangular. To see that we can truncate the Taylor series
for logarithm before the p-th term (thus avoiding needing to divide by p), note that (1 + n)p = 1
since G is exponent p. We have (1 +n)p = 1p +

(
p
1

)
n+

(
p
2

)
n2 + · · ·+

(
p
p−1

)
np−1 +np. Since these are

matrices over a field of characteristic p, and p|
(
p
i

)
for all 1 ≤ i ≤ p − 1, all the intermediate terms

vanish and we have that (1 + n)p = 1p + np. Thus 1 = (1 + n)p = 1 + np, so we get that np = 0.
Thus, in the the Taylor series for the logarithm

log(1 + n) = n− n2

2
+
n3

3
− · · ·

the last nonzero term is np−1/(p− 1), so we may use this Taylor series even over Fpe .
In the Lie algebra we would like addition to be ordinary matrix addition; however, it turns

out that we can write this addition in terms of a formula involving only commutators of group
elements. Deriving this formula—the so-called first BCH inverse formula—for the matrices will be
the same, step for step, as deriving the first inverse BCH formula in general. Since the formulae
are identical, the additive structures on log(G) (using the matrix logarithm) and log(G) (from
the Lazard correspondence) are identical. Similar considerations apply to the matrix commutator
[log(g), log(h)] = log(g) log(h)− log(h) log(g), now using the second BCH inverse formula. Overall,
we conclude that log(G) (using Lazard) and log(G) (using the matrix logarithm) are isomorphic
Lie algebras.

Equivalently, we may note that the derivation of the inverse BCH formula in [Khu98, Nai13]
uses a free nilpotent associative algebra as an ambient setting in which both the group (or rather,
n such that 1 + n is in the group) and the corresponding Lie algebra live; in our case, we may
replace the ambient free nilpotent associative algebra with the algebra of d × d strictly upper-
triangular matrices over Fpe , and all the derivations remain the same, mutatis mutandis. See, for
example, [Khu98, p. 105, “Another remark...”].

30

6.3.1 Class reduction in p-group isomorphism testing

Prop. 6.4 now allows us to prove Thm. P.

Proof of Thm. P. By the Lazard correspondence (reproduced as Thm. 6.3) two p-groups of exponent
p and class c < p are isomorphic if and only if their corresponding Fp-Lie algebras are. By Prop. 6.4,
we can construct a generating set for the corresponding Lie algebra by applying the power series for
logarithm to the generating matrices of G. This Lie algebra is thus a subalgebra of n×n matrices, so
we can generate a basis for the entire Lie algebra (using the linear-algebra version of breadth-first
search; its dimension is ≤ n2) and compute its structure constants in time polynomial in n, m,
and log p. Then use [FGS19] to reduce isomorphism of Lie algebras to 3-Tensor Isomorphism,
and then use the fact that isomorphism of p-groups of exponent p and class 2 given by a matrix
generating set over Fp is TI-complete [GQ21] to reduce to the latter problem.

7 Conclusion

In this paper, we gave first-of-their-kind results around search-to-decision, counting-to-decision, and
reductions to hard instances in the context of Group Isomorphism. We focused on p-groups of
class 2 (or more generally small class) and exponent p, as these are widely believed to be the hardest
cases of GpI. They also have the closest connection with tensors.

We view this paper as the second in a planned series, focusing on isomorphism problems for
tensors, groups, polynomials, and related structures. Although Graph Isomorphism (GI) is
perhaps the most well-studied isomorphism problem in computational complexity—even going back
to Cook’s and Levin’s initial investigations into NP (see [AD17, Sec. 1])—it has long been considered
to be solvable in practice [McK80,MP14], and Babai’s recent quasi-polynomial-time breakthrough
is one of the theoretical gems of the last several decades [Bab16]. However, several isomorphism
problems for tensors, groups, and polynomials seem to be much harder to solve, both in practice—
they’ve been suggested as difficult enough to support cryptography [Pat96,JQSY19]—and in theory:
the best known worst-case upper bounds are barely improved from brute force (e. g., [Ros13b,
LQ17]). As these problems arise in a variety of areas, from multivariate cryptography and machine
learning, to quantum information and computational algebra, getting a better understanding of
their complexity is an important goal with many potential applications.

In the first paper in this series [GQ21], we showed that numerous such isomorphism problems
from many research areas are equivalent under polynomial-time reductions, creating bridges between
different disciplines. The Tensor Isomorphism (TI) problem turns out to occupy a central
position among these problems, leading us to define the complexity class TI, consisting of those
problems polynomial-time reducible to the Tensor Isomorphism problem. The gadgets and TI-
completeness result from that first paper in some cases opened the door, and in other cases are used
as subroutines, in the main results of the current paper.

Finally, we list here some additional questions that we find interesting and approachable. One
question is whether our tensor-based methods here can be extended or combined with other methods
to get analogous results in wider classes of groups; for isomorphism algorithms, something along
these lines was proposed by Brooksbank, Grochow, Li, Wilson, & Qiao [BGL+19], but there are
many interesting open questions in this direction.

Getting the results of this paper to work in the Cayley table model would also be interesting
from the complexity-theoretic perspective; the necessary ingredients are discussed in Remark 1.2.

Lastly, we mention that extending the results of the present paper, [FGS19], and [GQ21] to
rings beyond fields would be very interesting. In particular, working with tensors over Z/pkZ is an

31

important step towards extending the results of this paper to p-groups of class 2 without restricting
them to exponent p. (This is particularly important when p = 2, as groups of exponent 2 are
abelian, so the hardest instances of 2-groups, rather than “p-groups of class 2 and exponent p” with
p = 2, are often taken to be 2-groups of class 2 and exponent four.)

It seems conceivable that many of our arguments could extend to tensors over local rings—
those with a unique maximal ideal—as many of our arguments are rank-based, and rank still has
nice properties over local rings (e.g. Nakayama’s Lemma). In particular, if R is a ring and m a
maximal ideal, then R/m is a field; in a local ring, there is a unique maximal ideal, so the field R/m
is canonically associated to R, and one can talk cleanly about rank and dimension of R-modules
considered over the field R/m. Besides Z/pkZ, another local ring of interest is the ring F[[t]] of
power series in one variable over a field F; a tensor over F[[t]] is essentially a 1-parameter family of
tensors over F, so studying tensor problems over F[[t]] could have applications to border rank and
geometric complexity theory.

Acknowledgments

The authors would like to thanks James B. Wilson for related discussions, and Ryan Williams
for pointing out the problem of distinguishing between ETH and #ETH. J. A. G. would like to
thank V. Futorny and V. V. Sergeichuk for their collaboration on the related work [FGS19]. Ideas
leading to this work originated from the 2015 workshop “Wildness in computer science, physics, and
mathematics” at the Santa Fe Institute. Both authors were supported by NSF grant DMS-1750319.
Y. Q. was partly supported by Australian Research Council DP200100950.

References

[AD17] Eric Allender and Bireswar Das. Zero knowledge and circuit minimization. Inf. Com-
put., 256:2–8, 2017. doi:10.1016/j.ic.2017.04.004.

[AT05] Vikraman Arvind and Jacobo Torán. Isomorphism testing: Perspective and open prob-
lems. Bulletin of the EATCS, 86:66–84, 2005.

[Bab16] László Babai. Graph isomorphism in quasipolynomial time [extended abstract]. In
Proceedings of the 48th Annual ACM SIGACT Symposium on Theory of Computing,
STOC 2016, pages 684–697, 2016. arXiv:1512.03547 [cs.DS] version 2. doi:10.1145/
2897518.2897542.

[Bae38] Reinhold Baer. Groups with abelian central quotient group. Trans. AMS, 44(3):357–
386, 1938. doi:10.1090/S0002-9947-1938-1501972-1.

[BBF+06] Anton Betten, Michael Braun, Harald Fripertinger, Adalbert Kerber, Axel Kohnert,
and Alfred Wassermann. Error-correcting linear codes: Classification by isometry and
applications, volume 18. Springer Science and Business Media, 2006.

[BCGQ11] László Babai, Paolo Codenotti, Joshua A. Grochow, and Youming Qiao. Code equiv-
alence and group isomorphism. In Proceedings of the Twenty-Second Annual ACM–
SIAM Symposium on Discrete Algorithms (SODA11), pages 1395–1408, Philadelphia,
PA, 2011. SIAM. doi:10.1137/1.9781611973082.107.

32

https://doi.org/10.1016/j.ic.2017.04.004
https://arxiv.org/abs/1512.03547
https://doi.org/10.1145/2897518.2897542
https://doi.org/10.1145/2897518.2897542
https://doi.org/10.1090/S0002-9947-1938-1501972-1
https://doi.org/10.1137/1.9781611973082.107

[BCQ12] László Babai, Paolo Codenotti, and Youming Qiao. Polynomial-time isomorphism test
for groups with no abelian normal subgroups - (extended abstract). In Automata, Lan-
guages, and Programming - 39th International Colloquium, ICALP 2012, Proceedings,
Part I, pages 51–62, 2012. doi:10.1007/978-3-642-31594-7_5.

[BE99] Hans Ulrich Besche and Bettina Eick. Construction of finite groups. J. Symb. Comput.,
27(4):387–404, 1999. doi:10.1006/jsco.1998.0258.

[BEO02] Hans Ulrich Besche, Bettina Eick, and E.A. O’Brien. A millennium project: Con-
structing small groups. Intern. J. Alg. and Comput, 12:623–644, 2002. doi:10.1142/
S0218196702001115.

[BG94] Mihir Bellare and Shafi Goldwasser. The complexity of decision versus search. SIAM
J. Comput., 23(1):97–119, 1994. doi:10.1137/S0097539792228289.

[BGL+19] Peter A. Brooksbank, Joshua A. Grochow, Yinan Li, Youming Qiao, and James B.
Wilson. Incorporating Weisfeiler–Leman into algorithms for group isomorphism.
arXiv:1905.02518 [cs.CC], 2019.

[BL08] Peter A. Brooksbank and Eugene M. Luks. Testing isomorphism of modules. J. Algebra,
320(11):4020 – 4029, 2008. doi:10.1016/j.jalgebra.2008.07.014.

[BLQW20] Peter A. Brooksbank, Yinan Li, Youming Qiao, and James B. Wilson. Improved al-
gorithms for alternating matrix space isometry: From theory to practice. In Fabrizio
Grandoni, Grzegorz Herman, and Peter Sanders, editors, 28th Annual European Sympo-
sium on Algorithms, ESA 2020, September 7-9, 2020, Pisa, Italy (Virtual Conference),
volume 173 of LIPIcs, pages 26:1–26:15. Schloss Dagstuhl - Leibniz-Zentrum für Infor-
matik, 2020. doi:10.4230/LIPIcs.ESA.2020.26.

[BMW17] Peter A. Brooksbank, Joshua Maglione, and James B. Wilson. A fast isomorphism
test for groups whose Lie algebra has genus 2. J. Algebra, 473:545–590, 2017. doi:
Afastisomorphismtestforgroupswhose{Lie}algebrahasgenus2.

[BO08] Peter A. Brooksbank and E. A. O’Brien. Constructing the group preserving a sys-
tem of forms. Internat. J. Algebra Comput., 18(2):227–241, 2008. doi:10.1142/
S021819670800441X.

[BQ12] László Babai and Youming Qiao. Polynomial-time isomorphism test for groups with
Abelian Sylow towers. In 29th STACS, pages 453 – 464. Springer LNCS 6651, 2012.
doi:10.4230/LIPIcs.STACS.2012.453.

[CdGVL12] Serena Cicalò, Willem A. de Graaf, and Michael Vaughan-Lee. An effective version
of the Lazard correspondence. J. Algebra, 352(1):430 – 450, 2012. doi:10.1016/j.
jalgebra.2011.11.031.

[CDT09] Xi Chen, Xiaotie Deng, and Shang-Hua Teng. Settling the complexity of computing
two-player Nash equilibria. J. ACM, 56(3):Art. 14, 57, 2009. doi:10.1145/1516512.
1516516.

[CH03] John Cannon and Derek F. Holt. Automorphism group computation and isomorphism
testing in finite groups. J. Symbolic Comput., 35(3):241–267, 2003.

33

https://doi.org/10.1007/978-3-642-31594-7_5
https://doi.org/10.1006/jsco.1998.0258
https://doi.org/10.1142/S0218196702001115
https://doi.org/10.1142/S0218196702001115
https://doi.org/10.1137/S0097539792228289
https://arxiv.org/abs/1905.02518
https://doi.org/10.1016/j.jalgebra.2008.07.014
https://doi.org/10.4230/LIPIcs.ESA.2020.26
https://doi.org/A fast isomorphism test for groups whose {Lie} algebra has genus 2
https://doi.org/A fast isomorphism test for groups whose {Lie} algebra has genus 2
https://doi.org/10.1142/S021819670800441X
https://doi.org/10.1142/S021819670800441X
https://doi.org/10.4230/LIPIcs.STACS.2012.453
https://doi.org/10.1016/j.jalgebra.2011.11.031
https://doi.org/10.1016/j.jalgebra.2011.11.031
https://doi.org/10.1145/1516512.1516516
https://doi.org/10.1145/1516512.1516516

[CIK97] Alexander Chistov, Gábor Ivanyos, and Marek Karpinski. Polynomial time algorithms
for modules over finite dimensional algebras. In Proceedings of the 1997 International
Symposium on Symbolic and Algebraic Computation, ISSAC ’97, pages 68–74. ACM,
1997. doi:10.1145/258726.258751.

[dG00] W.A. de Graaf. Lie Algebras: Theory and Algorithms, volume 56 of North-Holland
Mathematical Library. Elsevier Science, 2000.

[DHM+14] Holger Dell, Thore Husfeldt, Dániel Marx, Nina Taslaman, and Martin Wahlén. Expo-
nential time complexity of the permanent and the tutte polynomial. ACM Transactions
on Algorithms (TALG), 10(4):1–32, 2014.

[EG00] Wayne Eberly and Mark Giesbrecht. Efficient decomposition of associative algebras
over finite fields. Journal of Symbolic Computation, 29(3):441–458, 2000. doi:10.
1006/jsco.1999.0308.

[ELGO02] Bettina Eick, C. R. Leedham-Green, and E. A. O’Brien. Constructing automor-
phism groups of p-groups. Comm. Algebra, 30(5):2271–2295, 2002. doi:10.1081/
AGB-120003468.

[EV20] Sean Eberhard and Stefan-C. Virchow. Random generation of the special linear group.
Transactions of the American Mathematical Society, page 1, March 2020. doi:10.
1090/tran/8009.

[Exc] Theoretical Computer Science Stack Exchange. What is the hardest instance for the
group isomorphism problem? https://cstheory.stackexchange.com/a/42551/129.

[FGS19] Vyacheslav Futorny, Joshua A. Grochow, and Vladimir V. Sergeichuk. Wildness for
tensors. Lin. Alg. Appl., 566:212–244, 2019. doi:10.1016/j.laa.2018.12.022.

[FN70] V. Felsch and J. Neubüser. On a programme for the determination of the automorphism
group of a finite group. In Pergamon J. Leech, editor, Computational Problems in
Abstract Algebra (Proceedings of a Conference on Computational Problems in Algebra,
Oxford, 1967), pages 59–60, Oxford, 1970.

[FR85] Katalin Friedl and Lajos Rónyai. Polynomial time solutions of some problems in com-
putational algebra. In Robert Sedgewick, editor, Proceedings of the 17th Annual ACM
Symposium on Theory of Computing, May 6-8, 1985, Providence, Rhode Island, USA,
pages 153–162. ACM, 1985. doi:10.1145/22145.22162.

[GQ15] Joshua A. Grochow and Youming Qiao. Polynomial-time isomorphism test of groups
that are tame extensions - (extended abstract). In Algorithms and Computation -
26th International Symposium, ISAAC 2015, Nagoya, Japan, December 9-11, 2015,
Proceedings, pages 578–589, 2015. doi:10.1007/978-3-662-48971-0_49.

[GQ17] Joshua A. Grochow and Youming Qiao. Algorithms for group isomorphism via
group extensions and cohomology. SIAM J. Comput., 46(4):1153–1216, 2017. Pre-
liminary version in IEEE Conference on Computational Complexity (CCC) 2014
(DOI:10.1109/CCC.2014.19). Also available as arXiv:1309.1776 [cs.DS] and ECCC
Technical Report TR13-123. doi:10.1137/15M1009767.

34

https://doi.org/10.1145/258726.258751
https://doi.org/10.1006/jsco.1999.0308
https://doi.org/10.1006/jsco.1999.0308
https://doi.org/10.1081/AGB-120003468
https://doi.org/10.1081/AGB-120003468
https://doi.org/10.1090/tran/8009
https://doi.org/10.1090/tran/8009
https://cstheory.stackexchange.com/a/42551/129
https://doi.org/10.1016/j.laa.2018.12.022
https://doi.org/10.1145/22145.22162
https://doi.org/10.1007/978-3-662-48971-0_49
https://arxiv.org/abs/1309.1776
https://doi.org/10.1137/15M1009767

[GQ21] Joshua A. Grochow and Youming Qiao. On the complexity of isomorphism problems
for tensors, groups, and polynomials I: Tensor Isomorphism-completeness. In ITCS,
page to appear, 2021. arXiv:1907.00309.

[GS20] Martin Grohe and Pascal Schweitzer. The graph isomorphism problem. Commun.
ACM, 63(11):128–134, 2020. doi:10.1145/3372123.

[HQ20] Xiaoyu He and Youming Qiao. On the Baer–Lovász–Tutte construction of groups from
graphs: isomorphism types and homomorphism notions. arXiv:2003.07200 [math.CO],
2020.

[IKS10] Gábor Ivanyos, Marek Karpinski, and Nitin Saxena. Deterministic polynomial time
algorithms for matrix completion problems. SIAM J. Comput., 39(8):3736–3751, 2010.
doi:10.1137/090781231.

[IP01] Russell Impagliazzo and Ramamohan Paturi. On the complexity of k-SAT. Journal of
Computer and System Sciences, 62(2):367–375, 2001.

[IR99] Gábor Ivanyos and Lajos Rónyai. Computations in associative and Lie algebras.
In Some tapas of computer algebra, pages 91–120. Springer, 1999. doi:10.1007/
978-3-662-03891-8_5.

[Iva00] Gábor Ivanyos. Fast randomized algorithms for the structure of matrix algebras over
finite fields. In Proceedings of the 2000 international symposium on Symbolic and alge-
braic computation, pages 175–183. ACM, 2000. doi:10.1145/345542.345620.

[JQSY19] Zhengfeng Ji, Youming Qiao, Fang Song, and Aaram Yun. General linear group action
on tensors: A candidate for post-quantum cryptography. In Dennis Hofheinz and Alon
Rosen, editors, Theory of Cryptography - 17th International Conference, TCC 2019,
Nuremberg, Germany, December 1-5, 2019, Proceedings, Part I, volume 11891 of Lecture
Notes in Computer Science, pages 251–281. Springer, 2019. Preprint arXiv:1906.04330
[cs.CR]. doi:10.1007/978-3-030-36030-6_11.

[Kan90] William M. Kantor. Some topics in asymptotic group theory. Groups, Combinatorics
and Geometry (Durham, pages 403–421, 1990.

[KB09] Tamara G Kolda and Brett W Bader. Tensor decompositions and applications. SIAM
review, 51(3):455–500, 2009. doi:10.1137/07070111X.

[Khu98] E. I. Khukhro. p-automorphisms of finite p-groups, volume 246 of London Mathematical
Society Lecture Note Series. Cambridge University Press, Cambridge, 1998. doi:
10.1017/CBO9780511526008.

[KL90] William M Kantor and Alexander Lubotzky. The probability of generating a finite
classical group. Geometriae Dedicata, 36(1):67–87, 1990.

[KN09] Neeraj Kayal and Timur Nezhmetdinov. Factoring groups efficiently. In Susanne Al-
bers, Alberto Marchetti-Spaccamela, Yossi Matias, Sotiris E. Nikoletseas, and Wolfgang
Thomas, editors, Automata, Languages and Programming, 36th International Collo-
quium, ICALP 2009, Rhodes, Greece, July 5-12, 2009, Proceedings, Part I, volume
5555 of Lecture Notes in Computer Science, pages 585–596. Springer, 2009. Preprint
ECCC Tech. Report TR08-074. doi:10.1007/978-3-642-02927-1_49.

35

https://arxiv.org/abs/1907.00309
https://doi.org/10.1145/3372123
https://arxiv.org/abs/2003.07200
https://doi.org/10.1137/090781231
https://doi.org/10.1007/978-3-662-03891-8_5
https://doi.org/10.1007/978-3-662-03891-8_5
https://doi.org/10.1145/345542.345620
https://arxiv.org/abs/1906.04330
https://doi.org/10.1007/978-3-030-36030-6_11
https://doi.org/10.1137/07070111X
https://doi.org/10.1017/CBO9780511526008
https://doi.org/10.1017/CBO9780511526008
https://doi.org/10.1007/978-3-642-02927-1_49

[KST93] Johannes Köbler, Uwe Schöning, and Jacobo Torán. The graph isomorphism problem:
its structural complexity. Birkhauser Verlag, Basel, Switzerland, Switzerland, 1993.
doi:10.1007/978-1-4612-0333-9.

[LG09] François Le Gall. Efficient isomorphism testing for a class of group extensions. In Proc.
26th STACS, pages 625–636, 2009. doi:10.4230/LIPIcs.STACS.2009.1830.

[LQ17] Yinan Li and Youming Qiao. Linear algebraic analogues of the graph isomorphism
problem and the Erdős–Rényi model. In Chris Umans, editor, 58th IEEE Annual
Symposium on Foundations of Computer Science, FOCS 2017, pages 463–474. IEEE
Computer Society, 2017. doi:10.1109/FOCS.2017.49.

[LSZ77] Richard J. Lipton, Lawrence Snyder, and Yechezkel Zalcstein. The complexity of word
and isomorphism problems for finite groups. Yale University Department of Com-
puter Science Research Report # 91, 1977. URL: https://apps.dtic.mil/dtic/tr/
fulltext/u2/a053246.pdf.

[Luk92] Eugene M. Luks. Computing in solvable matrix groups. In FOCS 1992, 33rd Annual
Symposium on Foundations of Computer Science, pages 111–120. IEEE Computer So-
ciety, 1992. doi:10.1109/SFCS.1992.267813.

[Luk93] Eugene M. Luks. Permutation groups and polynomial-time computation. In Groups
and computation (New Brunswick, NJ, 1991), volume 11 of DIMACS Ser. Discrete
Math. Theoret. Comput. Sci., pages 139–175. Amer. Math. Soc., Providence, RI, 1993.

[Luk99] Eugene M. Luks. Hypergraph isomorphism and structural equivalence of boolean
functions. In Proceedings of the Thirty-First Annual ACM Symposium on The-
ory of Computing, May 1-4, 1999, Atlanta, Georgia, USA, pages 652–658, 1999.
doi:10.1145/301250.301427.

[LW12] Mark L. Lewis and James B. Wilson. Isomorphism in expanding families of indis-
tinguishable groups. Groups Complex. Cryptol., 4(1):73–110, 2012. doi:10.1515/
gcc-2012-0008.

[Mat79] Rudolf Mathon. A note on the graph isomorphism counting problem. Information
Processing Letters, 8(3):131–136, 1979.

[McK80] Brendan D. McKay. Practical graph isomorphism. Congr. Numer., pages 45–87, 1980.

[Mek81] Alan H. Mekler. Stability of nilpotent groups of class 2 and prime exponent. The
Journal of Symbolic Logic, 46(4):781–788, 1981.

[Mil78] Gary L. Miller. On the nlogn isomorphism technique (a preliminary report). In STOC,
pages 51–58. ACM, 1978. doi:10.1145/800133.804331.

[Miy96] Takunari Miyazaki. Luks’s reduction of graph isomor-
phism to code equivalence. Comment to E. W. Clark,
https://groups.google.com/forum/#!msg/sci.math.research/puZxGj9HXKI/CeyH2yyyNFUJ,
1996.

[MP14] Brendan D. McKay and Adolfo Piperno. Practical graph isomorphism, II. Journal of
Symbolic Computation, 60(0):94 – 112, 2014. doi:10.1016/j.jsc.2013.09.003.

36

https://doi.org/10.1007/978-1-4612-0333-9
https://doi.org/10.4230/LIPIcs.STACS.2009.1830
https://doi.org/10.1109/FOCS.2017.49
https://apps.dtic.mil/dtic/tr/fulltext/u2/a053246.pdf
https://apps.dtic.mil/dtic/tr/fulltext/u2/a053246.pdf
https://doi.org/10.1109/SFCS.1992.267813
https://doi.org/10.1145/301250.301427
https://doi.org/10.1515/gcc-2012-0008
https://doi.org/10.1515/gcc-2012-0008
https://doi.org/10.1145/800133.804331
https://groups.google.com/forum/#!msg/sci.math.research/puZxGj9HXKI/CeyH2yyyNFUJ
https://doi.org/10.1016/j.jsc.2013.09.003

[Nai13] Vipul Naik. Lazard correspondence up to isoclinism. PhD thesis, The University of
Chicago, 2013. URL: https://vipulnaik.com/thesis/.

[Pat96] Jacques Patarin. Hidden fields equations (HFE) and isomorphisms of polynomials
(IP): two new families of asymmetric algorithms. In Advances in Cryptology - EU-
ROCRYPT ’96, International Conference on the Theory and Application of Crypto-
graphic Techniques, Saragossa, Spain, May 12-16, 1996, Proceeding, pages 33–48, 1996.
doi:10.1007/3-540-68339-9_4.

[PR97] Erez Petrank and Ron M. Roth. Is code equivalence easy to decide? IEEE Trans. Inf.
Theory, 43(5):1602–1604, 1997. doi:10.1109/18.623157.

[QST11] Youming Qiao, Jayalal M. N. Sarma, and Bangsheng Tang. On isomorphism testing
of groups with normal Hall subgroups. In Proc. 28th STACS, pages 567–578, 2011.
doi:10.4230/LIPIcs.STACS.2011.567.

[Rón90] Lajos Rónyai. Computing the structure of finite algebras. J. Symb. Comput., 9(3):355–
373, 1990. doi:10.1016/S0747-7171(08)80017-X.

[Ros13a] David J. Rosenbaum. Bidirectional collision detection and faster deterministic isomor-
phism testing. arXiv preprint arXiv:1304.3935 [cs.DS], 2013.

[Ros13b] David J. Rosenbaum. Breaking the nlogn barrier for solvable-group isomorphism. In
Proceedings of the Twenty-Fourth Annual ACM-SIAM Symposium on Discrete Algo-
rithms, pages 1054–1073. SIAM, 2013. Preprint arXiv:1205.0642 [cs.DS].

[SS13] Nicolas Sendrier and Dimitris E. Simos. The hardness of code equivalence over Fq
and its application to code-based cryptography. In International Workshop on Post-
Quantum Cryptography, pages 203–216. Springer, 2013.

[Tod91] Seinosuke Toda. PP is as hard as the polynomial-time hierarchy. SIAM J. Comput.,
20(5):865–877, 1991. doi:10.1137/0220053.

[Val76] Leslie G. Valiant. Relative complexity of checking and evaluating. Information pro-
cessing letters, 5(1):20–23, 1976.

[Wil10] James B. Wilson. Finding direct product decompositions in polynomial time.
arXiv:1005.0548 [math.GR], 2010.

[Wil12] James B. Wilson. Existence, algorithms, and asymptotics of direct product decompo-
sitions, I. Groups Complex. Cryptol., 4(1):33–72, 2012. doi:10.1515/gcc-2012-0007.

[Wil14] James Wilson. 2014 conference on Groups, Computation, and Geometry at Colorado
State University, co-organized by P. Brooksbank, A. Hulpke, T. Penttila, J. Wilson,
and W. Kantor. Personal communication, 2014.

[ZKT85] V. N. Zemlyachenko, N. M. Korneenko, and R. I. Tyshkevich. Graph isomorphism
problem. J. Soviet Math., 29(4):1426–1481, May 1985. doi:10.1007/BF02104746.

37

https://vipulnaik.com/thesis/
https://doi.org/10.1007/3-540-68339-9_4
https://doi.org/10.1109/18.623157
https://doi.org/10.4230/LIPIcs.STACS.2011.567
https://doi.org/10.1016/S0747-7171(08)80017-X
https://arxiv.org/abs/1304.3935
https://arxiv.org/abs/1205.0642
https://doi.org/10.1137/0220053
https://arxiv.org/abs/1005.0548
https://doi.org/10.1515/gcc-2012-0007
https://doi.org/10.1007/BF02104746

	1 Introduction
	1.1 Main results
	1.2 Main techniques and proof strategies
	1.3 Organization of the paper

	2 Preliminaries
	3 Warm up: reducing Monomial Code Equivalence to Tensor Isomorphism
	4 Search-to-decision reduction by restricting to monomial groups
	4.1 The gadget restricting to the monomial group
	4.2 Search-to-decision reduction for Alternating Matrix Space Isometry
	4.3 A simply-exponential algorithm for monomial isometry of alternating matrix spaces

	5 Counting-to-decision reduction by restricting to diagonal groups
	5.1 Preliminaries
	5.2 Describing the gadget
	5.3 Construction and properties of the gadget

	6 Application to p-Group Isomorphism, using constructive Baer and Lazard correspondences
	6.1 Preliminaries
	6.2 Constructive Baer Correspondence and Theorems A and B
	6.3 Constructive Lazard's correspondence and Thm. cor:pP

	7 Conclusion

