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Abstract

In the 1970’s, Lovász built a bridge between graphs and alternating matrix spaces, in the
context of perfect matchings (FCT 1979). A similar connection between bipartite graphs and
matrix spaces plays a key role in the recent resolutions of the non-commutative rank problem
(Garg-Gurvits-Oliveira-Wigderson, FOCS 2016; Ivanyos-Qiao-Subrahmanyam, ITCS 2017). In
this paper, we lay the foundation for another bridge between graphs and alternating matrix
spaces, in the context of independent sets and vertex colorings. The corresponding structures in
alternating matrix spaces are isotropic spaces and isotropic decompositions, both useful struc-
tures in group theory and manifold theory.

We first show that the maximum independent set problem and the vertex c-coloring problem
reduce to the maximum isotropic space problem and the isotropic c-decomposition problem,
respectively. Next, we show that several topics and results about independent sets and vertex
colorings have natural correspondences for isotropic spaces and decompositions. These include
algorithmic problems, such as the maximum independent set problem for bipartite graphs, and
exact exponential-time algorithms for the chromatic number, as well as mathematical questions,
such as the number of maximal independent sets, and the relation between the maximum degree
and the chromatic number. These connections lead to new interactions between graph theory
and algebra. Some results have concrete applications to group theory and manifold theory, and
we initiate a variant of these structures in the context of quantum information theory. Finally,
we propose several open questions for further exploration.
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1 Introduction

1.1 Between graphs and matrix spaces: some known bridges

The bridge between perfect matchings and full-rank matrices. It is well-known that
some graph-theoretic problems reduce to certain problems about linear spaces of matrices. A
classical example, tracing back to Tutte [Tut47], and then more systematically examined by Lovász
[Lov79,Lov89], concerns perfect matchings.

Let F be a field, and [n] := {1, . . . , n}. Let G = ([n], E) be a simple and undirected graph, so
E can be viewed as a subset of {{i, j} : i, j ∈ [n], i 6= j}. For n ∈ N and {i, j} where i, j ∈ [n],
i < j, the elementary alternating1 matrix Ai,j of size n × n is the matrix with the (i, j)th entry
being 1, the (j, i)th entry being −1, and the rest entries being 0. Let AG be the linear space of
alternating matrices spanned by Ai,j , {i, j} ∈ E. Then when the field is large enough, G has a
perfect matching if and only if AG contains a full-rank matrix.

A similar construction for bipartite graphs is also classical. Let G = (L ∪ R,E) be a bipartite
graph where L = R = [n], so E can be viewed as a subset of [n] × [n]. For n ∈ N and i, j ∈ [n],
the elementary matrix Ei,j of size n× n is the matrix with the (i, j)th entry being 1, and the rest
entries being 0. Let BG be the linear space of matrices spanned by Ei,j , (i, j) ∈ E. Then when the
field is large enough, G has a perfect matching if and only if BG contains a full-rank matrix.

As noted by Lovász [Lov79], these observations give efficient randomized algorithms for deciding
the existence of perfect matchings on bipartite graphs and graphs over a large enough F via the cel-
ebrated Schwartz-Zippel lemma [Zip79,Sch80]. Furthermore, because the determinant polynomial
can be evaluated efficiently in parallel [Ber84,Chi85], these are actually randomized NC algorithms.

This work of Lovász has inspired several prominent results, including randomized NC algorithms
for constructing perfect matchings [KUW86, MVV87], and the recent breakthrough of quasi-NC
algorithms for perfect matchings on bipartite graphs [FGT16] and on general graphs [ST17]. Fur-
thermore, derandomizing the corresponding algorithm for general linear spaces of matrices – not
necessarily those of the form BG or AG – is now known as the symbolic determinant identity testing
problem, and turns out to be of fundamental significance in complexity theory, as that would imply
strong circuit lower bounds which are considered to be beyond current techniques [KI04,CIKK15].

In the following, we shall call linear spaces of (alternating) matrices as (alternating) matrix
spaces. For a field F, we use M(s× t,F) to denote the linear space of all s× t matrices over F, and
write B ≤ M(s× t,F) to denote that B is a matrix space in M(s× t,F). Let M(n,F) := M(n×n,F),
and Λ(n,F) be the linear space of all n× n alternating matrices over F.

The bridge between shrunk subsets and shrunk subspaces. For bipartite graphs, a struc-
ture closely related to perfect matchings is the following. Given a bipartite graph G = (L ∪ R,E)
where L = R = [n], we say that a subset S ⊆ L is a shrunk2 subset of G, if |S| > |N(S)| where
N(S) is the set of neighbours of S in R. The celebrated Hall’s marriage theorem [Hal35] says that
G has a perfect matching if and only if it does not have a shrunk subset.

On the matrix space side, it is then natural to define the so-called shrunk subspaces. Specifically,
given a matrix space B ≤ M(n,F), a subspace U ≤ Fn is a shrunk subspace of B, if dim(U) >
dim(B(U)) where B(U) := 〈∪B(U) : B ∈ B〉, and B(U) denotes the image of U under B.

1An n × n matrix A over F is alternating, if for any v ∈ Fn, vtAv = 0. An alternating matrix is always skew-
symmetric (i.e. At = −A), and a skew-symmetric matrix is also alternating over fields of characteristic not 2.

2We call S to be “shrunk” instead of “shrinking”, as we think of the bipartite graph G as shrinking the set S.
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As in the perfect matching case, a bipartite graph G has a shrunk subset if and only if BG
has a shrunk subspace [Lov89]. However, for general matrix spaces, the natural analogue of Hall’s
theorem, namely a matrix space contains full-rank matrices if and only if it has no shrunk subspaces,
does not hold, as evidenced by the space of all 3 × 3 alternating matrices. (The only if direction
trivially holds, though.) Therefore, the bridge between shrunk subsets and shrunk subspaces is
different from the one between perfect matchings and full-rank matrices.

The problem of testing whether a matrix space has a shrunk subspace arises naturally from sev-
eral mathematical and computational disciplines, including algebraic complexity, non-commutative
algebra, invariant theory, and analysis [GGdOW16,IQS18,GGdOW17]. Not surprisingly then, this
problem has had several names. We adopt the non-commutative rank problem which seems widely
used now, and refer an interested reader to [GGdOW16, IQS18] for the origin of this name.

With all these motivations, the non-commutative rank problem recently received considerable
attention, and substantial progress has been made. First raised by Cohn [Coh75] four decades ago
in the study of free fields, it was more recently reached at by Mulmuley in the context of deran-
domizing the Noether’s Normalization Lemma [Mul12,Mul17], and also by Hrubeš and Wigderson
in the context of non-commutative arithmetic circuits with divisions [HW15]. Only known to be
in PSPACE before 2015 [CR99], this problem was shown to be in P over the rational number
field [GGdOW16] and over any field [IQS18].

The techniques supporting the solutions to the non-commutative rank problem are reminis-
cent of the corresponding techniques for the perfect matching problem on bipartite graphs. In
[GGdOW16], it is the scaling algorithm [Sin64,LSW00], generalized to the quantum operator set-
ting [Gur04]. In [IQS18], it is the classical augmenting path algorithm, generalized to the matrix
space setting [IKQS15,IQS17]. Ingredients from invariant theory are also crucial. For [GGdOW16],
Garg et al. needed the exponential upper bound on generating the ring of matrix semi-invariants
[Der01]. For [IQS18], Ivanyos et al. need the polynomial upper bound [DM17], which in turn relies
crucially on the regularity lemma developed in [IQS17].

1.2 Between graphs and matrix spaces: a new bridge

In this paper we lay the foundation for yet another bridge between graphs and matrix spaces.
We focus on undirected simple graphs, hence it is natural, as Tutte and Lovász did with perfect
matchings, to work with alternating matrix spaces. We start from independent sets and vertex
colorings, two central structures in graph theory with numerous results from various motivations
[JT95, Die17]. By identifying analogues of them in the alternating matrix space setting, we arrive
at isotropic spaces and isotropic decompositions, which we define now.

Definition 1. Let A ≤ Λ(n,F) be an alternating matrix space. A subspace U ≤ Fn is an isotropic
space of A, if for any u, u′ ∈ U , and any A ∈ A, we have utAu′ = 0. For c ∈ N, an isotropic
c-decomposition of A is a direct sum decomposition of Fn into c non-zero subspaces U1 ⊕ · · · ⊕ Uc,
where every Ui is an isotropic space.

Recall that for a graph G = ([n], E), an independent set of G is a subset S ⊆ [n] such that for
any i, j ∈ S, there is no edge from E connecting these two vertices. A vertex c-coloring of G is
a partition of the vertex set into c independent sets. Therefore, the definitions of isotropic spaces
and isotropic decompositions do mimic those of independent sets and vertex colorings. It is then
natural to introduce the following definitions and the corresponding algorithmic problems.
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Definition 2. Let A ≤ Λ(n,F). The isotropic number of A, denoted as α(A), is the maximum
d ∈ N such that A has an isotropic space of dimension d. The isotropic decomposition number,
denoted as χ(A), is the minimum c ∈ N such that A admits an isotropic c-decomposition.

Given d ∈ N and a linear basis of A ≤ Λ(n,F), the maximum isotropic space problem asks
to decide whether α(A) ≥ d. Given c ∈ N and a linear basis of A ≤ Λ(n,F), the isotropic c-
decomposition problem asks to decide whether χ(A) ≤ c.

Note that α(·) and χ(·) are used to denote the independent number and the chromatic number
of graphs [Die17], and these choices are deliberate. Also note that for any A ≤ Λ(n,F), we have
α(A) ≥ 1, and χ(A) ≤ n. Indeed, due to the alternating condition, any A ≤ Λ(n,F) enjoys the
property that any 1-dimensional subspace of Fn is an isotropic space of A. It follows that any
direct sum decomposition of Fn into n dimension-1 subspaces is an isotropic n-decomposition of
A. This property corresponds nicely to that for any undirected simple graph, every single vertex
is an independent set. On the other hand, symmetric matrix spaces do not satisfy this property
in general. Therefore, this small but pleasant coincidence suggests that working with alternating
matrix spaces is a natural choice in this setting.

Our first result follows what Lovász did with perfect matchings, and provides a first indication
on the new connection. Recall that given a graph G = ([n], E), we can associate an alternating
matrix spaces AG ≤ Λ(n,F), spanned by those elementary alternating matrices Ai,j with {i, j} ∈ E.

Theorem 3. Let G and AG be as above. Then we have

1. G has a size-s independent set if and only if AG has a dimension-s isotropic space. In
particular, α(G) = α(AG).

2. G has a vertex c-coloring if and only if AG has an isotropic c-decomposition. In particular,
χ(G) = χ(AG).

The proof is in Section 5. Theorem 3 demonstrates that the maximum isotropic space problem
and the isotropic decomposition problem are genuine generalizations3 of the maximum independent
set problem and the vertex c-coloring problem, respectively. It also implies the following.

Corollary 4. The maximum isotropic space problem and the isotropic 3-decomposition problem for
alternating matrix spaces are NP-hard.

Emboldened by Theorem 3, we propose to view isotropic spaces and decompositions as linear
algebraic analogues of independent sets and vertex colorings, and study these two structures from
the perspectives of graph theory and algorithms. This leads to natural and interesting mathematical
and algorithmic problems, whose solutions bring together strategies, techniques, and results from
several areas, including graph theory, algorithm design, computer algebra, and algebraic complexity.
We regard these results as laying the foundation of a new bridge between graphs and alternating
matrix spaces.

While our investigation started with an analogy, isotropic spaces and decompositions are actu-
ally classical notions, with natural interpretations in group theory and manifold theory. Therefore,
some of our results have concrete applications to these areas. We also initiate a variant of this theory

3Note that for the maximum isotropic space problem and the isotropic decomposition problem, we consider all
alternating matrix spaces, not necessarily of the form AG coming from a graph G.
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in quantum information, and find an interesting information theoretic interpretation of isotropic
spaces in quantum error correction. These demonstrate the usefulness of this new bridge.

To describe our results, we set up some notation. We use Fq, Q, R, and C to denote the finite
field with q elements, the rational number field, the real number field, and the complex number
field, respectively. Elements in Fn are column vectors. In algorithms, subspaces of Fn and Λ(n,F)
are represented by linear bases. We may write Λ(n,Fq) as Λ(n, q) for convenience. For more details
on the computation model, see Section 3.1.

1.3 A summary of our results and their applications

We would like to provide a summary of our results and their applications before a detailed descrip-
tion in Section 2.

Because independent sets and vertex colorings are classical and central topics in graph theory,
many problems and techniques are studied and developed centred around these two notions. Our
new bridge then allows for transferring a host of problems from graphs to alternating matrix
spaces. For example, let us recall some well-known graph-theoretic and/or algorithmic results on
independent sets and vertex colorings (see e.g. [Die17]).

1. Whether a graph is bipartite can be tested in deterministic polynomial time.

2. On bipartite graphs, the maximum independent set problem is in P.

3. Any n-vertex and m-edge graph has an independent set of size ≥ n2

2m+n [Tur41]4.

4. The number of maximal independent sets on an n-vertex graph is ≤ 3
n
3 [MM65].

5. The chromatic number of an n-vertex graph can be computed in time (1 + 3
1
3 )n · poly(n)

[Law76]5.

6. The chromatic number of any graph is upper bounded by the maximum degree plus 1.

All of the above graph-theoretic results, and several more, will be found to have natural correspon-
dences in the alternating matrix space setting.

With the abundance of results comes the difficulty of introducing and organising them. Indeed,
it seems necessary to cover certain background information for each result from the above list, even
though such information is well-known to most readers with an adequate knowledge in graph theory.
Furthermore, the solutions to some results are not difficult, or are basically already in the literature,
due to the connection between alternating matrix spaces and p-groups, and the connection between
perfect matchings (resp. shrunk subsets) and full-rank matrices (resp. shrunk subspaces).

Still, despite the above concerns, we feel that the new bridge reveals somewhat unexpected
links among different research directions and fields, and it is appropriate to introduce these results
properly. So we shall take a detailed approach in Section 2 to go through all the results. Before
that, for readers’ convenience and for ease of comparison with the graph theory setting, let us also
offer a summary of most results to be presented.

In Section 2.1, the following problems will be studied.

4This follows from Turán’s celebrated result in extremal graph theory, which is usually stated for cliques, and
implies this by simply taking the complement graph.

5This classical result of Lawler was from the 1970’s, and the current status of the art is 2n · poly(n) [BHK09].
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1. Bipartite testing of graphs corresponds to testing whether an alternating matrix space admits
an isotropic 2-decomposition. The latter problem turns out to be in BPP over finite fields
of odd size [BMW17] and in P over R and C [IQ19] by existing results (Theorem 6). The
technique, based on ∗-algebra approach developed by J. B. Wilson [Wil09a,Wil09b], is much
more involved than the graph theory counterpart.

2. The maximum isotropic space problem for “bipartite” alternating matrix spaces turns out
to be in BPP over finite fields of odd size. The key observation is a connection between the
isotropic number of such an alternating matrix space, and the non-commutative rank of its
“bipartite component” (Theorem 8). Given this observation, the maximum isotropic space
problem in this case is in BPP (Corollary 9), by using two big hammers, namely the algorithm
from [BMW17] as mentioned above, and the efficient algorithm for the non-commutative rank
problem over finite fields [IQS17, IQS18].

3. It turns out that the correspondence of Turán’s extremal graph theory result in [Tur41] has
been studied in group theory [Ol’78,BGH87], in the context of abelian subgroups of p-groups.
It is then natural to compare the quantities to see some interesting phenomena.

In Section 2.1, we also study the problem of deciding whether an alternating matrix space admits a
2-dimensional isotropic space. While the corresponding problem is trivial on graphs, this problem
turns out to be not so easy over Q due to a reduction from quadratic residuosity problem (Theo-
rem 10), which heavily relies on a result of Rónyai [Rón87]. One ingredient there is the introduction
of the existential singularity problem for matrix spaces, which turns out to have rich connections
to several mathematical disciplines (see Problem 1 and Section 8.1).

In Section 2.2, the following problems will be studied. We view results in this direction as our
main concrete contribution, after the key conceptual contribution of establishing a new bridge.

4. We study the number of maximal isotropic spaces of alternating matrix spaces in Λ(n,Fq).
Improving the trivial bound q

1
4
n2+O(n), we prove a non-trivial upper bound q

1
6
n2+O(n) (The-

orem 11), and observe an easy lower bound q
1
8
n2+Ω(n) (Proposition 31).

We believe that the technique for proving the upper bound is worth noting. We adapt the
proof strategy of the upper bound on maximal independent sets by Wood [Woo11]. This
requires analogues of certain graph-theoretic concepts such as degrees and neighbours in the
alternating matrix space setting, which have been developed in [Qia19]. It works up to some
point, but after that, we have to resort to certain linear algebraic techniques. We leave closing
the gap between q

1
8
n2+Ω(n) and q

1
6
n2+O(n) an interesting open problem.

This result has a natural interpretation in group theory, as maximal isotropic subspaces of
alternating matrix spaces over Fp correspond to maximal abelian subgroups of p-groups of
class 2 and exponent p for odd p.

5. We show that the isotropic decomposition number can be computed in time q
5
12
n2+O(n) (The-

orem 12), by a combination of enumerating maximal isotropic spaces with the dynamic pro-
gramming technique. This is in close analogy with Lawler’s exact exponential-time algorithm
for computing the chromatic number [Law76].

In Section 2.3, the following problems will be studied.
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6. We study the relation between the isotropic decomposition number and a certain maximum
degree notion of alternating matrix spaces. Such a degree notion was already useful in upper
bounding the number of maximal isotropic spaces as above. This problem is also motivated
by several works in algebra [Sch76,GL84,GG07].

Unlike in the graph setting, where the maximum degree plus one upper bounds the chromatic
number, here we are only able to prove a weaker, but hopefully still interesting, bound in
Proposition 14. Though not difficult, we believe that it leads to interesting problems for
further investigation.

In Section 2.3, we also study the complexity-theoretic upper bounds for the maximum isotropic
space problem and the isotropic 3-decomposition problem over C in Proposition 13. The key
observation is to use the celebrated result of Koiran on the Hilbert Nullstellensatz problem [Koi96].

After studying problems on alternating matrix spaces mostly by way of analogy with graphs, it
is natural to ask whether some results have concrete applications. The answer is quite affirmative.

In Section 2.4, we shall provide two applications to group theory, one being computational, and
the other being enumerative. As will be explained there, these applications are based on p-groups of
class 2 and exponent p for odd p, for which testing isomorphism has long been known to be difficult,
and is becoming more urgent in light of Babai’s recent breakthrough on graph isomorphism [Bab16].
Briefly speaking, the computational problem is to compute the maximum abelian subgroup in the
model of matrix groups over finite fields, and the enumerative problem is to bound the number of
maximal abelian subgroups for p-groups of class 2 and exponent p.

We will then describe a variant of our theory in the context of quantum information theory, and
present an information theoretic interpretation of isotropic spaces in the context of quantum error
correction. In Section 4.1, we also present the connections to manifold theory, and mention a poten-
tial application. All these suggest that our results could be of interest to group theorists, quantum
information theorists, and geometers, in particular to those who work on the computational aspects
of these disciplines.

In Section 2.5, we shall summarize our contributions, and more importantly, present several
open problems for further study.

The structure of the paper. We present a detailed description of all results in Section 2. We
then present certain preliminaries in Section 3. Then in Section 4, we collect some basic facts and
properties about isotropic spaces and decompositions, including their meanings in group theory
and manifold geometry in Section 4.1. We then prove Theorem 3 in Section 5, which is the basis
connecting the graph-theoretic structures and those structures on alternating matrix spaces. We
then prove all the main results mentioned above in the following sections. (We will mention the
corresponding section numbers when describing those results in Section 2.)

2 A detailed description of the results

2.1 Analogues of bipartite testing and maximum independent set on bipartite
graphs

After Corollary 4, the isotropic 2-decomposition problem is of particular interest, as the vertex 2-
coloring problem just asks whether a graph is bipartite, which can be tested efficiently by breadth-
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first search. A moment’s thought suggests that a breadth-first search type idea seems not applicable
to the isotropic 2-decomposition problem.

Remark 5. Suppose A ≤ Λ(n,F) admits an isotropic 2-decomposition as Fn = U1⊕U2. Note that
U1 and U2 are not known to us. To follow the idea of breadth-first search, we would start from a
vector v ∈ Fn, and then find its neighbours, and then its neighbours’ neighbours, etc.. Intuitively,
for v ∈ Fn, we can view the linear span of Av, A ∈ A as those neighbours of v, denoted by V1 ≤ Fn.
Then the linear span of AV1, A ∈ A, may be considered as the neighbours of V1. Continuing this
way, if v ∈ U1, we do see that Vi’s alternates between subspaces of U1 and U2. It follows that
Vi ∩ Vi+1 = 0, from which we can compute U1 and U2 after this sequence stabilizes. However, if v
is neither in U1 nor in U2, it is not clear how to read any information about U1 and U2. In fact, it
is possible that the linear span of Av is the hyperplane orthogonal to v, so it is impossible to tell
whether such U1 and U2 exist.

Fortunately, it turns out that this problem has been studied in computer algebra over finite
fields by Brooksbank, Maglione, and Wilson in [BMW17]. Their strategy can be readily applied to
R and C, using some ingredients from [IQ19].

Theorem 6 ( [BMW17, Theorem 3.6], [IQ19]). The isotropic 2-decomposition problem can be solved
in randomized polynomial time over Fq with q odd, and in deterministic polynomial time over R
and C. Furthermore, over Fq with q odd, the algorithm also outputs the linear bases of the two
subspaces in an isotropic 2-decomposition.

While a proof for Fq was already sketched in [BMW17], we still give an exposition of this proof
in Section 6. Besides indicating how to handle R and C, we wish to give some reader a flavor of
how the so-called ∗-algebra technique, pioneered by Wilson [Wil09a,Wil09b] in computer algebra,
is applied to this setting. This technique was recently shown to be useful in polynomial identity
testing and multivariate cryptography [IQ19].

Theorem 6 and its proof reveal that the isotropic spaces and the isotropic decompositions do have
connections with, and implications to, other disciplines, just like the case of non-commutative ranks.
Furthermore, a quantum variant of the theory can be developed, and the corresponding isotropic
2-decomposition problem can be solved efficiently using quantum information theoretic techniques
(see Section 13). As mentioned above, the techniques used to solve the non-commutative rank
problem also have their roots in algebra [IQS18] and quantum information [GGdOW16]. Perhaps
it is not so coincidental that techniques from these areas are useful again.

In fact, the non-commutative rank problem arises naturally in our context. Since a bipartite
graph is just a graph admitting a vertex 2-coloring, it is natural to make the following definition.

Definition 7. An alternating matrix space is bipartite, if it admits an isotropic 2-decomposition.

A well-known fact in graph theory is that, on bipartite graphs, the maximum independent
set problem can be solved in deterministic polynomial time, through a reduction to the minimum
vertex cover problem. The latter problem is equivalent to the maximum matching problem via
Kőnig’s theorem. It is then interesting to examine whether bipartite alternating matrix spaces
admit an efficient algorithm for the maximum isotropic space problem. It turns out that the
isotropic number of a bipartite alternating matrix space is closely related to the non-commutative
rank of some matrix space, as we shall see now.
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We have mentioned the decision version of the non-commutative rank problem in Section 1.1. We
now define the non-commutative rank in a slightly more general setting. Given B ≤ M(s× t,F), its
non-commutative rank is ncrk(B) := s+t−max{dim(U)+dim(V ) : ∀u ∈ U, v ∈ V,B ∈ B, utBv = 0}
[FR04]. Note that the recent works [GGdOW16,IQS18] used a slightly different formulation in the
setting s = t.

Given a bipartite A ≤ Λ(n,F), up to isometry (i.e. the action of T ∈ GL(n,F) sending A to

T tAT := {T tAT : A ∈ A}), every A ∈ A is of the form

[
0 B
−Bt 0

]
, where B is of size s × t (see

Section 4). Let B ≤ M(s× t,F) be the space of such B arising from some A ∈ A. Then we have:

Theorem 8. Let A ≤ Λ(n,F) and B ≤ M(s× t,F) be from above. Then α(A) = n− ncrk(B).

Thanks to the solution of the non-commutative rank problem over any field [IQS18], and The-
orem 6 in the case of Fq with odd q, we have

Corollary 9. The maximum isotropic space problem for bipartite alternating matrix spaces of size
n× n over Fq, q odd, can be solved in randomized poly(n, log q) time.

The proofs of Theorem 8 and Corollary 9 are in Section 7. In some sense, the non-commutative
rank may be considered as corresponding to the minimum vertex cover size in the bipartite al-
ternating matrix space setting. However, unlike in the graph case, where the relation between
independent sets and vertex covers is so straightforward, the proof of Theorem 8 requires some
twists, because of the “flexibility” of vectors and matrices.

Having seen the implication of the non-commutative rank problem to our setting, let us examine
the following mathematical problem that arises naturally in our context, whose solution turns out
to come from algebraic geometry. Again, let us trace back to the graph setting, and consider
α(n,m) := min{α(G) : G a graph with n vertices and m edges}, where α(G) is the independence
number. A celebrated result of Turán [Tur41] in extremal graph theory implies that

α(n,m) ≤
⌈ n2

2m+ n

⌉
. (1)

Turning to the alternating matrix space setting, it is natural to define α(F, n,m) := min{α(A) :
A ≤ Λ(n,F),dim(A) = m}. This quantity has been studied by Buhler, Gupta, and Harris [BGH87]
in relation to abelian subgroups of p-groups [Bur13,Alp65b]. The main result of [BGH87], proved
using algebraic geometric techniques, is as follows: for any m > 1, we have

α(F, n,m) ≤
⌊m+ 2n

m+ 2

⌋
, (2)

where the equality is attainable over algebraically closed fields6. This inequality was also obtained
earlier by Ol’shanskii [Ol’78]. Comparing Equations 1 and 2, we see that α(n,m) and α(F, n,m)
behave quite differently. For example, by Equation 1, every graph with n vertices and 2n edges
has an independent set of size at least n/5. On the other hand, by Equation 2, there exists a
dimension-2n alternating matrix space in Λ(n,F) with no isotropic space of dimension ≥ 2.

Motivated by the discussion in the last paragraph, we study the algorithmic problem of deciding
whether there exists an isotropic space of dimension ≥ 2 for A ≤ Λ(n,F). This is equivalent to ask

6While in [BGH87] the main result was stated for fields of characteristic 6= 2, the proof, at least the inequality,
works for any characteristic.
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whether A has an isotropic (n−1)-decomposition. Note that the corresponding problem on graphs
is trivial, as a graph has an independent set of size ≥ 2 if and only if it is not the complete graph.
It turns out that over Q, this problem is substantially more difficult.

Theorem 10. Over Q, assuming the generalized Riemann hypothesis, there is a randomized
polynomial-time reduction from deciding quadratic residuosity modulo squarefree composite numbers
to the problem of deciding whether an alternating matrix space has an isotropic space of dimension
≥ 2.

The proof is in Section 8, and it relies crucially on Rónyai’s fundamental work on computing
algebra structures [Rón87].

2.2 Analogues of maximal independent sets and exact exponential-time algo-
rithms of chromatic numbers

An independent set on a graph is maximal if it is not properly contained in some other independent
set. The study of maximal independent sets is a classical demonstration of how graph theory and
algorithm study are intertwined.

In the 1960’s, Erdős and Moser raised the question of bounding the number of maximal indepen-
dent sets on a graph. It was subsequently solved by Moon and Moser [MM65], and alternative proofs
have been found [Woo11,Vat11]. They show that the number of maximal independent set of an n-
vertex graph is upper bounded by 3n/3, and this bound is tight. (Some refinement is required when
n is not a multiple of 3.) Since the 1970’s, the problem of outputting all maximal independent sets
or maximal cliques received considerable attention [AM70,TIAS77,LLK80,JPY88]. One application
was provided by Lawler [Law76], who showed that the Moon-Moser bound together with dynamic
programming give an algorithm for computing the chromatic number of an n-vertex graph in time
(1 + 3

√
3)n ·poly(n). This algorithm was the starting point of exact exponential-time algorithms for

chromatic numbers. Subsequent improvements [Epp03, Bys04, BH08] lead to the breakthrough by
Björklund, Husfeldt, and Koivisto, who presented an algorithm in time 2n · poly(n) [BHK09].

Getting back to alternating matrix spaces, the natural correspondence would be maximal
isotropic spaces. Formally, for an alternating matrix space A ≤ Λ(n,F), an isotropic space is
maximal, if there is no isotropic space properly containing it. We then ask analogous questions
over finite fields, namely upper bounding the number of maximal isotropic spaces of A ≤ Λ(n,Fq),
and exact exponential-time algorithms for computing the isotropic decomposition number χ(A).
Interestingly, on one hand, these problems demonstrate behaviours different from the combinatorial
counterpart. On the other hand, strategies and techniques from graph theory and algorithm design
do carry over, in a non-trivial way, to these problems. Again, such phenomena have been witnessed
in the non-commutative rank problem, and it is interesting to see these happening in this context.
Furthermore, our result on the number of maximal isotropic spaces has a direct application to
group theory, as we will see in Section 2.4.

We now describe our results in more details. To start with, we note that, as in the graph
setting, an easy greedy algorithm outputs one maximal isotropic space (see Proposition 20). We
then consider the number of maximal isotropic spaces for alternating matrix spaces in Λ(n, q),
analogously as done by Moon and Moser for graphs [MM65]. A trivial upper bound is the number

of all subspaces of Fnq . This number, q
1
4
n2+Θ(n), is well-known and classical (see Fact 30). Any

alternating matrix space spanned by a single full-rank alternating matrix has q
1
8
n2+Θ(n) maximal
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isotropic spaces, providing a lower bound. This is also classical but perhaps not that well-known
(see Proposition 31). We show a non-trivial upper bound as follows.

Theorem 11. The number of maximal isotropic spaces of any A ≤ Λ(n, q) is upper bounded by

q
1
6
n2+O(n).

The proof is in Section 9. As mentioned in Section 1.3, its proof strategy is inspired by Wood’s
proof of the upper bound on maximal independent sets [Woo11]. This proof is constructive (see

Corollary 36), so we can enumerate all maximal isotropic spaces in time q
1
6
n2+O(n). We then consider

the problem of computing the isotropic decomposition number for A ≤ Λ(n, q). A naive brute-force
algorithm, namely enumerating all direct sum decompositions of Fnq , runs in time qn

2+O(n). Inspired
by Lawler’s strategy in [Law76], we combine our Corollary 36 with a dynamic programming idea
to obtain the following.

Theorem 12. The isotropic decomposition number of A ≤ Λ(n, q) can be computed in time

q
5
12
n2+O(n).

The proof is in Section 10. An open question is whether the strategy in [BHK09] for chro-
matic numbers can be adapted to obtain an algorithm for isotropic decomposition numbers in
time q

1
4
n2+O(n). This is because the number of subspaces of Fnq is q

1
4
n2+Θ(n), while the algorithm

in [BHK09] runs in time 2n · poly(n) where 2n is the number of subsets of [n].

2.3 Complexity upper bound over C, and independence number vs maximum
degree

We first consider complexity-theoretic upper bounds for the maximum isotropic space problem and
the isotropic 3-decomposition problem. Clearly, these problems are in NP over finite fields. Over C,
we have the following, by resorting to a celebrated result of Koiran on the Hilbert Nullstellensatz
problem [Koi96]. The proof is in Section 11.

Proposition 13. Let A ≤ Λ(n,C) be given by a linear basis consisting of integral matrices, and let
c be a constant. The maximum isotropic space problem and the isotropic c-decomposition problem
are in PSPACE unconditionally, and in PH assuming the generalized Riemann hypothesis.

Our next result has two diverse motivations.
The first motivation is from linear algebra. Given a single alternating matrix A, its canonical

form suggests that 〈A〉 admits an isotropic 2-decomposition (see Section 3). Given a pair of al-
ternating matrices A1 and A2, it is also known that 〈A1, A2〉 admits an isotropic 2-decomposition
[Sch76, GL84, GG07] (see also [BMW17, Lemma 3.7]). A natural question is what happens for
alternating matrix spaces of dimension 3, or in general, any constant c.

The second motivation is from graph theory. Given a graph G = ([n], E), let ∆(G) be the
maximum degree over vertices of G. It is well-known that a simple greedy algorithm yields that
χ(G) ≤ ∆(G) + 1 [Die17, pp. 122]. For A ≤ Λ(n,F), the degree of v ∈ Fn in A can be defined as
degA(v) := dim(〈Av : A ∈ A〉) [Qia19]. As mentioned in Section 2.2, this notion was already useful
in the proof of Theorem 11. Let ∆(A) = max{degA(v) : v ∈ Fn}. It is then natural to ask the
relation between χ(A) and ∆(A) in analogy to the graph setting. This question is closely related
to the one in the last paragraph, since degA(v) ≤ dim(A) for any v ∈ Fn, so ∆(A) ≤ dim(A).

We now present the following result, also deduced from a greedy algorithm.

10



Proposition 14. Let A ≤ Λ(n,F). Then χ(A) ≤ O(∆(A) · log n). Furthermore, an isotropic
C-decomposition with C = O(∆(A) · log n) can be found in polynomial time.

The proof is in Section 11. Note that this implies that when dim(A) is a constant, then χ(A) ≤
O(log n). We leave it an open problem for further improvement of the bound in Proposition 14.

2.4 Applications of our results

To start with, we recognize that the applications and connections to be presented are not surprising
to some readers, because alternating bilinear maps, and therefore alternating matrix tuples and
spaces7, naturally arise in group theory via the commutator bracket, and in manifold geometry
via the cup product in cohomology. Therefore, certain isotropic spaces and decompositions have
natural group-theoretic or geometric interpretations (see Section 4.1).

On the other hand, these applications may look exotic to some other readers, as they will
be stated purely in group theoretic or quantum information theoretic terms. This is natural and
expected, after a bridge is built. Indeed, the present bridge enables us to transfer problems, tech-
niques, and results in graph theory and algorithm study, to other mathematical and computational
disciplines which otherwise seem barely related to graph theory.

We now describe the first application to finite groups, more specifically, to computing with
matrix groups over finite fields. Matrix groups over finite fields given by generators form an im-
portant model of computing with finite groups. In theoretical computer science, the study of this
model led to the inventions of the black-box group model by Babai and Szemerédi [BS84], and the
Arthur-Merlin class by Babai [Bab85]. Though some algorithms with worst-case analyses can be
found in [Bea95], even the very basic membership testing problem was only recently known to be
solvable in randomized polynomial time under a number-theoretic oracle [BBS09].

Overall, our knowledge about this model is rather limited, and many questions await investiga-
tions. One interesting problem is to compute an abelian subgroup of the largest size. Large abelian
subgroups, besides motivations from computational group theory [Ros11], are useful in controlling
the character degrees of the group, which in turn are useful in the group-theoretic approach for fast
matrix multiplication [CKSU05]. As a consequence of Corollary 4, we have the following result,
whose proof is in Section 12.

Theorem 15. Let p be an odd prime. Given a matrix group G over Fp, and s ∈ N, deciding
whether G has an abelian subgroup of order ≥ s is NP-hard.

The proof of Theorem 15 relies on the connection between alternating matrix spaces over Fp, and
p-groups of class 2 and exponent p for odd p, via Baer’s correspondence [Bae38] (see Section 4.1).

It has long been known that p-groups of class 2 and exponent p form a bottleneck for testing
isomorphism of finite groups. To solve the group isomorphism problem in time polynomial in the
group order is a long-standing open problem [Mil78]. This problem is becoming more prominent
in light of Babai’s breakthrough on graph isomorphism [Bab16], as Babai indicated the group
isomorphism problem as a key bottleneck to put graph isomorphism in P [Bab16, arXiv version,
Section 13.2]. Some interesting progress on testing isomorphism of such p-groups was recently made
by utilizing the connection to alternating matrix spaces [LQ17].

Let us turn to the second application to finite groups. The question of bounding the number of
maximal abelian subgroups has been considered for various group families [Dix71, Woo89, Ant87,

7For the relations among alternating matrix tuples and spaces, and alternating bilinear maps, see Sec. 3.
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Vdo04], but to the best of our knowledge, there had been no results on this question for p-groups
of class 2 and exponent p. Let P be such a group, so that the center Z(P ) ∼= Zmp and the
central quotient P/Z(P ) ∼= Znp . The number of maximal abelian subgroups is upper bounded

trivially by p
1
4
n2+O(n), the number of subgroups of Znp . Our Theorem 11 then provides the following

improvement, whose proof is in Section 12.

Theorem 16. Let P be as above. Then the number of maximal abelian subgroups of P is upper
bounded by p

1
6
n2+O(n).

Recall that the proof of Theorem 11 starts by following the strategy of Wood’s proof [Woo11]
of bounding the number of maximal independent sets on a graph. We view this as an interesting
and somewhat unexpected example of transferring techniques from graph theory to group theory.

We also initiate a quantum variant of the theory in Section 13. There, the objects are a special
type of quantum channels, and isotropic spaces and isotropic decompositions are defined on the
Kraus operators of such channels. Furthermore, we require the isotropic decompositions to be
orthogonal. One can then transform classical connected graphs into such channels, and prove an
analogue of Theorem 3. More surprisingly, we also obtain an efficient isotropic 2-decomposition
algorithm, as an analogue of Theorem 6, by resorting to the recent development on the periodicity
of quantum Markov chains [GFY18].

We then present an information theoretic interpretation for isotropic spaces in the context of
quantum error correction. Briefly speaking, from the viewpoint of certain natural generalizations of
quantum gate fidelities [NC02], isotropic spaces can be viewed as the opposite structure of noiseless
subspaces (Proposition 48), which have been studied intensively in quantum error correction [KL97,
Lid14]. Indeed, noiseless subspaces are shelters for the information residing in them under quantum
noise, while the information in an isotropic space would be completely destroyed by quantum noise.

Let us conclude this subsection with a remark on these applications. After building a bridge, we
expect it to serve as a two-way street between the two sides. However, in reality there is usually more
traffic in one direction than the other. For example, the traffic between perfect matchings and full-
rank matrices mostly goes from the algebra side to the combinatorial side, e.g., the randomized NC
algorithm for perfect matchings [Lov79]. The traffic between shrunk subsets and shrunk subspaces
mostly goes in the other direction, e.g., linear algebraic analogues of augmenting paths [IKQS15] and
scaling [Gur04]. So far, our applications in this work mostly go in the direction from combinatorics
to algebra, following the pattern of the shrunk subset vs. shrunk subspace case. It will be very
interesting to explore implications in the other direction in the future.

2.5 Outlook

Summary of our contributions. The concepts of isotropic spaces and isotropic decomposi-
tions for alternating bilinear maps are classical, with natural interpretations in group theory and
manifold theory. Our key new insight is that they can be viewed and studied as linear algebraic
analogues of independent sets and vertex colorings. This insight leads us to study algorithmic and
mathematical problems about isotropic spaces and isotropic decompositions, by drawing inspira-
tions from results and techniques from graph theory and algorithm study. The techniques used to
address the problems range from combinatorics, to algebra, and to quantum information.

We believe that this investigation is fruitful, for the following reasons.
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1. First, it discloses new algorithmic and mathematical questions. For example, in Section 2.2
we proposed and studied upper bounding the number of maximal isotropic spaces, and exact
exponential-time algorithms for isotropic decomposition numbers over finite fields.

2. Second, the results obtained have concrete applications to other mathematical and computa-
tional disciplines. For example, in Section 2.4, we described the applications of our results to
finite groups and quantum information.

3. Third, it sheds new lights on known results from different research directions. For example,
in Section 2.1 we compared Turán’s extremal graph result with Buhler, Gupta, and Harris’
algebraic geometric result.

This investigation then lays the foundation for yet another bridge between graphs and alternat-
ing matrix spaces, adding to the classical ones established by Tutte and Lovász.

Open ends. Several interesting open problems have been mentioned before, and here we give a
summary and propose some new ones.

1. By Theorem 11, the number of maximal isotropic spaces of A ≤ Λ(n, q) is upper bounded by

f(n, q) = q
1
6
n2+O(n). There exists an alternating matrix space with g(n, q) = q

1
8
n2+Ω(n) many

maximal isotropic spaces (see Section 2.2). Either improve the current upper bound f(n, q),
or construct an alternating matrix space with more than g(n, q) maximal isotropic spaces.
Note that resolving this problem would lead to a sharp bound on the number of maximal
abelian subgroups of p-groups of class 2 and exponent p.

2. Improve the exact exponential-time algorithm for computing the isotropic decomposition
number for A ≤ Λ(n, q) in Theorem 12. An interesting question is whether the strategy
in [BHK09] can be adapted here. The results in [BHK+16] should be useful in this context.

3. Despite Theorem 10, the complexities of deciding whether an alternating matrix space has
an isotropic space of dimension ≥ 2 are not clear over various fields. Even over Q, our proof
for Theorem 10 relies on a special case of the underlying existential singularity problem for
matrix spaces (see Section 8.1), so it is left open even for the general case of that problem
over Q.

4. Investigate the behaviours of the isotropic and isotropic decomposition numbers in the linear
algebraic Erdős-Rényi model [LQ17,Bol01].

5. Improve the dependence of the isotropic decomposition number on the maximum degree, or
the dimension of the alternating matrix space (see Proposition 14). Note that this problem
has motivations from classical geometry (see the discussions before Proposition 14).

3 Preliminaries

Notation. For n ∈ N, [n] := {1, . . . , n}. We use ] for disjoint union of sets. The base of the
logarithm is 2 unless otherwise stated.
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Let F be a field. We use Fn to denote the vector space of column vectors of length n over F.
The standard basis of Fn consists of vectors e1, . . . , en, where ei is the vector with the ith entry
being 1, and other entries being 0. The linear span of several vectors or matrices is denoted by 〈·〉.

For n, d ∈ N, let M(n× d,F) be the linear space of n× d matrices over F, and GL(n× d,F) the
set of n×d matrices over F of rank min(n, d). We also let M(n,F) := M(n×n,F), and GL(n,F) :=
GL(n × n,F). Dimension-d subspaces of Fn will be understood as represented by elements from
GL(n × d,F). Given A ∈ M(n × d,F), the transpose of A is denoted by At ∈ M(d × n,F). For
convenience, we sometimes write a vector v in Fn as v = (v1, . . . , vn)t.

Depending on the context, 0 may denote either the zero space, a zero vector, or a zero matrix.
The identity matrix in M(n,F) is denoted by In; we may drop the subscript n when it is understood
from the context. Given a matrix A ∈ M(n,F), its kernel and image are denoted by ker(A) and
im(A), respectively. For U ≤ Fn, the image of U under A is denoted by A(U).

Linear algebra. Given U ≤ Fn, a complementary subspace, or just a complement, is some
V ≤ Fn such that V ∩ U = 0, and 〈U ∪ V 〉 = Fn. Note that complement subspaces of U are not
unique. Indeed, the number of complements of a dimension-d subspace U ≤ Fnq is qd(n−d). The
space orthogonal to U is {v ∈ Fn : ∀u ∈ U, vtu = 0}. (Over C, the conjugate transpose is used.)
Note that the space orthogonal to U is not necessarily a complement to U .

Some algebra. The following class of finite groups is of main interest in this article. Let p be
a prime > 2. A group G belongs to the class of p-groups of class 2 and exponent p, if G satisfies
the following conditions: (1) G is of prime power order, (2) the commutator subgroup [G,G] is
contained in the centre Z(G), and (3) every group element g ∈ G satisfying gp = 1.

Let K/F be a quadratic field extension. That is, K is of dimension 2 as a F-vector, and every
element in K can be represented as a+ bγ for some γ ∈ K \ F. The map sending a+ bγ to a− bγ
is a field automorphism, called the quadratic involution for this field extension. A basic example
is when K = C, F = R, and γ = i, the imaginary unit. For a matrix A ∈ M(n× d,K), A† denotes
the conjugate transpose of A.

On matrix spaces. Given a matrix space A ≤ M(s × t,F), the image of U ≤ Ft under A is
A(U) := 〈∪A∈AA(U)〉. The dimension of A is denoted by dim(A). The (maximum) rank of A is
rk(A) := max{rk(A) : A ∈ A}. Let B ≤ M(s× t,F) be another matrix space. We say that A and B
are equivalent, if there exist C ∈ GL(s,F) and D ∈ GL(t,F), such that A = CBD := {CBD : B ∈
B}. When working with A, an equivalence transformation is meant to left multiply A with some
C ∈ GL(s,F) and right multiply it with some D ∈ GL(s,F).

On alternating matrices. Let A,B ∈ Λ(n,F). We say that A and B are isometric, if there exists
T ∈ GL(n,F), such that A = T tBT . Given a dimension-d U ≤ Fn represented by T ∈ GL(n×d,F),
the restriction of A to U by T , denoted as A|U,T , is T tAT ∈ Λ(d,F). The radical of A is the
subspace {u ∈ Fn : ∀v ∈ Fn, vtAu = 0}, which is just ker(A). The rank of A is always even. If

rk(A) = 2r, then A is isometric to

 0 Ir 0
−Ir 0 0
0 0 0

 (see e.g. [Lan02, Chap. XV, Sec. 8]). We say

that A ∈ Λ(n,F) is non-degenerate, if A is full-rank (so n is even).
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On alternating matrix spaces. Let A,B ≤ Λ(n,F). We say that A and B are isometric, if
there exists T ∈ GL(n,F), such that A = T tBT := {T tBT : B ∈ B}. Given a dimension-d U ≤ Fn
represented by T ∈ GL(n × d,F), the restriction of A on U via T is A|U,T := {T tAT : A ∈ A} ≤
Λ(d,F). When it does not cause confusion, we may not write T explicitly, and just say the restriction
of A to U , denoted by A|U . This corresponds to the concept of induced subgraphs in graph theory.
Indeed, we see that U is an isotropic space if and only if A|U is the zero (alternating matrix) space.
Given v ∈ Fn, the radical of v in A, denoted as radA(v), is {u ∈ Fn : ∀A ∈ A, utAv = 0} which is a
subspace of Fn. Elements in radA(v) correspond to non-neighbours in graph theory. The codegree
of v in A, denoted as codegA(v), is dim(radA(v)). Note that codegA(v) ≥ 1 for non-zero v, as
v ∈ radA(v). The degree of v in A is degA(v) := n − codegA(v). More generally, for U ≤ Fn,
radA(U) = {v ∈ Fn : ∀u ∈ U,∀A ∈ A, utAv = 0}. When A is clear from the context, we may drop
the subscript A in radA(v), codegA(v), degA(v), etc.. It is easy to see that for any v ∈ rad(U), we
have U ≤ rad(v), or in other words, U ≤ rad(rad(U)).

A vector v ∈ Fn is called isolated in A, if for any A ∈ A, Av = 0, which is equivalent to say that
deg(v) = 0. This corresponds to the concept of isolated vertices in graph theory. The radical of A,
rad(A), is the subspace of Fn consisting of all isolated vectors. We say that A is non-degenerate,
if rad(A) = 0, and degenerate otherwise. If A ≤ Λ(n,F) is degenerate with dim(rad(A)) = d > 0,

then A is isometric to A′ where each A ∈ A′ is of the form

[
A′ 0
0 0

]
, where A′ ∈ Λ(n− d,F).

Sets, tuples, and spaces. Let A ≤ Λ(n,F) be given by a linear basis A1, . . . , Am ∈ Λ(n,F). We
can collect them as a set A = {A1, . . . , Am} ⊆ Λ(n,F). Sometimes it is also useful to impose an
order on them, and form a tuple A = (A1, . . . , Am) ∈ Λ(n,F)m. We shall use calligraphic fonts for
spaces, bold fonts for tuples, and sans serif fonts for sets.

Suppose A ≤ Λ(n,F) is given by a linear basis A1, . . . , Am ∈ Λ(n,F). Then it is clear that, given
U ≤ Fn, for any u, u′ ∈ U and any A ∈ A, utAu′ = 0, if and only if for any u, u′ ∈ U and any i ∈ [m],
utAiu

′ = 0. We therefore can define isotropic spaces, and isotropic decompositions, for sets or tuples
of alternating matrices. In particular, since alternating matrix tuples represent alternating bilinear
maps naturally (see Remark 17), this observation suggests that isotropic spaces and decompositions
for alternating matrix spaces and for alternating bilinear maps are basically the same object.
Furthermore, many, though not all, concepts introduced in Section 3 about alternating matrix
spaces can be translated naturally to alternating bilinear maps, including degrees, degeneracy,
radicals, etc.. (Indeed, some notions there are actually borrowed from alternating bilinear maps.)
On the other hand, note that the maximum rank in A is more naturally associated with the space
perspective. More discussions on the relation between these two notions are in Remark 17.

Therefore, in the context of isotropic spaces and decompositions, the choices between alternating
matrix spaces and tuples usually do not matter much. The tuple perspective is more natural from
the algorithm perspective, because the input of an alternating matrix space to an algorithm is
usually an ordered basis. The space perspective is more natural for forming the analogy with
graphs, and more naturally allows for some more notions including the maximum rank, which is
important in e.g. the proof of Theorem 10. The set perspective will be used in the quantum variant
of the theory in Section 13. Therefore, it is best to keep all three perspectives in mind, and see
how they fit into our problems.

Remark 17. It is easy to realize that alternating matrix spaces are closely related to alternating
bilinear maps.
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For this, we first recall the relation between alternating bilinear maps and alternating matrix
tuples. Let φ : U × U → V be an alternating bilinear map, that is, for any u ∈ U , φ(u, u) = 0.
Fix bases of U and V , so that U ∼= Fn and V ∼= Fm. Then φ can be represented by an m-
tuple of alternating matrices (A1, . . . , Am) ∈ Λ(n,F)m, such that φ(u, u′) = (utA1u

′, . . . , utAmu
′)t.

Conversely, given an m-tuple of alternating matrices, one can define an alternating bilinear map
as such. Two alternating bilinear maps φ, ψ : U × U → V are isometric, if there exist A ∈ GL(U),
B ∈ GL(V ), such that φ = B ◦ ψ ◦ A. (Some authors prefer to call this isometric as pseudo-
isometric [BW12].)

Let A ≤ Λ(n,F). Let A = (A1, . . . , Am) ∈ Λ(n,F)m be an ordered basis of A. Then A defines
an alternating bilinear map φA : Fn × Fn → Fm as above. While difference choices of ordered
bases give different alternating bilinear maps, it is easy to see that ordered bases from isometric
alternating matrix spaces give isometric alternating bilinear maps.

3.1 Computational models

We will work with two computational models, depending on the problems. The first model may
be called the exact model; see e.g. [Lov86]. This is the model to work with, if field extensions are
unavoidable. In this model, input matrices or vectors are over a field E where E is a finite field
extension over its prime field F. Recall that a prime field is a field containing no proper subfields,
so F is either a field of prime order or Q. Suppose dimF(E) = d. Then E is an extension of F
by a single generating element α. We represent α by the minimal polynomial of α over F, and an
isolating interval for α in the case of R, or an isolating rectangle for α in the case of C. Note that
from this representation, one can approximate the numerical value of α arbitrarily closely. When
we say that we work over R or C, the input is given as over some algebraic number field E in R or
C; recall that an algebraic number field is a finite degree extension of Q. The algorithm is allowed
to work with extension fields of E in R or C, as long as the extension degrees are polynomially
bounded.

The second model may be called the arithmetic model. In this model, only basic field operations
are performed, and the issue of working with different field extensions does not arise. Still, over
number fields we will be concerned with the bit complexities, though it is possible that we may be
able to only bound the number of arithmetic steps, but not the bit complexities.

We shall mostly work with Fq, Q, R, and C in this article, though some results extend to number
fields naturally. Sometimes, we make further restrictions like requiring q to be odd, or the input to
be integral.

4 Basic facts and properties

In this section we collect some basic results about isotropic spaces and isotropic decompositions.

On the definitions. The following is a somewhat more intuitive definition of these two notions.
Let A ≤ Λ(n,F), and let U ≤ Fn be an isotropic space. Suppose d = dim(U). Then form a

change of basis matrix T ∈ GL(n,F), such that its first d columns form a basis of U , and the rest
columns together with the first d ones span Fn. Then for any A ∈ A, we see that T tAT is of the

form

[
0 B
−Bt C

]
where 0 is of size d × d. It is not hard to see that A has a dimension-d isotropic

space if and only if there exists such a change of basis matrix T .
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Similarly, A has an isotropic c-decomposition, if and only if there exist T ∈ GL(n,F), and

d1, . . . , dc ∈ Z+ with
∑

i di = n, such that for any A ∈ A, T tAT =


0 A1,2 . . . A1,c

−At1,2 0 . . . A2,c

...
...

. . .
...

−At1,c −At2,c . . . 0

,

where the ith 0 on the diagonal is of size di.

Computing the radical. For many problems about isotropic spaces, given a degenerate A ≤
Λ(n,F), usually it is possible to reduce to the non-degenerate case. This is facilitated by the fact
that the radical of A is easy to compute.

Observation 18. Suppose A = 〈A1, . . . , Am〉 ≤ Λ(n,F) is given by a linear basis. There is a
polynomial-time algorithm that computes a linear basis of rad(A).

Proof. Observe that rad(A) = ∩ni=1 ker(Ai). Computing ker(Ai) and the intersection of ker(Ai)’s
are standard linear algebraic tasks that can be performed as stated.

Isotropic spaces and radicals of subspaces. Let A ≤ Λ(n,F). Recall that for U ≤ Fn, we
defined radA(U) = {v ∈ Fn : ∀u ∈ U, vtAu = 0}. The following observation is immediate.

Observation 19. Let U ≤ Fn and A ≤ Λ(n,F). Then we have the following.

1. U is an isotropic space of A if and only if U ⊆ rad(U).

2. U is a maximal isotropic space of A if and only if U = rad(U).

An easy application of Observation 19 gives a greedy algorithm for computing one maximal
isotropic space.

Proposition 20. Given a matrix space A ≤ Λ(n,F), a maximal isotropic space can be computed
in polynomially many arithmetic steps.

Proof. We first present the algorithm. Recall that ei is the ith standard basis vector of Fn.

1. Let U = 〈e1〉.

2. While U ( rad(U):

(a) Take any u ∈ rad(U) \ U .

(b) U ← 〈U, u〉.

3. Output U .

To see the correctness, note that in Step (2.a), by the choice of u, we have U ⊆ rad(〈U, u〉)
and u ∈ rad(〈U, u〉), so 〈U, u〉 is an isotropic space by Observation 19 (1). In Step (3), U satisfies
U = rad(U), so U is maximal by Observation 19 (2).

To see the running time, note that the while loop will be executed by at most n times, since
dim(U) increases by 1 in each execution. Each step involves basic linear algebraic computations
which require only polynomially many arithmetic operations.

Over R or C, the bit sizes in the above algorithm may blow up, at least with a straightforward
implementation, due to the iterative computations of the radicals.
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On field extensions. Let K be an extension field of F. Given A ≤ Λ(n,F), we let AK ≤ Λ(n,K)
be the alternating matrix spaces when we allow linear combinations over K, or in other words,
AK = A⊗F K. We may write A as AF for further distinction. For AK we allow for isotropic spaces
to come from Kn. Since isotropic spaces and c-decompositions of AF naturally give isotropic spaces
and c-decompositions of AK, we have the following (see also [Gel17, Lemma 6]).

Proposition 21. Let AF ≤ Λ(n,F) and AK ≤ Λ(n,K) be as above. Then α(AF) ≤ α(AK), and
χ(AF) ≥ χ(AK).

In Proposition 21, the inequalities for α(·) and χ(·) could be strict, as shown by Buhler, Gupta,
and Harris [BGH87, pp. 277]. Recall that in Section 2.1 we defined α(F, n,m) = {α(A) : A ≤
Λ(n,F),dim(A) = m}, and Buhler et al. showed that α(F, n,m) ≤ dm+2n

m+2 e, when m > 1 and the
characteristic of F is not 2. Furthermore the equality can be attained for algebraically closed fields.
Buhler et al. then demonstrated examples over Fq and Q, for which the inequality is strict. Consider
the example over Q, which is some A ≤ Λ(n,Q) of dimension n. They show that α(AQ) = 1 and
α(AC) = 2, which is equivalent to that χ(AQ) = n and χ(AC) ≤ n − 1. This gives the desired
separations. Some interesting discussions on R vs C can be found in [BGH87, Sec. 3].

4.1 Isotropic spaces and decompositions in group theory and manifold theory

In this subsection, we explain the origins of isotropic spaces and decompositions for alternating
matrix spaces in group theory and manifold theory. These are classical, so the purpose here is to
provide references for interested readers who have not met with these before.

Group theory. Let P be a p-group of class 2 and exponent p of order p`. We have that the
commutator subgroup [P, P ] ∼= Zmp , and the commutator quotient P/[P, P ] ∼= Znp . The commutator
bracket then gives an alternating bilinear map φ : P/[P, P ]×P/[P, P ]→ [P, P ], or, after fixing bases
of [P, P ] and P/[P, P ], an alternating bilinear map φ : Znp ×Znp → Zmp . On the other hand, given an
alternating bilinear map φ : Fnp ×Fnp → Fmp , one can construct a p-group of class 2 and exponent p,
Pφ, called the Baer group corresponding to φ, as follows. The group elements are (v, u) ∈ Fnp ×Fmp ,

and the group multiplication ◦ is by (v1, u1) ◦ (v2, u2) = (v1 + v2, u1 + u2 + 1
2 · φ(v1, v2)). This sets

up a two-way correspondence between p-groups of class 2 and exponent p and alternating bilinear
maps.

Having set up the connection, let us see the group-theoretic interpretations of isotropic spaces
and decompositions. The following is classical: an isotropic space of φ corresponds to a normal
abelian subgroup of P containing the commutator subgroup (see e.g. [Alp65b]). More recently,
Lewis and Wilson proposed the concept of a hyperbolic pair of P [LW12], which just consists of
two normal abelian subgroups of P which together generate P , and whose intersection equals [P, P ].
A natural generalization is then the following. A hyperbolic c-system of P consists of c normal
abelian subgroups A1, A2, . . . , Ac, such that P is generated by Ai, and for any i, j ∈ [c], i 6= j,
Ai∩Aj = [P, P ]. A hyperbolic c-system then naturally corresponds to an isotropic c-decomposition
of φ.

Manifold theory. We then turn to the manifold theory side. We shall just walk through some
examples of the connection, and point the interested reader to the survey [Dim08] for more detailed
information.
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Let M be a compact Kähler manifold. Let H i(M ;C) be the ith cohomology group of M with
coefficients in C. The cup product ^: H1(M ;C) × H1(M ;C) → H2(M ;C) is a skew-symmetric
bilinear map. Then as an application of results by Castelnuovo and de Franchis, Catanese [Cat91]
showed that there exists a constant holomorphic map f : M → C, where C is a curve of genus
g ≥ 2, if and only if, ^ has a dimension-g maximal isotropic space. Catanese went on to generalize
this connection much further in [Cat91].

Let M be a smooth closed orientable n-dimensional manifold. Let H i(M ;Q) be the ith coho-
mology group of M with coefficients in Q. Gelbukh showed that an isotropic space of ^ corresponds
to a geometric structure on M [Gel17, Lemma 10, Definition 11, Theorem 13], called an isotropic
system, which consists of smooth closed orientable connected codimension-one submanifolds that
are homologically non-intersecting, homologically independent, and intersecting transversely. The
isotropic index defined in [Gel17] for an alternating bilinear map is just the isotropic number in-
troduced in Definition 2. In particular, our Theorem 3 shows that computing this isotropic index
is NP-hard. The relations of isotropic indices with other basic notions in manifold cohomology,
including the first Betti number and the co-rank of the fundamental group, are also studied there.

5 Proof of Theorem 3

Recall that we have a graph G = ([n], E), and an alternating matrix space AG which is spanned
by those elementary alternating matrices Ai,j where {i, j} ∈ E.

(1) Isotropic spaces and independent sets. We need to show that G = ([n], E) has a size-s
independent set if and only if AG has a dimension-s isotropic space.

For the only if direction, let T = {i1, . . . , is} be a size-s independent set of G. Let U be the
subspace of Fn spanned by ei1 , . . . , eis ; recall that ei denotes the ith standard basis vector of Fn.
It is easy to verify that U is an isotropic space of A of dimension s.

For the if direction, let U = 〈u1, . . . , us〉 be a dimension-s isotropic space of AG. We form an
n × s matrix U such that the ith column of U is ui, that is, U = [u1, . . . , us] ∈ GL(n × s,F).
Suppose U t = [w1, . . . , wn] ∈ GL(s × n,F), wi ∈ Fs. Since U is of rank s, there exist integers
i1, . . . , is, 1 ≤ i1 < · · · < is ≤ n, such that wi1 , . . . , wis are linearly independent. We now claim
that {i1, . . . , is} forms an independent set of the original graph G = ([n], E). If not, suppose
{ij , ij′}, 1 ≤ j < j′ ≤ s, is in E. As U is an isotropic space of AG, we have that for any {k, `} ∈ E,
U tAk,`U = 0. As Ak,` = eke

t
` − e`etk, we have

U tAk,`U = U t(eke
t
` − e`etk)U = wkw

t
` − w`wtk = 0,

which implies that wk and w` are linearly dependent. It follows that wij and wij′ are linearly
dependent. We then arrive at a contradiction.

(2) Isotropic decompositions and vertex colorings. We need to show that G = ([n], E) has
a vertex c-coloring if and only if AG has an isotropic c-decomposition.

For the only if direction, assume G has a vertex c-coloring, and let [n] = T1 ] T2 ] · · · ] Tc be a
partition of [n] into disjoint union of independent sets. Suppose |Tj | = tj , and Tj = {ij,1, . . . , ij,tj} ⊆
[n]. Let Uj = 〈eij,1 , . . . , eij,tj 〉 ≤ Fn, so Fn = U1 ⊕ U2 ⊕ · · · ⊕ Uc. By (1), every Uj is an isotropic
space. This gives an isotropic c-decomposition of AG.
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For the if direction, let Fn = U1⊕U2⊕· · ·⊕Uc be an isotropic c-decomposition. Let di = dim(Ui),
and bi =

∑i
j=1 dj , for i ∈ [c]. Set b0 = 0. Let P = [p1, . . . , pn] be an n × n invertible matrix,

where pi ∈ Fn, such that pbi−1+1, . . . , pbi form a basis of Ui. By abuse of notation, we also let
Ui = [pbi−1+1, . . . , pbi ] ∈ GL(n × di,F), so P = [U1, . . . , Uc]. Let Wi = U ti = [wi,1, . . . , wi,n] ∈
GL(di×n,F). Since Ui is an isotropic space, by (1), we know that for any {k, `} ∈ E, wi,k and wi,`
are linearly dependent.

We then use the following simple linear algebraic result, which is a consequence of the Laplacian
expansion. For A,B ⊆ [n] of the same size, we let C|A,B to denote the submatrix of C with row
indices from A and column indices from B.

Lemma 22. Let P = [U1, . . . , Uc] ∈ GL(n,F), where Ui ∈ GL(n × di,F). Then there exists a
partition of [n] = T1 ] T2 ] · · · ] Tc, where |Ti| = di, such that ∀i ∈ [c], rk(Ui|Ti,[di]) = di.

We claim that the partition of [n] = T1 ] T2 ] · · · ] Tc from Lemma 22 gives a vertex c-coloring
of G. To see this, observe that, the condition rk(Ui|Ti,[di]) = di is equivalent to that the vectors
wi,j , j ∈ Ti, are linearly independent. This implies that G cannot have edges of the form {k, `}
where k, ` ∈ Ti, as otherwise wi,k and wi,` would be linearly dependent. Hence Ti is an independent
set for any i ∈ [c]. This completes the proof of the second part of Theorem 3.

6 An exposition of the proof of Theorem 6

As mentioned in Section 2.1, we give an exposition of the proof of Theorem 6 for Fq in [BMW17],
using some ingredients from [IQ19] to handle R and C. The main purpose is to give the reader
a flavor of how the so-called ∗-algebra technique is applied in this context. We could not give all
the details here, as that would be too long and unnecessary; the interested reader may wish to go
to [Wil09a,BW12, IQ19], which contain detailed proofs for using ∗-algebras to solve several closely
related problems.

Recall that we are given A = 〈A1, . . . , Am〉 ≤ Λ(n,F), and our goal is to find a non-trivial
direct sum decomposition Fn = U1 ⊕ U2, such that A|Ui = 0 for i = 1, 2. We first reduce to the
non-degenerate setting as follows. Suppose A is degenerate. Then let T be a complement subspace
of the radical, and set A′ = A|T . Note that A′ is non-degenerate. Then it is not hard to verify
that A admits an isotropic 2-decomposition if and only if A′ admits an isotropic 2-decomposition.

In the following we assume that A is non-degenerate. Let A = (A1, . . . , Am) ∈ Λ(n,F)m. The
adjoint algebra of A is defined as Adj(A) := {D ∈ M(n,F) : ∃B ∈ M(n,F),∀i ∈ [m], BtAi = AiD}.
Since A is non-degenerate, if such B exists, then it is unique. Then a natural involution (an anti-
automorphism of order at most 2) on Adj(A) is to send D ∈ Adj(A) to this unique B satisfying
BtAi = AiD for any i ∈ [m], also denoted as D∗. The adjoint algebra is the key device for the
algorithm.

We now translate the isotropic 2-decomposition problem for A, and therefore A, to a problem
about Adj(A). Any direct sum decomposition Fn = U1⊕U2 can be encoded as a projection matrix
P ∈ M(n,F), that is, P 2 = P , im(P ) = U1, ker(P ) = U2. The key observation in [BMW17] is that,
P corresponds to an isotropic 2-decomposition if and only if P ∈ Adj(A) and P ∗ = I − P . This
means that we need to search for an idempotent P in Adj(A) satisfying P ∗ = I − P . Following
[BMW17], we call such an idempotent a hyperbolic idempotent.

To do that, we utilize the ∗-algebra structure of Adj(A). For this, we recall in a nutshell the
structure of ∗-algebras. Let A be a ∗-algebra. The Jacobson radical of A, denoted by rad(A),
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is the largest nilpotent ideal of A, and it is invariant under ∗. The factor algebra A/rad(A) is
semi-simple, namely it is a direct sum of simple algebras. Let A/rad(A) ∼= S1 ⊕ · · · ⊕ Sk, where
each Si is simple. The ∗ either switches between Si and Sj , i 6= j, or preserves Si. Both cases are
referred to as ∗-simple. The former case is called the exchange type. In the latter case, Si is a
simple algebra with an involution. Over any field, Wedderburn’s theory gives a characterization of
such simple algebras (see e.g. [AB95, Chap. 5]). Based on this, involutions on simple algebras are
also classified [Alb39, Chap. X.4], and explicit lists for Fq, R, and C can be found in [IQ19].

Given this structure, the idea is to reduce the search for a hyperbolic idempotent from general
∗-algebras to simple ∗-algebras. Clearly, if A contains a hyperbolic idempotent, then A/rad(A),
and each ∗-simple summand of A/rad(A), all contain hyperbolic idempotents. On the other hand,
suppose each ∗-simple summand of A/rad(A) contains a hyperbolic idempotent. Then the sum
of these idempotents is a hyperbolic idempotent for A/rad(A). From here, to obtain a hyperbolic
idempotent for A, we can use the classical idempotent lifting technique (see e.g. [Wil09b, Lemma
5.10]).

Therefore, it remains to handle the ∗-simple case. Let K denote some appropriate division
algebra containing F. The reader may as well think of K as an extension field, as for Fq, R, and C,
the only “non-field” case is the quaternion algebra over R. The exchange type is easy to handle: it
is ∗-isomorphic to M(`,K)⊕M(`,K)op with (A,B)∗ = (B,A). So one hyperbolic idempotent can be
(I,0). The simple case is more interesting. It is isomorphic to M(`,K) with the involution defined
by some non-degenerate classical form F ; this includes alternating, symmetric, and Hermitian
ones.8 Then for A ∈ M(`,K), A∗ = F−1A†F , where † denotes either transpose (for alternating
and symmetric) or conjugate transpose (for Hermitian). The problem is then to find a hyperbolic
idempotent, or equivalently, an isotropic 2-decomposition, for this form F . But now this is a single
form, so one can bring it to say a canonical form, and examine case by case.

For example, over C, there are two types, symmetric and alternating. (The Hermitian type
does not appear because ∗ is required to preserve C.) A non-degenerate alternating form can

always be transformed to

[
0 I
−I 0

]
, so isotropic 2-decomposable. A non-degenerate symmetric

form can be transformed to the identity matrix I. When I is of odd size `, then it does not admit

an isotropic 2-decomposition. Because if so, then I is isometric to J =

[
0 A
At 0

]
, where A is of

size i × (` − i). But then rk(J) is either 2i or 2(` − i), an even number, so J is degenerate, a
contradiction. When I is of even size `, then it has an isotropic 2-decomposition. This is because

we have

[
1 i
i 1

] [
1 0
0 1

] [
1 i
i 1

]
=

[
0 2i
2i 0

]
. We can then use this to bring I to

[
0 2iI ′

2iI ′ 0

]
, where

I ′ is the `/2× `/2 identity matrix. Similar reasoning can be carried over R and Fq.
To make the above procedure constructive, we need to compute the algebra structure efficiently.

This can be done, over Fq with randomness [Rón90] and over C deterministically [Ebe91, Rón94].
We also need to compute the ∗-algebra structure, e.g. the forms associated with a simple ∗-
algebra, by [Wil09a, BW12, IQ19]. Finally, we need to compute the canonical forms of various
forms by [Wil13,vdW05].

For the algorithm analysis, we work in the exact model, as going to extension fields is already
unavoidable in computing the algebra structure. Over Fq, one can always recover, from the solutions
in the simple cases, an explicit hyperbolic projection matrix P over the original field, and then we

8While in principle this is correct, depending on the field, some type may not exist. For details see [IQ19].
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can obtain the bases of the two subspaces in an isotropic 2-decomposition by computing the image
and kernel of P . Over R and C, one can represent this projection matrix as a product of matrices
over different extension fields [IQ19, Sec. 3.5].

This concludes an exposition of the algorithm.

7 Proof of Theorem 8

Let us first recall the alternative definition of non-commutative rank for a slightly more general
situation. Given B ≤ M(s × t,F), an isotropic pair is a pair of vector spaces (U, V ), U ≤ Fs,
V ≤ Ft, such that for any u ∈ U, v ∈ V , and any B ∈ B, we have utBv = 0. The non-
commutative rank of B is then defined as ncrk(B) := (s + t) − max{c + e : c = dim(U), e =
dim(V ), (U, V ) is an isotropic pair of B}. Note that the recent works [GGdOW16, IQS18] mostly
deal with the setting that s = t. Suppose ncrk(B) = r. By equivalence transformations, we can

assume that every B is of the form

[
B1 B2

0 B3

]
, where B2 is of size a× b such that a+ b = r.

We review the setting for Theorem 8. Let A ≤ Λ(n,F) be a bipartite alternating matrix space.

By isometric transformations, we can assume that every A ∈ A is of the form

[
0 B
−Bt 0

]
where

B ∈ M(s × t,F), s + t = n. All such B form a matrix space B ≤ M(s × t,F). We call such B a
matrix space induced from the bipartite structure of A.

Before proving Theorem 8, let us examine some examples of isotropic spaces of A.

1. First note that α(A) ≥ max{s, t}.

2. Second, suppose ncrk(B) = r, so there exists P ∈ GL(s,F) and Q ∈ GL(t,F), such that every

matrix in PBQ is of the form

[
B1 B2

0 B3

]
, where B2 is of size a × b such that a + b = r. Let

R =

[
P t 0
0 Q

]
. Then we have

RtAR =

[
P 0
0 Qt

] [
0 B
−Bt 0

] [
P t 0
0 Q

]
=

[
0 PBQ

−(PBQ)t 0

]

=


0 0 B1 B2

0 0 0 B3

−Bt
1 0 0 0

−Bt
2 −Bt

3 0 0

 ,
from which we get an isotropic space, consisting of the zero blocks in the middle part, of
dimension n− r. (Note that the zero matrix at the (2, 3) position is of size (s− a)× (t− b),
and the isotropic space corresponding to the zero blocks in the middle part is of size (s−a) +
(t− b) = (s+ t)− (a+ b) = n− r.)

3. The third example we now describe represents a difference from the graph-theoretic setting.
Suppose s = t, and every B ∈ M(s,F) is symmetric. So n = 2s. Then let U = {u ∈ Fn =
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F2s : u = (u1, . . . , us, u1, . . . , us)
t ∈ Fn} ≤ Fn. That is, U consists of those vectors whose ith

component equals the (i+ s)th component, for i ∈ [s], and dim(U) = s. We claim that U is

an isotropic space of A. To see this, for a given u ∈ U , we can write it as

[
v
v

]
where v ∈ Fs.

So for A ∈ A such that A =

[
0 B
−Bt 0

]
, we have

[
vt vt

] [ 0 B
−Bt 0

] [
v
v

]
= −vtBtv+ vtBv =

−vtBv + vtBv = 0.

The proof of Theorem 8 basically suggests that isotropic spaces of the third type are not going to
matter for the comparison with α(A). We now go into the proof.

Proof of Theorem 8. Let r = ncrk(B) and d = α(A).
We first show that α(A) ≥ n − ncrk(B). Note that r ≤ min{s, t}, because we have the trivial

isotropic pairs (Fs,0) and (0,Ft). If r = min{s, t}, note that n−min{s, t} = max{n− s, n− t} =
max{s, t}, and we do have isotropic spaces of dimensions s and t, respectively, by (1) from above.
If r < min{s, t}, then by (2) from above, there is an isotropic space of dimensions n−r. This shows
that α(A) ≥ n− ncrk(B).

We then show that α(A) ≤ n − ncrk(B), or equivalently, ncrk(B) ≤ n − α(A). Again, if
α(A) = max{s, t}, then ncrk(B) ≤ n−max{s, t} = min{s, t}, which trivially holds. So we assume
that α(A) > max{s, t}. Let U be an isotropic space of dimension d = α(A), and take an n × d
matrix whose columns form a basis of U , which, by abuse of notation, is also denoted by U .

Let U =

[
v′1 v′2 . . . v′d
w′1 w′2 . . . w′d

]
, where v′i ∈ Fs, and w′i ∈ Ft. Let V ′ =

[
v′1 v′2 . . . v′d

]
, and

W ′ =
[
w′1 w′2 . . . w′d

]
. By doing a linear combination over the columns, we can assume that U

is of the form

[
V 0
W ′′ W

]
where V ∈ M(s× c,F), W ′′ ∈ M(t× c,F), and W ∈ M(t× e,F), such that

c + e = d, rk(V ) = c, and rk(W ) = e. By abuse of notation, let V be the subspace of Fs spanned
by columns in V , and W the subspace of Ft spanned by columns in W .

Claim 23. Let V and W be as above. Then (V,W ) form an isotropic pair for B.

Proof. From above we have that U =

[
V 0
W ′′ W

]
, and suppose U =

[
v1 v2 . . . vd
w1 w2 . . . wd

]
. This

means that vi = 0 for c < i ≤ d. Since U is an isotropic space of A, we have, for any i, j ∈ [d],

and A =

[
0 B
−Bt 0

]
∈ A,

[
vti wti

] [ 0 B
−Bt 0

] [
vj
wj

]
= −wtiBtvj + vtiBwj = −vtjBwi + vtiBwj = 0,

so vtiBwj = vtjBwi. In particular, for any column vector v ∈ V and any column vector w ∈W , we
have vtBw = 0tBw′′ = 0 for some column vector w′′ ∈W ′′. This concludes the proof.

We then get that ncrk(B) ≤ (s+ t)− (c+e) = n−d = n−α(A), and the proof is concluded.

We now set out to prove Corollary 9. For this we need one more ingredient. In the literature
[GGdOW16,IQS18], the computation of the non-commutative ranks only deals with the case when
s = t. To use that for general M(s× t,F) we need a little twist.

Proposition 24. Over any field F, computing the non-commutative rank of B ≤ M(s × t,F) can
be done in deterministic polynomial time.
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Proof. If s = t, this follows from [IQS18]. Without loss of generality, let us assume then s < t. We

shall construct some C ≤ M(t,F) as follows. First, for any B ∈ B, let B′ =

[
0
B

]
, where 0 is of size

(t− s)× t, so B′ ∈ M(t,F). Second, recall that Ei,j is the elementary matrix with the (i, j)th entry
being 1, and the rest entries being 0. Then C is the matrix space spanned by all B′ and Ei,j with
1 ≤ i ≤ t− s and 1 ≤ j ≤ t.

We claim that ncrk(B) + (t− s) = ncrk(C). To see that ncrk(B) + (t− s) ≥ ncrk(C), let (U, V )
be an isotropic pair of B, where U ≤ Fs, V ≤ Ft, such that ncrk(B) = s+ t−dim(U)−dim(V ). Let
U ′ ≤ Ft be the image of U under the embedding Fs to Ft by sending ei to ei+t−s. Clearly, (U ′, V )
is an isotropic pair for C, so ncrk(C) ≤ 2t−dim(U ′)−dim(V ) = (t−s)+s+ t−dim(U)−dim(V ) =
(t− s) + ncrk(B).

To show that ncrk(B) + (t − s) ≤ ncrk(C), let (U, V ) be an isotropic pair of C. If ncrk(C) = t,
then the equality is trivial. So in the following we assume ncrk(C) < t. We claim that if V 6= 0, then
U is a subspace of 〈et−s+1, . . . , et〉. Suppose not, then U contains a vector u = [u1, . . . , ut]

t with
some ui 6= 0 for 1 ≤ i ≤ t− s. Because Ei,j is present in C for 1 ≤ j ≤ t, for v ∈ Fn to satisfy that
utEi,jv = 0 for any 1 ≤ j ≤ t, v has to be 0. This implies that V has to be 0. Therefore all isotropic
pairs of C, except a trivial one (Ft,0), are also isotropic pairs of B. Therefore, if ncrk(C) < t, and
(U, V ) is an isotropic pair for ncrk(C) such that ncrk(C) = 2t − dim(U) − dim(V ) < t, we have
V 6= 0, so U ≤ 〈et−s+1, . . . , et〉. Let U ′ be the image of U under the projection from Ft to Fs by
sending (v1, . . . , vt)

t to (vt−s+1, . . . , vt)
t. We see then dim(U ′) = dim(U), and (U ′, V ) is an isotropic

space for B. From this we can conclude the proof.

We are now ready to prove Corollary 9.

Proof of Corollary 9. Given A ≤ Λ(n,Fq), q odd, first put it into the explicit bipartite form using
Theorem 6, which also produces the bases of the two subspaces in an isotropic 2-decomposition.
Then for a matrix space B ≤ M(s × t,F) induced from the bipartite structure, compute its non-
commutative rank r = ncrk(B) using Proposition 24. The isotropic number of A is then n− r, by
Theorem 8.

Remark 25. To obtain analogues of Corollary 9 over R and C, the bottleneck is that over R and
C, Theorem 6 only outputs the projection matrix as the product of a sequence of matrices over
different extension fields. This prevents us from working with the bases of the subspaces in an
isotropic 2-decomposition directly. Of course, if we are content with approximating those algebraic
numbers up to certain precision, we can use the representation of the projection as a product of
matrices over different extension fields to get such, and then work with that.

8 Proof of Theorem 10

Let us first work with general F, and then restrict to our target field Q at some point. Recall that
the problem is to decide whether an alternating matrix space A ≤ Λ(n,F) has an isotropic space
of dimension 2. We first make the following easy observation.

Observation 26. Let A = 〈A1, . . . , Am〉 ≤ Λ(n,F). Then A has an isotropic space of dimension
2, if and only if there exist linearly independent v, w ∈ Fn such that for any A ∈ A, vtAw = 0,
which is further equivalent to that for any i ∈ [m], vtAiw = 0.
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We now need to prove some auxiliary results. Let B = 〈B1, . . . , Bm〉 ≤ M(n,F), and let
B = (B1, . . . , Bm) ∈ M(n,F)m. Here is a natural problem about matrix spaces.

Problem 1. The existential singularity problem for matrix spaces, or the linear ∃-singularity
problem, asks the following: given B ∈ M(n,F), decide whether there exists a singular (e.g. non-
full-rank) non-zero matrix in B.

The linear ∃-singularity problem turns out to be quite interesting. We discuss this problem in
detail in Section 8.1. For the sake of proving Theorem 10, we need the following result, whose proof
can be found there.

Lemma 27. Over Q, assuming the generalized Riemann hypothesis, there is a randomized polynomial-
time reduction from deciding quadratic residuosity modulo squarefree composite numbers to the
linear ∃-singularity problem.

We then show that the linear ∃-singularity problem reduces to deciding whether an alternating
matrix space has an isotropic space of dimension 2. This reduction works over any field.

For this purpose, it will be convenient to define an intermediate problem, which may be viewed
as just a reformulation of Problem 1.

Recall that B = 〈B1, . . . , Bm〉 ≤ M(n,F), and B = (B1, . . . , Bm) ∈ M(n,F)m. Think of B as a
3-tensor TB of size n×n×m, such that TB(i, j, k) = Bk(i, j). That is, Bk’s are the slices according
to the third index (lateral slices). We will also be interested in the matrices obtained according to
the first index (horizontal slices) and the second index (vertical slices). Specifically, define Bv be the
n-tuple of n×m matrices that are vertical slices of TB. That is, B′ = (B′1, . . . , B

′
n) ∈ M(n×m,F)n,

where B′j = [B1ej , . . . , Bmej ], or in other words, B′j(i, k) = TB(i, j, k) = Bk(i, j). Similarly we can
define the matrix tuple consisting of the horizontal slices of TB.

We now consider the matrix space B′ ∈ M(n ×m,F)n. For v = (v1, . . . , vm)t ∈ Fm, its right
degree in B′ is defined to be the rank of [B′1v, . . . , B

′
mv] = v1B1 + · · · + vmBm. Therefore, every

non-zero v ∈ Fn has right degree n in B′, if and only if every matrix in B is of rank n. Lemma 27
then immediately implies the following.

Corollary 28. Over Q, assuming the generalized Riemann hypothesis, there is a randomized
polynomial-time reduction from deciding quadratic residuosity modulo squarefree composite num-
bers to deciding whether there exists a non-zero v ∈ Fm of right degree < n w.r.t. a matrix tuple
B′ ∈ M(n×m,F).

Given B′ = (B′1, . . . , B
′
n) ∈ M(n ×m,F), we construct a tuple of alternating matrices of size

(n + m) × (n + m), as follows. For i ∈ [n], let Ai =

[
0 B′i
−B′ti 0

]
. For 1 ≤ i < j ≤ n, let

Ci,j = eie
t
j − ejeti. For 1 ≤ k < ` ≤ m, let Dk,` = en+ke

t
n+` − en+`e

t
n+k. Note that Ci,j and Dk,`

are elementary alternating matrices. Let A = (A1, . . . , An, C1,2, . . . , Cn−1,n, D1,2, . . . , Dm−1,m). We
now claim the following.

Claim 29. Let B′ ∈ M(n ×m,F)n and A ∈ Λ(n + m,F)n+(n2)+(m2 ) be as above. Let A = 〈A〉 ≤
Λ(n + m,F). Then there exists a non-zero v′ ∈ Fm of right degree < n in B′ if and only if A has
an isotropic space of dimension 2.

Proof. By Observation 26, to decide whether A has an isotropic space of dimension ≥ 2, we only
need to test whether there exist linearly independent u, v ∈ Fn+m, such that for any E = Ai, or
Ci,j , or Dk,`, u

tEv = 0.
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The only if direction is easy to verify. Suppose v′ ∈ Fm is of right degree n−1 w.r.t. B′, namely
[B′1v

′, . . . , B′mv
′] is of rank< n. Then take any non-zero u′ ∈ Fn in the left kernel of [B′1v

′, . . . , B′mv
′],

and we have that for i ∈ [m], u′tB′iv
′ = 0. Now construct u =

[
u′

0

]
∈ Fn+m, and v =

[
0
v′

]
∈ Fn+m.

For i ∈ [n+m], let the ith component of u (resp. v) be ui (resp. vi). Then for i ∈ {n+1, . . . , n+m},
ui = 0. For i ∈ [n], vi = 0. Clearly, u and v are linearly independent. Furthermore, it is easy to
verify that (1) utAiv = u′tB′iv

′ = 0, (2) utCi,jv = uivj − ujvi = ui · 0− uj · 0 = 0, as i, j ∈ [n], and
similarly (3) utDk,`v = 0. Then u and v spans a dimension-2 isotropic space of A.

For the if direction, suppose u and v are linearly independent vectors in Fn+m, and satisfy that

for any E = Ai, or Ci,j , or Dk,`, u
tEv = 0. Write u =

[
u1

u2

]
, where u1 ∈ Fn and u2 ∈ Fm. Similarly

write v =

[
v1

v2

]
, where v1 ∈ Fn and v2 ∈ Fm. By utCi,jv = 0, we have that u1 and v1 are linearly

dependent. By utDk,`v = 0, we have that u2 and v2 are linearly dependent. We first observe that
it cannot be the case that u1 = v1 = 0, nor u2 = v2 = 0. As otherwise, say if u1 = v1 = 0, then
because u2 and v2 are linearly dependent, we have u and v are linearly dependent, a contradiction.
Therefore, without loss of generality, we assume that u1 6= 0, so v1 = α1u1 for some α1 ∈ F. We
then have two cases. In the first case, if u2 = 0, then v2 6= 0, and v′ = v − α1u and u are linearly
independent. In the second case, if u2 6= 0, then v2 6= α1u2, as otherwise u and v would be linearly
dependent. Then again, letting v′ = v−α1u, we have u and v′ are linearly independent. Clearly, u

and v′ still satisfy that for any E = Ai, or Ci,j , or Dk,`, u
tEv′ = 0. Write v′ as

[
v′1
v′2

]
where v′1 ∈ Fn,

and v′2 ∈ Fm, so v′1 = 0, and v′2 6= 0. We then have u2 = α2v
′
2. Letting u′ = u − α2v

′, we have u′

and v′ are linearly independent, and for any E = Ai, or Ci,j , or Dk,`, u
′tEv′ = 0. Write u′ as

[
u′1
u′2

]
where u′1 ∈ Fn, and u′2 ∈ Fm, so u′1 6= 0, and u′2 = 0. It is then straightforward to verify that the
condition u′tAiv

′ = 0 is equivalent to u′t1B
′
iv
′
2 6= 0. Recall that neither u′1 nor v′2 is the zero vector;

this just translates to say that v′2 is of right degree < n w.r.t. B′.

Theorem 10 follows by combining Claim 29 and Corollary 28.

8.1 The existential singularity problem for matrix spaces

In this subsection, we discuss on Problem 1, which we believe is a very interesting problem in its
own right. We therefore examine this problem over various fields, and prove Lemma 27 over Q.

The affine version of Problem 1 has been studied in [BFS99]. More specifically, the ∃-singularity
problem for affine matrix spaces asks to decide whether an affine matrix space contains a non-full-
rank matrix (not necessarily non-zero). In [BFS99], this problem was called the singularity problem.
This may cause some confusion, because in [GGdOW16,IQS18] the singularity problem for matrix
spaces is to decide whether all matrices in a matrix space are singular. For clarification, we then
call the problem in [BFS99] the affine ∃-singularity problem, and Problem 1 the linear ∃-singularity
problem.

In [BFS99], it was shown that the affine ∃-singularity problem is NP-hard over Fq, Q, or R.
We first note that the linear ∃-singularity problem reduces to that for affine matrix spaces, but
the inverse direction is not clear.9 Furthermore, the proof strategy of [BFS99] cannot be adapted

9To reduce the matrix space case to the affine case is easy: if B = 〈B1, . . . , Bm〉, then form m affine spaces
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directly to tackle Problem 1, because of the introduction of field constants in the reduction. In
particular, the use of field constants in the transformation from algebraic branching programs to
symbolic determinants by Valiant [Val79] seems particularly crucial. Indeed, as we will see below,
the ∃-singular problems for matrix spaces and for affine matrix spaces demonstrate quite different
behaviors.

Matrix spaces in which every non-zero matrix is of full-rank has been studied in mathematics
for a long time. More broadly, if B ≤ M(n,F) satisfies that every non-zero matrix in B is of a
fixed rank r, we say that B satisfies the fixed rank r condition. Such matrix spaces are of interests
in algebraic geometry (mostly when over algebraically closed fields), differential topology (mostly
when over R), number theory (mostly when over Q), and algebra (mostly when over finite fields).
It turns out that several results from these different branches of mathematics will be useful for our
algorithmic purposes as well.

To start with, the following quantity has been studied extensively in the literature. Let ρ(n, r,F)
be the maximum dimension over those B ≤ M(n,F) satisfying the fixed rank r condition. Also let
τ(n, r,F) be the maximum dimension over those affine matrix spaces C ⊆ M(n,F) satisfying the
fixed rank r condition. Also let ρ(n,F) := ρ(n, n,F), and τ(n,F) := τ(n, n,F). As pointed out
in [dSP13], ρ(n,F) ≤ n, and τ(n,F) =

(
n
2

)
. Two remarks are due here. First, ρ(n,F) can be much

smaller than n for certain fields; see below. Second, the
(
n
2

)
bound for τ(n,F) can be easily achieved

at In +U where U is the linear space of strictly upper triangular matrices. This distinction already
suggests that the difference between the linear and the affine cases can be significant.

In this following, we discuss on C, R, and Q, comparing the linear and affine settings, and
presenting some algorithms for the linear case, including a proof of Lemma 27. We refer the
interested reader to [She11] for the finite field case.

Over C. The affine ∃-singularity problem over C is only known to be in RP [BFS99].
We then turn to the linear ∃-singularity problem over C. Sylvester showed that ρ(n,C) ≤ 1

[Syl86], and Westwick generalized that to ρ(n, r,C) ≤ 2n − 2r + 1 [Wes87]. Some subsequent
developments include [IL99,BFM13].

Sylvester’s result immediately translates to a deterministic efficient algorithm for the linear ∃-
singularity problem over C: if the input matrix space B ≤ M(n,C) is of dimension ≥ 2, then return
“exists.” Otherwise, B = 〈B〉, and return “exists” if and only if B is of full-rank

Over R. The affine ∃-singularity problem over R is NP-hard [BFS99].
We then turn to the linear ∃-singularity problem over R. Based on the Radon-Hurwitz con-

struction and Adams’ vector field theorem [Ada62], ρ(n,R) is equal to the so-called Hurwitz-Radon
function (see [ALP65a]). For n ∈ N, write n in the form of 24a+b · (2c+1) where b ∈ {0, 1, 2, 3}, and
the Hurwitz-Radon function is HR(n) = 8a+ 2b. The significance of this result for our algorithmic
purpose is that HR(n) ≤ 2(log n+4). Some subsequent developments include [Mes90,LY93,CP07].

Therefore, the linear ∃-singularity problem over R admits the following quasipolynomial-time
algorithm. If the input matrix space B ≤ M(n,C) is of dimension ≥ HR(n), then return “exists.”
Otherwise, B = 〈B1, . . . , Bm〉 where m ≤ HR(n) ≤ 2(log n + 4). We form m affine spaces,
Ci := Bi + 〈B1, . . . , Bi−1, Bi+1, . . . , Bm〉, for every i ∈ [m]. The question then becomes whether
any of the Ci’s contains a singular matrix. This can be done by computing fi := det(B1x1 + · · ·+
Bi−1xi−1 + Bi + Bi+1xi+1 + · · · + Bmxm) explicitly. Since the polynomial fi, involving O(log n)

Bi + 〈B1, . . . , Bi−1, Bi+1, . . . , Bm〉.
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variables, is of degree n, fi has nO(logn) monomials, and we can fully write out fi in time polynomial
in nO(logn).10 After that, we can use the existential theory of reals [Can88, Ren92] to determine
whether fi has a non-trivial zero in time nO(logn). Return “exists” if and only if one of these fi’s
is solvable. This concludes the proof.

Over Q. The affine ∃-singularity problem over Q is NP-hard [BFS99].
We then turn to the linear ∃-singularity problem over Q. To start with, observe that ρ(n,Q) ≥ n.

This is because we can take a degree-n extension field K over Q, and use the regular representation
of K. We now prove Lemma 27, which suggests that the linear ∃-singularity problem is not so easy
either.

Proof of Lemma 27. We consider a special case of Problem 1 as follows. Assume B ≤ M(n,Q) is
closed under matrix multiplication, so B forms an algebra over Q. In this setting, Problem 1 just
asks whether B is not a division algebra. We can even specialize further by considering B being a
central simple algebra over Q.

In [Rón87], Rónyai considered the problem of testing whether a central simple algebra over
Q of dimension 4 is isomorphic to M(2,Q). He showed that assuming the generalized Riemann
hypothesis, there is a randomized efficient reduction from deciding quadratic residuosity modulo
squarefree composite numbers to this problem. In [Rón87], the algebras are represented by struc-
tural constants, but these can be turned into matrix representations in M(4,Q) (see e.g. [IR99]).
It follows that there is an analogous reduction for matrix algebras.

We can then conclude the proof, because such an algebra is either isomorphic to M(2,Q) (in
which there exists a non-zero singular matrix) or a division algebra (in which every non-zero matrix
is full-rank).

9 Proof of Theorem 11

9.1 Some basic statistics

All results in this subsection are either classical or straightforward. We collect them here, and
provide proofs, partly for completeness, and partly because we will use some of the arguments here
in the following.

We first recall the following bound on the number of subspaces of Fnq .

Fact 30. 1. For d ≤ N, 0 ≤ d ≤ n, the number of dimension-d subspaces of Fnq is equal to the
Gaussian binomial coefficient(

n

d

)
q

:=
(qn − 1) · (qn − q) · . . . · (qn − qd−1)

(qd − 1) · (qd − q) · . . . · (qd − qd−1)
.

2. The Gaussian binomial coefficient satisfies:

q(n−d)d ≤
(
n

d

)
q

≤ q(n−d)d+d.

10There are several ways of doing this. One approach is to transform the determinant expression into an arithmetic
circuit, and then compute along this circuit to get the final polynomial.
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3. The number of subspaces of Fnq is q
1
4
n2+Θ(n).

Proof. (1) is well-known. For (2), it is enough to verify that for any prime power q, and n, d, k ∈ N,
n ≥ d > k, we have

qn−d ≤ qn − qk

qd − qk
≤ qn−d+1.

For (3), it is well-known that
(
n
d

)
q

achieves maximal over d at d = bn/2c. So we have

q
1
4
n2− 1

4 ≤
(

n

bn/2c

)
q

≤
n∑
d=0

(
n

d

)
q

≤ (n+ 1) ·
(

n

bn/2c

)
q

≤ q
1
4
n2+bn/2c+log(n+1),

from which the result follows.

Analogously, we consider the number of isotropic spaces of a non-degenerate alternating form
A ∈ Λ(n, q).

Proposition 31. Let A ∈ Λ(n, q), n even, be a non-degenerate alternating matrix. Then we have
the following.

1. For d ∈ N, 0 ≤ d ≤ n/2, the number of dimension-d isotropic spaces of A is

I(A, d) :=
(qn − 1) · (qn−1 − q) · . . . · (qn−(d−1) − qd−1)

(qd − 1) · (qd − q) · . . . · (qd − qd−1)
.

For d ∈ N, d > n/2, there are no dimension-d isotropic spaces.

2. For d ∈ N, 0 ≤ d ≤ n/2, I(A, d) is bounded as follows:

qnd−
3
2
d2+ 1

2
d ≤ I(A, d) ≤ qnd−

3
2
d2+ 3

2
d.

3. The number of isotropic spaces of A is q
1
6
n2+Θ(n).

4. The number of maximal isotropic spaces of A is q
1
8
n2+Θ(n).

Proof. For (1), suppose we have chosen u1, . . . , ui such that 〈u1, . . . , ui〉 is an isotropic space. We
then need to select the next eligible ui+1, such that 〈u1, . . . , ui+1〉 forms an isotropic space. Since
ui+1 needs to satisfy uti+1Auj = 0 for 1 ≤ j ≤ i, and A is non-degenerate, ui+1 should be from
a dimension-(n − i) subspace, namely the subspace orthogonal to Auj , 1 ≤ j ≤ i. Furthermore,
ui+1 is not in 〈u1, . . . , ui〉. So there are qn−i − qi choices of ui+1 in the ith step. This explains the
numerator. The denominator is of such form, because for each isotropic space there are these many
ordered bases.

For (2), it follows from the same argument as the proof for Fact 30 (2).
For (3), note that nd− 3

2d
2 achieves its maximum at d = 1

3n.
For (4), note that maximal isotropic spaces are of dimension n/2. This is because for any

isotropic space U of dimension d < n/2, we can choose an eligible ud+1 as in the proof for (1), such
that 〈U, ud+1〉 is also an isotropic space.

Proposition 32. Let A ∈ Λ(n, q), n even, be a non-degenerate alternating matrix. Then all

isotropic spaces of A can be enumerated in time q
1
6
n2+O(n).
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Proof. We enumerate isotropic spaces according to dimensions in an increasing order. Each sub-
space of Fnq is represented by an ordered basis. We will maintain a list L of all isotropic subspaces,
and for each isotropic space U of dimension d, maintain a list of isotropic spaces of dimension d+ 1
that contain U , denoted as L(U). Note that for a fixed U , there are at most qn−d such spaces. In
other words, we will record the lattice of isotropic spaces.

Suppose we have enumerated all isotropic spaces of dimensions ≤ d. To enumerate isotropic
spaces of dimension d + 1, we maintain a list of such spaces. Then for each isotropic space U of
dimension d, and for each u ∈ rad(U) \U , we form U ′ = 〈u, U〉, and test whether U ′ is in L(U). If
not, then we add U ′ to L. We also add it to L(U), and for every dimension d-subspace Ũ of U ′,
add U ′ to L(Ũ). Otherwise we move on.

Clearly, in the above procedure, each isotropic space will added, and only added to L once.
This procedure runs in time N · qO(n), where N denotes the number of isotropic spaces of A. We
can then conclude by resorting to Proposition 31 (3).

When working with maximal isotropic spaces, it is enough to restrict our attention to just
non-degenerate matrix spaces.

Observation 33. For A ≤ Λ(n,F), any maximal isotropic space of A contains rad(A).

9.2 A non-trivial upper bound on the number of maximal isotropic spaces

For A ≤ Λ(n, q), let MI(A) be the set of maximal isotropic spaces of A, and NMI(A) be the number
of maximal isotropic spaces of A, e.g. the size of MI(A). Let MaxNMI(n, q) be the maximum of
NMI(A) over all A ≤ Λ(n, q). By Fact 30 (3) and Proposition 31 (4),

q
1
4
n2+O(n) ≥ MaxNMI(n, q) ≥ q

1
8
n2+Ω(n).

Theorem 11, slightly reformulated. Let MaxNMI(n, q) be as above. Then MaxNMI(n, q) ≤
q

1
6
n2+C·n for some large enough absolute constant C.
Let us illustrate the proof strategy for Theorem 11, before we enter the details.
The starting point of our proof is the alternative proof bounding the number of maximal inde-

pendent sets by Wood [Woo11].
The core of Wood’s argument is the following. Let G = (V,E) be a graph on n vertices.

Recall that we want to prove that the number of maximal independent sets in G is no more than
g(n) = 3

n
3 . We shall do an induction on n. Let v ∈ V be a vertex of minimal degree d. Let N(v) be

the set of neighbours of v together with v (e.g. the closed neighbourhood of v). Then any maximal
independent set I contains some w ∈ N(v), as otherwise I ∪ {v} would be a larger independent
set. If I contains w ∈ N(v), then I \ {w} would be a maximal independent set of G|V \N(w), the
induced subgraph of G on V \N(w). Since G|V \N(w) is of size ≤ n− d− 1, we then have

g(n) ≤ (d+ 1) · g(n− d− 1). (3)

From this relation and the induction hypothesis, the result follows in a rather straightforward
fashion.

In the following, we will develop a linear algebraic analogue of Equation 3. However, just
applying this does not suffice, when there are many vectors of degree 1.
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We remedy this by showing that in this setting, the maximum rank is large, which allows us to
use an argument similar to one in Proposition 31. More specifically, recall that in Proposition 31 (3),
we showed that the number of isotropic spaces of a non-degenerate alternating matrix is bounded
from above by q

1
6
n2+O(n). Note that any maximal isotropic space of A is an isotropic space of any

A ∈ A. So if A contains a non-degenerate A, we can immediately obtain Theorem 11 in this case.
However, there are non-degenerate matrix spaces that do not contain non-degenerate alternating
matrices. For example, the following is an alternating matrix space of maximum rank 2, written in
a parametrized form:

A =


0 x1 . . . xn
−x1 0 . . . 0

...
...

. . .
...

−xn 0 . . . 0

 .
For our purpose, we will need to bound the number of isotropic spaces for matrix spaces of rank
> 2

3n. So the following lemma is required; its proof is postponed to Section 9.2.1.

Lemma 34. Let A ∈ Λ(n, q) be of rank > 2
3n. Then the number of isotropic spaces of A is bounded

from above by q
1
6
n2+Dn for some large enough absolute constant D.

We are now ready to prove Theorem 11.

Proof of Theorem 11. Let A ≤ Λ(n, q). By Observation 33, for our purpose, we can assume that A
is non-degenerate. Let gq(n) = q

1
6
n2+Cn. We prove by an induction on n. Assume MaxNMI(`, q) ≤

gq(`) holds for any ` < n. Our goal is to show that NMI(A) ≤ gq(n).
Let d = min{degA(v) : v ∈ Fnq , v 6= 0}. As A is non-degenerate, d ≥ 1. Take any v ∈ Fnq of

degree d, and let c = n−d be the codegree of v. Let N(v) := (Fnq \ radA(v))∪{v} = {u ∈ Fnq : ∃A ∈
A, utAv 6= 0} ∪ {v}. We call N(v) the closed neighbourhood of v. Note that |N(v)| = qn − qc + 1.

Let U ≤ Fnq be a maximal isotropic space of A. Clearly, U ∩ N(v) 6= ∅. As otherwise, we
have U ⊆ rad(v) and v 6∈ U . This is equivalent to that v ∈ rad(U) and v 6∈ U . It follows that
U ( rad(U), so by Observation 19, U is not maximal, a contradiction.

Therefore there exists some w ∈ N(v) ∩ U . It follows that U ⊆ rad(w). Since U is maxi-
mal isotropic in A, U is also a maximal isotropic space of A|rad(w). As deg(w) ≥ deg(v) = d,
dim(rad(w)) ≤ c. Furthermore, note w is an isolated vector in A|rad(w). We then have

NMI(A) ≤
∑

w∈N(v)

NMI(A|rad(w)) (4)

≤ (qn − qc + 1) · gq(c− 1), (5)

where the second inequality is due to the induction hypothesis. Note that on the right hand side,
we have gq(c− 1) instead of gq(c), because w is an isolated vector in A|rad(w), and Observation 33.
The reader may want to compare this with Equation 3.

Now suppose d ≥ 2, that is, c ≤ n− 2. We then have

NMI(A) ≤ qn · gq(n− 3)

≤ qn · q
1
6

(n−3)2+C(n−3)

= q
1
6
n2+Cn+( 3

2
−3C)

≤ q
1
6
n2+Cn.
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Note that the second inequality is by the induction hypothesis, and the last inequality holds as
long as C ≥ 1.

Now suppose d = 1. In this case, Equation 5 is not enough for our purpose. We then need
the following refinement. Partition N(v) as N1(v) ∪ N≥2(v), where N1(v) = {w ∈ Fnq : w ∈
N(v),deg(w) = 1}, and N≥2(v) = N(v) \N1(v). A refinement of Equation 4 gives that

NMI(A) ≤ |N1(v)| · gq(n− 2) + |N≥2(v)| · gq(n− 3). (6)

If |N1(v)| ≤ q
2
3
n, then we have

NMI(A) ≤ q
2
3
n · gq(n− 2) + qn · gq(n− 3)

≤ q
2
3
n · q

1
6

(n−2)2+C(n−2) + qn · q
1
6

(n−3)2+C(n−3)

≤ q
1
6
n2+Cn+( 2

3
−2C) + q

1
6
n2+Cn+( 3

2
−3C)

≤ q
1
6
n2+Cn−1 + q

1
6
n2+Cn−1

≤ q
1
6
n2+Cn.

Note that the second inequality is by the induction hypothesis, the second to the last inequality
holds as long as C ≥ 1.

If |N1(v)| > q
2
3
n, then we first prove the following.

Claim 35. We have rk(A) > 2
3n.

Proof for Claim 35. Suppose dim(A) = m. Let s = b2
3nc+ 1, the smallest integer larger than 2

3n.

We will show that there exists a linear basis of some Ã that is isometric to A, Ã1, . . . , Ãm ∈ Λ(n, q),
such that

Ã1 =

[
B1 −Ct1
C1 D1

]
, Ã2 =

[
0 0
0 D2

]
, . . . , Ãm =

[
0 0
0 Dm

]
, (7)

where B1 ∈ Λ(s, q), C1 ∈ M((n − s) × s, q), and Di ∈ Λ(n − s, q). From this linear basis, it is

clear that

[
B1

C1

]
is of rank s > 2

3n, as otherwise Ã would be degenerate. It would follow then that

rk(A) = rk(Ã) > 2
3n.

We first start with an arbitrary linear basis of A, say A1, . . . , Am ∈ Λ(n, q). Recall that v

is of degree 1, and |N1(v)| > q
2
3
n. For later convenience, rename v as u1. Then there exist

u2, u3, . . . , us ∈ Fnq , such that for i ≥ 2, ui ∈ N1(v), and u1, . . . , us are linearly independent. As
otherwise, suppose the maximum number of linearly independent ui’s from N1(v) we can find is

t < s. Then since N1(v) > q
2
3
n ≥ qt = |〈u1, . . . , ut〉|, we can find ut+1 ∈ N1(v) \ 〈u1, . . . , ut〉, a

contradiction.
We then can arrange a change of basis matrix T whose first s columns are u1, . . . , us. Apply this

change of basis matrix T (by T t · T ) to A1, . . . , Am to get a linear basis Ā1, . . . , Ām for Ã = T tAT .
Recall that ei denotes the ith standard basis vector. Since ui’s are of degree 1, for any i ∈ [s], we
have Ã(ei) is of dimension 1. For 2 ≤ i ≤ s, since ui ∈ N(v), we have

eti(Ā1, . . . , Ām)e1 6= (0, . . . , 0). (8)

Without loss of generality, assume Ā1e1 6= 0. As Ã(e1) is of dimension 1, we have for any
2 ≤ j ≤ m, Āje1 = λjĀ1e1 for some λj ∈ Fq. We claim that for any 2 ≤ i ≤ s, the ith entry of
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Ā1e1, Ā1e1(i) 6= 0. If not, then for any 2 ≤ j ≤ m, Āje1(i) = λjĀ1e1(i) = 0. This is equivalent to
say that eti(Ā1, . . . , Ām)e1 = 0, contradicting Equation 8.

As Āi’s are alternating matrices, we have for any i, j, k, (Āiej)(k) = −(Āiek)(j). It follows that
for 2 ≤ i ≤ s, Ā1ei(1) = −Ā1e1(i) 6= 0, and for 2 ≤ j ≤ m, Ājei(1) = −Āje1(i) = −λjĀ1e1(i) =
λjĀ1ei(1). Since A(ei) is of dimension 1 for 2 ≤ i ≤ s, we infer that for 2 ≤ j ≤ m and 2 ≤ i ≤ s,
Ājei = λjĀ1ei. We then let Ã1 = Ā1, and for 2 ≤ j ≤ m, Ãj = Āj − λjĀ1. Clearly, Ã1, . . . , Ãm
still form a basis of Ã, and they are of the form in Equation 7. The claim then follows.

Combining Claim 35 and Lemma 34, the proof is concluded.

9.2.1 Proof of Lemma 34

Let c be the corank of A. We then have c < 1
3n.

Let (u1, . . . , ud) be an ordered basis of an isotropic space U of A of dimension d. For i ∈ [d],
let Ui = 〈u1, . . . , ui〉, and let ai = dim(A(Ui)). We also let U0 = 0, and a0 = 0. Note that
U = Ud, and we also let a = ad. We call such an isotropic space of (d, a) type. Note that
dim(〈Ui, rad(A)〉) = dim(Ui)+dim(rad(A))−dim(Ui∩rad(A)) = dim(A(Ui))+dim(rad(A)) = ai+c.

After fixing u1, . . . , ui, a valid ui+1 can come from two sources.

1. If ui+1 6∈ 〈Ui, rad(A)〉, then since ui+1 needs to satisfy uti+1Auj = 0 for j = 1, . . . , i, the
number of choices of ui+1 is upper bounded by qn−ai − qi.

2. If ui+1 ∈ 〈Ui, rad(A)〉, then the number of choices of ui+1 is upper bounded by qc+ai − qi.

So the following indices are important: for i ∈ [a], let bi be the smallest j ∈ [d] such that aj =
dim(A(Uj)) = i. We then have 0 < b1 < b2 < · · · < ba ≤ d. We also let b0 = 0 and ba+1 = d. We
call such an ordered basis of (b1, . . . , ba) type of an isotropic space of (d, a) type.

The number of possible types of an isotropic space is trivially upper bounded by n2, and the
number of possible types of ordered bases of isotropic spaces of type (d, a) is upper bounded by(
d
a

)
≤ 2d ≤ 2n. So by a multiplicative factor of n2 · 2n, we can restrict to consider ordered basis

(u1, . . . , ud) of a fixed type b = (b1, . . . , ba). By the discussion above, if j = bi, then the number
of choices for uj is upper bounded by td,a,b(j) := qn−(i−1) − qj−1. If bi < j < bi+1, the number of
choices for uj is upper bounded by td,a,b(j) := qc+i−qj−1. Recall that (qn−qi)/(qd−qi) ≤ qn−d+1,
for any q and i < d ≤ n. If j = bi, we have

td,a,b(j)/(qd − qj−1) ≤ q · qn−(i−1)−d. (9)

If bi < j < bi+1, we have

td,a,b(j)/(qd − qj−1) ≤ q · q(c+i)−d ≤ q · q(c+a)−d (10)

Each dimension-d subspace of Fnq has (qd − 1)(qd − q) . . . (qd − qd−1) ordered bases, and each
ordered basis of an isotropic space of type (d, a) is of a particular type. The number of dimension-d
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isotropic spaces of type (d, a) can be upper bounded by∑
type b=(b1,...,ba)

td,a,b(1) · . . . · td,a,b(d)

(qd − 1) · . . . · (qd − qd−1)

=
∑

type b=(b1,...,ba)

td,a,b(1)

qd − 1
· . . . ·

td,a,b(j)

qd − qj−1
· . . . ·

td,a,b(d)

qd − qd−1

≤
∑

type b=(b1,...,ba)

qd · qna−
∑a

i=1(i−1)−da · q(c+a)(d−a)−d(d−a)

≤ 2n · qna−a2/2+(c+a)(d−a)−d2+d+a/2.

Let us explain the first inequality. The qd term is because of the q terms on the right hand sides of
Equations 9 and 10. The qna−

∑a
i=1(i−1)−da is by collecting those terms from Equation 9, and the

q(c+a)(d−a)−d(d−a) term is by collecting those terms from Equation 10.
It is then clear that we need to bound f(n, d, a) = na−a2/2+(c+a)(d−a)−d2 for 1 ≤ a ≤ d ≤ n.

After some arrangement, we have

f(n, d, a) = −3

2
(a− 1

3
(n+ d− c))2 +

1

6
(n+ d− c)2 − d2 + dc.

We then distinguish between two cases.

1. Case (i): when 1
3(n+ d− c) ≤ d holds, namely d ≥ (n− c)/2. Only in this case, a can be set

to 1
3(n + d − c), and the maximum can be set to g(n, d) := 1

6(n + d − c)2 − d2 + dc. After
some arrangement, we have

g(n, d) = −5

6
(d− 1

5
(n+ 2c))2 +

1

30
(n+ 2c)2 +

1

6
(n− c)2.

Since c < n/3, we have (n− c)/2 > (n+ 2c)/5. Recall that d ≥ (n− c)/2. So g(n, d) achieves
maximal at d = (n− c)/2. Plugging this in, the maximal value is

h(n) := g(n, (n− c)/2) = −3

8
(c− 1

3
n)2 +

1

6
n2 <

1

6
n2.

2. Case (ii): when 1
3(n+ d− c) > d holds, namely d < (n− c)/2. In this case, f(n, d, a) achieves

the maximal value at a = d, and

f(n, d, d) = −3

2
(d− 1

3
n)2 +

1

6
n2 ≤ 1

6
n2,

where the inequality becomes an equality at d = n/3.

Since in both cases, the maximal value is no more than 1
6n

2, we can then conclude the proof.

9.3 Turning Theorem 11 into an algorithm

The proof of Theorem 11 can be turned into an algorithm for enumerating all maximal isotropic
spaces in time q

1
6
n2+O(n). We briefly indicate some algorithmic issues for doing this. Firstly, note

that in time qO(n), one can compute degA(v) for all v ∈ Fnq . Secondly, the Equation 4 naturally
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suggests a recursive algorithm structure. In the cases when d ≥ 2, or d = 1 and |N1(v)| ≤ q
2
3
n,

this recursive structure readily gives the desired algorithm. If d = 1 and |N1(v)| > q
2
3
n, we need to

make the proofs of Claim 35 and Lemma 34 constructive. Then for each isotropic space of some
A ∈ Λ(n,F), A of rank > 2

3n, test whether it is maximal using Observation 19.
For Claim 35, note that the selection of ui’s fromN1(v) can be done easily in a greedy way. Other

steps are readily constructive. For Lemma 34, we use the same procedure as in Proposition 32,
whose running time is bounded in time q

1
6
n2+O(n) by Lemma 34.

We then have the following.

Corollary 36. Given A ≤ Λ(n, q), all maximal isotropic spaces can be enumerated in time

q
1
6
n2+O(n).

10 Proof of Theorem 12

Review of Lawler’s algorithm. We first review Lawler’s dynamic programming idea for com-
puting the chromatic number [Law76], and then adapt that idea to our problem.

Given a graph G = (V,E), Lawler’s algorithm for computing χ(G) goes as follows. The idea is
to build a table storing χ(H) for every induced subgraph H of G. Note that this table is of size 2n.
To fill in this table, the starting point is the empty graph with chromatic number 0. Suppose we
have computed the chromatic numbers of those induced subgraphs of size < `. Let H = (U,F ) be
an induced subgraph of size `. Then the chromatic number of H can be computed by the following
formula:

χ(H) = 1 + min
I⊆U
{χ(H[U \ I])},

where I goes over all maximal independent sets of H, and H[U \ I] is the induced subgraph of H
restricting to vertex set U \ I. Since there are at most 3`/3 maximal independent sets of H and
they can be enumerated in time O(3`/3 · n), the exponential part of the time complexity of this
algorithm is

∑n
`=0

(
n
`

)
· 3`/3 = (1 + 3

√
3)n.

Directly applying Lawler’s idea to isotropic numbers. The above idea can be adapted to
compute χ(A) for A ≤ Λ(n, q) as follows. To start with, recall that in the above algorithm we used
the following simple fact: if a graph G admits a vertex c-coloring, then there is a vertex c-coloring
in which one part is a maximal independent set. We leave the reader to check that the analogue of
this fact in the alternating matrix space setting also holds.

Given A ≤ Λ(n, q), we also store a table storing χ(B) for every induced alternating matrix

spaces B of A. Note that this table is of size q
1
4
n2+O(n). To fill in this table, the starting point is

the zero space with isotropic decomposition number 0. Suppose we have computed the isotropic
decomposition numbers of those induced alternating matrix spaces of dimension < `. Let B ≤
Λ(`, q) be an induced alternating matrix space corresponding to U ≤ Fnq of dimension `. Then the
isotropic decomposition number of B can be computed by the following formula

χ(B) = 1 + min
V≤U,W≤U

{χ(B|W )},

where V goes over all maximal isotropic spaces of B, and W goes over all complement subspaces of
V in U . Note that here we also need to enumerate all complements of V , while in the graph setting,
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the complement set is unique. Recall that by Theorem 11, there are at most q
1
6
`2+O(`) maximal

isotropic spaces of B, and they can be enumerated in time q
1
6
`2+O(`). This gives a bound on the

number of V . We bound the number of W using the trivial q
1
4
`2+O(`) bound. Note that we will need

to test whether W is a complement of V , which can be done easily. Another more efficient approach
would be to enumerate all complements of U in time qd(n−d) ·poly(n, log q) (see [LQ17, Proposition
17 in the arXiv version]).

So to fill in those entries corresponding to alternating matrix spaces induced by `-dimensional
subspaces, the time complexity is bounded by(

n

`

)
q

· q
1
6
`2+O(`) · q

1
4
`2+O(`)

≤ q`(n−`)+` · q
1
6
`2+O(`) · q

1
4
`2+O(`)

= q`n−
7
12
`2+O(`)

= q−
7
12

(`− 6
7
n)2+ 3

7
n2+O(`)

≤ q
3
7
n2+O(n).

Summing over ` ∈ {0, 1, . . . , n}, we see that the total time complexity is also bounded by q
3
7
n2+O(n).

A new dynamic programming scheme. In the above, we see that directly following Lawler’s
dynamic programming scheme does lead to an improved algorithm for computing the isotropic
decomposition number. However, a key difference with the classical setting, namely the magnitude
of complement subspaces, impacts the analysis. In the following, we shall use another dynamic
programming scheme, still combined with the q

1
6
n2+O(n) upper bound on the number of maximal

isotropic spaces, to achieve the q
5
12
n2+O(n) running time as promised in Theorem 12.

To do that, we first make a simple observation.

Observation 37. Let A ≤ Λ(n,F). Then χ(A) ≤ k, if and only if, there exist k maximal isotropic
spaces U1, . . . , Uk, such that Fn = 〈∪i∈[k]Ui〉.

Proof. For the only if direction, recall that every isotropic space is contained in a maximal one.
For the if direction, note that from U1, . . . , Uk, we can construct U ′1, . . . , U

′
k, such that U ′i ≤ Ui, and

U ′1, . . . , U
′
k form a direct sum decomposition of Fn. This shows that χ(A) ≤ k.

The key to our algorithm is the following function. For k ∈ [n] and W ≤ Fnq , let f(k, U) be the
boolean function such that f(k,W ) = 1 if and only if W = 〈∪i∈[k]Ui : Ui maximal isotropic〉. For
example, f(1,W ) = 1 if and only if W is a maximal isotropic space.

The following is then a dynamic programming scheme computing f(k,W ) for every k ∈ [n] and
W ≤ Fnq . Let A ≤ Λ(n, q) be an alternating matrix space. We assume that χ(A) > 1, as χ(A) = 1
if and only if A is the zero space.

1. Use Corollary 36 to compute the set of maximal isotropic spaces of A, and let MI be this
set.

2. Build a table f , indexed by (k,W ) where k ∈ [n] and W ≤ Fnq , and initiate f(k,W ) = 0 for
every k and W .

3. For every W ≤ Fnq , do:
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(a) If W is maximal isotropic, then f(1,W ) = 1.

4. For k = 2, . . . , n, do:

(a) For every W ≤ Fnq and every T ∈MI, do:

i. If f(k − 1,W ) = 1, then let U = 〈W ∪ T 〉, and set f(k, U) = 1.

ii. If U = Fnq , then return “χ(A) = k.”

To prove the correctness of the algorithm, we first note that by induction, the algorithm correctly
computes f(k,W ) for every k and W . Then suppose the algorithm returns with reporting that
χ(A) = k. Note that in this case, it does find k maximal isotropic subspaces covering the whole
space Fnq . So by Observation 37, χ(A) ≤ k. So we are left to show that χ(A) ≥ k. By way
of contradiction, suppose χ(A) = k′ < k, so by Observation 37, there exist maximal isotropic
subspaces U1, . . . , Uk′ that cover Fnq . Let W = 〈U2 ∪ · · · ∪ Uk′〉. Then W is a proper subspace of
Fnq , as otherwise by Observation 37 χ(A) ≤ k′ − 1 < k′, contradicting that χ(A) = k′. But this
means that f(k′ − 1,W ) = 1, so in Step (4.a), when enumerating W and T = U1, the algorithm
would go through steps (4.a.i) and (4.a.ii), and outputs that χ(A) = k′. This gives us the desired
contradiction.

To estimate the running time of the algorithm, note that Step (1) costs q
1
6
n2+O(n) by Corol-

lary 36. All subspaces can be enumerated in time q
1
4
n2+O(n) by the same technique as in the proof

of Proposition 32. The total running time is then dominated by the loop in steps (4) and (4.a),

which is n · q
1
6
n2+O(n) · q

1
4
n2+O(n) = q

5
12
n2+O(n). This concludes the proof of Theorem 12.

11 Proofs for Propositions 13 and 14

Proof of Proposition 13. When F = C and the input instance is over Z, we shall formulate the max-
imum isotropic space problem as a problem about the solvability of a system of integral polynomial
equations over C. The result would follow then by using Koiran’s result that the Hilbert Null-
stellensatz is in PH, assuming the generalized Riemann hypothesis [Koi96]. We first cite Koiran’s
result as follows, following the formulation of [Mul17, Theorem 2.10].

Theorem 38 ( [Koi96]). The problem Hilbert’s Nullstellensatz of deciding whether a given system
of multivariate integral polynomials, specified as arithmetic circuits, has a solution over C is in
PSPACE unconditionally, and in RPNP ⊆ Π2 assuming the generalized Riemann hypothesis.

Therefore, to put the maximum isotropic space problem over C in PSPACE unconditionally,
and in PH assuming the generalized Riemann hypothesis, for instances given by integral alternating
matrices, we only need to formulate this problem as deciding the solvability of a system of integral
polynomial equations represented by arithmetic circuits. This can be done as follows. Suppose
we are given A = 〈A1, . . . , Am〉 ≤ Λ(n,C) where Ai’s are integral matrices, and we want to know
whether there exists an isotropic space of dimension d for A. Then A has an isotropic space of
dimension d if and only if there exists an invertible matrix T such that for any i ∈ [m], the left-
upper d × d submatrix of T tAiT consists of all zero entries. We then set up an n × n variable
matrix X = (xi,j)i,j∈[n], and a variable y. The role of this variable y is to impose the condition that
det(X) is non-zero, as will be seen below soon. For every i ∈ [m], set the entries of the left-upper
d× d submatrix of XtAiX to be zero. This gives md2 integral quadratic polynomials in xi,j ’s. To
enforce that the valid solutions are from invertible matrices, we set up the equation det(X) · y = 1,
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which is also an integral polynomial. Note that the polynomial det(X) can be expressed as a small
arithmetic circuit. It is straightforward to verify that these (md2 + 1) equations in xi,j and y have
a non-trivial solution if and only if A has a dimension-d isotropic space.

Let c be a constant. For isotropic c-decomposition problem, the idea is basically the same. The
only small complication is that we need to specify the dimensions of the three isotropic spaces in a
c-isotropic decomposition. But the number of possibilities is at most nc, which we can enumerate
as c is a constant. After fixing some (d1, d2, . . . , dc), where di ∈ Z+, n ≥ d1 ≥ · · · ≥ dc ≥ 1, and∑

i∈[c] di = n, we can construct a system of integral polynomial equations to express the condition
that there exists a c-isotropic decomposition with these dimensions, just as in the case of the
maximum isotropic space problem. This concludes the proof.

Proof of Proposition 14. Recall that we haveA ≤ Λ(n,F), and our goal is to prove χ(A) ≤ O(∆(A)·
log n). Here, ∆(A) := max{degA(v) : v ∈ Fn}, and degA(v) := dim(〈Av : A ∈ A〉). We will also
use a greedy algorithm to construct an isotropic C-decomposition with C ≤ O(∆(A) · log n).

For v ∈ Fn, recall that radA(v) = {u ∈ Fn : utAv = 0}. Consider the following algorithm.

1. Set k = 0, and U = 0;

2. While dim(U) < n, do:

(a) Set k = k + 1;

(b) Let W be any complementary subspace of U ;

(c) Let S = ∅;
(d) While dim(W ) > |S|, do:

i. Take any w ∈W \ 〈S〉; // 〈∅〉 := 0

ii. S = S ∪ w;

iii. W = W ∩ radA(w);

(e) Let Uk = 〈S〉;
(f) U = 〈U ∪ Uk〉;

3. Return U1 ⊕ U2 ⊕ · · · ⊕ Uk.

We first argue that U1 ⊕ U2 ⊕ · · · ⊕ Uk is an isotropic k-decomposition of A. To see this, we
note that because of Step (2.d.iii), the condition W ⊆ rad(〈S〉) holds in the loop of Step (d), so
〈S〉 maintains as an isotropic space by Observation 19.

We then show that k = O(∆(A) · log n) when the algorithm terminates. For this, let di =
dim(Ui), and Di = d1 + · · · + di. Observe that dim(radA(w)) ≥ n − ∆(A). It follows that
dim(W ∩ radA(w)) = dim(W ) + dim(radA(w))− dim(〈W ∪ radA(w)〉) ≥ dim(W ) + (n−∆(A))−
dim(〈W ∪radA(w)〉) ≥ dim(W )−∆(A). Therefore, in the computing procedure of Ui, we have di =

dim(Ui) ≥ n−Di−1

∆(A) . This implies that n−Di = n−Di−1−di ≤ (n−Di−1)(1−1/∆(A)). Therefore,
adding a new Ui to the direct sum decomposition decreases the value of n −Di by a factor of at
least 1− 1/∆(A). Therefore the algorithm terminates in at most log1−1/∆(A)

1
n = O(∆(A) · log n)

steps.
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12 Proofs of Theorems 15 and 16

In this section we prove theorems 15 and 16. While the proofs are straightforward for experts, we
include details for completeness. We shall refer to some facts in Section 4.1 from time to time.

Proof of Theorem 15. Recall that the goal is to show that deciding whether a matrix group contains
an abelian subgroup of order≥ s is NP-hard for some s ∈ N. We shall reduce the maximum isotropic
space problem, which is NP-hard by Corollary 4, to this problem.

For this we shall need the following classical construction11. Let p be an odd prime, and let
A ≤ Λ(n, p) be given by an ordered linear basis A = (A1, . . . , Am). Recall that ei denotes the ith
standard basis vector. From A, for i ∈ [n], construct Bi = [A1ei, . . . , Amei] ∈ M(n ×m, p). That
is, the jth column of Bi is the ith column of Aj . Then for i ∈ [n], construct

B̃i =

1 eti 0
0 In Bi
0 0 Im

 ∈ GL(1 + n+m, p),

and for j ∈ [m], construct

C̃j =

1 0 etj
0 In 0
0 0 Im

 ∈ GL(1 + n+m, p).

Let GA be the matrix group generated by B̃i and C̃j . Then it can be verified easily that,
GA is isomorphic to the Baer group (see Section 4.1) corresponding to the alternating bilinear
map defined by A (see Remark 17). In particular, [G,G] ∼= Zmp , and G/[G,G] ∼= Znp . By the
correspondence between isotropic spaces of A and abelian normal subgroups of GA containing the
commutator subgroup (see Section 4.1), deciding whether A has an isotropic space of dimension
≥ d is equivalent to deciding whether GA has an abelian subgroup of order ≥ s = pm+d. This
completes the reduction.

Proof of Theorem 16. Let P be a p-group of class 2 and exponent p, and let φ : P/[P, P ] ×
P/[P, P ] → [P, P ] be the commutator map. The proof of Theorem 16 basically follows from the
correspondence between abelian subgroup containing [P, P ] and isotropic spaces of φ as described
in Section 4.1. The only small caveat here is that we need a bound on the dimension of P/Z(P )
instead of the dimension of P/[P, P ]. To overcome this, we first observe that a maximal abelian
subgroup of P necessarily contains the center Z(P ), which in turn contains [P, P ] by the class-2
condition. Then we only need to note that Z(P )/[P, P ] corresponds to the radical of φ, and recall
that the number of maximal isotropic spaces only depends on the non-degenerate part of φ by
Observation 33. The proof then can be concluded.

13 A quantum variant of the theory

One way to extend isotropic spaces and isotropic decompositions to the quantum information setting
is as follows. Briefly speaking, firstly we restrict to the complex number field C. Secondly, instead

11We thank James B. Wilson for communicating this construction to us.
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of tuples of alternating matrices, we will consider tuples of matrices which represent a so-called
irreducible quantum channels. Thirdly, instead of general linear groups, we will consider unitary
groups.

For detailed explanations, we need some notation. For A ∈ M(n,C) we use A � 0 to denote that
A is positive semi-definite, and A � 0 to denote that A is positive definite. For B = {B1, . . . , Bm} ⊆
M(n,C), we let B̃ : M(n,C) → M(n,C) be the function sending A ∈ M(n,C) to

∑m
i=1BiAB

†
i . It

is clear that B̃ can be represented as an n2 × n2 matrix
∑m

i=1Bi ⊗ B∗i , where B∗i stands for the
entry-wise complex conjugation of Bi.

Let D(n,C) ⊆ M(n,C) be the set of n × n positive semi-definite matrices with unit trace over
C, and let D+(n,C) ⊆ D(n,C) consist of those positive definite matrices in D(n,C). Elements from
D(n,C) are known as quantum states.

Let QC(n,C) be the set of sets of matrices B = {B1, . . . , Bm} ⊆ M(n,C) satisfying
∑m

i=1B
†
iBi =

I. Functions of the form B̃ for B ∈ QC(n,C) are known as quantum channels, as they are completely
positive and trace preserving.

We then define isotropic spaces and decompositions in the quantum setting. To define isotropic
spaces, we essentially follow the same pattern as in the alternating matrix space setting. For
isotropic decompositions, we shall require that the direct sum decomposition is also an orthogonal
one, as the underlying spaces of quantum channels are Hilbert spaces which come with a norm.

Definition 39. Let B = {B1, . . . , Bm} ∈ QC(n,C). An isotropic space of B is a subspace U ≤ Cn,
such that for any u, u′ ∈ U , and any Bi, we have u†Biu

′ = 0. An isotropic c-decomposition of B is
an orthogonal direct sum decomposition of Cn = U1⊕U2⊕ · · · ⊕Uc such that each Ui is a non-zero
isotropic space of B.

13.1 From connected graphs to irreducible quantum channels

In this subsection, we establish a connection between independent sets and vertex colorings of con-
nected graphs, and isotropic spaces and decompositions of a particular type of quantum channels,
called irreducible channels (defined below).

We obtain two main results. The first result, Proposition 41, reduces certain problems for
connected graphs to the corresponding ones for irreducible quantum channels. This result corre-
sponds to Theorem 3. The second result, Theorem 43, gives an efficient algorithm for isotropic
2-decomposition in this setting. This result corresponds to Theorem 6, but the techniques are
completely different.

Let IQC(n,C) ⊆ QC(n,C) consist of those B ∈ QC(n,C) satisfying the following: there exists
a unique fixed ρ ∈ D(n,C) of B̃, and further ρ ∈ D+(n,C), where ρ is said to be fixed of B̃ if
B̃(ρ) = ρ. Such B and B̃ are called irreducible. Irreducible quantum channels have been studied
in e.g. [Dav70] and [Wol12, Sec. 6.2]. In particular, the definition of irreducible quantum channels
follows from [Dav70, Theorem 13]. Furthermore, given B ∈ QC(n,C), let M be the n2×n2 matrix
representation of B̃. Then B ∈ IQC(n,C) if and only if the algebraic and geometric multiplicities
of the eigenvalue 1 of M are both 1, and any 1-eigenvector is of full-rank.

We first observe that a simple and connected graph can be realized as an irreducible quantum
channel as follows. This is classical, but for completeness we spell out the details. Let G = ([n], E)
be a connected graph. For each i ∈ [n], let di be the degree of i. We construct the following set of
matrices BG = { 1√

dj
· Ei,j , 1√

di
· Ej,i : {i, j} ∈ E}. Note that |BG| = 2|E|.
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Proposition 40. Let G and BG be as above. Then BG ∈ IQC(n,C).

Proof. We first verify that B̃G is a quantum channel. For this, observe that ( 1√
dj
·Ei,j)† 1√

dj
·Ei,j =

1
dj
Ej,iEi,j = 1

dj
Ej,j . Since each vertex i connecting to j contributes one such term, and it follows

that
∑

E∈BG
E†E = I. We then verify that B̃G is irreducible. For this, consider P = (pi,j) where

pi,j = 1/di, which represents the transition matrix of the Markov chain naturally associated with
G. Since G is connected, this Markov chain is irreducible, so there exists a unique probability
distribution, e.g. a row vector s = (s1, . . . , sn) satisfying si > 0,

∑
i si = 1, such that sP = s (see

e.g. [LP17, Corollary 1.17]). It can then be verified that the matrix S = diag(s1, . . . , sn) ∈ D+(n,C)
is fixed by B̃G. To see that this is the unique fixed state, we represent B̃G as an n2×n2 matrix MG.

It is not hard to see that by conjugating with a permutation matrix, MG is of the form

[
P 0
0 0

]
.

Therefore, the algebraic and geometric multiplicities of the eigenvalue 1 of MG are the same as
those for P , which are 1 by the Perron-Frobenius theory. It follows that B is irreducible.

Proposition 41. Let G = ([n], E) be a connected graph, and let BG ∈ IQC(n,C) be as above.

1. G has a size-s independent set if and only if BG has a dimension-s isotropic space;

2. G has a vertex c-coloring if and only if BG has an isotropic c-decomposition.

Proof. (1) The only if direction is trivial. For the if direction, let U be a dimension-s isotropic space
of BG. Then U is also a dimension-s isotropic space of the alternating matrix space 〈Ei,j − Ej,i :
{i, j} ∈ E〉, because it is a subspace of 〈BG〉. We can then conclude by resorting to Theorem 3.

(2) The only if direction is trivial; observe that the direct sum decomposition obtained from a
vertex coloring as in Theorem 3 is also an orthogonal direct sum decomposition. For the if direction,
we observe that, an orthogonal direct sum decomposition into isotropic spaces for BG is also one
for the alternating matrix space 〈Ei,j − Ej,i : {i, j} ∈ E〉. We can then conclude by resorting to
Theorem 3.

Since the maximum independent set problem and the vertex 3-coloring problem on connected
graphs are also NP-hard, we have the following.

Corollary 42. The maximum isotropic space problem and the isotropic 3-decomposition problem
for B ∈ IQC(n,C) are NP-hard.

This also leaves the isotropic 2-decomposition problem an interesting question. For this, we can
resort to the techniques developed for quantum Markov chains, mostly notably, based on recent
works of periodicity of quantum channels [GFY18].

Theorem 43. Suppose we are given B ∈ IQC(n,C) such that every matrix in B are over Q. There
exists an algorithm that decides whether B admits an isotropic 2-decomposition in polynomial time.

Proof. The key observation is to characterize isotropic 2-decompositions using the periodicity of
irreducible quantum channels.

Definition 44 ( [FP09]). Given B ∈ IQC(n,C), the period of B is the maximum integer m for
which there exists an orthogonal direct sum decomposition Cn = U1 ⊕ · · · ⊕ Um such that for any
i ∈ [m], and any B ∈ B, we have B(Ui�1) ≤ Ui, where � indicates subtraction modulo m in the
range of [m].

41



The following lemma relates isotropic 2-decompositions with periodicity.

Lemma 45. Given B ∈ IQC(n,C), B admits an isotropic 2-decomposition if and only if the period
of B is 2k for some integer k.

Proof. For the if direction, let Cn = U1⊕U2⊕· · ·⊕U2k be the orthogonal direct sum decomposition
corresponding to the period of B. Let V1 = 〈Ui : i = 2j − 1, j ∈ [k]〉, and V2 = 〈Ui : i = 2j, j ∈ [k]〉.
Then V1 ⊕ V2 is an orthogonal direct sum decomposition, and for any B ∈ B, B(V1) ≤ V2, and

B(V2) ≤ V1. By the orthogonal condition, v†1v2 = 0 for any v1 ∈ V1, v2 ∈ V2. We then have for

any i = 1, 2, any vi, v
′
i ∈ Vi, and any B ∈ B, we have v†iBv

′
i = 0. That is, V1 and V2 are isotropic

spaces. It follows that the direct sum decomposition V1 ⊕ V2 is an isotropic 2-decompositions.
For the only if direction, let Cn = V1 ⊕ V2 be an isotropic 2-decomposition. Let P1 be the

projection into V1 along V2, and P2 the projection into V2 along V1. We have P1 + P2 = I, and
P †i = Pi. Since V1 and V2 are isotropic spaces, for any B ∈ B, and any i = 1, 2, PiBPi = 0.
Using P1 + P2 = I, it follows that P2B = BP1, and P1B = BP2. We are then in the position to
apply [FP09, Lemma 4.2], to conclude that the period of B is 2k for some integer k.

Given Lemma 45, it is enough to compute the period of B, and this can be done by resorting
to the algorithm in [GFY18]. For completeness, we give a brief sketch of the idea. By Lemma 13
of [GFY18], the period of irreducible quantum channel is equivalent to be the number of eigenvalues
with magnitude one of the quantum channel. Using the terminologies in the present article, we
have the following lemma.

Lemma 46 ( [GFY18, Lemma 13]). Given B ∈ IQC(n,C), the period of B is equal to the number
of eigenvalues of B̃ with magnitude one.

Given this lemma, we can explicitly write out the form of B̃ as an n2×n2 matrix, and compute
its eigenvalues using e.g. [Cai94] in the exact model (Section 3.1). Therefore, each eigenvalue
α is represented by an irreducible polynomial f(x) and a separating rectangle in the complex
plane. To decide whether α has magnitude 1 can be done efficiently by resorting to techniques
from [Lov86].

Finally, we remark that the investigation in this subsection is not completely satisfactory.
It would be more satisfying to consider isotropic spaces and isotropic decompositions for arbi-
trary quantum channels, not just the irreducible ones. We adopt the current strategy, partly
because for irreducible channels, the periodicity is well-studied and well-connected with isotropic
2-decomposition. We leave it a future work to study isotropic spaces and decompositions in the
general setting.

13.2 Quantum gate subspace-fidelity and isotropic spaces

We provide one quantum information theoretic interpretation for isotropic spaces, by relating it
to quantum gate (state) fidelity [NC02, Section 9] and noiseless subspaces in quantum error cor-
rection [KL97, Lid14]. For the sake of readers who have little quantum information knowledge,
we shall proceed by introducing all the necessary notions from quantum information, even though
most of them are standard.

In quantum information theory, the fidelity is a measure of the “closeness” of two quantum
states, generalizing the fidelity of two distributions over finite events. It expresses the probability
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that one state will pass a test (quantum measurements) to identify as the other. Formally, the
fidelity of two quantum states ρ, σ ∈ D(n,C) is defined by

F (ρ, σ) = [tr(
√√

ρσ
√
ρ)]2.

It is worth noting that 0 ≤ F (ρ, σ) ≤ 1. Furthermore,

• F (ρ, σ) = 0 if and only if ρ and σ are orthogonal, i.e., tr(ρσ) = 0;

• F (ρ, σ) = 1 if and only if ρ = σ.

Quantum state fidelity induces quantum gate fidelity. Unitary channels (i.e. channels of the
form Ṽ (A) = V AV † for some unitary matrix V ∈ M(n,C)) are exactly the channels that do not
introduce mixedness (i.e., decoherence) into states. Therefore, in experimental settings, they are
considered to be the ideal type of channels to be implemented [NC02, Section 8]. However, no
implementation of a channel is perfect, as there is no closed (isolated) system, so environment
errors are unavoidable, which cause the channel actually implemented to be not unitary. The gate
fidelity is a tool for comparing how well the implemented quantum channel B̃ approximates the
desired unitary channel Ṽ . Specifically, the gate fidelity on a pure state (uu† for a normalized
vector u ∈ Cn) is a function defined as follows:

FB̃,Ṽ (u) = F (B̃(uu†), V uu†V †) = u†V †B̃(uu†)V u = u†[Ṽ † ◦ B̃(uu†)]u,

where Ṽ †(A) = V †AV . In particular, FB̃,Ṽ (u) = FṼ †◦B̃,Ĩ(u), where Ĩ is the identity channel. Then
the gate fidelity on all states is defined as follows:

F (B̃) = min
u∈Cn

FB̃,Ĩ(u) = min
ρ∈D(n,C)

FB̃,Ĩ(ρ)

The second equation in the above follows from the joint concavity property of the state fidelity F
(see [NC02, Equation 9.121]).

As we can see, quantum gate fidelity is a global property over Cn. But in some cases, we
only need a subspace of Cn as the state space of quantum information processing. This consider-
ation motivates the following notions, which we call them quantum gate maximum and minimum
subspace-fidelities, respectively. For a subspace U ⊆ Cn,

FminU (B̃) = min
u∈U

FB̃,Ĩ(u), and FmaxU (B̃) = max
u∈U

FB̃,Ĩ(u).

Note that FminU (B̃) and FmaxU (B̃) quantify the worst-case and best-case behavior of the system by
minimizing and maximizing over all possible initial states, respectively. Obviously, 0 ≤ FminU (B̃) ≤
FmaxU (B̃) ≤ 1 as 0 ≤ F (ρ, σ) ≤ 1. We also have F (B̃) = minU⊆Cn FminU (B̃) = minU⊆Cn FmaxU (B̃),
where the second equation follows by examining one-dimensional subspaces.

One key notion in quantum error correction is that of noiseless subspaces, which have been
intensively discussed in the setting where B̃ is studied as a noise model [KL97,Lid14]. Intuitively,
noiseless subspaces are shelters under quantum noise B̃, as states in such a subspace are perfectly
preserved under B̃.

Definition 47. Let B = {B1, . . . , Bm} ∈ QC(n,C). A noiseless subspace of B is a non-zero
subspace U ≤ Cn, such that for any u ∈ U , and any Bi, we have Biu = u.
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The following result formally shows that noiseless subspaces and isotropic subspaces are totally
opposite from the viewpoint of the two quantum gate subspace-fidelities.

Proposition 48. Let B = {B1, . . . , Bm} ∈ QC(n,C).

• FmaxU (B̃) = 0 if and only if U is an isotropic space;

• FmaxU (B̃) = 1 if and only if there is a noiseless subspace in U ;

• FminU (B̃) = 1 if and only if U is a noiseless subspace;

• FminU (B̃) = 0 if and only if there is an isotropic space in U .

Proof. These four claims are directly from the definitions of isotropic spaces, noiseless subspaces,
quantum gate minimum subspace-fidelity and maximum subspace-fidelity.

Knill devised an efficient algorithm to find all noiseless subspaces for a given B̃ [Kni06]. So
we have a quite good understanding on FminU (B̃) = 1. On the other hand, isotropic subspaces
fully characterize FmaxU (B̃) = 0. Therefore, isotropic spaces reveal the structure of the worst-case
behavior of the channel.

Let us further point out another potential application of isotropic spaces in quantum control.
A basic task of controlling quantum systems is to transfer all unknown quantum states into some
targeting subspace [TV08, CT15]. So designing a control scheme as a quantum channel with a
non-trivial isotropic space (the dimension greater than 1) can turn all quantum states residing in
the isotropic space into the orthogonal complement of it.
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