
“© 2021 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for

all other uses, in any current or future media, including reprinting/republishing this material for

advertising or promotional purposes, creating new collective works, for resale or redistribution to

servers or lists, or reuse of any copyrighted component of this work in other works.”

Exploration Of Encoding And Decoding Methods
For Spiking Neural Networks On The Cart Pole
And Lunar Lander Problems Using Evolutionary

Training
Andrew W. Rafe

School of Computer Science
University of Technology Sydney

Sydney, Australia
andrew.w.rafe@student.uts.edu.au

Jaime A. Garcia
School of Computer Science

University of Technology Sydney
Sydney, Australia

jaime.garcia@uts.edu.au

William L. Raffe
School of Computer Science

University of Technology Sydney
Sydney, Australia

william.raffe@uts.edu.au

potentials of those connected neurons [1]. Once a neuron has
spiked, it will enter a period of refractory where it will require
more input than usual to spike again. Mapping neurons spiking
over time produces a spike train. This temporal information
on the activity of a neuron can be used to extract information
on action selection or classification when they occur in some
output layer.
SNNs are not intrinsically differentiable and therefore in
their basic form are unable to undergo the process of back-
propagation. Wu et al. [2] was able to overcome the non-
differentiable nature of the Leaky Integrate and Fire (LIF)
neuron model by approximating a derivative based on spike
characteristics such as neuron potentials and spike frequency.
Lee et al. [3] using a similar method was able to, with a
convolutional spiking neural network, outperform a convolu-
tional ANN in the MNIST digit dataset [4]. By estimating
derivatives, gradient descent methods can still be used in order
to optimise the weighted connections.
Evolutionary and genetic algorithms on neural networks have
been used to train game-playing agents. Their use on SNNs
is demonstrated by Yee and Teo [5] through their application
to a driving simulator called TORCS, whereby they were able
to train an agent to drive three increasingly complex tracks.
Markowska-Kaczmar and Koldowski [6], in their use of an
SNN for a top-down racing simulator, use an evolutionary
algorithm to optimise the Izhikevich (IZ) [7] neuron model
parameters. They trained both an ANN and SNN on increas-
ingly complex tracks and even though the SNN was able to
achieve the goal on each of the problems, the average fitness
of the SNNs was always lower than the ANN counterparts. In
addition to game playing agents, evolutionary based reinforce-
ment learning has been used by Slade and Zhang [8] in their
attempt to utilize a topological and weight evolution on a SNN
to implement the XOR logical gate. Although their results
were promising in that they were able to create systems that
could classify according to XOR, the size and complexity of
the networks created were worse than ANN implementations.

Abstract—Spiking Neural Networks are increasingly drawing
interest due to their potential for large efficiency g ains when
used with neuromorphic computers. However, when attempting
to replicate the successes of Artificial Neural Networks, challenges
are faced due to their vastly different architectures and therefore
differing methods for training and optimisation. There has been
minimal analysis of the differences between encoding and decod-
ing methods and the effect of state space exposure periods on
the performance of these networks. The core contribution of this
paper is the detailed analysis of decoding methods, state exposure
periods, and a learned input encoding method of an evolved
Spiking Neural Network within the Reinforcement Learning
context. This is demonstrated using the Cart Pole and Lunar
Lander Reinforcement Learning problems. The paper discovers a
negative correlation between the generation to reach the goal and
the state space exposure period over all decoding methods tested.
The state exposure period is also found to influence t he number
of random actions taken due to the decoding methods being
unable to select an action. This paper explores the differences
in temporal and rate-based decoding as well as identifying
benefits i n r esetting n etworks t o t heir d efault s tates between
episode steps. Additionally, the novel input encoder, is effective
at pre-processing state information using the same evolutionary
algorithm as the rest of the network.

Index Terms—genetic algorithm, spiking neurons, spiking neu-
ral network, spike train, reinforcement learning

I. INTRODUCTION

Spiking Neural Networks (SNNs) are an alternative struc-
ture to traditional Artificial Neural Networks (ANNs). The net-
works themselves behave in a very different way, even though
their structures appear similar. SNNs take their inspiration
from the low-level cognitive structure in animal brains and
act in a biologically similar way through binary spikes passed
from one neuron to the next through weighted connections.
Neurons will build in some potential until such a point that a
threshold is surpassed where a spike will occur and be passed
down its connections, which will work to build or diminish the

Although these papers demonstrated the effectiveness of using
evolutionary algorithms for SNNs, different decoding and
state exposure periods1 were not compared leading to some
confusion over why particular decoding methods or exposure
periods were selected.
The major aim of this paper is to compare rate based and
temporal decoding methods over a range of different exposure
periods when applied to the evolutionary training of a SNN
in the Cart Pole and Lunar Lander problems as provided by
the Open AI Gym [9]. In doing so, a novel input encoder
is proposed for the encoding of the state space information
into a spike train using learned weights. This is significant as
both input preprocessing and network training use the same
evolutionary process.

II. NETWORK OVERVIEW

The extent to which realism of cognitive neuronal level
structure is replicated in artificial systems brings about several
methods of modeling these types of networks. Generally, the
more realistic the neurons and synapses in the network are,
the more computation is required during processing. The most
general and computationally fastest method is using the Leaky
Integrate and Fire (LIF) neuron model [1]. The most accurate
model originates from the work by Hodgkin and Huxley (H-H)
[10] through their study of membrane capacitance at the ionic
level. Due to the complexity of this model, it is considered the
most computationally inefficient. The Izhikevich model (IZ)
[7] works to bridge the realism and computational efficiency
gap between the LIF and H-H models and this is the model
that will be used in this paper.

A. SNN Modeling Method

The IZ model revolves around two basic differential equa-
tions.

v′ =

{
0.04v2 + 5v + 140 − u+ I if v < 30

c if v >= 30
(1)

u′ =

{
a(bv − u) if v < 30

d if v >= 30
(2)

I refers to the injection into the neuron, v is the membrane
potential, and u is the recovery variable. When v exceeds
the peak voltage of 30mV, both the membrane potential ,v,
and the recovery variable, u, resets according to specified
rules outlined in 1 and 2 respectively. This causes a spike
to register, and it is passed down the weighted connections
and causes an injection into that connected neuron. The other
four variables, namely a, b, c and d, are the parameters that
affect the behaviour of the neuron. Firstly a describes the time
scale of the recovery variable with smaller values resulting in
slower recovery. Secondly, b describes the sensitivity of the
recovery variable to changes in the membrane potential of

1The length of the input spike train into the SNN, also can be described as
the number of iterations of the SNN that a single state is exposed to it for.

the neuron before an action potential takes place [7]. Thirdly,
c determines the reset value after a spike occurs. Finally, d
describes the behaviour of the reset of the recovery variable
post spike. Typical values found in regular spiking neurons [7]
are a = 0.02, b = 0.2, c = −65 and d = 8 and these are the
values that will be used in this experiment.

These IZ neurons are connected to each other with weighted
connections. Negative weighted connections lead to the de-
pressing of possible injections into the next layer neurons
whereas positive weighted connections encourage the next
layered neuron to fire by injecting some charge into the
membrane. When a neuron undergoes an action potential
(spike) the value of the outgoing weight from that neuron
is injected into the connected neuron. For all of the tests
conducted, the IZ neuron model is used to construct the SNNs.

B. Input Encoder

One of the major differences with SNNs compared to ANNs
is how information is parsed into and extracted from the net-
work, otherwise known as encoding and decoding respectively.
For encoding, the state information from the reinforcement
learning problem must be converted into a spike train to
be fed into the network. The original Cart Pole and Lunar
Lander state spaces are made up of positive and negative input
values often denoting direction where negative is positional or
velocity in the left direction and positive in the right direction.
The use of negative inputs with SNNs is not a well documented
and researched issue as the majority of uses of SNNs have
been in image classification and object detection whereby
negative inputs based on pixel values never occur. Therefore,
for each of the inputs where a negative value is possible, these
have been split into two input values where one represents the
left direction, and the other the right, otherwise referred to
as double encoding [11] [6]. If the original input value was
negative then the left direction input would be the positive
magnitude of the original value and the right direction input
would be zero. If the input was positive then the left direction
input would be zero and the right direction input would be the
same value as the original input value.

A similar issue with the inputs of both problems when
compared to pixel input information is the non-normalized
nature of them. Where pixel information is often represented
with inputs between 0.0 and 1.0, these could be scaled equally
among all inputs to encourage spiking behaviour in the input
layer. However both of the problems have differently scaled
inputs, some of which often become greater than 1 and some
that never cross a threshold of 0.1. Therefore scaling them in
a uniform way leads to unequal importance being placed on
particular input values. Therefore an additional input encoder
layer was added to the network which acts as a simple
multiplier of the inputs by some learned weight and injected
into the first SNN layer of the network. This mapping of input
encoder to SNN first layer nodes is one to one, as in each
initial layer SNN node has one input encoder node which is
directly attached to it with some weight value as can be seen
in Figure II-B. This is the scale that the input is changed by

before being injected into the SNN. This is not being counted
as a layer in the network as it is simply a preprocessing step
of the input before being fed into the network however the
weights of the input encoder are learned through the same
evolutionary process used by the SNNs.

Input Encoder SNN

Fig. 1. An example of the input encoders connection to the SNN. In this
example, the SNN has no hidden layer as the Input Encoder layer are not
made up of IZ neurons and simply act as a preprocessing step for state space
information.

C. Action Decoding

The resultant spike trains of the output neurons need to
be processed and an action selected based on that. Decoding
methods are generally broken into two categories; the first
being rate based decoding whereby the rate of spiking of an
output neuron is related to the selection of an action, and
temporal coding in which the precise spike timings of the
output neurons are relied upon to make a decision. For each
of the described action decoding methods, there is an alternate
reset method which after each of the episode steps and after
an action has been selected, the network is reset to its default
state.

1) Rate Based Decoding: Rate coding methods rely on the
fact that the carriage of information is based on the frequency
of spikes occurring in a neuron [12].

Temporal averaging is a method whereby the average firing
rate is calculated for an individual neuron based on the time
of exposure of the particular stimulus referred to in this paper
as the state exposure period. This can be defined by Equation
3.

R =
nsp

T
(3)

Where R is the average firing rate of a single neuron over
a single trial, nsp is the number of spikes over the time of
exposure of a particular stimulus and T is the total time of
exposure of the stimulus. The output neuron that produces the

largest of these temporal averages will be used for action se-
lection. In order to produce more accurate temporal averaging,
the time of exposure of the stimulus can be increased. It needs
to be sufficiently long to be able to infer relevant information.
This method can experience issues with the possibility of the
same temporal average over multiple output neurons especially
when the time of exposure of the stimulus is small. In this case
a random action is selected from the set of actions that have
the highest firing rates over that exposure period.

Although not tested in this paper, state exposure to the
network over multiple trials can be conducted and the rate
of firing of the single neuron can be calculated. The noisy
nature of the input to the network may make spike rates differ
from one trial to the next. Equation 4 demonstrates this idea.

R =
Σk

i=1n
sp
i

Tk
(4)

The variable k in this instance refers to the number of trials
of an exposure of a stimulus to a single neuron. In real neural
systems it is not possible for this to be the coding method
for deciding action selection as a decision is made with only
one exposure to an event. However in artificial systems this
can be used to ensure the correct action is taken when using
rate coding. This is a slow process due to the repeated trials
of multiple exposures of a stimulus. Population averaging is
similar to that of the temporal averaging over trials method
however it is based on the assumption that there is a pool of
neurons responsible for action selection. If we find the average
rate of firing over that population of neurons we can get a more
accurate reading of which pool is being the most stimulated
over a certain time period. The regular temporal averaging
method referred to as rate decoding and described in Equation
3 and its reset counterpart will be analysed in this paper.

2) Temporal Decoding: Temporal decoding assumes that
the carriage of information is dependant on the precise spike
timings [12]. This means exposure of a state for a fixed time
period is not needed in order to appropriately select an action
to take. First-to-Fire (F2F) decoding selects the action based
on the neuron that was first to fire since the exposure of the
new state to the network [13]. This improves on the number of
exposures needed in comparison to the rate decoding method
due to the action being selected as soon as a single spike
occurs in the output layer. In the case where no output neuron
fires within the exposure period, a random action is selected.
If two or more output neurons spike at the same time then
a random action is selected from those output neurons that
fired. The F2F and the F2F Reset methods are analysed in
this paper.

III. EVOLUTION OF NETWORKS

For each of the experiments conducted, a population of
50 initially random agents were produced with weight values
ranging from -20.0 to 80.0 for Izhikevich neurons and input
encoder layer weights ranging from 0.0 to 150.0. Each trial
had a maximum of 100 generations or would be concluded
when the problem solution requirements were met. Each

agent conducted 5 separate episodes and the average of all
episode rewards was the fitness of that agent for that particular
generation. If any of the networks achieved the goal over the 5
episode average, that network was run through 100 consecutive
episodes to determine if the overall goal was achieved as
set out by the problems. If it was, then the experiment was
concluded otherwise the evolutionary process would continue.
After all agents conducted their individual trials, the top
10 agents were prevented from undergoing any evolutionary
changes. For the remaining 40 agents, their weights were
replaced by the random crossover of two of the top 10 agents.
Each weight was replaced by either the first parent (P = 0.5)
or second parent (P = 0.5) weight value. They then underwent
a random mutation phase where each weight in the network
was transformed according to Equations 5, 6 and 7.

X ∼ U(0.0, 1.0) (5)

w′ =

w + 10α if 0.00 ≤ X < 0.01

w − 10α if 0.01 ≤ X < 0.02

w + α if 0.02 ≤ X < 0.12

w − α if 0.12 ≤ X < 0.22

(6)

α′ = αλ (7)

X refers to some mutation chance value selected from a
uniform distribution, w′ is the new transformed weight and
w is the weight after crossover, α is the learning rate which
is 10.0 at the beginning of training, α′ is the new learning
rate after decay λ which is constant at 0.99. X is calculated
separately for each weight. These values were selected em-
pirically as a result of conducting a range of hyperparameter
experiments. These experiments also demonstrated a benefit
in using a decaying learning rate. For each network, each
weight is updated according to Equation 6 once per generation.
The learning rate update from Equation 7 occurs once per
generation.

IV. EXPERIMENT SETUP

In order to analyse the different decoding methods and
the input encoder, the Cart Pole (CartPole-v1) and Lunar
Lander discrete (LunarLander-v2) problems were used from
the Open AI Gym architecture [9]. These two problems
were chosen based on their different complexities to analyse
any trends emerging with the various tested methods. Cart
Pole, the simplest of the two problems, was used due to the
ability of using single layer perceptrons to solve, meaning
that single layer network trends could be analysed. The Lunar
Lander problem, traditionally solved using Deep Q learning
methods, generally requires a multi-layer perceptron to solve
and therefore can be used to verify any trends emerging with
SNNs using hidden layers. For both Cart Pole and Lunar
Lander, a random benchmark trial was run as the control.
This random benchmark involved running agents in batches
identical to those used in the evolutionary trials whereby over

TABLE I
THE TRANSFORMED STATE SPACE FOR CART POLE TO REMOVE NEGATIVE

INPUT VALUES.

Input Description Min Max

0 (1) X + (X−) 0 4.8
2 (3) vx + (vx−) 0 ∞
4 (5) θ + (θ−) 0 0.13π

6 (7) Pole Velocity at Tip + (-) 0 ∞

50 generations, 50 batches of 5 episodes were run with an
agent that selects a random action at each episode step. Over
the single generation, the best average fitness of a 5 episode
run was recorded as the fitness of that generation.

For both the Cart Pole and Lunar Lander problems, exposure
periods of 20, 40, 60, 80 and 100 were used. Networks with
and without hidden layers were tested. For those multi-layered
networks, a single hidden layer of 16 and 32 neurons was used.
All networks used the Input Encoder method and F2F, F2F
Reset, Rate and Rate Reset methods were used for decoding.
Three separate trials were conducted for each of the decoding
methods and each of the exposure periods and the average
fitness of each generation were used for analysis.

A. Cart Pole Problem

The goal of the cart pole problem, also known as the
inverted pendulum problem, is to balance an upright pole on
a cart that can either move left or right at each step in the
episode. The episode is terminated if the angle of the pole
is greater than 12 degrees from the Y axis, the cart reaches
further than 2.4 units from the origin point or the episode
length is greater than 200 steps. A reward of 1 is received by
the agent for each step of the episode including the terminating
step. The problem is considered solved if an agent receives a
total episode reward of greater than or equal to 195 over 100
consecutive episodes. The Cart Pole environment produces a
state space of four float values representing the cart position
from center point, the cart velocity, the pole angle and the
current velocity of the tip of the pole. Negative state space
values represent the current state in terms of movement to the
left and positive to the right. With an Izhikevich neuron model,
negative inputs mean that the input neuron will rarely, if ever
spike and will therefore not pass this information onto future
layers. It is therefore required to eliminate negative values
from the state space. As a result, the four value state space was
transformed into eight values where the positive and negative
representations of each input are split into two neurons and
transforming them both into positive values as seen in Table
I which is commonly referred to as double encoding [11] [6].

B. Lunar Lander Problem

The Lunar Lander problem requires the landing of a lunar
module in a 2D environment within a landing zone. The
landing zone is always in the same position however the sur-
rounding landscape is procedurally generated in each episode.
It includes four actions being the left, right an main thrusters

TABLE II
THE TRANSFORMED STATE SPACE FOR LUNAR LANDER TO REMOVE

NEGATIVE INPUTS.

Input Description Min Max

0 (1) X + (X−) 0 ∞
2 (3) Y + (Y−) 0 ∞
4 (5) vx(vx−) 0 ∞
6 (7) vy(vy−) 0 ∞
8 (9) θ + (θ−) 0 π

10 (11) ω + (ω−) 0 ∞
12 (13) Left (Right Leg Contact) 0 1

as well as an action for do nothing. The episode terminates if
the lander crashes or comes to rest. A reward of 200 or greater
over 100 consecutive episodes is required for the trial to be a
success. Around 100 to 140 reward comes from moving from
the top of the screen to the bottom and also for having zero
speed. An additional 10 reward points come from each leg
making contact with the ground. If the lander body touches
the ground it is considered crashed and gets -100 reward
and if both legs are in contact and the body is at rest, an
additional 100 points are awarded. Similarly with the Cart Pole
problem, input values that could be negative or positive were
transformed into two separate inputs based on the negative and
positive component as described in Table II.

V. RESULTS

Over all four decoding methods, all exposure period in-
tervals and over both the single and multi-layered network
combinations, the SNN was able to produce goal achieving
agents in the Cart Pole problem as shown in Table III. For
single layer networks, there is no significant difference in the
generations needed to reach the goal across all four decoding
methods. The only slight difference appears to be in a better
capacity for F2F and F2F Reset methods to solve the problem
in fewer generations in lower exposure periods. When looking
at an exposure period of 20, F2F and F2F reset were able
to solve the problem in 14 and 16 generations respectively
where as Rate and Rate Reset decoding methods took 31 and
18 generations respectively. This is largely due to Rate based
decoding methods at lower exposure periods tending not to
produce multiple spikes per output neuron and therefore a
calculation of the rate of firing of the neurons often results
in the taking of a random action due to the rates across both
output neurons being the same. As greater exposure periods
are used, the output neurons are more likely to produce more
variance in the rate of spiking of the output neurons and that
disadvantage goes away.

When looking at the number of random moves taken by
a goal achieving agent, as demonstrated in Figure 2, it is
clear that the longer the exposure period, the less random
actions that are taken. Random actions occurred if the de-
coding method over the exposure period was not able to
determine an action to take. The occurrence of random actions
is far fewer when using temporal decoding methods like

Fig. 2. The number of random actions taken on average for each of the
exposure periods tested and decoding methods used for single layer, goal
achieving networks in the Cart Pole problem.

Fig. 3. The generation to reach the goal for single layered networks for each
of the decoding methods and exposure periods in the Cart Pole problem.

F2F and F2F Reset in higher exposure periods. For lower
exposure periods, occurrences of random action taking is
fairly consistent between all decoding methods with rate based
decoding selecting random actions only slightly more often
than temporal decoding.
As is demonstrated in Table IV, a clear negative correlation
has emerged between the exposure period and the number of
generations needed to reach the goal in the Cart Pole problem.
This negative correlation is consistent across all decoding
methods and network structures used in this experiment. This
trend appears to level off at the higher exposure periods
indicating that there may be an optimal exposure period for
this problem and introduces a trade off between the execution
time of the network and the number of generations that will
be needed to reach the goal. The larger the exposure period,
the more execution time is needed as more network steps are
required per episode step. This levelling off appears to occur
at around the 60 exposure period mark as evidenced in Figures
3,4 and 5.

TABLE III
TABLE OF RESULTS FOR CART POLE EXPERIMENT SHOWING THE HIGHEST AVERAGE FITNESS ACHIEVED AND THE GENERATION IT ACHIEVED THE GOAL

BY EACH DECODING METHOD, EXPOSURE PERIOD AND NETWORK STRUCTURE WITH A GOAL FITNESS OF GREATER THAN 195.0.

Highest Achieved Fitness / Solved Generation
Decoding Method Exposure Period No Hidden 16 Hidden 32 Hidden Random

F2F 20 196.80 / 14 196.82 / 37 196.55 / 45

47.0667 / -

40 197.10 / 13 195.27 / 26 196.41 / 61
60 197.00 / 6 196.00 / 21 197.31 / 36
80 196.28 / 7 195.36 / 23 197.07 / 30
100 197.87 / 6 195.47 / 24 197.25 / 31

F2F RESET 20 195.75 / 16 199.49 / 21 195.47 / 18
40 198.07 / 7 197.52 / 11 196.52 / 20
60 197.1 / 8 198.13 / 14 195.42 / 17
80 195.56 / 7 196.22 / 17 197.27 / 12
100 198.54 / 6 199.52 / 11 195.48 / 17

RATE 20 195.31 / 31 195.54 / 56 195.58 / 31
40 195.45 / 14 195.26 / 23 198.27 / 22
60 195.27 / 7 196.38 /23 196.85 / 26
80 196.16 / 9 195.08 / 19 196.43 / 19
100 197.55 / 6 195.00 / 12 195.22 / 18

RATE RESET 20 196.92 / 18 197.20 / 20 196.84 / 22
40 197.25 / 7 197.60 / 24 196.81 / 21
60 198.00 / 9 197.91 / 17 195.31 / 17
80 196.72 / 5 198.13 / 12 195.40 / 14
100 195.09 / 4 197.87 / 16 197.27 / 12

TABLE IV
CORRELATION COEFFICIENTS FOR CART POLE PROBLEM BETWEEN THE

GENERATION THAT EACH TRIAL REACHED COMPLETION AND THE
EXPOSURE PERIOD USED FOR THAT TRIAL.

NO HIDDEN 16 HIDDEN 32 HIDDEN
F2F -0.88 -0.73 -0.73

F2F RESET -0.77 -0.52 –0.54
RATE -0.84 -0.85 -0.86

RATE RESET -0.85 -0.70 -0.99

Fig. 4. The generation to reach the goal for multi-layered networks with 16
hidden neurons for each of the decoding methods and exposure periods in the
Cart Pole problem.

Fig. 5. The generation to reach the goal for multi-layered networks with 32
hidden neurons for each of the decoding methods and exposure periods in the
Cart Pole problem.

For the Lunar Lander problem, no multi-layer network was
able to achieve the goal with fitness rarely reaching above 100.
The F2F Reset and Rate Reset decoding methods were able
to achieve the highest average fitnesses across all exposure
periods when compared to the other decoding methods as can
be seen in Table V. The single layer networks came close to
achieving the goal state in almost all of the decoding methods
and exposure periods utilised and was able to averagely
achieve the goal in one occurrence with the use of the Rate
Reset decoding method at 60 exposure periods. The fact that
this occurred at generation 92 out of the tested 100 generations
indicates that given more time, other network structures may

TABLE V
TABLE OF RESULTS FOR LUNAR LANDER EXPERIMENT SHOWING THE HIGHEST AVERAGE FITNESS ACHIEVED AND THE GENERATION IT ACHIEVED THE

GOAL (IF GOAL WAS ACHIEVED) BY EACH DECODING METHOD, EXPOSURE PERIOD AND NETWORK STRUCTURE WITH A GOAL FITNESS OF GREATER
THAN 200.0.

Highest Achieved Fitness / Solved Generation
Decoding Method Exposure Period No Hidden 16 Hidden 32 Hidden Random

F2F 20 190.93 / - 33.59 / - -6.33 / -

-71.3948 / -

40 184.24 / - 27.09 / - -32.34 / -
60 192.98 / - 6.04 / - 44.16 / -
80 89.18 / - 35.51 / - 25.56 / -
100 136.17 / - 20.68 / - 27.15 / -

F2F RESET 20 148.79 / - 26.90 / - 8.49 / -
40 199.31 / - 157.42 / - 45.50 / -
60 194.85 / - 63.52 / - -2.01 / -
80 176.84 / - 129.51 / - 20.32 / -
100 188.74 / - 156.28 / - 29.39 / -

RATE 20 172.08 / - 13.42 / - 16.52 / -
40 192.04 / - -9.42 / - 1.87 / -
60 184.68 / - 10.44 / - 9.21 / -
80 59.78 / - 70.07 / - 67.91 / -
100 128.73 / - 44.90 / - 2.15 / -

RATE RESET 20 185.46 / - 77.04 / - 51.16 / -
40 57.47 / - 131.91 / - 68.64 / -
60 202.26 / 92 54.72 / - 64.59 / -
80 167.50 / - 52.84 / - 53.97 / -
100 133.73 / - 41.02 / - 61.37 / -

have been able to solve the problem. Introducing more neurons
in the multi-layer networks meant that the highest achieved
fitness over those 100 generations were consistently lower in
networks with more neurons. This is expected as more neurons
means more synapse weights to learn and more generations
that are needed to improve fitness.

VI. DISCUSSION AND FUTURE WORK

Possible trends emerged in the negative correlation between
the exposure period and the generations taken to reach a
certain fitness when looking at the results of the Cart Pole
experiment. This suggests that minimising the chance of
random actions being chosen due to none of the output neurons
firing in the output layer or, in the case of rate decoding, the
same number of spikes over more than one output neuron
over the exposure period, hinders the rate of learning in the
network. Due to the failure of most Lunar Lander trials to
reach the goal, it makes it difficult to confirm this trend and
therefore requires more investigation. Similarly, the number of
trials and exposure periods tested prevents strong conclusions
being made about this correlation. It is worth expanding the
number of trials and exposure periods tested to formulate
better evidence of this. Additionally, investigating whether
this trend continues in non-evolutionary training methods such
as with Hebbian learning processes [14] including Reward
based Spike Timing Dependant Plasticity [15] and with alter-
nate reinforcement learning problems. This would determine
whether this trade off between network efficiency, by lowering
the number of exposure periods, and network accuracy by
increasing the number of exposure periods is a universal trait

of SNNs.
The input encoder proposed in this paper was successful at
learning state space data preprocessing before being fed into
the IZ SNN for the Cart Pole problem and for some individual
Lunar Lander trials when using all tested decoding methods.
This is significant for evolutionary learning as it can use the
same algorithm for both learned pre-processing and network
learning. As long as negative inputs are removed from the
state space, this input encoder method can be used without
any other pre-processing of state space information. Although
this method may work well for evolutionary training of SNNs,
future investigations into training those pre-processing weights
in the input encoder using a non-evolutionary framework is
needed for comparison.
It is clear that the reset variants of both F2F and Rate decoding
methods achieves better fitness over less generations when
compared to their non-reset variants, which is evident by
both the Cart Pole and Lunar Lander networks. This is most
likely a result of not needing information of previous states
to select the optimal action in the current state. Not resetting
the network to its default between steps introduces noise into
the next state interpretation. This may not be the case for all
problems where having some residual knowledge of previous
states may be useful. It does however suggest that in these two
problems, that previous state knowledge is not important. The
failure of the Lunar Lander networks to reach the goal fitness
is most likely a result of a lack of generations in training
or incorrect network shape specifically evident by the poor
fitness of the multi-layer networks. Additionally, the noisiness
of the results of the Lunar Lander experiments indicate that

more individual trials for each set of parameters needs to be
included.

VII. CONCLUSION

This research has identified some interesting trends that
need to be investigated further. Firstly, the reset variants of
the F2F and Rate based decoding methods seem to have a
steeper initial learning than other methods especially evident
in multi-layer networks. Secondly, a higher exposure period
tends to produce goal reaching agents in less generations
than lower exposure periods, specifically evident in the Cart
Pole experiment. This therefore introduces a trade off between
network accuracy and network efficiency when choosing an
exposure period for a SNN. Thirdly, the input encoder method
proposed allows for evolutionary training of networks and
evolutionary learning of state preprocessing using the same
algorithm, simplifying the need for complex preprocessing
algorithms and making it a more general method for input
encoding. Finally, although there is no clear benefit from using
either temporal decoding or rate based decoding, temporal
decoding methods like F2F seem to produce better performing
agents at lower exposure periods when compared to Rate based
decoding.

REFERENCES

[1] A. N. Burkitt, “A review of the integrate-and-fire neuron model: I.
homogeneous synaptic input,” Biological cybernetics, vol. 95, no. 1,
pp. 1–19, 2006.

[2] Y. Wu, L. Deng, G. Li, J. Zhu, and L. Shi, “Spatio-temporal backpropa-
gation for training high-performance spiking neural networks,” Frontiers
in neuroscience, vol. 12, 2018.

[3] J. H. Lee, T. Delbruck, and M. Pfeiffer, “Training deep
spiking neural networks using backpropagation,” Frontiers in
Neuroscience, vol. 10, p. 508, 2016. [Online]. Available:
https://www.frontiersin.org/article/10.3389/fnins.2016.00508

[4] Y. Lecun, L. Bottou, Y. Bengio, and P. Haffner, “Gradient-based learning
applied to document recognition,” Proceedings of the IEEE, vol. 86,
no. 11, pp. 2278–2324, Nov 1998.

[5] E. Yee and J. Teo, “Evolutionary spiking neural networks as racing car
controllers,” in 2011 11th International Conference on Hybrid Intelligent
Systems (HIS), Dec 2011, pp. 411–416.

[6] U. Markowska-Kaczmar and M. Koldowski, “Spiking neural network
vs multilayer perceptron: who is the winner in the racing car computer
game,” Soft Computing, vol. 19, no. 12, pp. 3465–3478, Dec 2015.
[Online]. Available: https://doi.org/10.1007/s00500-014-1515-2

[7] E. M. Izhikevich, “Simple model of spiking neurons,” IEEE Transactions
on neural networks, vol. 14, no. 6, pp. 1569–1572, 2003.

[8] S. Slade and L. Zhang, “Topological evolution of spiking neural net-
works,” in 2018 International Joint Conference on Neural Networks
(IJCNN). IEEE, 2018, pp. 1–9.

[9] G. Brockman, V. Cheung, L. Pettersson, J. Schneider, J. Schulman,
J. Tang, and W. Zaremba, “Openai gym,” CoRR, vol. abs/1606.01540,
2016. [Online]. Available: http://arxiv.org/abs/1606.01540

[10] A. L. Hodgkin and A. F. Huxley, “A quantitative description of mem-
brane current and its application to conduction and excitation in nerve,”
The Journal of physiology, vol. 117, no. 4, pp. 500–544, 1952.

[11] L. Wiklendt, S. Chalup, and R. Middleton, “A small spiking neural
network with lqr control applied to the acrobot,” Neural Computing and
Applications, vol. 18, no. 4, pp. 369–375, 2009.

[12] M. Li and J. Z. Tsien, “Neural code—neural self-information theory on
how cell-assembly code rises from spike time and neuronal variability,”
Frontiers in cellular neuroscience, vol. 11, p. 236, 2017.

[13] R. VanRullen, R. Guyonneau, and S. J. Thorpe, “Spike times make
sense,” Trends in neurosciences, vol. 28, no. 1, pp. 1–4, 2005.

[14] D. O. Hebb, The Organization of Behavior: A Neuropsychological
Theory. Lawrence Erlbaum Associates, 1949.

[15] Z. Bing, C. Meschede, K. Huang, G. Chen, F. Rohrbein, M. Akl, and
A. Knoll, “End to end learning of spiking neural network based on r-
stdp for a lane keeping vehicle,” in 2018 IEEE International Conference
on Robotics and Automation (ICRA), May 2018, pp. 1–8.

