
On testing isomorphism of polynomials, algebras,1

and multilinear forms2

Anonymous author3

Anonymous affiliation4

Anonymous author5

Anonymous affiliation6

Anonymous author7

Anonymous affiliation8

Abstract9

We study the problems of testing isomorphism of polynomials, algebras, and multilinear forms. Our10

first set of results consists of average-case algorithms for these problems. For example, we devise an11

algorithm that takes a random cubic form f ∈ Fq[x1, . . . , xn] and an arbitrary cubic form g, and12

decides whether f and g are isomorphic in time qO(n) for most f . Such an average-case setting is of13

practical value, as it has been studied in multivariate cryptography since the 1990s. Our second14

result concerns the complexity of testing equivalence of alternating trilinear forms. This problem is15

of interest both in mathematics and in cryptography. We show that this problem is polynomial-time16

equivalent to testing equivalence of symmetric trilinear forms, therefore almost equivalent to testing17

isomorphism of cubic forms.18

2012 ACM Subject Classification Computing methodologies → Algebraic algorithms; Computing19

methodologies → Combinatorial algorithms20

Keywords and phrases polynomial isomorphism, trilinear form equivalence, algebra isomorphism,21

average-case algorithms, tensor isomorphism complete, symmetric and alternating bilinear maps22

Digital Object Identifier 10.4230/LIPIcs...23

© Anonymous author(s);
licensed under Creative Commons License CC-BY

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

https://doi.org/10.4230/LIPIcs...
https://creativecommons.org/licenses/by/3.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

Anonymous author(s) XX:1

1 Introduction24

In this paper, we study isomorphism testing problems for polynomials, algebras, and multilin-25

ear forms. Our first set of results is algorithmic, namely presenting average-case algorithms26

for these problems (Section 1.1). Our second result is complexity-theoretic, concerning the27

problems of testing equivalence of symmetric and alternating trilinear forms (Section 1.2).28

1.1 Average-case algorithms for polynomial isomorphism and more29

The polynomial isomorphism problem. Let F be a field, and let X = {x1, . . . , xn} be30

a set of variables. Let GL(n,F) be the general linear group consisting of n × n invertible31

matrices over F. A natural group action of A = (ai,j) ∈ GL(n,F) on the polynomial ring32

F[X] sends f(x1, . . . , xn) to f ◦ A := f(
∑n
j=1 a1,jxj , . . . ,

∑n
j=1 an,jxj). The polynomial33

isomorphism problem (PI) asks, given f, g ∈ F[X], whether there exists A ∈ GL(n,F) such34

that f = g ◦ A. In the literature, this problem was also called the polynomial equivalence35

problem [1].36

An important subcase of PI is when the input polynomials are required to be homogeneous37

of degree d. In this case, this problem is referred to as the homogeneous polynomial38

isomorphism problem, denoted as d-HPI. Homogeneous degree-3 (resp. degree-2) polynomials39

are also known as cubic (resp. quadratic) forms.40

In this article, we assume that a polynomial is represented in algorithms by its list of41

coefficients of the monomials, though other representations like algebraic circuits are also42

possible in this context [13]. Furthermore, we shall mostly restrict our attention to the case43

when the polynomial degrees are constant.44

Motivations to study polynomial isomorphism. The polynomial isomorphism problem45

has been studied in both multivariate cryptography and computational complexity. In 1996,46

inspired by the celebrated zero-knowledge protocol for graph isomorphism [9], Patarin47

proposed to use PI as the security basis of authentication and signature protocols [17]. This48

lead to a series of works on practical algorithms for PI; see [3,4,12] and references therein. In49

the early 2000s, Agrawal, Kayal and Saxena studied PI from the computational complexity50

perspective. They related PI with graph isomorphism and algebra isomorphism [1,2], and51

studied some special instances of PI [13] as well as several related algorithmic tasks [18].52

Despite these works, little progress has been made on algorithms with rigorous analysis53

for the general PI. That is, the algorithms from multivariate cryptography [4] either are54

heuristic, or need unproven assumptions. The algorithm from [13] could only handle the case55

when f and g are isomorphic to a common multilinear polynomial h. While these previous56

works contain several nice ideas and insights, and their implementations show practical57

improvements, they are nonetheless heuristic in nature, and rigorously analyzing them seems58

difficult. Indeed, if any of these algorithms had worst-case analysis matching their heuristic59

performance, it would lead to significant progress on the long-open Group Isomorphism60

problem (see, e.g., [11, 15]).61

Our result on polynomial isomorphism. Our first result is an average-case algorithm62

with rigorous analysis for PI over a finite field Fq. As far as we know, this is the first63

non-trivial algorithm with rigorous analysis for PI over finite fields. (The natural brute-force64

algorithm, namely enumerating all invertible matrices, runs in time qn2 · poly(n, log q).)65

Furthermore, the average-case setting is quite natural, as it is precisely the one studied66

multivariate cryptography. We shall elaborate on this further after stating our result.67

XX:2 Isomorphism testing of some algebraic structures

To state the result, let us define what a random polynomial means in this setting. Since68

we represent polynomials by their lists of coefficients, a random polynomial of degree d69

is naturally the one whose coefficients of the monomials of degree ≤ d are independently70

randomly drawn from Fq. We also consider the homogeneous setting where only monomials71

of degree = d are of interest.72

I Theorem 1. Let d ≥ 3 be a constant. Let f ∈ Fq[x1, . . . , xn] be a random (resp. homogen-73

eous) polynomial of degree ≤ d (resp. = d). There exists an algorithm in time qO(n) that74

decides whether f is isomorphic to an arbitrary g, for all but at most 1
qΩ(n) fraction of f .75

Furthermore, if f and g are isomorphic, then this algorithm also computes an invertible76

matrix A which sends f to g.77

Let us briefly indicate the use of this average-case setting in multivariate cryptography.78

In the authentication scheme described in [17], the public key consists of two polynomials79

f, g ∈ Fq[x1, . . . , xn], where f is a random polynomial, and g is obtained by applying a80

random invertible matrix to f . Then f and g are public keys, and any isomorphism from81

f to g can serve as the private key. Therefore, the algorithm in Theorem 1 can be used to82

recover a private key for most f .83

Adapting the algorithm strategy to more isomorphism problems. In [1, 2], the84

algebra isomorphism problem (AI) was studied and shown to be (almost) polynomial-time85

equivalent to PI. In [11], many more problems are demonstrated to be polynomial-time86

equivalent to PI, including the trilinear form equivalence problem (TFE). In these reductions,87

due to the blow-up of the parameters, the qO(n)-time algorithm in Theorem 1 does not88

translate to moderately exponential-time, average-case algorithms for these problems. The89

algorithm design idea, however, does translate to give moderately exponential-time, average-90

case algorithms for AI and TFE. This will be shown in Section 3.2.91

1.2 Complexity of symmetric and alternating trilinear form equivalence92

From cubic forms to symmetric and alternating trilinear forms. In the context of93

polynomial isomorphism, cubic forms are of particular interest. In complexity theory, it was94

shown that d-HPI reduces to cubic form isomorphism over fields with dth roots of unity [1,2].95

In multivariate cryptography, cubic form isomorphism also received special attention, since96

using higher degree forms results in less efficiency in the cryptographic protocols.97

Just as quadratic forms are closely related with symmetric bilinear forms, cubic forms98

are closely related with symmetric trilinear forms. Let F be a field of characteristic not 2 or99

3, and let f =
∑

1≤i≤j≤k≤n ai,j,kxixjxk ∈ F[x1, . . . , xn] be a cubic form. For any i, j, k ∈ [n],100

let 1 ≤ i′ ≤ j′ ≤ k′ ≤ n be the result of sorting i, j, k in the increasing order, and set101

ai,j,k = ai′,j′,k′ . Then we can define a symmetric1 trilinear form φf : Fn × Fn × Fn → F by102

φ(u, v, w) = 1
6
∑
i,j,k∈[n] ai,j,kuivjwk. It can be seen easily that for any v = (v1, . . . , vn)t ∈ Fnq ,103

f(v1, . . . , vn) = φ(v, v, v).104

In the theory of bilinear forms, symmetric and skew-symmetric bilinear forms are two105

important special subclasses. For example, they are critical in the classifications of classical106

groups [19] and finite simple groups [20]. For trilinear forms, we also have skew-symmetric107

trilinear forms. In fact, to avoid some complications over fields of characteristics 2 or 3, we108

shall consider alternating trilinear forms which are closely related to skew-symmetric ones.109

1 That is, for any permutation σ ∈ S3, φ(u1, u2, u3) = φ(uσ(1), uσ(2), uσ(3))

Anonymous author(s) XX:3

We say that a trilinear form φ : Fn × Fn × Fn → F is alternating, if whenever two110

arguments of φ are equal, φ evaluates to zero. Note that this implies skew-symmetry, namely111

for any u1, u2, u3 and any σ ∈ S3, φ(u1, u2, u3) = sgn(σ) · φ(uσ(1), uσ(2), uσ(3)). Over fields112

of characteristic zero or > 3, this is equivalent to skew-symmetry.113

The trilinear form equivalence problem. Given a trilinear form φ : Fn × Fn × Fn → F,114

A ∈ GL(n,F) naturally acts on φ by sending it to φ ◦A := φ(A−1(u), A−1(v), A−1(w)). The115

trilinear form equivalence problem then asks, given two trilinear forms φ, ψ : Fn×Fn×Fn → F,116

whether there exists A ∈ GL(n,F), such that φ = ψ ◦ A. Over fields of characteristic not117

2 or 3, two cubic forms f and g are isomorphic if and only if φf and φg are equivalent, so118

cubic form isomorphism is polynomial-time equivalent to symmetric form equivalence over119

such fields. Note that for clarify, we reserve isomorphism for polynomials (and cubic forms),120

and equivalence for multilinear forms.121

Motivations to study alternating trilinear form equivalence. Our main interest is to122

study the complexity of alternating trilinear form equivalence, with the following motivations.123

The first motivation comes from cryptography. To store a symmetric trilinear form on124

Fnq ,
(
n+2

3
)
field elements are required. To store an alternating trilinear form on Fnq ,

(
n
3
)
field125

elements are needed. The difference between
(
n+2

3
)
and

(
n
3
)
could be significant for practical126

purposes. For example, when n = 9,
(
n+2

3
)

=
(11

3
)

= 165, while
(
n
3
)

=
(9

3
)

= 84. This means127

that in the authentication protocol of Patarin [17], using alternating trilinear forms instead128

of cubic forms for n = 9,2 one saves almost one half in the public key size, which is an129

important saving in practice.130

The second motivation originates from comparing symmetric and alternating bilinear131

forms. It is well-known that, in the bilinear case, the structure of alternating forms is simpler132

than that for symmetric ones [14]. Indeed, up to equivalence, an alternating bilinear form133

is completely determined by its rank over any field, while the classification of symmetric134

bilinear forms depends crucially on the underlying field. For example, recall that over R, a135

symmetric form is determined by its “signature”, so just the rank is not enough.136

A third motivation is implied by the representation theory of the general linear groups;137

namely that alternating trilinear forms are the “last” natural case for d = 3. If we consider138

the action of GL(n,C) acting on d-tensors in Cn⊗Cn⊗· · ·⊗Cn diagonally (that is, the same139

matrix acts on each tensor factor), it is a classical result [19] that the invariant subspaces140

of (Cn)⊗d under this action are completely determined by the irreducible representations141

of GL(n,C). When d = 3, there are only three such representations, which correspond142

precisely to: symmetric trilinear forms, Lie algebras, and alternating trilinear forms. From143

the complexity point of view, it was previously shown that isomorphism of symmetric trilinear144

forms [1, 2] and Lie algebras [11] are equivalent to algebra isomorphism. Here we show that145

the last case, isomorphism of alternating trilinear forms, is also equivalent the others.146

The complexity of alternating trilinear form equivalence. Given the above discussion147

on the comparison between symmetric and alternating bilinear forms, one may wonder whether148

alternating trilinear form equivalence was easier than symmetric trilinear form equivalence.149

Interestingly, we show that this is not the case; rather, they are polynomial-time equivalent.150

I Theorem 2. The alternating trilinear form equivalence problem is polynomial-time equi-151

valent to the symmetric trilinear form equivalence problem.152

2 The parameters of the cryptosystem are q and n. When q = 2, n = 9 is not secure as it can be solved in
practice [5]. So q needs to be large for n = 9 to be secure. Interestingly, according to [4, pp. 227], the
parameters q = 16 and n = 8 seemed difficult for practical attacks via Gröbner basis.

XX:4 Isomorphism testing of some algebraic structures

1.3 Previous works153

The relation between PI and AI. As mentioned in Section 1.1, the degree-d homogeneous154

polynomial isomorphism problem (d-HPI) was shown to be almost equivalent to the algebra155

isomorphism problem (AI) in [1,2]. Here, almost refers to that for the reduction from d-HPI156

to AI in [1, 2], the underlying fields are required to contain a dth root of unity. When d = 3,157

this means that the characteristic of the underlying field p satisfies that p = 2 mod 3 or158

p = 0, which amounts to half of the primes. In [11], another reduction from 3-HPI to AI159

was presented, which works for fields of characteristics not 2 or 3. The reduction from AI to160

3-HPI in [2] works over any field.161

The tensor isomorphism complete class. In [8, 11], polynomial-time equivalences are162

proved between isomorphism testing of many more mathematical structures, including163

tensors, matrix spaces, polynomial maps, and so on. These problems arise from many areas:164

besides multivariate cryptography and computational complexity, they appear in quantum165

information, machine learning, and computational group theory. This motivates the authors166

of [11] to define the tensor isomorphism complete class TI, which we recall here.167

I Definition 3 (The d-Tensor Isomorphism problem, and the complexity class TI). d-168

Tensor Isomorphism over a field F is the problem: given two d-way arrays A = (ai1,...,id)169

and B = (bi1,...,id), where ik ∈ [nk] for k ∈ [d], and ai1,...,id , bi1,...,id ∈ F, decide whether there170

are Pk ∈ GL(nk,F) for k ∈ [d], such that for all i1, . . . , id,171

ai1,...,id =
∑

j1,...,jd

bj1,...,jd
(P1)i1,j1(P2)i2,j2 · · · (Pd)id,jd

. (1)172

For any field F, TIF denotes the class of problems that are polynomial-time Turing (Cook)173

reducible to d-Tensor Isomorphism over F, for some d. A problem is TIF-complete, if it is174

in TIF, and d-Tensor Isomorphism over F for any d reduces to this problem.175

When a problem is naturally defined, and is TIF-complete, over any F, then we can simply176

write that it is TI-complete.177

Average-case algorithms for matrix space isometry. In [6, 15], motivated by testing178

isomorphism of p-groups (widely believed to be the hardest cases of Group Isomorphism,179

see e.g. [10]), the algorithmic problem alternating matrix space isometry was studied. That180

problem asks, given two linear spaces of alternating matrices A,B ≤ Λ(n, q), to decide181

whether there exists T ∈ GL(n, q), such that A = T tBT = {T tBT : B ∈ B}. (See Section 2182

for the definition of alternating matrices.) The main result of [6], improving upon the one183

in [15], is an average-case algorithm for this problem in time qO(n+m), where m = dim(A).184

1.4 Remarks on the technical side185

Techniques for proving Theorem 1. The algorithm for PI in Theorem 1 is based on the186

algorithmic idea from [6,15]. However, to adapt that idea to the PI setting does meet several187

interesting conceptual and technical difficulties.188

One conceptual difficulty is that for alternating matrix space isometry, there are actually189

two GL actions, one is by GL(n, q) as explicitly described above, and the other is by GL(m, q)190

performing the changes of bases of matrix spaces. The algorithm in [6] crucially uses that191

the GL(m, q) action is “independent” of the GL(n, q) action. For PI, there is only one192

GL(n, q)-action acting on all the variables. Luckily, as shown in Section 3.1, there is still a193

natural way of applying the the basic idea from [6,15].194

Anonymous author(s) XX:5

One technical difficulty is that the analysis in [6] relies on properties of random alternating195

matrices, while for 3-HPI, the analysis relies on properties of random symmetric matrices.196

To adapt the proof strategy in [6] (based on [15]) to the symmetric setting is not difficult,197

but suggests some interesting differences between symmetric and alternating matrices (see198

the discussion after Claim 13).199

Techniques for proving Theorem 2. By [8], the trilinear form equivalence problem is in200

TI, and so are the special cases symmetric and alternating trilinear form equivalence. The201

proof of Theorem 2 goes by showing that both symmetric and alternating trilinear form202

equivalence are TI-hard.203

Technically, the basic proof strategy is to adapt a gadget construction, which originates204

from [8] and then is further used in [11]. To use that gadget in the trilinear form setting205

does require several non-trivial ideas. First, we identify the right TI-complete problem206

to start with, namely the alternating (resp. symmetric) matrix space isometry problem.207

Second, we need to arrange a 3-way array A, representing a linear basis of an alternating208

(resp. symmetric) matrix spaces, into one representing an alternating trilinear form. This209

requires 3 copies of A, assembled in an appropriate manner. Third, we need to add the gadget210

in three directions (instead of just two as in previous results). All these features were not211

present in [8, 11]. The correctness proof also requires certain tricky twist compared with212

those in [8] and [11].213

2 Preliminaries214

Notations. We collect the notations here, though some of them have appeared in Section 1.215

Let F be a field. Vectors in Fn are column vectors. Let ei denote the ith standard216

basis vector of Fn. Let M(` × n,F) be the linear space of ` × n matrices over F, and set217

M(n,F) := M(n × n,F). Let In denote the identity matrix of size n. For A ∈ M(n,F),218

A is symmetric if At = A, and alternating if for every v ∈ Fn, vtAv = 0. When F is of219

characteristic not 2, A is alternating if and only if A is skew-symmetric. Let S(n,F) be220

the linear space of n× n symmetric matrices over F, and let Λ(n,F) be the linear space of221

alternating matrices over F. When F = Fq, we may write M(n,Fq) as M(n, q). We use 〈·〉 to222

denote the linear span.223

3-way arrays. A 3-way array over a field F is an array with three indices whose elements224

are from F. We use M(n1 × n2 × n3,F) to denote the linear space of 3-way arrays of side225

lengths n1 × n2 × n3 over F.226

Let A ∈ M(` × n ×m,F). For k ∈ [m], the kth frontal slice of A is (ai,j,k)i∈[`],j∈[n] ∈227

M(` × n,F). For j ∈ [n], the jth vertical slice of A is (ai,j,k)i∈[`],k∈[m] ∈ M(` ×m,F). For228

i ∈ [`], the ith horizontal slice of A is (ai,j,k)j∈[n],k∈[m] ∈ M(n×m,F). We shall often think229

of A as a matrix tuple in M(`× n,F)m consisting of its frontal slices.230

A natural action of (P,Q,R) ∈ GL(`,F) × GL(n,F) × GL(m,F) sends a 3-way array231

A ∈ M(`× n×m,F) to P tARQ, defined as in Equation 1.232

Useful results. Let A = (A1, . . . , Am),B = (B1, . . . , Bm) ∈ M(n,F)m. Given T ∈233

GL(n,F), let T tAT = (T tA1T, . . . , T
tAmT). We say that A and B are isometric, if there234

exists T ∈ GL(n,F) such that T tAT = B. Let Iso(A,B) = {T ∈ GL(n,F) : A = T tBT},235

and set Aut(A) := Iso(A,A). Clearly, Aut(A) is a subgroup of GL(n, q), and Iso(A,B) is a236

coset of Aut(A).237

XX:6 Isomorphism testing of some algebraic structures

I Theorem 4 ([7, 12]). Let A,B ∈ S(n, q)m (resp. Λ(n, q)m) for some odd q. There exists238

a poly(n,m, q)-time deterministic algorithm which takes A and B as inputs and outputs239

Iso(A,B), specified by (if nonempty) a generating set of Aut(A) (by the algorithm in [7])240

and a coset representative T ∈ Iso(A,B) (by the algorithm in [12]).241

3 Average-case algorithms for polynomial isomorphism and more242

We shall present the algorithm for the cubic form isomorphism problem in detail in Section 3.1.243

We will state our results for problems like algebra isomorphism in Section 3.2.244

3.1 Cubic form isomorphism over fields of odd order245

Due to page constraints, we present the algorithm for cubic form isomorphism over fields246

of odd characteristic, as this algorithm already captures the essense of the idea, and cubic247

forms are most interesting from the PI perspective as mentioned in Section 1.2. A full proof248

of Theorem 1, which is a relatively minor extension of Proposition 5, is put in Appendix B.249

I Proposition 5. Let Fq be a finite field of odd order. Let X = {x1, . . . , xn} be a set of250

commutative variables. Let f ∈ Fq[X] be a random cubic form, and let g ∈ Fq[X] be an251

arbitrary cubic form. There exists a deterministic algorithm that decides whether f and g252

are isomorphic in time qO(n), for all but at most 1
qΩ(n) fraction of f .253

Proof. Let r be a constant to be determined later on, and suppose n is sufficiently larger254

than r. Our goal is to find T ∈ GL(n, q), such that f = g ◦ T .255

The algorithm consists of two main steps. Let us first give an overview of the two steps.256

In the first step, we show that there exists a set of at most qO(rn)-many T1 ∈ GL(n, q),257

such that every T ∈ GL(n, q) can be written as T1T2, where T2 is of the form258 [
Ir 0
0 R

]
. (2)259

Furthermore, such T1 can be enumerated in time qO(rn). We then set g1 = g ◦ T1.260

In the second step, we focus on searching for T2 such that f = g1◦T2. The key observation261

is that those T2 as in Equation 2 leave xi, i ∈ [r], invariant, and send xj , j ∈ [r + 1, n],262

to a linear combination of xk, k ∈ [r + 1, n]. It follows that for any fixed i ∈ [r], T2 sends263 ∑
r+1≤j≤k≤n ai,j,kxixjxk to a linear combination of xixjxk, r + 1 ≤ j ≤ k ≤ n. We will264

use this observation to show that for a random f , the number of T2 satisfying f = g1 ◦ T2265

is upper bounded by qn with high probability. Furthermore, such T2, if they exist, can be266

enumerated efficiently. This allows us to go over all possible T2 and test if f = g1 ◦ T2.267

The first step. We show that there exist at most qO(rn)-many T1 ∈ GL(n, q), such that268

any T ∈ GL(n, q) can be written as T1T2 where T2 is of the form as in Equation 2.269

Recall that ei is the ith standard basis vector. Let Er = 〈e1, . . . , er〉, and let Fr =270

〈er+1, . . . , en〉. Suppose for r ∈ [n], T (ei) = ui, and T (Fr) = V ≤ Fnq . Let T1 be any matrix271

that satisfies T1(ei) = ui, and T1(Fr) = V . Let T2 = T−1
1 T . Then T2 satisfies that for i ∈ [r],272

T2(ei) = ei, and T2(Fr) = Fr. In other words, T2 is of the form in Equation 2.273

We then need to show that these T1 can be enumerated in time qO(rn).274

Recall that T1 is determined by the images of ei, i ∈ [r], and Fr ≤ Fnq . So we first275

enumerate matrices of the form
[
u1 . . . ur er+1 . . . en

]
, where ui ∈ Fnq are linearly276

independent. We then need to enumerate the possible images of Fr. Let U = 〈u1, . . . , ur〉.277

Then the image of Fr is a complement subspace of U . It is well-known that the number of278

Anonymous author(s) XX:7

complement subspaces of a dimension-r space is qrn. To enumerate all complement subspaces279

of U , first compute one complement subspace V = 〈v1, . . . , vn−r〉. Then it is easy to verify280

that, when going over A = (ai,j)i∈[r],j∈[n−r] ∈ M(r×(n−r), q), 〈vj+
∑
i∈[r] ai,jui : j ∈ [n−r]〉281

go over all complement subspaces of U . It follows that we can enumerate matrices T1 of the282

form
[
u1 . . . ur v1 +

∑
i∈[r] ai,1ui . . . vn−r +

∑
i∈[r] ai,n−rui

]
.283

The second step. In Step 1, we computed a set of invertible matrices {T1} ⊆ GL(n, q)284

such that every T ∈ GL(n, q) can be written as T = T1T2 where T2 =
[
Ir 0
0 R

]
. So we set285

g1 := g ◦ T1 and focus on finding T2 of the above form such that f = g1 ◦ T2.286

Suppose f =
∑

1≤i≤j≤k≤n αi,j,kxixjxk, and g1 =
∑

1≤i≤j≤k≤n βi,j,kxixjxk. For i ∈ [r],287

define fi =
∑
r+1≤j≤k≤n αi,j,kxixjxk. Similarly define g1,i.288

The key observation is that, due to the form of T2, we have that fi = g1,i ◦ T2. This is289

because for i ∈ [r], T2 sends xi to xi, and for j ∈ [r+1, n], T2 sends xj to a linear combination290

of xk, k ∈ [r + 1, n].291

Let ` = n − r. We then rename the variable xr+i, i ∈ [`] as yi. Let Y = {y1, . . . , y`}.292

Then from f , we define r quadratic forms in Y ,293

∀i ∈ [r], ci =
∑

1≤j≤k≤`
α′i,j,kyjyk, where α′i,j,k = αi,r+j,r+k. (3)294

Correspondingly, we define r quadratic forms di =
∑

1≤j≤k≤` β
′
i,j,kyjyk, i ∈ [r], from g1.295

Our task now is to search for the R ∈ GL(`, q) such that for every i ∈ [r], ci = di ◦R.296

To do that, we adopt the classical representation of quadratic forms as symmetric297

matrices. Here we use the assumption that q is odd. Using the classical correspondence298

between quadratic forms and symmetric matrices, from ci we construct299

Ci =

α′i,1,1

1
2α
′
i,1,2 . . . 1

2α
′
i,1,`

1
2α
′
i,1,2 α′i,2,2 . . . 1

2α
′
i,2,`

...
...

. . .
...

1
2α
′
i,1,`

1
2α
′
i,2,` . . . α′i,`,`

 ∈ S(`, q) (4)300

from ci. Similarly define Di from di. It is classical that ci = di ◦R if and only if Ci = RtDiR.301

Let C = (C1, . . . , Cr) ∈ S(`, q)r, and D = (D1, . . . , Dr) ∈ S(`, q)r. Note that by our302

assumption, C is a tuple of random symmetric matrices. Recall that Aut(C) = {R ∈ GL(n−303

r,F) : RtCR = C}, and Iso(C,D) = {R ∈ GL(`,F) : C = RtDR}. Clearly, Iso(C,D) is a304

(possibly empty) coset of Aut(C). So when Iso(C,D) is non-empty, |Iso(C,D)| = |Aut(C)|.305

Our main technical lemma is the following, obtained by adapting certain results in [6, 15] to306

the symmetric matrix setting. Its proof can be found in Appendix A.307

I Lemma 6. Let C = (C1, . . . , C8) ∈ S(`, q)8 be a random symmetric matrix tuple. Then308

we have |Aut(C)| ≤ q` for all but at most 1
qΩ(`) fraction of such C.309

Given this lemma, we can use Theorem 4 to decide whether C and D are isometric,310

and if so, compute Iso(C,D) represented as a coset in GL(`, q). By Lemma 6, for all but311

at most 1
qΩ(`) fraction of C, |Iso(C,D)| ≤ q` ≤ qn. With Iso(C,D) as a coset at hand, we312

can enumerate all elements in Aut(C) by the standard recursive closure algorithm [16] and313

therefore all elements in Iso(C,D). We then either conclude that |Iso(C,D)| > qn, or have314

all Iso(C,D) at hand. In the former case we conclude that C does not satisfy the required315

generic condition. In the latter case, we enumerate R ∈ Iso(C,D), and check whether316

T2 =
[
Ir 0
0 R

]
is an isomorphism from f to g1.317

XX:8 Isomorphism testing of some algebraic structures

The algorithm outline. We now summarise the above steps in the following algorithm318

outline. In the following we assume that n � 8; otherwise we can use the brute-force319

algorithm.320

Input Cubic forms f, g ∈ Fq[x1, . . . , xn].321

Output One of the following: (1) “f does not satisfy the generic condition”; (2) “f and g322

are not isomorphic”; (3) an isomorphism T ∈ GL(n, q) sending g to f .323

Algorithm outline 1. Set r = 8, and ` = n− r.324

2. Compute W = {T1} ⊆ GL(n, q) using the procedure described in Step 1.325

// Every T ∈ GL(n, q) can be written as T1T2 where T2 is of the form in326

Equation 2.327

3. For every T1 ∈W , do the following:328

a. g1 :← g ◦ T1.329

b. For i ∈ [`], yi ← xr+i.330

c. For i ∈ [r], let Ci ∈ S(`, q) be defined in Equation 4. Let Di ∈ S(`, q) be defined331

from g1 in the same way. Let C = (C1, . . . , Cr), and D = (D1, . . . , Dr).332

d. Use Theorem 4 to decide whether C and D are isometric. If not, break from the333

loop. If so, compute one isometry R.334

e. Use Theorem 4 to compute a generating set of Aut(C). Use the recursive closure335

algorithm to enumerate Aut(C). During the enumertion, if |Aut(C)| > q`, report336

“f does not satisfy the generic condition.” Otherwise, we have the whole Aut(C) at337

hand, which is of size ≤ q`.338

f. Given R from Line 3d and Aut(C) from Line 3e, the whole set Iso(C,D) can be339

computed. For every R ∈ Iso(C,D), check whether T2 =
[
Ir 0
0 R

]
sends g1 to f . If340

so, return T = T1T2 as an isomorphism sending g to f .341

4. Return that “f and g are not isomorphic”.342

Correctness and timing analyses. The correctness of the algorithm relies on the simple343

fact that if f satisfies the genericity condition, and f and g are isomorphic via some344

T ∈ GL(n, q), then this T can be decomposed as T1T2 for some T1 ∈W from Line 2. Then by345

the analysis in Step 2, T2 =
[
Ir 0
0 R

]
where R ∈ Iso(C,D). When f satisfies the genericity346

condition, Iso(C,D) will be enumerated, so this R will surely be encountered.347

To estimate the time complexity of the algorithm, note that |W | ≤ qO(rn), and |Iso(C,D)| ≤348

q` = qn−r. As other steps are performed in time poly(n,m, q), enumerating over W and349

Iso(C,D) dominates the time complexity. Recall that r = 8. So the total time complexity is350

upper bounded by qO(n). J351

3.2 Trilinear form equivalence and algebra isomorphism352

We describe out results on trilinear form equivalence and algebra isomorphism, and leave the353

modifications required to achieve these results in Appendix C.354

Trilinear form equivalence. The trilinear form equivalence problem was stated in Sec-355

tion 1.2. In algorithms, a trilinear form f is naturally represented as a 3-way array A = (ai,j,k)356

where ai,j,k = f(ei, ej , ek). A random trilinear form over Fq denotes the setting when αi,j,k357

are independently sampled from Fq in uniform random.358

Anonymous author(s) XX:9

I Proposition 7. Let f : Fnq × Fnq × Fnq → Fq be a random trilinear form, and let g :359

Fnq × Fnq × Fnq → Fq be an one. There exists a deterministic algorithm that decides whether f360

and g are equivalent in time qO(n), for all but at most 1
qΩ(n) fraction of f .361

Algebra isomorphism. Let V be a vector space. An algebra is a bilinear map ∗ : V×V → V .362

This bilinear map ∗ is considered as the product. Algebras most studied are those with363

certain conditions on the product, including unital (∃v ∈ V such that ∀u ∈ V , v ∗ u = u),364

associative ((u ∗ v) ∗ w = u ∗ (v ∗ w)), and commutative (u ∗ v = v ∗ u). The authors365

of [1, 2] study algebras satisfying these conditions. Here we consider algebras without such366

restrictions. Two algebras ∗, · : V × V → V are isomorphic, if there exists T ∈ GL(V),367

such that ∀u, v ∈ V , T (u) ∗ T (v) = T (u · v). As customary in computational algebra, an368

algebra is represented by its structure constants, i.e. suppose V ∼= Fn, and fix a basis369

{e1, . . . , en}. Then ei ∗ ej =
∑
k∈[n] αi,j,kek, and this 3-way array A = (αi,j,k) records the370

structure constants of the algebra with product ∗. A random algebra over Fq denotes the371

setting when αi,j,k are independently sampled from Fq in uniform random.372

I Proposition 8. Let f : Fnq × Fnq → Fnq be a random algebra, and let g : Fnq × Fnq → Fnq be373

an arbitrary algebra. There exists a deterministic algorithm that decides whether f and g are374

isomorphic in time qO(n), for all but at most 1
qΩ(n) fraction of f .375

4 Complexity of symmetric and alternating trilinear form equivalence376

As mentioned in Section 1.4, the proof of Theorem 2 follows by showing that symmetric377

and alternating trilinear form equivalence are TI-hard (recall Definition 3). In the following378

we focus on the alternating case. The symmetric case can be tackled in a straightforward379

way, by starting from the TI-complete problem, symmetric matrix tuple pseudo-isometry,380

from [11, Theorem B], and modifying the alternating gadget to a symmetric one.381

I Proposition 9. The alternating trilinear form equivalence problem is TI-hard.382

Proof. The starting TI-complete problem. We use the following TI-complete problem383

from [11]. Let A = (A1, . . . , Am),B = (B1, . . . , Bm) ∈ Λ(n,F)m be two tuples of alternating384

matrices. We say that A and B are pseudo-isometric, if there exist C ∈ GL(n,F) and385

D = (di,j) ∈ GL(m,F), such that for any i ∈ [m], Ct(
∑
j∈[m] di,jAj)C = Bi. By [11,386

Theorem B], the alternating matrix tuple pseudo-isometry problem is TI-complete. Without387

loss of generality, we assume that dim(〈Ai〉) = dim(〈Bi〉), as if not, then they cannot be388

pseudo-isometric, and this dimension condition is easily checked.389

An alternating trilinear form φ : Fn × Fn × Fn → F naturally corresponds to a 3-way390

array A = (ai,j,k) ∈M(n× n× n,F), where ai,j,k = φ(ei, ej , ek). Then A is also alternating,391

i.e. ai,j,k = 0 if i = j or i = k or j = k, and ai,j,k = sgn(σ)aσ(i),σ(j),σ(k) for any σ ∈ S3. So392

in the following, we present a construction of an alternating 3-way array from an alternating393

matrix tuple, in such a way that two alternating matrix tuples are pseudo-isometric if and394

only if the corresponding alternating trilinear forms are equivalent.395

Constructing alternating 3-way arrays from alternating matrix tuples. Given396

A = (A1, . . . , Am) ∈ Λ(n,F)m, construct a 3-way array A ∈ M(n × n × m,F), whose ith397

frontal slice is Ai. Then construct a 3-way array A′ ∈ M(n ×m × n,F), whose ith frontal398

slice is the ith vertical slice of A. Also construct a 3-way array A′′ ∈ M(m× n× n,F), whose399

ith frontal slice is the transpose of the ith horizontal slice of A.400

XX:10 Isomorphism testing of some algebraic structures

I Example 10 (Running example.). Let us examine a simple example as follows. Let A =401

(A) ∈ Λ(2,F)1, where A =
[

0 a

−a 0

]
. Then we have A = (A); A′ = (A′1, A′2) ∈ M(2× 1× 2,F),402

where A′1 =
[

0
−a

]
, and A′2 =

[
a

0

]
; A′′ = (A′′1 , A′′2) ∈ M(1 × 2 × 2,F), where A′′1 =

[
0 a

]
,403

and A′′2 =
[
−a 0

]
.404

From the above A, A′, and A′′, we construct Ã ∈ M((n+m)× (n+m)× (n+m),F) as405

follows. First, we divide Ã into the following eight blocks. That is, set Ã = (Ã1, Ã2), where406

Ã1 =
[
Ã1,1,1 Ã1,2,1
Ã2,1,1 Ã2,2,1

]
, and Ã2 =

[
Ã1,1,2 Ã1,2,2
Ã2,1,2 Ã2,2,2

]
. Furthermore, Ã1,1,1 ∈ M(n× n× n,F), and407

Ã2,2,2 ∈ M(m×m×m,F). Then the sizes of the rest Ãi,j,k can be determined accordingly.408

Now set Ã1,1,1, Ã2,2,1, Ã1,2,2, Ã2,1,2, and Ã2,2,2 to be all-zero. Then set Ã1,2,1 to be A′, Ã2,1,1 to409

be A′′, and Ã1,1,2 to be −A. To summarise, we have Ã1 =
[

0 A′

A′′ 0

]
, and Ã2 =

[
−A 0
0 0

]
.410

We claim that Ã is alternating. To verify this is straightforward, but somewhat tedious.411

For example, consider (i, j, k) where i ∈ [n], j ∈ [n + 1, n + m], and k ∈ [n]. Then412

Ã(i, j, k) = A′(i, j − n, k) = A(i, k, j − n) = −Ã(i, k, j). We will then need to consider all six413

permutations of such (i, j, k). In fact, a full proof of all the cases can be extracted from the414

following example easily.415

I Example 11 (Running example, continued from Example 10). We can write out the frontal416

slices of Ã in this case explicitly, which are three alternating matrices Ã1, Ã2, Ã3 ∈ Λ(3,F).417

That is, Ã1 =

0 0 0
0 0 −a
0 a 0

, Ã2 =

 0 0 a

0 0 0
−a 0 0

, and Ã3 =

0 −a 0
a 0 0
0 0 0

. It can be verified418

easily that Ã = (ai,j,k) is alternating: the nonzero entries are a2,3,1 = −a, a3,2,1 = a,419

a1,3,2 = a, a3,1,2 = −a, a1,2,3 = −a, and a2,1,3 = a, which are consistent with the signs of420

the permutations.421

The gadget construction. We now describe the gadget construction. The gadget can422

be described as a block 3-way array as follows. Construct a 3-way array G of size (n +423

1)2 × (n + 1)2 × (n + m) over F as follows. For i ∈ [n], the ith frontal slice of G is424

0 0 . . . 0 In+1 0 . . . 0
0 0 . . . 0 0 0 . . . 0
...

... . . .
...

...
... . . .

...
0 0 . . . 0 0 0 . . . 0

−In+1 0 . . . 0 0 0 . . . 0
0 0 . . . 0 0 0 . . . 0
...

... . . .
...

...
... . . .

...
0 0 . . . 0 0 0 . . . 0

, where 0 here denotes the n× n all-zero matrix, In+1425

is at the (1, i+ 1)th position, and −In+1 is at the (i+ 1, 1)th position. For n+ 1 ≤ i ≤ n+m,426

the ith frontal slice of G is the all-zero matrix. We also need the following 3-way arrays427

derived from G. First, construct G′ of size (n+m)× (n+ 1)2 × (n+ 1)2, whose ith horizontal428

slice is the ith frontal slice of G. Second, construct G′′ of size (n+ 1)2 × (n+m)× (n+ 1)2,429

whose ith vertical slice is the ith frontal slice of G.430

Now construct a 3-tensor Â from Ã, G, G′, and G′′ as follows. The side lengths of Â431

are all equal to n + m + (n + 1)2. First, Â is divided into eight blocks. That is, Â =432

Anonymous author(s) XX:11

(Â1, Â2), where Â1 =
[
Â1,1,1 Â1,2,1
Â2,1,1 Â2,2,1

]
, and Â2 =

[
Â1,1,2 Â1,2,2
Â2,1,2 Â2,2,2

]
. Furthermore, Â1,1,1 is of size433

(n+m)× (n+m)× (n+m), Â2,2,2 is of size (n+ 1)2× (n+ 1)2× (n+ 1)2, and the sizes of the434

rest Âi,j,k can be determined accordingly. Set Â1,1,1 = Ã, Â1,2,2 = −G, Â1,2,2 = G′, Â2,1,2 = G′′,435

and the other Âi,j,k to be all-zero. To summarise, Â1 =
[
Ã 0
0 −G

]
, and Â2 =

[
0 G′

G′′ 0

]
.436

We claim that Â is alternating. To verify this is straightforward but somewhat tedious.437

So we use the following example from which a complete proof can be extracted easily.438

I Example 12. Consider a 3-tensor H = (H) be of size 2 × 2 × 1, where H =
[

0 1
−1 0

]
.439

Following the recipes of constructing G′ and G′′, we construct H′ = (H ′1, H ′2) of size 1× 2× 2,440

where H ′1 =
[
0 1

]
, and H ′2 =

[
−1 0

]
. And H′′ = (H ′′1 , H ′′2) is of size 2 × 1 × 2, where441

H ′′1 =
[

0
−1

]
, and H ′′2 =

[
1
0

]
. Following the recipe of constructing Â, we construct C =442

(C1, C2, C3), where C1 =
[
0 0
0 −H

]
=

0 0 0
0 0 −1
0 1 0

, C2 =
[

0 H ′1
H ′′1 0

]
=

 0 0 1
0 0 0
−1 0 0

, and443

C3 =
[

0 H ′2
H ′′2 0

]
=

0 −1 0
1 0 0
0 0 0

. Then C = (ci,j,k) is alternating, as c2,3,1 = −1, c3,2,1 = 1,444

c1,3,2 = 1, c3,1,2 = −1, c1,2,3 = −1, c2,1,3 = 1, which are consistent with the signs of the445

permutations.446

Proof of correctness. Let A,B ∈ Λ(n,F)m. Let Â = (
[
Ã 0
0 −G

]
,

[
0 G′

G′′ 0

]
), B̂ =447

(
[
B̃ 0
0 −G

]
,

[
0 G′

G′′ 0

]
) ∈ M((n+m+ (n+ 1)2)× (n+m+ (n+ 1)2)× (n+m+ (n+ 1)2),F)448

be constructed from A and B using the procedure above, respectively.449

We claim that A and B are pseudo-isometric if and only if Â and B̂ are equivalent as450

trilinear forms.451

The only if direction. Suppose P tAP = BQ for some P ∈ GL(n,F) and Q ∈ GL(m,F).452

We will construct a trilinear form equivalence from Â to B̂ of the form S =

P 0 0
0 Q−1 0
0 0 R

 ∈453

GL(n+m+ (n+ 1)2,F), where R ∈ GL((n+ 1)2,F) is to be determined later on.454

Recall that Â = (
[
Ã 0
0 −G

]
,

[
0 G′

G′′ 0

]
), B̂ = (

[
B̃ 0
0 −G

]
,

[
0 G′

G′′ 0

]
). It can be verified that455

the action of S sends Ã to B̃. It remains to show that, by choosing an appropriate R, the456

action of S also sends G to G.457

Let G1 be the first n frontal slices of G, and G2 the last m frontal slices from G. Then the458

action of S sends G1 to RtGP1 R, and G2 to RtGQ
−1

2 R. Since G2 is all-zero, the action of S on459

G2 results in an all-zero tensor, so we have RtGQ
−1

2 R = G2.460

We then turn to G1. For i ∈ [n+ 1], consider the ith horizontal slice of G1, which is of the461

form Hi =
[
0 B1,i B2,i . . . Bn,i

]
, where O denotes the n× (n+ 1) all-zero matrix, and462

Bj,i is the n× (n+ 1) elementary matrix with the (j, i)th entry being 1, and other entries463

being 0. Note that those non-zero entries of Hi are in the (k(n + 1) + i)th columns, for464

k ∈ [n]. Let P t =
[
p1 . . . pn

]
, where pi is the ith column of P t. Then P acts on Hi from465

XX:12 Isomorphism testing of some algebraic structures

the left, which yields P tHi =
[
0 P1,i . . . Pn,i

]
, where Pj,i denotes the n× (n+ 1) matrix466

with the ith column being pj , and the other columns being 0.467

Let us first set R =
[
In+1 0

0 R̂

]
, where R̂ is to be determined later on. Then the left468

action of R on G1 preserves Hi through In+1. The right action of R on G1 translates to the469

right action of R̂ on Hi. To send P tHi back to Hi, R̂ needs to act on those (k(n+ 1) + i)th470

columns of Hi, i ∈ [n + 1], as P−1. Note that for Hi and Hj , i 6= j, those columns with471

non-zero entries are disjoint. This gives R̂ the freedom to handle different Hi’s separately.472

In other words, R̂ can be set as P−1 ⊗ In+1. This ensures that for every Hi, P tHiR̂ = Hi.473

To summarise, we have RtGP1 R = G1, and this concludes the proof for the only if direction.474

The if direction. Suppose Â and B̂ are isomorphic as trilinear forms via P ∈ GL(n+m+475

(n+ 1)2,F). Set P =

P1,1 P1,2 P1,3
P2,1 P2,2 P2,3
P3,1 P3,2 P3,3

, where P1,1 is of size n× n, P2,2 is of size m×m,476

and P3,3 is of size (n+ 1)2 × (n+ 1)2. Consider the ranks of the frontal slices of Â.477

The ranks of the first n frontal slices are in [2(n+ 1), 4n]. This is because a frontal slice in478

this range consists of two copies of vertical slices of A (whose ranks are between [0, n− 1]479

due to the alternating condition), and one frontal slice of G (whose ranks are of 2(n+ 1)).480

The ranks of the n+ 1 to n+m frontal slices are in [0, n]. This is because a frontal slice481

in this range consists of only just one frontal slice of A.482

The ranks of the last n(n+ 1) vertical slices are in [0, 2n]. This is because a frontal slice483

in this range consists of two copies of horizontal slices of G (whose ranks are either n or 1;484

see e.g. the form of Hi in the proof of the only if direction).485

By the discussions above, we claim that that P must be of the form

P1,1 0 0
P2,1 P2,2 P2,3
P3,1 P3,2 P3,3

.486

To see this, for the sake of contradiction, suppose there are non-zero entries in P1,2 or P1,3.487

Then a non-trivial linear combination of the first n frontal slices is added to one of the last488

(m+ (n+ 1)2) frontal slices. This implies that for this slice, the lower-right (n+ 1)2× (n+ 1)2
489

submatrix is of the form

0 a1In+1 a2In+1 . . . anIn+1

−a1In+1 0 0 . . . 0
−a2In+1 0 0 . . . 0

...
...

...
. . .

...
−anIn+1 0 0 . . . 0

, where one of ai ∈ F490

is non-zero. Then this slice is of rank ≥ 2(n+ 1), which is unchanged by left (resp. right)491

multiplying P t (resp. P), so it cannot be equal to the corresponding slice of B̂ which is of492

rank ≤ 2n. We then arrived at the desired contradiction.493

Now consider the action of such P on the n+ 1 to n+m frontal slices. Note that these494

slices are of the form

Ai 0 0
0 0 0
0 0 0

. (Recall that the last m slices of G are all-zero matrices.)495

Then we have

P t
1,1 P t

2,1 P t
3,1

0 P t
2,2 P t

3,2
0 P t

2,3 P t
3,3

Ai 0 0
0 0 0
0 0 0

P1,1 0 0
P2,1 P2,2 P2,3
P3,1 P3,2 P3,3

 =

P t
1,1AiP1,1 0 0

0 0 0
0 0 0

 .496

Since P tÂPP = B̂, we have P tÂP = B̂P
−1 . Observe that for the upper-left n× n submatrices497

of the frontal slices of B̂, P−1 simply performs a linear combination of Bi’s. It follows that498

every P t
1,1AiP1,1 is in the linear span of Bi. Since we assumed dim(〈Ai〉) = dim(〈Bi〉), we499

have that A and B are pseudo-isometric. This concludes the proof of Proposition 9. J500

Anonymous author(s) XX:13

References501

1 Manindra Agrawal and Nitin Saxena. Automorphisms of finite rings and applications to502

complexity of problems. In STACS 2005, 22nd Annual Symposium on Theoretical Aspects of503

Computer Science, Proceedings, pages 1–17, 2005.504

2 Manindra Agrawal and Nitin Saxena. Equivalence of F-algebras and cubic forms. In STACS505

2006, 23rd Annual Symposium on Theoretical Aspects of Computer Science, Proceedings, pages506

115–126, 2006.507

3 Jérémy Berthomieu, Jean-Charles Faugère, and Ludovic Perret. Polynomial-time algorithms508

for quadratic isomorphism of polynomials: The regular case. J. Complexity, 31(4):590–616,509

2015.510

4 Charles Bouillaguet. Etudes d’hypothèses algorithmiques et attaques de primitives crypto-511

graphiques. PhD thesis, PhD thesis, Université Paris-Diderot–École Normale Supérieure,512

2011.513

5 Charles Bouillaguet, Jean-Charles Faugère, Pierre-Alain Fouque, and Ludovic Perret. Practical514

cryptanalysis of the identification scheme based on the isomorphism of polynomial with515

one secret problem. In International Workshop on Public Key Cryptography, pages 473–493.516

Springer, 2011.517

6 Peter A. Brooksbank, Yinan Li, Youming Qiao, and James B. Wilson. Improved algorithms for518

alternating matrix space isometry: From theory to practice. In Fabrizio Grandoni, Grzegorz519

Herman, and Peter Sanders, editors, 28th Annual European Symposium on Algorithms, ESA520

2020, September 7-9, 2020, Pisa, Italy (Virtual Conference), volume 173 of LIPIcs, pages521

26:1–26:15. Schloss Dagstuhl - Leibniz-Zentrum für Informatik, 2020.522

7 Peter A. Brooksbank and James B. Wilson. Computing isometry groups of Hermitian maps.523

Trans. Amer. Math. Soc., 364:1975–1996, 2012.524

8 Vyacheslav Futorny, Joshua A. Grochow, and Vladimir V. Sergeichuk. Wildness for tensors.525

Lin. Alg. Appl., 566:212–244, 2019.526

9 Oded Goldreich, Silvio Micali, and Avi Wigderson. Proofs that yield nothing but their validity527

for all languages in NP have zero-knowledge proof systems. J. ACM, 38(3):691–729, 1991.528

10 Joshua A. Grochow and Youming Qiao. Algorithms for group isomorphism via group extensions529

and cohomology. SIAM J. Comput., 46(4):1153–1216, 2017. Preliminary version in IEEE530

Conference on Computational Complexity (CCC) 2014 (DOI:10.1109/CCC.2014.19). Also531

available as arXiv:1309.1776 [cs.DS] and ECCC Technical Report TR13-123.532

11 Joshua A. Grochow and Youming Qiao. Isomorphism problems for tensors, groups, and cubic533

forms: completeness and reductions. CoRR, abs/1907.00309, 2019.534

12 Gábor Ivanyos and Youming Qiao. Algorithms based on *-algebras, and their applications535

to isomorphism of polynomials with one secret, group isomorphism, and polynomial identity536

testing. SIAM J. Comput., 48(3):926–963, 2019.537

13 Neeraj Kayal. Efficient algorithms for some special cases of the polynomial equivalence problem.538

In Proceedings of the Twenty-Second Annual ACM-SIAM Symposium on Discrete Algorithms,539

SODA 2011, San Francisco, California, USA, January 23-25, 2011, pages 1409–1421, 2011.540

14 Serge Lang. Algebra. Number 211 in Graduate Texts in Mathematics. Springer-Verlag, New541

York, third enlarged edition, 2002.542

15 Yinan Li and Youming Qiao. Linear algebraic analogues of the graph isomorphism problem543

and the Erdős–Rényi model. In Chris Umans, editor, 58th IEEE Annual Symposium on544

Foundations of Computer Science, FOCS 2017, pages 463–474. IEEE Computer Society, 2017.545

arXiv:1708.04501, version 2.546

16 Eugene M. Luks. Permutation groups and polynomial-time computation. In Groups and547

computation (New Brunswick, NJ, 1991), volume 11 of DIMACS Ser. Discrete Math. Theoret.548

Comput. Sci., pages 139–175. Amer. Math. Soc., Providence, RI, 1993.549

17 Jacques Patarin. Hidden fields equations (HFE) and isomorphisms of polynomials (IP):550

two new families of asymmetric algorithms. In Advances in Cryptology - EUROCRYPT551

https://arxiv.org/abs/1309.1776

XX:14 Isomorphism testing of some algebraic structures

’96, International Conference on the Theory and Application of Cryptographic Techniques,552

Saragossa, Spain, May 12-16, 1996, Proceeding, pages 33–48, 1996.553

18 Nitin Saxena. Morphisms of rings and applications to complexity. PhD thesis, Indian Institute554

of Technology, Kanpur, May 2006.555

19 H. Weyl. The classical groups: their invariants and representations, volume 1. Princeton556

University Press, 1997.557

20 R. Wilson. The Finite Simple Groups, volume 251 of Graduate Texts in Mathematics. Springer558

London, 2009.559

A Proof of Lemma 6560

Recall that C = (C1, . . . , C8) ∈ S(`, q)8 is a tuple of random symmetric matrices, and561

Aut(C) = {R ∈ GL(`, q) : RtCR = C}. Our goal is to prove that |Aut(C)| ≤ q` for all but562

at most 1
qΩ(`) fraction of random C.563

Let Adj(C) := {(R,S) ∈ M(`, q) ⊕M(`, q) : RtC = CS}. It is clear that |Aut(C)| ≤564

|Adj(C)|. We will in fact prove that with high probability, |Adj(C)| ≤ q`. The proof of the565

following mostly follows the proofs for general matrix spaces as in [15] and alternating matrix566

spaces as in [6].567

To start with, we make use the following result from [15]. We say that D = (D1, . . . , Dr) ∈568

M(`, q)r is stable, if for any U ≤ F`q, 1 ≤ dim(U) ≤ ` − 1, dim(D(U)) > dim(U), where569

D(U) = 〈∪i∈[r]Di(U)〉.570

B Claim 13 ([15, Prop. 17]). If D ≤ M(`, q) is stable, then |Adj(D)| ≤ q`.571

Therefore, we turn to show that a random C ∈ S(`, q)8 is stable with high probability.572

This was shown for random matrix tuples in M(`, q)4 in [15], and random alternating matrix573

tuples in Λ(`, q)16 in [6]. The proof strategy for the symmetric case is similar, but certain574

differences between the symmetric and alternating matrices do arise, as reflected in the575

following.576

Our goal is to show that

Pr[C ∈ S(`, q)8 is not stable] ≤ 1
qΩ(n) .

By definition, we have

Pr[C ∈ S(`, q)8 is not stable] = Pr[∃U ≤ F`q, 1 ≤ dim(U) ≤ n− 1,dim(U) ≥ dim(C(U))].

By union bound, we have577

Pr[∃U ≤ F`q, 1 ≤ dim(U) ≤ n− 1,dim(U) ≥ dim(C(U))]578

≤
∑

U≤F`
q,1≤dim(U)≤n−1

Pr[dim(U) ≥ dim(C(U))].579

For d ∈ [n − 1], let Ed = 〈e1, . . . , ed〉. Let U ≤ F`q, dim(U) = d. We claim that
Pr[dim(U) ≥ dim(C(U))] = Pr[dim(Ed) ≥ dim(C(Ed))]. To see this, note that there exists
P ∈ GL(`, q) such that P (Ed) = U . Then observe that dim((P tCP)(Ed)) = dim(C(U)). It
follows that dim(C(U)) ≤ dim(U) if and only if dim((P tCP)(Ed)) ≤ dim(Ed). The claim
then follows, by observing that the map S(`, q)r → S(`, q)r via P t · P is bijective. As a
consequence, for any d ∈ [n− 1], we have∑

U≤F`
q,dim(U)=d

Pr[dim(U) ≥ dim(C(U))] =
[
`

d

]
q

· Pr[dim(C(Ed)) ≤ d].

Anonymous author(s) XX:15

Let Cdi be the submatrix of Ci consisting of the first d columns of Ci, and let Cd =580 [
Cd1 . . . Cdr

]
∈ M(` × rd, q). Then dim(C(Ed)) = rk(Cd). Note that each Cdi is of the581

form582 [
Cdi,1
Cdi,2

]
(5)583

where Cdi,1 is a random symmetric matrix of size d× d, and Cdi,2 is a random matrix of size584

(n− d)× d.585

We then need to prove the following result, from which our desired result would follow.586

Here we set r = 8.587

I Proposition 14. Let Cd ∈ M(` × 8d, q) be in the form above. Then we have
[
n
d

]
q
·588

Pr[rk(Cd)] ≤ 1
qΩ(`) ,589

To prove Proposition 14, We wish to utilise the following result from [15].590

I Proposition 15 ([15, Proposition 20]). Let D ∈M(`× 4d, q) be a random matrix, where591

1 ≤ d ≤ n− 2. Then
[
`
d

]
q
· Pr[rk(D) ≤ d] ≤ 1

qΩ(`) .592

To use the above result in our setting, however, there is a caveat caused by the symmetric593

structure of Cdi,1 for i ∈ [r]. This is resolved by observing the following claim, which basically594

says that we can simulate one random matrix in M(d, q) using two random symmetric595

matrices in S(d, q).596

B Claim 16. Let X and Y be two random symmetric matrices from S(d, q), i.e.

X =

x1,1 x1,2 · · · x1,d
x1,2 x2,2 · · · x2,d
...

...
. . .

...
x1,d x2,d · · · xd,d

 , Y =

y1,1 y1,2 · · · y1,d
y1,2 y2,2 · · · y2,d
...

...
. . .

...
y1,d y2,d · · · yd,d

Then

Z =

x1,1 + y1,2 x1,2 + y1,3 · · · x1,d + y1,1
x1,2 + y2,2 x2,2 + y2,3 · · · x2,d + y1,2

...
...

. . .
...

x1,d + y2,d x2,d + y3,d · · · xd,d + y1,d

is a uniformly sampled random matrix in M(d, q), when X and Y are sampled in uniformly597

random from S(d, q).598

Proof. Let zi,j be the (i, j)th entry of Z. Note that each xi,j (resp. yi,j), i 6= j, appear599

exactly twice in Z on an antidiagonal z1,i, z2,i−1, . . . , zi−1,1, zi,n, zi+1,n−1, . . . , zn,i+1. So we600

can focus on such an antidiagonal to show that when xi,j and yi,j are uniformly sampled601

from Fq, zi,j are also uniformly sampled from Fq.602

Let us first consider the case when d is odd. Let us consider a specific one, say z1,1 =603

x1,1 + y1,2, z2,d = x2,d + y1,2, . . . , zd,2 = x2,d + y3,d. Other antidiagonals are of the same604

structure. It can be verified that this is a system of d linear equations in d+ 1 variables of605

rank d. It follows that when those xi,j and yk,` involved are sampled in uniform random606

from Fq, zi′,j′ are also in uniformly random distribution.607

The case when d is even can be verified similarly. This concludes the proof. J608

We are now ready to prove Proposition 14.609

XX:16 Isomorphism testing of some algebraic structures

Proof of Proposition 14. Recall that Cd =
[
Cd1 . . . Cd8

]
, where Cdi ∈ M(` × d, q) is of610

the form in Equation 5. For i ∈ [4], let C ′di ∈ M(` × d, q) be constructed from Cd2i−1, C
d
2i611

as in Claim 16, and set C ′d =
[
C ′d1 . . . C ′d4

]
. It is clear that rk(Cd) ≥ rk(C ′d), so612 [

`
d

]
q
· Pr[rk(Cd) ≤ d] ≤

[
`
d

]
q
· Pr[rk(C ′d) ≤ d]. By Claim 16, C ′d is a random matrix in613

M(`× 4d, q). By Proposition 15,
[
`
d

]
q
·Pr[rk(C ′d) ≤ d] ≤ 1

qΩ(`) . This concludes the proof. J614

B Proof of the remaining cases of Theorem 1615

Given Proposition 5, we can complete the proof of Theorem 1 easily.616

Proof. Cubic forms over fields of characteristic 2. In Proposition 5 we solved the617

case for cubic forms over fields of odd orders. We now consider cubic forms over fields of618

characteristic 2.619

In this case, one difficulty is that the correspondences between quadratic forms and620

symmetric matrices as used in Equation 4. Still, this difficulty can be overcome as follows.621

Let f =
∑

1≤i≤j≤k≤n αi,j,kxixjxk where αi,j,k ∈ Fq, q is a power of 2. We follow the proof622

strategy of Proposition 5. Step 1 stays exactly the same. In Step 2, we have f and g1, and the623

question is to look for T2 =
[
Ir 0
0 R

]
such that f = g1 ◦ T2. We still consider the quadratic624

forms ci =
∑

1≤j≤k≤` αi,j,kyjyk for i ∈ [r]. Now note that (
∑
j∈[`] βjyj)2 =

∑
j∈[`] β

2
j y

2
j over625

fields of characteristic 2. So the monomials y2
j do not contribute to yjyk for j 6= k under linear626

transformations. It follows that we can restrict our attention to c′i =
∑

1≤j<k≤` α
′
i,j,kyjyk627

for i ∈ [r], and define alternating matrices628

Ci =

0 α′i,1,2 . . . α′i,1,`

α′i,1,2 0 . . . α′i,2,`
...

...
. . .

...
α′i,1,` α′i,2,` . . . 0

 (6)629

for i ∈ [r] to get C ∈ Λ(`, q)r. Note that Ci is alternating because we work over fields of630

characteristic 2. Similarly construct D ∈ Λ(`, q)r from g1. It can then be verified that, for631

T2 =
[
Ir 0
0 R

]
to be an isomorphism from g1 to f , it is necessary that R is an isometry from632

D to C. We then use [6, Proposition 12], which is the alternating matrix version of our633

Lemma 6. That proposition ensures that for r = 20, all but at most 1
qΩ(`) fraction of C has634

|Aut(C)| ≤ q`. This explains how the first difficulty is overcome.635

However, there is a second difficulty, namely Theorem 4 do not apply to fields of636

characteristic 2. We sketch how to overcome this difficulty here. The key is to look into the637

proof of [6, Proposition 12], which in fact ensures that Adj(C) = {(A,E) ∈ M(`, q)⊕M(`, q) |638

AtC = CE} is of size ≤ q` for random C. Note that Adj(C) is a linear space and a linear639

basis of Adj(C) can be solved efficiently. Therefore, replacing Aut(C) with Adj(C) and640

Iso(C,D) with Adj(C,D) = {(A,E) ∈ M(`, q)⊕M(`, q) | AtC = DE}, we can proceed as641

in the proof of Proposition 5. The interested readers may refer to [6] for the details.642

Degree-d forms. Let us then consider degree-d forms. In this case, we follow the proof of643

Proposition 5. Step 1 stays exactly the same. In Step 2, instead of
∑

1≤j≤k≤n αi,j,kxixjxk644

for i ∈ [r], we work with
∑

1≤j≤k≤n αi,j,kx
d−2
i xjxk, noting that matrices in the form in645

Equation 2 preserve the set of monomials {xd−2
i xjxk}. Then for odd q case, construct646

Anonymous author(s) XX:17

symmetric matrices as in Equation 4 and proceed as in the rest of Proposition 5. For the647

even q case, construct alternating matrices as in Equation 6, and procees as described above.648

Degree-d polynomials. We now consider degree-d polynomials. In this case, we can single649

out the degree-d piece and work as in degree-d form case. The only change is that in the650

verification step, we need to take into account the monomials of degree < d as well.651

This concludes the proof of Theorem 1. J652

C On Propositions 7 and 8653

To test equivalence of trilinear forms of f, g : Fnq × Fnq × Fnq → Fq, an average-case algorithm654

in time qO(n) can be achieved by following the proof of Proposition 5. The only difference655

is that, in Step 2 there, instead of symmetric matrices in Equation 4, we can construct656

general matrices Ci = (α′i,j,k)j,k∈[`]. Then we need a version of Lemma 6 for general matrices,657

which is already shown in [15, Proposition 19 and 20]. It says that when r = 4, a random658

C ∈M(`, q)4 satisfies that |Aut(C)| ≤ q`. We then proceed exactly as in Proposition 5 for659

odd q, and for even q we use the technique described in Section B.660

Suppose we have two algebras ∗, · : Fnq × Fnq → Fnq , represented by their structure661

constants. The proof strategy of Proposition 7 carries out to test algebra isomorphism in a662

straightforward fashion. The only difference is in the verification step (i.e. Line 3f). More663

specifically, we can write an algebra as an element in (Fnq)∗⊗Fnq ⊗Fnq , where (Fnq)∗ is the dual664

space of Fnq .3 It follows that we can write ∗ as
∑
i,j,k∈[n] αi,j,ke

∗
i ⊗ ej ⊗ ek. The key difference665

with trilinear form equivalence is that for AI, T ∈ GL(n, q) acts on e∗i by its inverse. So the666

algorithm for AI is the same as the one for trilinear form equivalence, except that in the667

verification step we need to use R−1 instead of R to act on the first argument.668

3 Note that here we put (Fnq)∗ as the first argument, instead of the last one, in order to be consistent
with the procedure in Proposition 7. This is without loss of generality due to the standard isomorphism
between U ⊗ V ⊗W and W ⊗ U ⊗ V .

	Introduction
	Average-case algorithms for polynomial isomorphism and more
	Complexity of symmetric and alternating trilinear form equivalence
	Previous works
	Remarks on the technical side

	Preliminaries
	Average-case algorithms for polynomial isomorphism and more
	Cubic form isomorphism over fields of odd order
	Trilinear form equivalence and algebra isomorphism

	Complexity of symmetric and alternating trilinear form equivalence
	Proof of Lemma 6
	Proof of the remaining cases of Theorem 1
	On Propositions 7 and 8

