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Abstract
We study the complexity of isomorphism problems for tensors, groups, and polynomials. These
problems have been studied in multivariate cryptography, machine learning, quantum information,
and computational group theory. We show that these problems are all polynomial-time equivalent,
creating bridges between problems traditionally studied in myriad research areas. This prompts
us to define the complexity class TI, namely problems that reduce to the Tensor Isomorphism (TI)
problem in polynomial time. Our main technical result is a polynomial-time reduction from d-tensor
isomorphism to 3-tensor isomorphism. In the context of quantum information, this result gives
multipartite-to-tripartite entanglement transformation procedure, that preserves equivalence under
stochastic local operations and classical communication (SLOCC).
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1 Introduction

Although Graph Isomorphism (GI) is perhaps the most well-studied isomorphism problem
in computational complexity – even going back to Cook’s and Levin’s initial investigations
into NP (see [3, Sec. 1]) – it has long been considered to be solvable in practice [51, 52], and
Babai’s recent quasi-polynomial-time breakthrough is one of the theoretical gems of the last
several decades [5].

However, several isomorphism problems for tensors, groups, and polynomials seem to be
much harder to solve, both in practice – they’ve been suggested as difficult enough to support
cryptography [39,57] – and in theory: the best known worst-case upper bounds are barely
improved from brute force (e. g., [46, 63]). As these problems arise in a variety of areas, from
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31:2 Tensor Isomorphism-Completeness

multivariate cryptography and machine learning, to quantum information and computational
algebra, getting a better understanding of their complexity is an important goal with many
potential applications. These isomorphism problems are the focus of this paper.

Our first set of results shows that all these isomorphism problems from many research
areas are equivalent under polynomial-time reductions, creating bridges between different
disciplines. The Tensor Isomorphism (TI) problem turns out to occupy a central position
among these problems, leading us to define the complexity class TI, consisting of those
problems polynomial-time reducible to the Tensor Isomorphism problem.

More specifically, we first present a polynomial-time reduction from d-Tensor Isomorph-
ism to 3-Tensor Isomorphism. This result may be viewed as corresponding to the k-SAT
to 3-SAT reduction in the setting of Tensor Isomorphism, but the proof is much more
involved. This result also has a natural application to quantum information: it gives a
procedure that turns multipartite entanglements to tripartite entanglements while preserving
equivalence under stochastic local operations and classical communication (SLOCC).

We then demonstrate that various isomorphism problems for polynomials, general algebras,
groups, and tensors all turn out to be TI-complete. One important reference here is the recent
work [26], in which they showed that several such problems reduce to 3TI. Our contribution
is to show that these problems are also 3TI-hard. Another set of related works are [1, 2, 42]
by Agrawal, Kayal, and Saxena, who showed some equivalences and reductions between Ring
Isomorphism (commutative with unit), Cubic Form Equivalence, and isomorphism of
commutative, unital, associative algebras [1, 2, 42] Here we greatly expand these and show a
much wider class of problems are equivalent (see Thm. 4=Thm. B and Fig. 1).

In a follow-up paper [33], we study search and counting to decision reductions, apply these
these results to Group Isomorphism in the matrix group model, and obtain a nilpotency
class reduction for Group Isomorphism.

All these results together lay the foundation for an emerging theory of the complexity
class TI that in some cases parallels, and in some cases deviates from, the complexity
theory of the class GI, namely the set of problems that are polynomial-time reducible to
Graph Isomorphism [43]. From the theory perspective, this theory reveals a family of
algorithmic problems demonstrating highly interesting complexity-theoretic properties. From
the practical perspective, this theory could serve as guidance for, and facilitate dialogue
among, researchers from diverse research areas including cryptography, machine learning,
quantum information, and computational algebra. Indeed, some of our results already have
natural applications to quantum information and computational group theory.

Organization. Due to page constraints and the nature of this work, we are only able to
present the main results and the related implications and discussions. For detailed proofs,
we refer the reader to the full version [32]. In the remainder of this paper, we first present
the origins of those isomorphism problems we consider (Sec. 2). We then state our main
results in Sec. 3, and briefly indicate the main techniques in Sec. 4. In Sec. 5, we present
formal statements of the various problems involved and a detailed statement of one main
result. Finally in Sec. 6 we present the implication to quantum information and discuss on
some further related works and the outlook of this research direction.

2 Isomorphism testing problems from several areas

Let F be a field. Let GL(n,F) denote the general linear group of degree n over F, and M(n,F)
the linear space of n × n matrices. For a finite field Fq, we may also write GL(n,Fq) and
M(n,Fq) as GL(n, q) and M(n, q), respectively.
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Multivariate cryptography. In 1996, Patarin [57] proposed identification and signature
schemes based on a family of problems called “isomorphism of polynomials.” A specific
problem, called isomorphism of (quadratic) polynomials with two secrets (IP2S), asks the
following. Let ~f = (f1, . . . , fm) and ~g = (g1, . . . , gm) be two m-tuples of homogeneous
quadratic polynomials, where fi, gj ∈ F[x1, . . . , xn]. Recall an m-tuple of polynomials in n
variables can be viewed as a polynomial map from Fn to Fm. It is natural to ask whether ~f
and ~g represent the same polynomial map up to change of basis, or more specifically, whether
there exists P ∈ GL(n,F) and Q ∈ GL(m,F), such that Q ◦ ~f ◦ P = ~g. Since then, the IP2S
problem, and its variant isomorphism of (quadratic) polynomials with one secret (IP1S), have
been intensively studied in multivariate cryptography (see [11,38] and references therein).

Machine learning. In machine learning, it is natural to view a sequential data stream as a
path. This leads to the use of the signature tensor of a path φ : [0, 1]→ Rn, first introduced
by Chen [20] to extract features of data. This is the basic idea of the signature tensor method,
which has been pursued by in a series of works; see [21,49,54] and references therein. The
algorithmic problem of reconstructing the path from the signature tensor is of considerable
interest; see e.g. [50, 59]. In this context, the following problem was recently studied by
Pfeffer, Seigal, and Sturmfels [59], called the Tensor Congruence problem: given two
3-tensors A = (aijk), B = (bijk) ∈ Fn×n×n, decide whether there exists P ∈ GL(n,F), such
that the congruence action of P sends A to B. More specifically, this action of P = (pij)
sends A = (aijk) to A′ = (a′ijk), where a′ijk =

∑
i′,j′,k′ ai′j′k′pi,i′pj,j′pk,k′ .

Quantum information. Let H = H1 ⊗ · · · ⊗ Hd, where Hi = Cni . Let ρ = |φ〉〈φ| and
τ = |ψ〉〈ψ| be two pure quantum states, where |φ〉, |ψ〉 ∈ H. In quantum information, a
natural question is to decide whether ρ can be converted to τ using local operations and
classical communication statistically (SLOCC), i.e. with non-zero probability [10,23]. It is
well-known by [23] that ρ and τ are interconvertible via SLOCC, if and only if there exist
Ti ∈ GL(Hi), such that (T1 ⊗ . . . Tm)|φ〉 = |ψ〉. Therefore, given pure quantum states ρ and
τ , whether ρ and τ are inverconvertible via SLOCC can be cast as an isomorphism testing
problem, called the d-Tensor Isomorphism problem (see Definition 1).

Computational group theory. In computational group theory, a notoriously difficult problem
is to test isomorphism of finite p-groups, namely groups of prime power order (see, e. g., [55]).
Here, the groups are represented succinctly, e. g., by generating sets of permutations or
matrices over finite fields. Testing isomorphism of p-groups is considered to be a bottleneck
to testing isomorphism of general groups [7,19,31]. Even for p-groups of class 2 and exponent
p, current methods are still limited to instances of quite small size.

Theoretical computer science. As already mentioned, Agrawal, Kayal, and Saxena studied
isomorphism and automorphism problems of rings, algebras, and polynomials [1, 2, 42],
motivated by several problems including Primality Testing, Polynomial Factorization,
and Graph Isomorphism. Later, motivated by cryptographic applications and algebraic
complexity, Kayal studied the Polynomial Equivalence problems (possibly under affine
projections) and solved certain important special cases [40, 41] (see also [30]). Among
these problems, we will be mostly concerned with the following two. First, the Algebra
Isomorphism problem for commutative, unital, associative algebras over a field F, asks
whether two such algebras, given by structure constants, are isomorphic. Second, the Cubic
Form Equivalence problem asks whether two homogeneous cubic polynomials over F are
equivalent under the natural action of the general linear group by change of basis on the
variables.

ITCS 2021
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Practical complexity of these problems. The preceding isomorphism testing problems
are of great interest to researchers from seemingly unrelated areas. Furthermore, they pose
considerable challenges for practical computations at the present stage. The latter is in sharp
contrast to Graph Isomorphism, for which very effective practical algorithms have existed
for some time [51,52]. Indeed, the problems we consider have been proposed to be difficult
enough for cryptographic purposes [39,57]. As further evidence of their practical difficulty,
current algorithms implemented for testing isomorphism of p-groups of class 2 and exponent
p can handle groups of dimension 20 over F13, but absolutely not for groups of dimension
200 over F13, even though in this case the input can still be stored in only a few megabytes.1
In [59, arXiv version 1], computations on special cases of the Tensor Congruence problem
were performed in Macaulay2 [28], but these could not go beyond small examples either.

A note on terminology. Before introducing our results formally, a terminological note is
in order: we shall call valence-d tensors d-way arrays, and tensors will be understood to
be d-way arrays considered under a specific group action. The reason for this change of
terminology will be clearer in the following. We remark that it is not uncommon to see such
differences in the terminologies around tensors, see, e. g., the preface of [45].

We follow a natural convention: when F is finite, a fixed algebraic extension of a finite
field such as Fp, the rationals, or a fixed algebraic extension of the rationals such as Q, we
consider the usual model of Turing machines; when F is R, C, the p-adic rationals Qp, or
other more “exotic” fields, we work in the Blum–Shub–Smale model over F.

3 Main results

3.1 Defining the Tensor Isomorphism complexity class
Given the diversity of the isomorphism problems from Sec. 2, the first main question addressed
in this paper is

Is there a unifying framework that accommodates the many difficult isomorphism
testing problems arising in practice?

Such a framework would help to explain the difficulties from various areas when dealing with
these isomorphism problems, and facilitate dialogue among researchers from different fields.

At first sight, this seems quite difficult: these problems concern very different mathematical
objects, ranging from sets of quadratic equations, to algebras, to finite groups, to tensors,
and each of them has its own rich theory.

Despite these obstacles, our first main result shows that those problems in Sec. 2 arising
in many fields – from computational group theory to cryptography to machine learning – are
equivalent under polynomial-time reductions. In proving the first main result, the d-Tensor
Isomorphism problem occupies a central position. This leads us to define the complexity
class TI, consisting of problems reducible to TI, much in vein of the introduction of the
Graph Isomorphism complexity class GI [43].

1 We thank James B. Wilson, who maintains a suite of algorithms for p-group isomorphism testing [16],
for communicating this insight to us from his hands-on experience. We of course maintain responsibility
for any possible misunderstanding, or lack of knowledge regarding the performance of other implemented
algorithms.
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I Definition 1 (The d-Tensor Isomorphism problem). d-Tensor Isomorphism over
a field F is the problem: given two d-way arrays A = (ai1,...,id

) and B = (bi1,...,id
), where

ik ∈ [nk] for k ∈ [d], and ai1,...,id
, bi1,...,id

∈ F, decide whether there are Pk ∈ GL(nk,F) for
k ∈ [d], such that for all i1, . . . , id,

ai1,...,id
=

∑
j1,...,jd

bj1,...,jd
(P1)i1,j1(P2)i2,j2 · · · (Pd)id,jd

. (1)

Our first main result resolves an open question well-known to the experts:2

I Theorem 2 (=Cor. A). d-Tensor Isomorphism reduces to 3-Tensor Isomorphism in
time O(nd).

Thm. 2 is also key to the application to quantum information in Sec. 6.1.
Thus, while the 2TI problem is easy (it’s just matrix rank), 3TI already captures the

complexity of dTI for any d. This phenomenon is reminiscent of the transition in hardness
from 2 to 3 in k-SAT, k-Coloring, k-Matching, and many other NP-complete problems.
It is interesting that an analogous phenomenon – a transition to some sort of “universality”
from 2 to 3 – occurs in the setting of isomorphism problems, which we believe are not
NP-complete over finite fields (indeed, they cannot be unless PH collapses).

I Definition 3 (TI). For any field F, TIF denotes the class of problems that are polynomial-
time Turing (Cook) reducible to d-Tensor Isomorphism over F, for some d. A problem is
TIF-complete, if it is in TIF, and d-Tensor Isomorphism over F for any d reduces to this
problem.

By Thm. 2, we may take d = 3 without loss of generality. When we write TI without
mentioning the field, the result holds for any field.

3.2 TI-complete problems
Our second main result shows the wide applicability and robustness of the TI class.

I Theorem 4 (Informal statement of part of Theorem B). All the problems mentioned in
Sec. 2 are TI-hard: IP2S, Tensor Congruence, Cubic Form Equivalence (over fields
of characteristic not 2 or 3), Algebra Isomorphism for commutative, unital, associative
algebras, and Group Isomorphism for p-groups of class 2 and exponent p given by matrix
generators over Fpe .

In combination with the results of [26], we conclude that they are in fact TI-complete.

I Remark 5. Our results allow us to mostly answer a question from Saxena’s thesis [64, p. 86].
Namely, Agrawal & Saxena [1] gave a reduction from Cubic Form Equivalence to Ring
Isomorphism for commutative, unital, associative algebras over F, under the assumption
that every element of F has a cube root in F. For finite fields Fq, the only such fields are
those for which q = p2e+1 and p ≡ 2 (mod 3), which is asymptotically half of all primes.
As explained after the proof of [1, Thm. 5], the use of cube roots seems inherent in their
reduction, and Saxena asked whether such a reduction could be done over arbitrary fields.
Using our results in conjunction with [26], we get a new such reduction – very different from
the previous one [1] – which works over any field of characteristic not 2 or 3.

2 We asked several experts who knew of the question, but we were unable to find a written reference.
Interestingly, Oldenburger [56] worked on what we would call d-Tensor Isomorphism as far back as
the 1930s. We would be grateful for any prior written reference to the question of whether dTI reduces
to 3TI.

ITCS 2021
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Here, we would also like to point out that some of the polynomial-time equivalences in
Thm. 4, though perhaps expected by some experts, were not a priori clear. To get a sense
for the non-obviousness of the equivalences of problems in Theorem 4, let us postulate the
following hypothetical question. Recall that two matrices A,B ∈ M(n,F) are called equivalent
if there exist P,Q ∈ GL(n,F) such that P−1AQ = B, and they are conjugate if there exists
P ∈ GL(n,F) such that P−1AP = B. Can we reduce testing Matrix Conjugacy to testing
Matrix Equivalence? Of course since they are both in P there is a trivial reduction; to
avoid this, let us consider only reductions r which send a matrix A to a matrix r(A) such
that A and B are conjugate iff r(A) and r(B) are equivalent. Nearly all reductions between
isomorphism problems that we are aware of have this form (so-called “kernel reductions” [25];
cf. functorial reductions [4]). This turns out to be essentially impossible. The reason is that
the equivalence class of a matrix is completely determined by its rank, while the conjugacy
class of a matrix is determined by its rational canonical form. Among n× n matrices there
are only n+ 1 equivalence classes, but there are at least |F|n rational canonical forms, coming
from the choice of minimal polynomial/companion matrix. Even when F is a finite field,
such a reduction would thus require an exponential increase in dimension, and when F is
infinite, such a reduction is impossible regardless of running time.

Nonetheless, one of our results is that for linear spaces of matrices (one form of 3-way
arrays; see Sec. 5.1), conjugacy testing and equivalence testing are polynomial-time equivalent.
We say two subspaces A,B ⊆M(n,F) are conjugate if there exists P ∈ GL(n,F) such that
PAP−1 = {PAP−1 : A ∈ A} = B, and analogously for equivalence. This is in sharp
contrast to the case of single matrices. In the above setting, it means that there exists a
polynomial-time computable map φ from M(n,F) to subspaces of M(s,F), such that A,B
are conjugate up to a scalar if and only if φ(A), φ(B) ≤ M(s,F) are equivalent as matrix
spaces. Such a reduction may not be clear at first sight.

3.3 The relation between Tensor Isomorphism and Graph
Isomorphism

After introducing the TI class, it is natural to compare this class with the corresponding
class for Graph Isomorphism, GI.

Already by using known reductions [26,30,34,48,58], Graph Isomorphism and Per-
mutational Code Equivalence reduce to 3-Tensor Isomorphism. For the inverse
direction, we have the following connection.

I Corollary 6. Let A and B be two 3-tensors over Fq, and let n be the sum of the lengths of
all three sides. To decides whether A and B are isomorphic reduces to solving GI for graphs
of size qO(n).

Therefore, if GI is in P, then 3TIFq
can be solved in qO(n) time, where n is the sum of the

lengths of all three sides. More generally, ifGI ∈ TIME(2O(log n)c) then 3TIFq ∈ TIME(qO(nc)).
The current value of c for GI is 3 [5] (see [35] for the analysis of c); improving c to be less
than 2 would improve over the current state of the art for both GpI and 3TI.

In Fig. 1 we summarize the relationships between GI, TI, and many more isomorphism
testing problems.
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4 An overview of proof strategies and techniques

4.1 The main new technique

Our main new technique, used to show the reduction from dTI to 3TI (Thm. 2=Thm. A), is
a simultaneous generalization of our reduction from 3TI to Algebra Isomorphism and
the technique Grigoriev used [29] to show that isomorphism in a certain restricted class of
algebras is equivalent to GI. In brief outline: a 3-way array A specifies the structure constants
of an algebra with basis x1, . . . , xn via xi · xj :=

∑
k A(i, j, k)xk, and this is essentially how

we use it in the reduction from 3TI to Algebra Isomorphism. For arbitrary d ≥ 3, we
would like to similarly use a d-way array A to specify how d-tuples of elements in some
algebra A multiply. The issue is that for A to be an algebra, our construction must still
specify how pairs of elements multiply. The basic idea is to let pairs (and triples, and so
on, up to (d− 2)-tuples) multiply “freely” (that is, without additional relations), and then
to use A to rewrite any product of d− 1 generators as a linear combination of the original
generators. While this construction as described already gives one direction of the reduction
(if A ∼= B, then A ∼= B), the other direction is trickier. For that, we modify the construction
to an algebra in which short products (less than d − 2 generators) do not quite multiply
freely, but almost. After the fact, we found out that this construction generalizes the one
used by Grigoriev [29] to show that GI was equivalent Algebra Isomorphism for a certain
restricted class of algebras (see Sec. 6 for a comparison).

4.2 The proof strategy for Theorem 4=B

Let us now explain briefly on the proof of Thm. B=Thm. 4. The first step is to realize all
of these problems in a single unifying viewpoint. That is, all these equivalence relations
underlying these isomorphism testing problems can be realized as the orbits of certain natural
group actions by direct products of general linear groups on 3-way arrays. We shall explain
this in detail in Sec. 5. Here, we only demonstrate five group actions on 3-way arrays, and
indicate how those practical problems correspond to some of these actions.

To introduce these five group actions, it is instructive to first examine the more familiar
cases of matrices. There are three natural group actions on M(n,F): for A ∈ M(n,F),
(1) (P,Q) ∈ GL(n,F) ×GL(n,F) sends A to P tAQ, (2) P ∈ GL(n,F) sends A to P−1AP ,
and (3) P ∈ GL(n,F) sends A to P tAP . These three actions endow A with different
algebraic/geometric interpretations: (1) a linear map from a vector space V to another vector
space W , (2) a linear map from V to itself, and (3) a bilinear map from V × V to F.

The five group actions on 3-way arrays referred to above are precisely analogous to the
matrix setting. For a 3-way array A = (ai,j,k), i, j, k ∈ [n], ai,j,k ∈ F, these actions are (1)
(P1, P2, P3) ∈ GL(n,F)×GL(n,F)×GL(n,F) acts on A according to Equation 1 with d = 3;
(2) (P1, P2) ∈ GL(n,F)×GL(n,F) acts on A as (P−t

1 , P1, P2) in (1), where P−t denotes the
transpose of the inverse of P ; (3) (P1, P2) ∈ GL(n,F) × GL(n,F) acts on A as (P1, P1, P2)
in (1); (4) P ∈ GL(n,F) acts on A as (P, P, P ) in (1); and (5) P ∈ GL(n,F) acts on A as
(P, P, P−t) in (1).

ITCS 2021



31:8 Tensor Isomorphism-Completeness

These five actions endow various families of 3-way arrays with different algebraic/geometric
meanings, including 3-tensors, bilinear maps, matrix (associative or Lie) algebras, and trilinear
forms, a.k.a. non-commutative cubic forms. It is then not difficult to cast each of the problems
in Thm. 4 as (a special case of) the problem of deciding whether two 3-way arrays are in the
same orbit under one of the five group actions; see Sec. 5.1 for detailed explanations. 3

The first step only provides the context for proving Thm. 4. After the first step, we need
to devise polynomial-time reductions among those isomorphism testing problems for 3-way
arrays under these five group actions, often with certain restrictions on the 3-way array
structures. The two basic ideas for these reductions are a gadget construction from [26], and
the “embedding” technique from [27]. To implement these ideas, however, usually involves
detailed and complicated computations.

For example, in the proof of Theorem 4, we use a gadget construction from [26] for the
reduction from Tensor Isomorphism to IP2S. To show that this gadget works in our
setting, we need a proof strategy that is different from that in [26]. Furthermore, the gadget
from [26] introduces a quadratic blow-up in the input parameters. We then devise a new
gadget, which achieves the same function with only linear blow-up, and enables Corollary 6.
Having only linear blow-up is important in applications, e. g., to Group Isomorphism in
the Cayley table model (see [33]).

5 More details and more results on TI-completeness

5.1 Five group actions on 3-way arrays and the corresponding
mathematical objects

In Section 3, we briefly defined five group actions on 3-way arrays with the help of Equation 1.
However, the formulas for these group actions on 3-way arrays are somewhat unwieldy; our
experience suggests that they are more easily digested when presented in the context of
some of the natural interpretations of 3-way arrays as mathematical objects, which will also
allow us to connect them back to the problems of Section 2. To connect the interpretations
with the formulas themselves, one technical tool is very useful, namely, given a 3-way array
A(i, j, k), we define its frontal slices to be the matrices Ak defined by Ak(i, j) := A(i, j, k);
that is, we think of the box of A as arranged so that the i and j axes lie in the page, while
the k-axis is perpendicular to the page. Similarly, its lateral slices (viewing the 3D box of A
“from the side”) are defined by Lj(i, k) := A(i, j, k). An `× n×m 3-way array thus has m
frontal slices and n lateral slices.

A natural action on arrays of size `× n×m is that of GL(`,F)×GL(n,F)×GL(m,F)
by change of basis in each of the 3 directions, namely

((P,Q,R) · A)(i′, j′, k′) =
∑
i,j,k

A(i, j, k)Pii′Qjj′Rkk′ .

We will see several interpretations of this action below.

3-tensors. A 3-way array A(i, j, k), where i ∈ [`], j ∈ [n], and k ∈ [m], is naturally identified
as a vector in F`⊗Fn⊗Fm. Letting ~ei denote the ith standard basis vector of Fn, a standard
basis of F`⊗Fn⊗Fm is {~ei⊗ ~ej⊗ ~ek}. Then A represents the vector

∑
i,j,k A(i, j, k)~ei⊗ ~ej⊗ ~ek

3 While problems in Thm. 4 only use three out of those five actions, the other two actions also lead
to problems that arise naturally, including Matrix Algebra Conjugacy from [18], Matrix Lie
Algebra Conjugacy from [30], and Bilinear Map Isotopism from [13]; see Sec. 5.1 and Sec. 6.
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in F` ⊗ Fn ⊗ Fm. The natural action by GL(`,F)×GL(n,F)×GL(m,F) above corresponds
to changes of basis of the three vector spaces in the tensor product. The problem of deciding
whether two 3-way arrays are the same under this action is called 3-Tensor Isomorphism.4
This problem has been studied as far back as the 1930s [56].

Cubic forms, trilinear forms, and tensor congruence. From a 3-way array A we can
also construct a cubic form (=homogeneous degree 3 polynomial)

∑
i,j,k A(i, j, k)xixjxk,

where xi are formal variables. If we consider the variables as commuting – or, equivalently,
if A is symmetric, meaning it is unchanged by permuting its three indices – we get an
ordinary cubic form; if we consider them as non-commuting, we get a trilinear form (or
“non-commutative cubic form”). In either case, the natural notion of isomorphism here comes
from the action of GL(n,F) on the n variables xi, in which P ∈ GL(n,F) transforms the
preceding form into

∑
ijk A(i, j, k)(

∑
i′ Pii′xi′)(

∑
j′ Pjj′xj′)(

∑
k′ Pkk′xk′). In terms of 3-way

arrays, we get (P · A)(i′, j′, k′) =
∑

ijk A(i, j, k)Pii′Pjj′Pkk′ . The corresponding isomorphism
problems are called Cubic Form Equivalence (in the commutative case) and Trilinear
Form Equivalence. This is identical to the Tensor Congruence problem from [59]
(where they worked over R).

Matrix spaces. Given a 3-way array A, it is natural to consider the linear span of its frontal
slices, A = 〈A1, . . . , Am〉, also called a matrix space. One convenience of this viewpoint
is that the action of GL(m,F) becomes implicit: it corresponds to change of basis within
the matrix space A. This allows us to generalize the three natural equivalence relations on
matrices to matrix spaces: (1) two `× n matrix spaces A and B are equivalent if there exists
(P,Q) ∈ GL(`,F)×GL(n,F) such that PAQ = B, where PAQ := {PAQ : A ∈ A}; (2) two
n× n matrix spaces A,B are conjugate if there exists P ∈ GL(n,F) such that PAP−1 = B;
and (3) they are isometric if PAP t = B. The corresponding decision problems, when A is
given by a basis A1, . . . , Ad, are Matrix Space Equivalence, Matrix Space Conjugacy,
and Matrix Space Isometry, respectively.

Isomorphism of quadratic polynomials with 2 secrets. For a tuple of homogeneous
quadratic polynomials (over a field of characteristic not 2) ~f = (f1, . . . , fm), we may encode
fi by a symmetric matrix Fi in the usual way – where fi(x) = xtFix – and thus obtain a
tuple of (symmetric) matrices (F1, . . . , Fm). Since, in the IP2S problem, we are also allowed
to take linear combinations of the fi themselves, we see that the IP2S problem is equivalent
to the Matrix Space Isometry problem for 〈F1, . . . , Fm〉. Equivalently, the action of
(P,Q) ∈ GL(m,F)×GL(n,F) is by Fi 7→

∑
j PijQ

tFjQ.

Finite p-groups. If we consider the quadratic polynomials fi as defining a (symmetric)
bilinear map Fn × Fn → Fm, we may generalize to see that (not necessarily symmetric)
bilinear maps arise naturally in other areas, notably in group theory. For matrices Ak

over Fp, p an odd prime, we may consider Matrix Space Isometry for the matrix space
〈A1, . . . , Am〉. Two bilinear maps that are essentially the same up to such basis changes are
sometimes called pseudo-isometric [17].

4 Some authors call this Tensor Equivalence; we use “Isomorphism” both because this is the natural
notion of isomorphism for such objects, and because we will be considering many different equivalence
relations on essentially the same underlying objects.
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When the Ak are skew-symmetric, Baer’s correspondence [9] gives a bijection between
finite p-groups of class 2 and exponent p, that is, in which gp = 1 for all g and in which
[G,G] ≤ Z(G), and their corresponding skew-symmetric bilinear maps G/Z(G)×G/Z(G)→
[G,G], given by (gZ(G), hZ(G)) 7→ [g, h] = ghg−1h−1. Two such groups are isomorphic if
and only if their corresponding bilinear maps are pseudo-isometric, if and only if, using the
matrix space terminology, the matrix spaces they span are isometric.

Bilinear maps. If we generalize even further to bilinear maps U × V → W , we find that
from an ` × n × m 3-way array A, we can construct such a bilinear map (=system of m
bilinear forms) fA : F` × Fn → Fm, sending (u, v) ∈ F` × Fn to (utA1v, . . . , u

tAmv)t, where
the Ak are the frontal slices of A. The group action defining Matrix Space Equivalence
is equivalent to the action of GL(`,F)×GL(n,F)×GL(m,F) on such bilinear maps. This
problem was recently studied under the name “testing isotopism of bilinear maps” in [13], in
the context of testing isomorphism of graded algebras.

Algebras. We may also consider a 3-way array A(i, j, k), i, j, k ∈ [n], as the structure
constants of an algebra (which need not be associative, commutative, nor unital), say
with basis x1, . . . , xn, and with multiplication given by xi · xj =

∑
k A(i, j, k)xk, and

then extended (bi)linearly. Here the natural notion equivalence comes from the action
of GL(n,F) by change of basis on the xi. Despite the seeming similarity of this ac-
tion to that on cubic forms, it turns out to be quite different: given P ∈ GL(n,F),
let ~x′ = P~x; then we have x′i · x′j = (

∑
i Pi′ixi) · (

∑
j Pj′jxj) =

∑
i,j Pi′iPj′jxi · xj

=
∑

i,j,k Pi′iPj′jA(i, j, k)xk =
∑

i,j,k Pi′iPj′jA(i, j, k)
∑

k′(P−1)kk′xk′ . Thus A becomes (P ·
A)(i′, j′, k′) =

∑
ijk A(i, j, k)Pi′iPj′j(P−1)kk′ . The inverse in the third factor here is the

crucial difference between this case and that of cubic or trilinear forms above, similar to the
difference between matrix conjugacy and matrix isometry. The corresponding isomorphism
problem is called Algebra Isomorphism.

Summary. The isomorphism problems of the above structures all have 3-way arrays as the
underlying object, but are determined by different group actions. It is not hard to see that
there are essentially five group actions in total: 3-Tensor Isomorphism, Matrix Space
Conjugacy, Matrix Space Isometry, Trilinear Form Equivalence, and Algebra
Isomorphism. It turns out that these cover all the natural isomorphism problems on 3-way
arrays in which the group acting is a product of GL(n,F) (where n is the side length of the
arrays); see the full version [32] for a detailed discussion.

5.2 Full statement of main results
I Theorem A. For any fixed d ≥ 1, d-Tensor Isomorphism reduces to Algebra Iso-
morphism.

Combined with the results of [26], this immediately gives:

I Corollary A. For any fixed d ≥ 1, d-Tensor Isomorphism reduces to 3-Tensor Iso-
morphism.

Given the viewpoint of Section 5.1 on the problems from Section 2, to show that they are
equivalent, it is enough to show that the isomorphism problems for 3-way arrays corresponding
to the five group actions are equivalent, where 3-way arrays may also need to satisfy certain
structural constraints (e.g., the frontal slices are symmetric or skew-symmetric). This is the
content of our second main result.
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I Theorem B. 3-Tensor Isomorphism reduces to each of the following problems in
polynomial time.

1. Group Isomorphism for p-groups exponent p (gp = 1 for all g) and class 2 (G/Z(G) is
abelian) given by generating matrices over Fpe . Here we consider only 3TIFpe where p is
an odd prime.

2. Matrix Space Isometry, even for alternating or symmetric matrix spaces.
3. Matrix Space Conjugacy, and even the special cases:

a. Matrix Lie Algebra Conjugacy, for solvable Lie algebras L of derived length 2.5
b. Associative Matrix Algebra Conjugacy.6

4. Algebra Isomorphism, and even the special cases:
a. Associative Algebra Isomorphism, for algebras that are commutative and unital,

or for algebras that are commutative and 3-nilpotent (abc = 0 for all a, b, c,∈ A)
b. Lie Algebra Isomorphism, for 2-step nilpotent Lie algebras ([u, [v, w]] = 0 ∀u, v, w)

5. Cubic Form Equivalence and Trilinear Form Equivalence.

The algebras in (3) are given by a set of matrices which linearly span the algebra, while in
(4) they are given by structure constants (see “Algebras” in Sec. 5.1).

Since the main result of [26] reduces the problems in Theorem B to 3-Tensor Isomorph-
ism (cf. [26, Rmk. 1.1]), we have:

I Corollary B. Each of the problems listed in Theorem B is TI-complete.7

I Remark 7. Here is a brief summary of what is known about the complexity of some of
these problems. Over a finite field Fq, these problems are in NP∩ coAM. For `×n×m 3-way
arrays, the brute-force algorithms run in time qO(`2+n2+m2), as GL(n,Fq) can be enumerated
in time qΘ(n2). Note that polynomial-time in the input size here would be poly(`, n,m, log q).
Over any field F, these problems are in NPF in the Blum–Shub–Smale model. When the input
arrays are over Q and we ask for isomorphism over C or R, these problems are in PSPACE
using quantifier elimination. By Koiran’s celebrated result on Hilbert’s Nullstellensatz, for
equivalence over C they are in AM assuming the Generalized Riemann Hypothesis [44]. When
the input is over Q and we ask for equivalence over Q, it is unknown whether these problems
are even decidable; classically this is studied under Algebra Isomorphism for associative,
unital algebras over Q (see, e. g., [2, 60]), but by Cor. B, the question of decidability is open
for all of these problems.

Over finite fields, several of these problems can be solved efficiently when one of the side
lengths of the array is small. For d-dimensional spaces of n× n matrices, Matrix Space
Conjugacy and Isometry can be solved in qO(n2) · poly(d, n, log q) time: once we fix an
element of GL(n,Fq), the isomorphism problem reduces to solving linear systems of equations.
Less trivially, Matrix Space Conjugacy can be solved in time qO(d2) · poly(d, n, log q) and
3TI for n×m× d tensors in time qO(d2) · poly(d, n,m, log q), since once we fix an element
of GL(d,Fq), the isomorphism problem either becomes an instance of, or reduces to [38],
Module Isomorphism, which admits several polynomial-time algorithms [15, 22, 37, 67].
Finally, one can solve Matrix Space Isometry in time qO(d2) · poly(d, n, log q): once one
fixes an element of GL(d,Fq), there is a rather involved algorithm [38], which uses the
∗-algebra technique originated from the study of computing with p-groups [17,69].

5 And even further, where L/[L, L] ∼= F.
6 Even for algebras A whose Jacobson radical J(A) squares to zero and A/J(A) ∼= F.
7 For Cubic Form Equivalence, we only show that it is in TIF when charF > 3 or charF = 0.
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6 Implications, more related works, and further discussions

6.1 An implication to quantum information
Quantum information is the study of information-theoretic properties of quantum states and
channels, such as entanglement, non-classical correlations, and the uses of quantum states and
channels for various computational tasks. A pure quantum particle takes states in a Hilbert
space (=complex vector space, along with an inner product) V ; a pure multi-particle system
takes states in the tensor product of the corresponding Hilbert spaces V1 ⊗ V2 ⊗ · · · ⊗ Vk.

A fundamental relation between k-partite quantum states is that of equivalence under
stochastic local operations and classical communication (SLOCC) [10, 23]. If we imagine
each particle is held by a different party, a “local operation” is an operation that a single
party i can perform on its state in Vi. Although the definition of SLOCC involves combining
this with classical communication, an equivalent definition is that two k-particle states
ψ, φ ∈ V1 ⊗ · · · ⊗ Vk are SLOCC-equivalent if they are in the same orbit under the action
of the product of general linear groups GL(V1) × GL(V2) × · · · × GL(Vk) [23].8 Deciding
SLOCC equivalence (of un-normalized quantum states) is thus precisely the same as TI.

In this light, we may interpret our Thm. A as saying that SLOCC equivalence classes
for k-partite entanglement can be simulated by SLOCC equivalence classes of tripartite
entanglement. This might at first seem surprising, since bipartite entanglement is much
better understood than tripartite or higher entanglement, so one might naively expect that
4-partite entanglement should be more complicated than tripartite, and so on. Our results
show that in fact the tripartite case is already universal. This may be compared with a
recent result in [72], which gives a transformation of multipartite states to a set of tripartite
or bipartite states, interrelated by a tensor network, whereas our reduction produces a single
tripartite state.

6.2 Further related works
While most of the related works have already been introduced before, we collect some of the
key ones here for further discussions and comparisons.

The most closely related work is that of Futorny, Grochow, and Sergeichuk [26]. They
show that a large family of isomorphism problems on 3-way arrays – including those involving
multiple 3-way arrays simultaneously, or 3-way arrays that are partitioned into blocks, or
3-way arrays where some of the blocks or sides are acted on by the same group (e. g., Matrix
Space Isometry) – all reduce to 3TI. Our work complements theirs in that all our reductions
for Thm. B go in the opposite direction, reducing 3TI to other problems. Furthermore, the
resulting 3-way arrays from our reductions for Thm. B usually satisfy certain structural
constraints, which allows for versatile mathematical interpretations. Some of our other results
relate GI and Code Equivalence to 3TI; the latter problems were not considered in [26].
Thm. A considers d-tensors for any d ≥ 3, which were not considered in [26].

In [1, 2], Agrawal and Saxena considered Cubic Form Equivalence and testing iso-
morphism of commutative, associative, unital algebras. They showed that GI reduces to
Algebra Isomorphism; Commutative Algebra Isomorphism reduces to Cubic Form

8 Some authors use the action by the product of special linear groups SL(Vi) instead, but the difference
is actually that physicists typically consider normalized quantum states, which are elements in the
corresponding projective space P(V1 ⊗ · · · ⊗ Vk). Because the difference between SL(Vi) and GL(Vi) is
merely scalar matrices, and scalar matrices act trivially on projective space, the equivalence relation is
the same.
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Equivalence; and Homogeneous Degree-d Form Equivalence reduces to Algebra
Isomorphism assuming that the underlying field has dth root for every field element. By
combining a reduction from [26] and our main Theorem B, we get a new reduction from
Cubic Form Equivalence to Algebra Isomorphism that works over any field in which
3! is a unit, which is fields of characteristic 0 or p > 3.

There are several other works which consider related isomorphism problems. Grigoriev [29]
showed that GI is equivalent to isomorphism of unital, associative algebras A such that the
radical R(A) squares to zero and A/R(A) is abelian. Interestingly, we show TI-completeness
for conjugacy of matrix algebras with the same abstract structure (even when A/R(A) is only
1-dimensional). Note the latter problem is equivalent to asking whether two representations
of A are equivalent up to automorphisms of A. The proof of Thm. A uses algebras in which
R(A)d = 0 when reducing from dTI; it also uses Grigoriev’s result in one step.

Brooksbank and Wilson [18] showed a reduction from Associative Algebra Isomorph-
ism (when given by structure constants) to Matrix Algebra Conjugacy. Grochow [30],
among other things, showed that GI and CodeEq reduce to Matrix Lie Algebra Con-
jugacy, which is a special case of Matrix Space Conjugacy.

In [42], Kayal and Saxena considered testing isomorphism of finite rings when the rings
are given by structure constants. This problem generalizes testing isomorphism of algebras
over finite fields. They put this problem in NP ∩ coAM [42, Thm. 4.1], reduce GI to this
problem [42, Thm. 4.4], and prove that counting the number of ring automorphism (#RA)
is in FPAM∩coAM [42, Thm. 5.1]. They also present a ZPP reduction from GI to #RA, and
show that the decision version of the ring automorphism problem is in P.

6.3 Combinatorial and group-theoretic techniques for GI and TI
Comparing with Graph Isomorphism also offers one way to see why isomorphism problems
for 3-way arrays are difficult. Indeed, the techniques for GI face great difficulty when
dealing with isomorphism problems for multi-way arrays. Recall that most algorithms for
GI, including Babai’s [5], are built on two families of techniques: group-theoretic, and
combinatorial. One of the main differences is that the underlying group action for GI is
a permutation group acting on a combinatorial structure, whereas the underlying group
actions for isomorphism problems for 3-way arrays are matrix groups acting on (multi)linear
structures.

Already in moving from permutation groups to matrix groups, we find many new compu-
tational difficulties that arise naturally in basic subroutines used in isomorphism testing. For
example, the membership problem for permutation groups is well-known to be efficiently
solvable by Sims’s algorithm [68] (see, e. g., [65] for a textbook treatment), while for matrix
groups this was only recently shown to be solvable with a number-theoretic oracle over
finite fields of odd characteristic [6]. Correspondingly, when moving from combinatorial
structures to (multi)linear algebraic structures, we also find severe limitation on the use
of most combinatorial techniques, like individualizing a vertex. For example, it is quite
expensive to enumerate all vectors in a vector space, while it is usually considered efficient to
go through all elements in a set. Similarly, within a set, any subset has a unique complement,
whereas within Fn

q , a subspace can have up to qΘ(n2) complements.
Given all the differences between the combinatorial and linear-algebraic worlds, it may

be surprising that combinatorial techniques for Graph Isomorphism can nonetheless be
useful for Group Isomorphism. Indeed, Li and Qiao [46] adapted the individualisation
and refinement technique, as used by Babai, Erdős and Selkow [8], to tackle Alternating
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Matrix Space Isometry over Fq. This algorithm was recently shown [14] to practically
improve over the default algorithms in Magma [12]. However, this technique, though
helpful to improve from the brute-force qn2 · poly(n, log q) time, seems still limited to getting
average-case qO(n)-time algorithms.

6.4 Outlook

In light of Babai’s breakthrough on GI [5], it is natural to consider “what’s next?” for
isomorphism problems. That is, what isomorphism problems stand as crucial bottlenecks to
further improvements on GI, and what isomorphism problems should naturally draw our
attention for further exploration? Of course, one of the main open questions in the area
remains whether or not GI is in P. Babai [5, arXiv ver., Sec. 13.2 & 13.4] already lists several
isomorphism problems for further study, including Group Isomorphism, Permutational
Code Equivalence (of linear codes), and Permutation Group Conjugacy. The reader
may see where these sit in Fig. 1.

Based on the results above, we propose TI as a natural problem to study, both “after”
GI, and to make further progress on GI itself. In particular, TI stands as a key bottleneck to
put GI in P, because of the following. First, Babai suggested [5] that Group Isomorphism
(GpI) in the Cayley table model is a key bottleneck9 to putting GI into P. Second, it
has been long believed that p-groups of class 2 and exponent p are the hardest cases of
GpI (for a number of reasons, see, e. g., [9, 36,66,71]). Third, by Baer’s correspondence [9],
isomorphism for such groups is equivalent10 to Alternating Matrix Space Isometry
(see Section 5.1). Finally, by our main Thm. B, Alternating Matrix Space Isometry
over Fpe is TIFpe -complete.

This then relates TI over finite fields to the believed-to-be-hardest instances of GpI,
which in turn, as Babai suggested, is a key bottleneck for further progress on GI. We thus
view the study of TI as a natural continuation of the study of GI. Furthermore, the main
techniques for GI, namely the group-theoretic techniques and the combinatorial ones, also
have corresponding techniques in the TI setting, although they are perhaps more complicated
and less efficient than in the setting of GI. We explain this in detail in Sec. 6.

This theory for TI is far from complete, and many questions remain, largely inspired
by the study of GI. In the full version [32, Section 10.1], we discuss a possible theory of
universality for basis-explicit linear structures, in analogy with the universality of GI for
explicit combinatorial structures [73, Section 15]. While not yet complete, this is another
exciting reason to study Tensor Isomorphism and related problems, and it motivates some
interesting open questions. Then we pose several natural open problems.

9 Indeed, the current-best upper bounds on these two problems are now quite close: nO(log n) for GpI
(originally due to [24, 53] – Miller attributes this to Tarjan – with improved constants [62,63, 70]), and
nO(log2 n) for GI [5] (see [35] for calculation of the exponent).

10 Specifically, solving Alternating Matrix Space Isometry over Fp in time pO(n+m) is equivalent to
testing isomorphism for p-groups of class 2 and exponent p in time polynomial in the group order, i.e.
polynomial time in the Cayley table model.
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Figure 1 Summary of key isomorphism problems. A→ B indicates that A reduces to B, i. e.,
A ≤p

m B. A⇒ B indicates a new result. Unattributed arrows indicate A is clearly a special case
of B. Note that the definition of ring used in [1] is commutative, finite, and unital; by “algebra”
we mean an algebra (not necessarily associative, let alone commutative nor unital) over a field.
The reductions between Ring Iso. (in the basis representation) and Degree-d Form Eq. and
Unital Associative Algebra Isomorphism are for rings over a field. The equivalences between
Alternating Matrix Space Isometry and p-Group Isomorphism are for matrix spaces over
Fpe . Some TI-complete problems from Thm. B are left out for clarity.

* These results only hold over fields where every element has a dth root. In particular, Degree d

Form Equivalence and Symmetric d-Tensor Isomorphism are TI-complete over fields with d-th
roots. A finite field Fq has this property if and only if d is coprime to q − 1.
† These results only hold over rings where d! is a unit.
‡Assuming the Generalized Riemann Hypothesis, Rónyai [61] shows a Las Vegas randomized
polynomial-time reduction from factoring square-free integers – probably not much easier than the
general case – to isomorphism of 4-dimensional algebras over Q. Despite the additional hypotheses,
this is notable as the target of the reduction is algebras of constant dimension, in contrast to all
other reductions in this figure.
F Refers to numbers in the full version [32].
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