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Abstract—In this paper, the emerging orthogonal time fre-
quency space (OTFS) modulation is firstly restructured as a
precoded orthogonal frequency division multiplexing (OFDM)
system, so that the well established frequency-domain approach
can be applied to perform signal in fast fading channels. Then
a frequency-domain minimum mean squared error (MMSE)
equalizer for OTFS is introduced and its performance is analyzed
based on the eigenvalue decomposition of the channel matrix. In-
spired by the frequency-domain precoding structure, an adaptive
transmission scheme with frequency-domain precoding matrix
composed of the eigenvectors of the channel matrix is proposed
to improve the system performance under MMSE equalization,
and its optimized performance is derived with simple expression.
Finally, considering two extreme channel conditions, the lower
and upper bounds for the diversity performance of the adaptive
transmission scheme are derived. Simulation results show that
the proposed adaptive transmission achieves significantly better
performance for short signal frames and can work well with
imperfect channel state information (CSI). The derived perfor-
mance bounds can serve as benchmarks for OTFS and other
precoded OFDM systems.

Index Terms—Fast fading channel, OTFS, precoded OFDM,
diversity, MMSE

I. INTRODUCTION

THE emerging next generation communication techniques
require higher system capacity and robust diversity per-

formance. To provide high-speed and reliable connections
globally, the current communication networks are evolving
towards the integrated space and terrestrial networks (ISTNs).
In ISTNs, the satellites, aircrafts and vehicles are always in
a state of relative motion [1]–[3]. Therefore, the ability for
a transmission scheme to cope with fast fading channels due
to Doppler effect is critically important for ISTNs and other
future communication systems.

Conventional multicarrier transmission schemes, such as or-
thogonal frequency division multiplexing (OFDM), are prone
to intercarrier interference (ICI) caused by Doppler effect in
fast fading channels. Therefore, ICI mitigation techniques are
necessary, and can be grouped into two categories. The first
category focuses on OFDM transmitter design, such as the
ICI self cancellation techniques [4], [5]. The other category
is ICI cancellation at the receiver, including the efforts on
channel estimation and equalization. Kalman filter [6], [7],

H. Zhang, X. Huang and J. Andrew Zhang are with the School of
Electrical and Data Engineering, University of Technology Sydney, Ultimo,
NSW, 2007, Australia (emails: Hongyang.Zhang-1@student.uts.edu.au, Xiao-
jing.Huang@uts.edu.au, and Andrew.Zhang@uts.edu.au).

Bayesian methods [8]–[10] and maximum-likelihood (ML)
detection [11] have been adopted for channel tracking and
estimation. Besides, optimized equalizations are also proposed
using soft-Kalman filter [12] and linear minimum mean square
error (LMMSE) methods [13]. However, when the Doppler
frequency shift is significant and channel coherent time be-
comes much smaller than the signal frame length, the lack
of the capability for achieving full time diversity limits the
performance of conventional modulations in such fast fading
channels.

The orthogonal time frequency space (OTFS) modulation
shows outstanding performance in fast fading channels [14],
[15]. Previous research has demonstrated that OTFS can
exploit both time and frequency diversity since it modulates
the signals in delay-Doppler domain with inverse symplectic
finite Fourier transform (ISFFT). Recent works are mainly
focused on the development of estimation and equalization
algorithms, such as Markov chain Monte Carlo (MCMC) in
[16], message passing (MP) in [17]–[20] and LMMSE in [21]–
[24]. Existing studies have disclosed the performance of OTFS
systems with the applications of high-complexity and optimal
maximal likelihood (ML) detectors [25]–[27]. However, the
study on low-complexity and more practical linear equalizers
for OTFS is still very limited, not to mention further analytical
performance characterization for these equalizers.

In this paper, we propose an adaptive transmission based on
frequency-domain precoding and minimum mean square error
(MMSE) equalization, which can be used as a general solution
to communications over fast fading channels, including OTFS,
and conduct detailed performance analysis of it. We first
review the representations of fast fading channels in different
domains. The frequency-domain received signal model is
adopted due to its concise stripe diagonal structure of the
frequency-Doppler domain channel matrix. We then formulate
OTFS as a more general precoded OFDM system so that the
low-complexity frequency-domain approach can be applied to
analyze its performance. Note that many conventional mod-
ulations can also be regarded as a kind of precoded OFDM,
such as the single carrier system with frequency domain equal-
ization (SC-FDE). Although OTFS can achieve full diversity
in both time and frequency domains using ML equalization,
the high complexity of ML algorithm makes it infeasible in
practical application. Therefore, we introduce a more prac-
tical frequency-domain MMSE equalization with much lower
computational complexity compared with time-domain MMSE
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and iterative equalizers such as the MP. To optimize the
system performance, we design the precoding matrix based
on the eigenvalue decomposition of the channel matrix so
that an adaptive transmission is obtained. Simulation results
demonstrate that even with imperfect channel state information
(CSI) feedback, the adaptive transmission still achieves better
performance than OTFS evaluated under both 4-quadrature
amplitude modulation (QAM) and 16-QAM schemes. The bit-
error-rate (BER) lower bound and upper bound are also derived
for the proposed adaptive transmission under two extreme
channel conditions, taking into consideration of significantly
large numbers of multipaths and Doppler frequency shifts. The
main contributions of this paper are summarized as follows.
• First, a frequency-domain signal model with circular

stripe diagonal frequency-Doppler domain channel matrix
is derived for arbitrary multipath delays and Doppler
shifts. This model enables low complexity equalizers to
be developed to combat fast channel fading, paving the
way for deploying new modulation techniques such as
OTFS in practical systems for high mobility applications.

• Second, OTFS is proved to be equivalent to a general
precoded OFDM scheme as many other conventional
modulations are. This allows well-established receiver
design and performance analysis techniques for precoded
OFDM to be applied to OTFS.

• Third, an adaptive transmission scheme is proposed to
optimize the system performance with the knowledge
of CSI. Even with imperfect channel estimation, the
adaptive transmission still outperforms OTFS under the
same MMSE equalization. This method also achieves
significant improvement over conventional OFDM and
SC-FDE, which use shorter transmission frames than
those of OTFS.

• Fourth, closed-form lower and upper performance bounds
are derived for the adaptive transmission to show the
theoretical limits of the MMSE equalization over fast
fading channels. These bounds provide guidelines for
transmission system design and also set up the bench-
marks for OTFS system performance analysis.

The rest of the paper is organized as follow. In Section II,
the fast fading channel representation in frequency-Doppler
domain is developed and the OTFS modulation is formulated
as a precoded OFDM system. In Section III, the performance
of OTFS under MMSE equalization is analyzed, using a gen-
eral frequency-domain approach. In Section IV, the optimized
adaptive transmission is proposed and the theoretical BER
lower and upper bounds are derived. Simulation results are
provided in Section V to verify the theoretical analyses and to
compare the performance among the proposed adaptive trans-
mission and other conventional systems. Finally, conclusions
are drawn in Section VI.

II. CHANNEL AND SYSTEM MODELS

In this section, different channel representations in fast
fading channels are first developed. Then, OTFS modulation
is reviewed and recast as a precoded OFDM system, enabling
low-complexity equalization and closed-form performance
analysis.

Fig. 1. Relationships among channel representations in different domains.

A. Fast Fading Channel Models

In fast fading channels, both the time delays and the Doppler
frequency shifts in multipath environment affect the trans-
mission performance. Assuming a single-input-single-output
(SISO) system, the received signal in the continuous-time
domain can be expressed as

r (t) =

∫ +∞

−∞

∫ +∞

−∞
h (τ, ν) s (t− τ) ej2πνtdτdν + w (t) ,

(1)

where s(t) is the transmitted signal, h(τ, ν) is the delay-
Doppler spreading function of the fast fading channel, j =√
−1 and w(t) is the additive white Gaussian noise (AWGN).

For a sparse P -path channel, h(τ, ν) is defined as

h(τ, ν) =

P∑
i=1

hiδ(τ − τi)δ(ν − νi), (2)

where hi, τi, and νi are the path gain, delay and Doppler
shift of the i-th path, respectively, and δ(·) denotes the Dirac
delta function. According to the above delay-Doppler channel
model, we can also derive the representations of the fast fading
channel in other domains with the help of Fourier transform
(FT) and inverse Fourier transform (IFT). Applying IFT to
h(τ, ν) with respect to the Doppler frequency shift ν, the
delay-time channel representation can be expressed as

ht(τ, t) =

∫ +∞

−∞
h(τ, ν)ej2πνtdν. (3)

Applying FT to h(τ, ν) with respect to delay τ , the frequency-
Doppler representation can be expressed as

Hν(f, ν) =

∫ +∞

−∞
h(τ, ν)e−j2πfτdτ. (4)

Applying FT and IFT to h(τ, ν) with respect to τ and ν re-
spectively, the frequency-time representation can be expressed
as

H(f, t) =

∫ +∞

−∞

∫ +∞

−∞
h(τ, ν)ej2πνte−j2πfτdτdν. (5)

The relationships among the channel representations in differ-
ent domains are depicted in Fig. 1.
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Applying FT to r(t) in (1), the frequency-domain received
signal can be modeled as

R(f) =

∫ +∞

−∞
r(t)e−j2πftdt+W (f)

=

∫ +∞

−∞

∫ +∞

−∞
H(f ′, t)e−j2π(f−f ′)tdtS(f ′)df ′ +W (f)

=

∫ +∞

−∞
Hν(f ′, f − f ′)S(f ′)df ′ +W (f), (6)

where S(f) is the FT of s(t) and W (f) is the AWGN in the
frequency domain.

In the discrete-time domain, the transmitted signal can be
expressed as s[i] = s(idr), i = 0, 1, ...,MN − 1, where dr is
the delay resolution or the sampling period. Assuming that
the maximum delay in the multipath channel is dmax, the
maximum number of resolvable multipaths can be expressed
as Lmax = ddmax/dre, where d·e denotes the ceiling function
to obtain the rounded up number, with the required minimum
channel bandwidth of 1/dr. Denoting fr as the Doppler reso-
lution and fmax as the maximum Doppler frequency shift, the
maximum number of positive resolvable Doppler frequencies
can be expressed as Kmax = dfmax/fre over a minimum
frame length of 1/fr for the transmitted signals. Note that
there are both positive and negative Doppler frequency shifts
in the fast fading channel, which means that the Doppler
resolution range is [−Kmax,Kmax].

In this paper, we concentrate on the system analysis in the
frequency-domain. From (4), the discrete frequency-Doppler
domain channel representation can be expressed as

Hν [i, j] = Hν(if∆, v̄j) =

∫
H(i∆f, t)e−j2πv̄jtdt, (7)

Here, f∆ denotes the subcarrier frequency spacing and v̄j is
the j-th quantized Doppler frequency. Denoting the transmitted
and received signal sequences in the discrete-frequency do-
main as S and R respectively, the discrete-frequency domain
received signal can be expressed from (6) in matrix form as

R = HνS + W, (8)

where W denotes the frequency-domain noise vector and Hν

is the frequency-Doppler domain channel matrix expressed as

Hν =


Hν [0, 0] · · · Hν [MN − 1, 1]
Hν [0, 1] · · · Hν [MN − 1, 2]

...
. . .

...
Hν [0,MN − 1] · · · Hν [MN − 1, 0]

 . (9)

Through (7), (5) and (2), Hν [i, j] can be obtained given
arbitrary hi, τi and νi in any sparse P -path channel.

Fig. 2 shows the construction of (9), in which the shaded
squares show the non-zero elements in the matrix, whereas the
blank squares show the zero elements. Note that, due to the
discretization of Hν(f ′, ν) as shown in (7), Hν [i, j] is period-
ical in the Doppler domain represented by the index j. When
the Doppler frequency shift ν is confined in [−Kmax,Kmax],
after the coordination transform ν = f − f ′, the Doppler shift
values appear in the diagonal stripe of width 2Kmax + 1 on
the f -f ′ plane. We observe that the frequency-Doppler domain

Fig. 2. Construction of channel matrix Hν from Hν [i, j].

channel matrix demonstrates a stripe diagonal structure with
stripe width 2Kmax + 1. This stripe diagonal structure can
reduce the receiver signal processing complexity significantly.
Similar characteristic in the frequency-domain channel model
for OFDM system has also been reported in [28] without
explicitly linking the channel matrix to the frequency-time
domain channel representation. Therefore, the conventional
channel model, such as the one in [28], is only suitable for
on-grid path delays and Doppler shifts.

B. OTFS as Precoded OFDM

In the original OTFS system, the data symbols after constel-
lation mapping are arranged in a two dimensional (2D) M×N
matrix X [14], where M denotes the number of elements
in delay dimension, N denotes the number of elements in
Doppler dimension, and X ∈ CM×N . In vector form, the data
symbols to be transmitted can be expressed as x = vec(X)
where vec(·) is the vectorizing function. After ISFFT, Heisen-
berg transform and the pulse shaping, the time-domain signal
is transmitted through the fast fading channel. Assuming the
pulse shaping operation is a rectangular window function, the
signal matrix to be sent into the channel can be expressed as

D = FH
M (FMXFH

N ) = XFH
N , (10)

where D is an M ×N matrix, FN denotes N -point FFT ma-
trix. The time-domain signal to be transmitted is the vectorized
data matrix D expressed as

s = vec(D) = (FH
N ⊗ IM )x, (11)

where s is an MN × 1 vector, ⊗ denotes Kronecker product.
From (8) and (11), the received frequency-domain signal can
be expressed as

R = HνFMN (FH
N ⊗ IM )x + W. (12)

According to the Cooley-Tukey general factorization, the
MN -point discrete Fourier transform (DFT) FMN can be
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Fig. 3. OTFS system block diagram in precoded OFDM form: (a) transmitter
and (b) receiver. S/P and P/S stand for serial-to-parallel and parallel-to-serial
conversions respectively, and CP stands for cyclic prefix.

factorized as two smaller DFTs in terms of sizes M and N ,
which can be expressed as

FMN = PM,N (IN ⊗ FM )diag(e−j
2π
MN (i)Mb iM c)(FN ⊗ IM ),

(13)

where diag(xi), i = 0, ...,MN−1, denotes a diagonal matrix
with the i-th diagonal element xi, (·)M denotes modulo M
operation, b·c denotes flooring operation and PM,N denotes
a permutation matrix of dimension MN ×MN . The permu-
tation matrix equivalently performs the interleaving operation
that reads the elements in the matrix column-wise and stacks
them to a matrix row-wise. Therefore, based on (12) and (13),
the received frequency-domain signal becomes

R = HνPM,N (IN ⊗ FM )diag(e−j
2π
MN (i)Mb iM c)x + W

(14)

and the OTFS system can be transformed into a precoded
OFDM system as illustrated in Fig. 3, where (IN ⊗ FM ) is
the precoding matrix, which is also an unitary matrix, and
x̃ = diag(e−j

2π
MN (i)Mb iM c)x is the twiddled signal vector.

Note that the twiddling will only affect the phase of the
symbol, and will not affect the signal detection and the
BER performance after de-twiddling at the receiver. Excluding
the twiddling at the transmitter and the de-twiddling at the
receiver, Fig. 3 shows a typical precoded OFDM system
[29]. The similarity between these two modulations allows
us to use well developed methods in the diversity and perfor-
mance bound analyses, which can be equally applied to both
OTFS and precoded OFDM. Note that the precoded OFDM
has demonstrated superb frequency diversity over frequency-
selective slow fading channels in previous research works,
but its performance over fast fading channels has not been
explored yet. The analysis in the following section will show
that the precoded OFDM, or similarly the OTFS, is also
capable of achieving full time diversity.

III. OTFS PERFORMANCE ANALYSIS

In this section, the diversity performance of OTFS is ana-
lyzed with ML and linear equalization respectively.

A. Diversity with ML Equalization
To recover the signal at the receiver, two main categories of

equalization techniques can be adopted. The first class is the
maximum likelihood sequence estimation (MLSE), which is
based on Viterbi algorithm and the Maximum A Posteriori
Probability (MAP) detection. It is the optimal equalization
method to recover the corrupted signals, but it has significant
computational complexity exponential to the channel memory
length. The second class is the linear equalization such as zero
forcing (ZF) and MMSE, which has much lower complexity
but the performance is also degraded.

We first analyze the diversity performance of OTFS based
on ML equalization. Assuming the CSI is perfectly known at
the receiver, the ML estimate of the data symbol x can be
obtained by minimizing

(R−HνFMN (FH
N ⊗ IM )x̂)H(R−HνFMN (FH

N ⊗ IM )x̂),
(15)

through exhaustive search from all possible data vectors x̂
[30]. The results in [25]–[27] show that OTFS can achieve
full diversity through symbol rotation. Here, we characterize
the diversity from another perspective. Assuming the received
signal in the time-domain at the receiver is y, we can obtain
the received signal-to-noise ratio (SNR) through separately
analyzing the signal and noise powers in E{yyH}. Except for
a constant scaling factor, the received SNR can be expressed
as

γ ∝
L−1∑
l=0

Kmax∑
k=−Kmax

|h[l, k]|2 · σ
2
s

σ2
w

. (16)

where σ2
s is the transmitted signal power, σ2

w is the noise
power, h[l, k] is the discrete-time form of h(τ, ν), sampled
at τ = ldr and ν = kfr for l = 0, 1, ..., L − 1, k =
−Kmax, ...,Kmax. The derivation is provided in Appendix
A.

Therefore, the received SNR is proportional to the sum of
L× (2Kmax + 1) random variables |h[l, k]|2, from which we
can deduce that OTFS has the potential to achieve full diversity
in both time and frequency domain if all the random variables
are independent.

B. Performance Analysis for Linear Equalization
Although MLSE equalization can achieve optimal perfor-

mance, its complexity restricts its practical application. Since
linear equalization can be implemented with low complexity
in the frequency-domain, it is preferable in practice. In this
paper, the MMSE algorithm is adopted as the equalization
technique and its output SNR analysis is conducted in the
frequency-domain.

Assuming the CSI is perfectly known at the receiver, an
estimate of the transmitted signal in the discrete frequency-
domain can be expressed as

Ŝ = GνR = GνHνS + GνW, (17)

where Gν is the equalization matrix expressed as

Gν = HH
ν (HνH

H
ν +

1

γin
IMN )−1, (18)
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γin denotes the input SNR at the receiver. Assume that the
total number of data symbols to be transmitted is M ×N and
let x = (x[0], x[1], ..., x[MN − 1])T denote the data symbol
vector after the QAM symbol mapping. Let S = FMNVx
where V and VH denote the general modulation and demod-
ulation matrices under the precoded-OFDM system structure,
respectively, satisfying VVH = VHV = IMN . A general
representation of the received signals after MMSE equalization
is given by

y = VHFH
MN Ŝ

= VHFH
MNGνHνFMNVx + VHFH

MNGνW. (19)

Different modulation schemes can be realized by selecting
different V matrices. To be specific, when N = 1, V = FH

M

represents OFDM signals, and V = IM represents SC-FDE
signals. When N > 1, V = FH

N ⊗ IM represents OTFS
signals. Note that, for different modulations, frame lengths
and the sizes of channel matrices may be different. Here, the
modulations are divided into two cases, i.e., the long-frame
symbol modulation, such as OTFS with frame length MN
and MN×MN channel matrix, and short-frame modulations,
such as OFDM and SC-FDE with frame length M and M×M
channel matrix.

Defining A = VHFH
MNGνHνFMNV and using (18), we

can obtain

A = VHFH
MNHH

ν (HνH
H
ν +

1

γin
I)−1HνFMNV

= (I +
1

γin
(VHFH

MNHH
ν HνFMNV)−1)−1. (20)

Note that HH
ν Hν is a Hermitian matrix so that it can be

expressed using eigenvalue decomposition as

HH
ν Hν = QΛQH, (21)

where Q is a square MN × MN unitary matrix and Λ is
a diagonal matrix with the i-th diagonal element λi for i =
0, 1, ...,MN − 1. Further denoting U = VHFH

MNQ, we can
simplify A as

A = (I +
1

γin
UΛ−1UH)−1

= I−Udiag(
1

γinλi + 1
)UH. (22)

According to the MMSE equalization principle, the normalized
noise power for the (nM +m)-th equalized data symbol can
be expressed as

JnM+m = 1−A[nM +m,nM +m]

=

MN−1∑
i=0

1

γinλi + 1
|U[nM +m, i]|2. (23)

Therefore, the output SNR for the (nM +m)-th data symbol
after equalization can be expressed as

γout[m,n] =
1− JnM+m

JnM+m
=

1

JnM+m
− 1. (24)

Based on γout[m,n] and assuming QAM modulation for
data symbols, the average BER probability Pb for a given

channel realization can be evaluated for various modulation
levels [29] [30] [31]. Averaging over all possible fading
channel realizations, the ergodic BER for the fast fading
channel is expressed as Eh{Pb}, where Eh{·} denotes the
ensemble average over all delay-Doppler channel realizations.

From (24), the output SNR depends on the U matrix which
in turn depends on the modulation method V and the channel
matrix Hν . If V is not adaptive to Hν , the equalization perfor-
mance is obviously not optimized. Inspired by the similarity
between OTFS and precoded OFDM, we propose an adaptive
transmission strategy based on the eigenvalue analysis of the
channel to further optimize the transmission performance and
derive the BER bounds in the fast fading channels in the
following section.

IV. ADAPTIVE TRANSMISSION AND BER BOUNDS

In this section, a novel adaptive transmission scheme is
proposed based on frequency-domain precoding and MMSE
equalization. Then, the BER upper and lower bounds are
analyzed under different extreme channel conditions.

A. Adaptive Transmission

As can be seen from (23), after frequency-domain MMSE
equalization, the normalized noise power for each data symbol
is generally different from each other and affected by the
modulation matrix V and the unitary matrix Q obtained from
channel matrix eigenvalue decomposition. Assuming that the
CSI can be fed-back to the transmitter, we can adaptively
determine the modulation matrix V based on the channel
conditions to reduce the normalized noise power and hence
improve the output SNR of the equalization, resulting in
an adaptive transmission system. This can be achieved by
constructing the modulation matrix V such that U satisfies

|U[nM +m, i]|2 =
1

MN
, (25)

and the normalized noise power for the equalized data symbol
becomes

J =
1

MN

MN−1∑
i=0

1

γinλi + 1
, (26)

which is the same for all the data symbols. Therefore, the
optimized output SNR can be simplified as

γ∗out =
1

1

MN

MN−1∑
i=0

1

γinλi + 1

− 1. (27)

For a general precoded OFDM system, Eqs. (23) and (24)
show that the output SNR is related to the input SNR, eigenval-
ues of the channel, and the parameter U, which can be affected
by the modulation method V and unitary matrix Q of the
channel. However, after applying the adaptive transmission,
U is transformed to an IFFT matrix with constant magnitude
elements as shown in (25), and the output SNR is simplified
as shown in (27). Under this adaptive modulation, only the
input SNR and eigenvalues of the channel can affect the output
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Fig. 4. Adaptive transmission system block diagram: transmitter (a) and
receiver (b).

SNR. Moreover, note that the denominator of (27) is a sum of
1

γinλi+1 , because MMSE equalizer instead of zero forcing is
used here. Even if some channels have some zero eigenvalues,
no singularity will happen and the performance will not break
down. Therefore, the adaptive transmission is feasible under
all channel conditions.

Letting V = FH
MNQFMN and substituting it into U, we

have

U = FH
MNQHFMNFH

MNQ = FH
MN , (28)

and hence the condition (25) is satisfied. Therefore, the adap-
tive transmission system can be designed as shown in Fig.
4.

At the transmitter of the adaptive transmission, a sequence
of data symbols x[i], i = 0, 1, ...,MN − 1 is converted to
a vector x via S/P. After transforming x into the frequency-
domain by FFT, the frequency-domain symbol vector is pre-
coded by the eigenvector matrix Q. After converting the
frequency-domain precoded symbol vector to time-domain by
IFFT and appending the cyclic prefix (CP), the data symbol
frame is sent over the fast fading channel. At the receiver, after
the CP removal and channel estimation, the CSI is fed-back
to the transmitter and the received signal is recovered by the
MMSE equalization. The recovered frequency-domain symbol
vector can be expressed as

Y = QHGνHνQX + QHGνW, (29)

which indicates that the adaptive transmission system performs
all the precoding, equalization and decoding processes in the
frequency-domain. Hence, the proposed adaptive transmission
system is a kind of adaptive precoded OFDM system.

Since the output SNR of each data becomes the same with
adaptive transmission, the BER can be simplified as

Pb = Eh{
2(1− 2−k)

k
Q(

√
3

4k − 1
γ∗out)}, (30)

B. BER Bounds Analysis

Under some extreme channel conditions with respect to the
number of multipaths and maximum Doppler frequency shift,
the performance bounds for the adaptive transmission scheme
can be obtained analytically as follows.

1) Lower Bound: The first extreme channel condition is
set as a channel with a fixed Doppler frequency shift in every
multipaths, which can be regarded as a slow fading channel
after the Doppler frequency shift is compensated. For such a
channel, the time-domain channel matrix is a circulant matrix
and can be transformed into diagonal matrix in the frequency-
domain by 2D FT, which can be expressed as

Hν = FH
MNdiag(αi)FMN , (31)

where αi, i = 0, 1, ...,MN−1, denotes the fading coefficient
at frequency bin i. From (21), we can obtain

Λ = diag(λi) = diag(αi)
Hdiag(αi) = diag(|αi|2). (32)

Assuming that all multipaths are independent, αi are zero-
mean independent complex Gaussian variables. When P ap-
proaches infinity, λi = |αi|2 obeys chi-square distribution with
two degrees of freedom and the probability density function
(PDF) e−ρ. In this condition, the normalized noise power for
the equalized data symbol in the adaptive transmission can be
evaluated from (26) as

Jlow =

∫ ∞
0

e−ρ

γinρ+ 1
dρ = E1(

1

γin
)e

1
γin , (33)

where E1{·} is the exponential integral function, which is
defined as

E1(z) =

∫ ∞
z

e−t

t
dt. (34)

The output SNR can be expressed as

γlow =
1

Jlow
− 1

=
γin

E1(
1

γin
)e

1
γin

− 1, (35)

Thus, the lower bound of the BER performance can be
obtained as

Pb,low = Q


√√√√√ γin

E1(
1

γin
)e

1
γin

− 1

 . (36)

2) Upper Bound: The second extreme channel condition
considers the case when Doppler frequencies are uniformly
distributed over [−Kmax,Kmax], and Kmax → ∞. Suppos-
ing there are a large number of multipaths in the channel,
the channel matrix in the frequency-domain Hν becomes
a random matrix, whose entries obey independent Gaussian
distribution with zero mean and unit variance. Therefore, the
entries of the Hermitian matrix HH

ν Hν obey the complex
Wishart distribution. The eigenvalues of HH

ν Hν have a PDF
1

2π

√
4−ρ
ρ , 0 6 ρ 6 4. Under this condition, the normalized



IEEE TRANSACTIONS ON WIRELESS COMMUNICATIONS 7

noise power for the equalized data symbol under the adaptive
transmission can be expressed as

Jup =

∫ 4

0

1

2π

√
4−ρ
ρ

γinρ+ 1
dρ

=

√
4γin + 1− 1

2γin
, (37)

and the output SNR can be expressed as

γup =
1

Jup
− 1

=
2γin√

4γin + 1− 1
− 1. (38)

The upper bound of the BER performance can be obtained as

Pb,up = Q

√
2γin√

4γin + 1− 1
− 1

 . (39)

We know that the system performance and diversity orders
in fast fading channels depend on the number of multipaths
and the maximum Doppler frequency shift. For the OTFS
modulation, it is hard to derive a closed-form expression of
the BER performance based on MMSE equalization given
arbitrary numbers of multipaths and Doppler frequency shifts.
However, for the proposed adaptive transmission, the theo-
retical BER bounds are available because the precoding Q
matrix can simplify the channel matrix into a diagonal matrix.
After applying an asymptotic method under the conditions that
some system parameters are set to extreme values, the adaptive
transmission can be adopted to verify the theoretical limits of
a general precoded OFDM system with MMSE equalization
in fast fading channels.

V. SIMULATION RESULTS

In this section, simulations are performed to compare the
OTFS performance with the performance bounds. Assuming
that the same amount of data are transmitted, some traditional
short-frame modulations, such as OFDM and SC-FDE, are
also compared. We consider OTFS as a long-frame modulation
since OTFS needs Doppler frequency shifts with sufficient
resolution and at the same time requires sufficient number
of subcarriers to cope with the multipath propagation. On
the contrary, short-frame modulations are proper transmis-
sion schemes in multipath channels but with lower Doppler
resolutions. Two channel models are considered with diverse
impulse response in the following simulations. To be specific,
ETSI’s channel models with non-equal-power channel taps are
adopted for assessing the adaptive transmission performance,
and the equal-power multipath channel model is adopted for
evaluating the diversity performance. We also use 4-QAM as
the symbol mapping technique except for the case when 16-
QAM is used for comparison purpose.

TABLE I
SIMULATION PARAMETERS

Carrier

Frequency

(fc)

No. of

Subcarriers

(M )

No. of

OFDM/SC-FDMA

Symbols (N )

6 GHz 256 32

Subcarrier

Spacing

(f∆)

Bandwidth

(W =Mf∆)

Duration of

OFDM/SC-FDMA

Symbol

(T =M/W )

30 KHz 7.68 MHz 33.33 µs

Delay

Resolution

(dr = 1/W )

Doppler

Resolution

(fr = 1/NT )

Maximum

Speed

(vmax)

130.21 ns 937.5 Hz 500 Km/h

Maximum

Doppler Frequency

(fmax = fc
vmax
vc

,

vc = 3× 108 m/s)

No. of

Doppler Shifts

(Positive or Negative)

(Kmax =
⌈
fmax
fr

⌉
)

No. of

Multipaths

(Lmax =
⌈
dmax
dr

⌉
)

2777.8 Hz ≈ 3 ≈ 35(LOS), 27(NLOS)

A. Adaptive Transmission Performance and Comparison

Firstly, let us compare the performance of adaptive trans-
mission with OTFS and other conventional modulations. Here,
we adopt the tapped delay line (TDL) channel models rec-
ommended by ETSI [32], [33], in which the time delays
and channel gains in all multipath taps are defined in line-
of-sight (LOS) and non-line-of-sight (NLOS) conditions. To
simulate a fast fading channel, Doppler frequency shifts which
obey uniform distribution ranging from −Kmax to Kmax are
applied. All the parameters are listed in Table I, in which dmax
indicates the maximum delay time cited from [32]. Both short
and long frame transmissions are compared. For long-frame
modulations, including OTFS and Adaptive-long, there are
MN data symbols in one frame. For short-frame modulations,
including OFDM, SC-FDE and Adaptive-short, there are M
data symbols in one frame.

The performance comparison is made based on the sim-
ulated BERs for different modulations under the above de-
scribed LOS and NLOS channel conditions with fast fading.
For each realization of the fast fading channel, a sufficient
number of signal frames are generated with the specified
modulation. After passing through the channel, the received
signals are corrupted by AWGN according to a given SNR
level. With perfect synchronization and known CSI, frequency-
domain MMSE equalization is then performed using the
equalization matrix defined in (18). The detected information
bits are compared with the transmitted ones and the number
of error bits are recorded. After 1000 iterations of random
channel realizations, the average BER is finally obtained.

Note that the computational complexity of the
adopted frequency-domain MMSE equalization is
O((1 + 4Kmax)2MN) in terms of the number of complex
multiplications and divisions, where MN is the length of the
signal frame. For conventional MMSE equalization without



IEEE TRANSACTIONS ON WIRELESS COMMUNICATIONS 8

Fig. 5. Comparison of various modulation schemes in LOS channels.

exploring the stripe diagonal structure of frequency-Doppler
domain channel matrix, the computational complexity
is O((MN)3). As the equalization is performed in the
frequency domain, the complexity only depends on Kmax but
not the number of multipath. Under the ETSI NLOS channels
specified in Table I, the computational complexity for
MMSE equalization is O(169MN), while the computational
complexity for Message Passing is O(2700MNniter), where
niter is the number of iterations. It is evident that the
frequency-domain MMSE equalization is superior to MP
in terms of complexity. On the other hand, an iterative
decision feedback equalizer (DFE) proposed in [34] achieves
O(NML) per iteration, where L is the number of delay taps.
As a time-domain approach, it is an attractive solution in
channels with less multipath, whereas our method is more
suitable when the channel has a smaller Doppler spread.

Fig. 5 shows the BER performance in LOS channel. Note
that OTFS and Adaptive-long demonstrate similar perfor-
mance, achieving 10−7 BER at SNR around 17 dB. SC-
FDE and Adaptive-short incur about 2 dB degradation. OFDM
shows the worst performance, lagging far behind others.

Fig. 6 shows the BER performance in NLOS channels.
We first compare different modulations with perfectly known
CSI (legends with prefix ”P-”). We see that P-Adaptive-long
demonstrates the best performance and achieves 10−7 BER
at SNR about 24 dB, outperforming OTFS by about 4 dB.
For the short frame modulations, although the P-Adaptive-
short performs worse than long frame modulations, it can still
achieve a BER of 10−7 at about 30 dB and is much better
than SC-FDE and OFDM.

To prove that adaptive transmission is effective in practice,
simulations are also conducted with CSI not perfectly known
at the receiver (legends with prefix ”I-”). In doing so, a random
matrix obeying Gaussian distribution for each element is added
into the estimated channel matrix [35]. Assuming the variance
of channel error is inversely proportional to the SNR, both
Adaptive-long and OTFS, denoted as I-Adaptive-long and I-
OTFS, are simulated and the results are shown in Fig. 6. We
observe that the impact of channel estimation error on the
performance is significant in a lower SNR region but tends
to be minor in a higher SNR region. Meanwhile, adaptive

Fig. 6. Comparison of various modulation schemes with and without channel
estimation error in NLOS channels.

transmission keeps showing better performance than OTFS.
It is worthwhile noting that, in LOS channels, SC-FDE

and Adaptive-short show very close performance to long-
frame modulations. In NLOS channels, with the help of
precoding, the short-frame adaptive transmission demonstrates
much better performance than short-frame modulations, close
to those of long-frame modulations. This result confirms that
the adaptive precoding can indeed improve the performance of
short-frame modulations, and the adaptive transmission with
short frames provides a practical solution considering its low
complexity and short delay in signal processing.

The results in Figs. 5 and 6 also show how the BER perfor-
mance is impacted by diversities in different domains. Firstly,
long-frame modulations can exploit both time and frequency
diversity so that they achieve the best performance. Then, SC-
FDE can exploit frequency diversity but only partially resolve
the Doppler frequency so that it shows degraded performance.
Finally, conventional OFDM without precoding can not exploit
frequency diversity so that it shows the worst performance.

The BER performance for 16-QAM is also simulated to
verify the effect of precoding. As shown in Fig. 7, the
adaptive transmission and OTFS modulations with 16-QAM
demonstrate similar trends to those with 4-QAM in both
LOS and NLOS channels. Therefore, the proposed adaptive
transmission is also an effective solution to combating fast
fading channels for signals with higher order modulation
levels.

The peak to average power ratios (PAPRs) of the OTFS with
and without precoding are also simulated. The results show
that the OTFS without precoding has lower PAPR than OFDM
and the adaptive transmission. The PAPRs of the adaptive
transmission and OFDM are very similar, and are only about
0.5 dB higher than that of OTFS, when the probability of
PAPR greater than a specified threshold is 10−5. It proves that
the impact of precoding on PAPR performance is negligible.

B. BER Bounds Validation

After the performance of the adaptive transmission is ver-
ified, we now validate the BER upper and lower bounds
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Fig. 7. Comparison of various modulation schemes with 16-QAM under both
LOS and NLOS channels.

Fig. 8. Lower bounds of MMSE equalization performance under different
multipath diversity orders without Doppler frequency shifts. The curves
from right to left correspond to P = 1, 2, 4, 8, 16, 32, 64, 128, 1024, and
asymptotic ∞.

using MMSE equalization. The BER bounds between adaptive
transmission and OTFS are compared under some extreme
channel conditions. We adopt larger P or Kmax in these
simulations and assume that the channel has equal-power for
each multipath, while other parameters remain the same as
in Table I. To consider more practical conditions, we use the
ETSI channel models as described in Section V.A, which have
relatively smaller P .

Fig. 8 shows the BER performance comparison under
varying multipath diversity orders. We observe that the per-
formance is improved as P increases. When P → ∞, the
performance of adaptive transmission converges towards the
theoretical lower bound, which achieve 10−7 BER at SNR
about 20.5 dB. The OTFS curves nearly overlap with those of
the adaptive transmission when P is small, but gaps appear as
P becomes large.

Fig. 9 shows the BER performance comparison under vary-

Fig. 9. Upper bounds of MMSE equalization performance under different
Doppler frequency diversity orders with P = M ×N . The curves from left
to right correspond to Kmax = 1, 4, 64, and asymptotic ∞.

Fig. 10. BER comparison under adaptive transmission when Kmax =
1, 4, 16, 64 in high SNR region.

ing Doppler frequency shifts with Kmax = 1, 4, 64, and ∞
when P is set to MN . It is well-known that the diversity per-
formance is represented by the slope of the BER performance
curve when the SNR tends to infinity. After enlarging the SNR
range, it can be seen from Fig. 10 that the diversity orders of
adaptive transmission increase as Kmax increases. However,
this does not mean that the actual BERs will be reduced in a
low SNR region as the diversity order increases. In fact, from
Fig. 9, the BER performance under smaller Doppler diversity
orders is superior to those with larger Doppler diversity orders
in a low SNR region. Considering the more practical BER
comparison in a low SNR region, we still use the term upper
bound to describe the BER performance when Kmax → ∞,
though the Doppler diversity is not upper bounded by it. Above
simulation results reveal a very interesting property of the
adaptive transmission in terms of the relationship between
Doppler diversity order and BER performance, which we have
never seen in the literature.
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Note that in a practical channel condition the number of
multipaths or the maximum Doppler frequency shift will
not be infinite but the analytical performance bounds can
serve as benchmarks for practical system design. In some
application scenarios, the number of multipaths can be very
large, such as in the urban macro (UMa) channel. In the
emerging ISTNs which involve aircraft-to-aircraft and aircraft-
to-ground communications, the Doppler frequency shift can
also be very large. Therefore, the analysis of BER bounds is
of great significance.

Overall, although the performance of the two techniques
are very close, our proposed adaptive transmission is superior
to OTFS under all simulated conditions. It also proves that
OTFS can achieve almost optimal performance in fast fading
channels. Though the lower and upper bounds are derived for
the proposed adaptive transmission, they can also serve as the
performance benchmarks for OTFS systems.

VI. CONCLUSIONS

In this paper, we have formulated OTFS as a precoded
OFDM and applied frequency-domain channel models and
signal processing to analyze its diversity performance in fast
fading channels. With low complexity MMSE equalization,
an adaptive transmission scheme is proposed to optimize the
the diversity performance. Two BER bounds are derived by
considering two extreme channel conditions. These bounds can
serve as the benchmarks for OTFS and adaptive transmission
systems. The simulation results show that the adaptive trans-
mission achieves the best performance in fast fading channels.
It is also demonstrated that the proposed adaptive transmission
is very effective for short signal frames and is robust to channel
estimation errors. Our future work includes the investigation
of further complexity-reduced equalization techniques, such
as the iterative decision feedback equalizer in the frequency
domain, for adaptive transmission over fast fading channels.

APPENDIX A

From (1) and (3), the received signal can be expressed as

r (t) =

∫ +∞

−∞
ht (τ, t) s (t− τ) dτ + w (t) . (40)

In the discrete-time domain, it becomes

r[i] =

+∞∑
j=−∞

ht[j, i]s[i− j] + w[i], (41)

where ht[j, i] and w[i] are the discrete-time versions of the
delay-time channel representation ht(τ, t) and noise w(t),
respectively sampled at t = idr and τ = jdr. We assume
that the transmitted data symbols s[0], s[1], ..., s[MN − 1] are
independent with equal power σ2

s and the noise power is σ2
w.

After OTFS demodulation, i.e., Wigner transform followed by
symplectic finite Fourier transform (SFFT), the (m′M+m)-th
recovered signal can be expressed as

y[m′M +m] =

N−1∑
n=0

r[nM +m]e−j
2π
N nm′

, (42)

for m′ = 0, ..., N − 1, m = 0, ...,M − 1,. To calculate the
output SNR, the power of y[m′M +m] can be expressed as

E{|y[m′M +m]|2}

= E{
N−1∑
n=0

r[nM +m]e−j
2π
N nm′

N−1∑
n′=0

r∗[n′M +m]ej
2π
N n′m′

}

=

N−1∑
n=0

N−1∑
n′=0

E{r[nM +m]r∗[n′M +m]}ej 2πN (n′−n)m′
,

(43)

where (·)∗ denotes the complex conjugation. Supposing that
M > L where L is the maximum multipath delay, Eq. (43)
can be simplified as (44) since E{r[nM+m]r∗[n′M+m]} =
0, for n 6= n′. Based on Eq. (3), we also assume that the
relationship between ht[l, j] and h[l, k] is

ht[l, j] =
1√
MN

Kmax∑
k=−Kmax

h[l, k]ej
2π
MN kj . (45)

From (44) and ignoring any scaling factor, the output SNR
can be expressed as shown in (16).
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