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Single-Target Real-Time Passive WiFi Tracking
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Abstract—Device-free human tracking is an essential ingredient for ubiquitous wireless sensing. Recent passive WiFi tracking
systems face the challenges of inaccurate separation of dynamic human components and time-consuming estimation of
multi-dimensional signal parameters. In this work, we present a scheme named WiFi Doppler Frequency Shift (WiDFS), which can
achieve single-target real-time passive tracking using channel state information (CSI) collected from commercial-off-the-shelf (COTS)
WiFi devices. We consider the typical system setup including a transmitter with a single antenna and a receiver with three antennas;
while our scheme can be readily extended to another setup. To remove the impact of transceiver asynchronization, we first apply CSI
cross-correlation between each RX antenna pair. We then combine them to estimate a Doppler frequency shift (DFS) in a short-time
window. After that, we leverage the DFS estimate to separate dynamic human components from CSI self-correlation terms of each
antenna, thereby separately calculating angle-of-arrival (AoA) and human reflection distance for tracking. In addition, a hardware
calibration algorithm is presented to refine the spacing between RX antennas and eliminate the hardware-related phase differences
between them. A prototype demonstrates that WiDFS can achieve real-time tracking with a median position error of 72.32 cm in
multipath-rich environments.

Index Terms—WiFi, Tracking, CSI, Doppler Frequency Shift, Hardware Calibration.

✦

1 INTRODUCTION

PASSIVE WiFi tracking is a promising technique that uses
WiFi signals to locate people without needing any other

sensors or wearable devices. Compared to other wireless
signal based solutions like radio frequency identification
(RFID) [1], [2], [3], [4], [5] and millimetre wave (mmWave)
radar [6], [7], [8], [9], WiFi infrastructures are almost ubiqui-
tous at public work places and homes, thereby avoiding the
need of deploying dedicated wireless tracking infrastruc-
ture and devices. Wireless sensing techniques are free from
light conditions and even perform well in non-line-of-sight
(NLOS) scenarios where a target is blocked [10], [11].

Passive WiFi tracking has gained much attention from
academic and industrial communities over the past years.
Recent works [12], [13], [14], [15] exploit a stable and feature-
rich signal parameter for positioning, i.e., channel state in-
formation (CSI), which can be extracted from a commercial-
off-the-shelf (COTS) WiFi network interface controller (NIC)
(e.g., Intel 5300 [16] and Atheros QCA9558 [17]). Such CSI-
based localization solutions could achieve finer decimeter-
level localization accuracies. To the best of our knowledge,
however, most existing approaches with fine tracking ac-
curacy are hard to directly adopt in practical applications
due to the following reasons. First, huge computation in
each position estimation may jeopardize the system’s real-
time performance [18]. Second, estimation errors in many
Doppler-based continuous tracking solutions [19] may ac-
cumulate over time, resulting in trajectory drift. Third, deep
learning-based solutions [20], [21] require a huge amount of
labeled CSI data in specified scenarios for training. Since dif-
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ferent environments have different multipath interference,
the trained network may not be universal.

There are also three major challenges in passive WiFi
tracking, which have not been well addressed in the litera-
ture. These challenges are detailed below.

1) WiFi transceiver clock asynchronization [13], [17], [22],
[23] results in time-varying phase shifts in CSI. Many exist-
ing works [24], [25], [26] exploit cross-correlation between
CSIs of pairwise antennas to address the asynchronous sig-
nal processing problem. However, this operation introduces
a side product, i.e., the conjugate terms of the dynamic
cross-correlation terms of interest. In this case, DFS ambi-
guity is created, meaning that the DFS to be estimated can
be the true value or its negative value. A common solution
to suppressing the ambiguity is adding a constant to the ref-
erence signal and subtracting another one to the rest signals
before the cross-correlation [22], [24]. However, this does not
always work, especially in multipath-rich scenarios.

2) Separating the dynamic human components is chal-
lenging. An existing common method [19] aims to di-
rectly separate the dynamic human component from cross-
correlation terms by adding a factor to the CSI amplitudes
of the reference antenna and subtracting another factor from
the CSI amplitudes of other antennas. However, this power
adjustment solution cannot completely eliminate the impact
of the side product in dynamic component separation. Fur-
thermore, these dynamic components may not always be
reliable for position indication. For example, human body is
not a perfect reflector and may not reflect signals to a receive
antenna array at some sampling time.

3) The difference in WiFi hardware, including WiFi NIC,
RX antennas, and RX antenna cables, introduces different
phase shifts on each RX antenna, which significantly im-
pact human tracking accuracy. An exisiting method [27]
conducts WiFi hardware calibration using a SMA splitter.
However, an unknown π-radians phase ambiguity will be
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induced. Also, since the RX antenna array is customized,
the measured antenna spacing inevitably deviates from the
actual value. Removing the π-radians phase ambiguity and
estimating the true RX antenna spacing are challenging.

In this paper, we propose a WiFi single-target pas-
sive tracking scheme, called WiFi Doppler Frequency Shift
(WiDFS), which enables to overcome the above three chal-
lenges and can be run in real time at a medium class mini
PC. Currently, a standard COTS NIC supports up to three
antennas. WiDFS tracks a moving person using a COTS WiFi
transceiver with one TX antenna and three RX antennas.
Using three-RX-antenna is essential as we need to use their
CSIs to estimate the angle-of-arrival (AoA) of incoming sig-
nals, and to remove transceiver clock asynchronization and
accurately estimate the DFS caused by human movement.
Once the DFS estimate is obtained, we then leverage it
to separate dynamic human components. WiDFS can then
track the person by estimating the AoA in the direction of
human reflection and the length of the reflection path from
the transmitter to the person and then the receiver. Our main
contributions are as follows.

1) We propose a DFS estimation algorithm based on
cross-correlation between each RX antenna pair. Compared
to existing solutions, WiDFS can eliminate the impact of
the side product that is mixed with the dynamic cross-
correlation term of interest. WiDFS leverages the static cross-
correlation term which is usually abandoned in previous
works. This term can be easily obtained by averaging over a
CSI sampling window. WiDFS then conducts a straightfor-
ward transformation to resolve the DFS ambiguity caused
by the side product. Since three RX antennas are separated
by less than half a wavelength, it is reasonable to assume
that the DFS of each antenna is almost the same. Thus,
WiDFS builds a CSI observation matrix to estimate an
accurate DFS using a subspace-based MUSIC algorithm in
each short-time sampling window.

2) We design a lightweight algorithm that uses the
estimated DFS to separate the dynamic human compo-
nents, which is more robust and accurate than the power
adjustment and reference antenna solutions, especially in
actual multipath-rich scenarios. In this work, we focus on
each antenna’s instantaneous power of channel frequency
response (CFR) based on self-correlation. The CFR power
is also free from the impact of transceiver clock asynchro-
nization. WiDFS first relies on the estimated DFS to refine
the CFR power in a CSI sampling window. Then it uses a
simple yet effective solution to reconstruct dynamic human
components by formulating a linear least-squares problem.
We further propose a windowed algorithm that can deal
with the problem that RX antennas cannot capture human
reflections or can only capture minor reflections. WiDFS
combines CSI data from multiple sampling windows for
localization parameter estimation. It relies on the estimated
DFS to achieve unsupervised motion sensing, which can
detect the absence and presence of a moving person.

3) We present a WiFi hardware calibration solution to
estimate the hardware-dependent phase shifts and antenna
spacing between any two antennas, without any specialized
devices. WiDFS collects CSIs by deploying a TX antenna on
each side of an RX antenna array and then uses a standard
phase-distance model for calibration.
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Fig. 1: Signal propagation paths in dynamic environments

A prototype of WiDFS is implemented using a transmit-
ter with a single TX antenna and a receiver with three RX
antennas forming a linear uniform antenna array. WiDFS is
programmed using Python. The experiments demonstrate
that WiDFS achieves median and 90th percentile position
errors of 72.31 cm and 170.8 cm, respectively. Such a localiza-
tion accuracy exceeds a state-of-the-art technique Widar2.0
[25] by about 36 cm and 70 cm. More importantly, WiDFS
costs a mean running time of 0.076 s on a mini PC (online)
and 0.024 s on a MacBook Pro (offline) to output each
position estimate when collecting about 0.1 second CSI data,
leading to real-time tracking in practical applications.

2 CSI MODELING IN DYNAMIC ENVIRONMENTS

This section describes our CSI model in a dynamic envi-
ronment where a person is moving in a typical room. The
CSI provides information on the environment as changes
of signal propagation environment cause variations of CSI
over time. The CSI can be accessed on certain COTS WiFi
NICs using 802.11n or Atheros CSI tools [16], [17]. Such a
NIC typically supports up to three Tx and Rx antennas. Fig.
1 shows a typical WiFi-based sensing scenario. In this setup
with Intel NIC 5300, we use a Tx with a single antenna and
a receiver with three RX antennas forming a uniform linear
antenna array (ULA). The 3-antenna ULA offers Angle-of-
Arrival (AoA) estimation capability for a limited number of
multipath signals.

2.1 General CSI model in COTS WiFi systems
The CSI characterizes the channel frequency response (CFR)
of a wireless signal propagating from a transmitter to a
receiver. In the IEEE 802.11n standard, a channel has a 20
MHz bandwidth with 30 subcarriers. Then the CSI matrix
in our scheme contains the number of 1 × 3 × 30 complex
channel coefficients at each sampling time. In COTS WiFi
systems, the actual CSI measurements always suffer from
the additional noise caused by NIC processing imperfection
and WiFi hardware diversity.

1) WiFi NIC Processing Imperfection. The original CSI
may contain time-varying terms associated with imperfect
signal processing in NIC, such as residual time and fre-
quency offsets due to transmitter-receiver clock asynchro-
nism, a power control uncertainty error and an I-Q imbal-
ance error [13]. These errors produce the same impact on all
RX antennas. Let He

j,k denote the CFR associated with such
imperfections at the j-th subcarrier (j = 1, 2, ..., 30) and the
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k-th CSI sample (or time-slot, which typically corresponds
to the k-th CSI packet, k = 1, 2, ...),

He
j,k = ρagck e−J(ϕFO

j,k +ϕTO
j,k ), (1)

where ρagck represents the gain set at the automatic gain con-
troller (AGC) at the receiver and it dynamically varies with
different channel characteristics; ϕFO

j,k is the time-varying
phase shift caused by the frequency offset (FO) at each
subcarrier frequency; ϕTO

j,k is the time-varying phase shift
caused by the time offset (TO); both ϕTO

j,k and ϕFO
j,k may

vary across CSI samples because of the un-locked clocks
between Tx and Rx. The CFO may be accurately estimated
at the receiver and hence the term ϕFO

j,k can be compensated.
However, TO associated with the transmitter and receiver
clocking difference is generally hard to be estimated.

2) WiFi Hardware Diversity. The WiFi hardware in-
cludes external WiFi antennas, antenna cables, SMA con-
nectors as well as NIC itself. Their impacts on receiving
signals at each subcarrier keep unchanged over time. How-
ever, manufacturing imperfection may cause different phase
shifts on each RX antenna. According to [27], their variations
over subcarriers can be ignored, so the WiFi hardware-
related CFR Hh

i at the i-th RX antenna (i = 1, 2, 3) can be
represented as

Hh
i = ρhi e

−Jϕh
i , (2)

where ρhi and ϕi are the WiFi hardware-related attenuation
and phase shift at the i-th RX antenna.

Accounting for the two multiplicative interference terms
in (1) and (2), a general CSI model [28], [29] at the i-th
RX antenna, the j-th subcarrier and the k-th CSI sample
is represented as

CSI i,j,k = He
j,kH

h
i

L!

l=1

Hi,j,k[l], (3)

where

Hi,j,k[l] = ρi,j,k[l]e
−J2π

fj
c

!

dk[l]+c
fD
i,k[l]

fc
∆t+(i−1)∆d sin θk[l]

"

.
(4)

Some variables in Eq. 4 are described as follows: fj is the
j-th subcarrier frequency, fc is the center frequency, c is
the speed of light, ∆t is the sampling time interval, ∆d is
the RX antenna spacing no more than half a wavelength.
For the l-th multipath, ρi,j,k[l] and dk[l] are the signal
propagation attenuation and length, fD

i,k[l] is the DFS which
is introduced to the carrier frequency at the i-th RX antenna

due to object movement (vi,k[l] = c
fD
i,k[l]

fc
is called the radial

speed), θk[l] is the AoA that is the direction from which a
reflection is received by the ULA.

According to [28], we define a short-time sampling win-
dow which is typically a few milliseconds when tracked
objects move at velocities up to several meters per second.
In WiDFS, the length of the time window is set to 0.1 seconds
during which Np = 100 CSI packets are collected due to the
sampling frequency fs of 1 KHz. In this short-time window,
since the indoor environment changes little, the channel
characteristic-dependent variables ρagck and ρXi,j,k may not
have a significant change. And a person can be regarded as
moving with a constant speed vi,k[l] within the 0.1-seconds

time window. In this case, we assume that the gain ρagck ,
attenuation ρXi,j,k, and DFS fD

i,k[l] in Eq. 4 all remain almost
unchanged, and we denote ρagck = ρagc, ρi,j,k = ρi,j , and
fD
i,k[l] = fD

i [l], respectively. In the following, we will rely on
these assumptions to revise the above general CSI model.

2.2 Our CSI model for single-target passive tracking
Here we extend the general CSI model and introduce ours
for single-target passive tracking in a dynamic environment
in a short-time window.

When a transmitter emits WiFi signals to space, the
receiver receives two categories of signals. One is the direct
signal that travels along the direct path from the transmitter
to the receiver. Another is the reflected signals that bounce
off different objects like the floor, wall, furniture, and the
tracked person. Furthermore, we divide these signals into
static and dynamic signals: (1) the former includes a direct
signal that propagates from the transmitter to the receiver,
and the signals that reflect off surrounding static objects to
the receiver; (2) the latter contains the reflected signals that
directly reflect off the human body to the receiver, and those
that firstly bounce off the human body to other surrounding
objects and then travel back to the receiver. Let HS

i,j be
the CFR corresponding to the static signals between the
TX antenna and the i-th RX antenna at the j-th subcarrier,
called static component. Specially, the signal strength of the
direct path between the TX and RX antennas is much higher
than other static multipath signals. Let HX

i,j,k be the CFR
corresponding to the reflected signals off the moving person
X , called dynamic human component. Thus, we rewrite the
CSI model in Eq. 3 to formulate the problem of single-target
passive tracking as

CSI i,j,k = He
j,kH

h
i

"
HS

i,j +HX
i,j,k

#
, (5)

where $
%

&
HS

i,j = ρSi,je
−J2π

fj
c dS

i + NS
i,j

HX
i,j,k = ρXi,je

−J2π
fj
c dX

i,k + NX
i,j,k

. (6)

In the above, ρSi,j and ρXi,j are the propagation attenuations
of the direct and reflected path; dSi is the distance of the
direct path between the transmitter and the i-th RX antenna,
which can be manually measured in advance; dXi,k is the
distance of the reflected path where the transmit signal is
reflected from the tracked person X to the i-th RX antenna
at the k-th sampling point (for simplicity, we call it human
reflection distance); NS

i,j and NX
i,j,k are the noise terms caused

by other minor multipath reflections.
In a short-time window as defined above, the human

reflection distance dXi,k can be represented as

dXi,k ≈ dXi,1 + c
fD
i

fc
(k − 1)∆t, (7)

where dXi,1 is the human reflection distance at the initial
position in the window. Further, the distance dXi,k, i ∈ {2, 3},
can be rewritten using an initial AoA θX1 ,

dXi,k ≈dX1,k + (i− 1)∆d sin θXk

≈dX1,1 + c
fD
1

fc
(k − 1)∆t+ (i− 1)∆d sin

"
θX1 +∆θXk

#
.

(8)
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where ∆θXk is the AoA spacing between the first and the
k-th CSI samples.

In indoor environments, since the person does not moves
too fast, ∆θXk would be very small in the time window of
0.1 seconds. Then the derivative of sin θXk is

lim
∆θX

k →0

sin
'
θX1 +∆θXk

(
− sin θX1

∆θXk
= cos θX1 . (9)

Then Eq. 8 can be approximately rewritten as

dXi,k ≈dX1,1 + c
fD
1

fc
(k − 1)∆t+

(i− 1)∆d
"
sin θX1 +∆θXk cos θX1

#

=dX1,1 + (i− 1)∆d sin θX1 +
c

fc

"
fD
1 + fAoA

i

#
(k − 1)∆t,

(10)
where fAoA

i = (i− 1)∆d
∆θX

k cos θX
1

k−1
fc
c f

s is called the AoA
frequency shift (AFS) in this work. Here we note that the DFS
at the i-th RX antenna (i = 2, 3) is fD

i = fD
1 + fAoA

i . We can
see that the DFS has a slight difference among different RX
antennas. In practice, when a person moves at a relatively
low speed, the value of fAoA

i is very small and thereby we
can ignore its impact on DFS in our model. In Section 9.4, we
will conduct an experiment to verify the impact of the AFS
on the DFS estimation accuracy. In the rest of this work,
we denote fD = fD

1 ≈ fD
2 ≈ fD

3 . And we use θX and
dX to denote the AoA and human reflection distance for
simplicity.

Therefore, the dynamic human component HX
i,j,k can be

revised based on the three key signal parameters (DFS fD ,
AoA θX and human reflection distance dX ), and we have

HX
i,j,k = ρXi,je

−J2π
fj
c

#
dX+c fD

fc
(k−1)∆t+(i−1)∆d sin θX

$

+ NX
i,j,k.
(11)

2.3 Challenges

Our CSI model reveals that, to be able to track a single
moving object, we need to estimate {fD, θX , dX} in the
presence of multiple static multipath signals, the time-
varying phase shifts ϕTO

j,k and ψFO
j,k in He

j,k and the WiFi
hardware-dependent phase shift ϕi. Specifically, the time-
varying phase shifts are major hurdles for jointly exploit-
ing CSIs across time in tracking, and they will also cause
ambiguity in parameter estimation if not being removed.
The large number of multipath will cause inefficiency in
parameter estimation, particularly in AoA estimation given
the limited number of Rx antennas. These issues cause that
conventional localization and tracking algorithms cannot
be directly applied. To achieve fine-grained passive track-
ing, we firstly need to minimize the impact of transceiver
asynchrony, which is a critical and challenging problem in
WiFi tracking; we can then separate the dynamic human
component HX

i,j,k from the CSI measurements and then esti-
mate, ideally, only the parameters associated with the single
dynamic path reflected from the object. In the following, we
aim to achieve this goal by proposing a novel scheme.

3 SYSTEM OVERVIEW

This work presents a scheme WiDFS that enables single-
target real-time passive tracking using COTS WiFi devices.
In WiDFS, a COTS Intel 5300 WiFi NIC that supports up
to three antennas is used in a transmitter and receiver for
CSI collection. The transmitter has one TX antenna while
the receiver connects to a linear array consisting of three RX
antennas. Such a three-antenna deployment is necessary due
to the design of our algorithm in addressing the impact of
transceiver asynchronization, as well as for estimating AoA.
WiDFS firstly applies CSI cross-correlation between each
pair of RX antennas to remove the time-varying phase shifts
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in CSIs. Then WiDFS obtains an unambiguous DFS estimate
from the calculated cross-correlation terms in a short-time
window. After that, WiDFS adopts CSI self-correlation of
each RX antenna to acquire each antenna’s CFR power
and then separates the dynamic human component using a
simple yet effective DFS-based separation algorithm. When
WiDFS detects the presence of a moving person, it enables
to estimate the AoA of the tracked person relative to the RX
array and the human reflection distance from the person to
the TX and RX antennas. Finally, WiDFS combines the esti-
mated signal parameters to achieve real-time tracking. The
workflow of WiDFS is illustrated in Fig. 2. The processing in
the main modules is summerized below and will be detailed
later.

1) Doppler Frequency Shift Estimation. WiDFS firstly
adopts cross-correlation between CSIs of any two antennas
to remove time-varying phase shifts. The corresponding
cross-correlation terms are CSI 12, CSI 23, and CSI 31, re-
spectively. In a short-time window containing 100 CSI sam-
ples (about 0.1 s due to the sampling frequency of 1 kHz),
WiDFS cleans high-frequency noise via Savitzky-Golay and
lowpass filters. The DFS estimator outputs an unambiguous
DFS estimate based on these filtered CSI cross-correlation
terms. This part is described in detail in Section 4.

2) Dynamic Human Component Separation. In this
part, WiDFS adopts self-correlation to calculate the CFR
power of each antenna and obtain CSI 11, CSI 22 and CSI 33,
respectively. After cleaning the CFR power terms via a low-
pass/bandpass filter, WiDFS combines the refined dynamic
CFR powers with the estimated DFS to separate the dynamic
human component.The details will be provided in Section 5.

3) Moving Person Detection and Tracking. Since a
human body does not act as a perfect reflector, the RX array
may just capture a few signal reflections. In this part, WiDFS
combines the estimated dynamic human components over
multiple CSI sampling windows. A DFS-based motion de-
tector is designed to determine the absence and presence of
a moving person. When the human movement is present,
WiDFS separately performs AoA and distance estimation
and then uses a Kalman filter to refine each parameter.
Finally, the localizer uses optimized parameters to locate the
person being tracked. Section 5 will present the details.

4) WiFi Hardware Diversity Calibration. In addition,
we propose a one-time WiFi hardware calibration algorithm
in Section 6 to calibrate and compensate for the difference
in hardware-related phase shifts between RX antennas. At
the same time, the algorithm can also calibrate the actual
spacing between two adjacent RX antennas, which may be
a little different from our manually measured value in our

4 ESTIMATING DOPPLER FREQUENCY SHIFT

To achieve passive human tracking, three key signal param-
eters, i.e., DFS fD , AoA θX , and human reflection distance
dX , will be estimated based on our CSI model. This section
mainly introduces how to apply CSI cross-correlation to
estimate the DFS fD in each sampling window.

4.1 Random phase shift removal via cross-correlation
Recall that CSI i,j,k is the reported CSI by a COTS WiFi
system at i-th antenna, j-th subcarrier and k-th CSI sam-
pling time. The time-varying phase shifts ϕFO

j,k and ϕTO
j,k in

CSI across packets are unknown. To remove them, WiDFS
adopts CSI cross-correlation between RX antennas by mul-
tiplying a CSI for a RX antenna (e.g., CSI 1,j,k) by the
conjugate of a CSI for another antenna (e.g., CSI 2,j,k) at
the same subcarrier. Different to previous works [22], [24],
we do not apply the approach of adding and subtracting
constants. Although this approach aims to suppress the
imaging components in the cross-correlation output, it is not
always effective and can introduce more interfering terms.

Here let us take Antenna 1 and Antenna 2 for example.
The CSI cross-correlation between them is

CSI 1,j,kCSI 2,j,k

=
"
He

j,kH
h
1

#"
HS

1,j +HX
1,j,k

#"
H

e
j,kH

h
i=2

#"
H

S
2,j +H

X
2,j,k

#

=
))He

j,k

))2Hh
1H

h
2H

S
1,jH

S
2,j* +, -

Static Cross−correlation Term

+

))He
j,k

))2Hh
1H

h
2

"
HS

1,jH
X
2,j,k +HX

1,j,kH
S
2,j +HX

1,j,kH
X
2,j,k

#

* +, -
Dynamic Cross−correlation Term

,

(12)
where the function ‖·‖ denotes the operator of computing
the amplitude and

)))He
j,k

))) = ρagc. Likewise, we also ob-

tain the cross-correlation terms, i.e., CSI 2,j,kCSI 3,j,k and
CSI 3,j,kCSI 1,j,k, from other RX antenna pairs.

After the cross-correlation operation, we can see that the
phase shifts ϕFO

j,k and ϕTO
j,k in He

j,k are eliminated. Recall
that a short-time sampling window of about 0.1s is defined.
WiDFS collects 3 RX antennas × 30 subcarriers × Np CSI
samples in this window, where Np = 100. Then all CSI
cross-correlation terms between each pair of RX antennas
free from the impact of time-varying phase shifts are
$
.%

.&

CSI12 = {CSI 1,j,1CSI 2,j,1, ...,CSI 1,j,NpCSI 2,j,Np}
CSI23 = {CSI 2,j,1CSI 3,j,1, ...,CSI 2,j,NpCSI 3,j,Np}
CSI31 = {CSI 3,j,1CSI 1,j,1, ...,CSI 3,j,Np

CSI 1,j,Np
}
.

(13)

4.2 High-frequency noise removal

We then input the CSI cross-correlation terms CSI12, CSI23
and CSI31 into a Savitzky-Golay (SG) smoothing filter
followed by a lowpass filter, which aims to remove high-
frequency noise from these terms.

According to [24], the high-frequency noise comes from
WiFi NICs and varies much faster than the dynamic human
component of interest. In the SG filter, the polynomial order
and frame length are set to 3 and 5, respectively. And we
assume the maximum motion speed is 3.5 m/s in indoor
scenarios, so the passband of the lowpass filter is set to
fpass =

3.5fc
c ≈ 60 Hz, where the center carrier frequency is

fc = 5.32 GHz in our WiFi system. Here let CSI
′

12, CSI
′

23

and CSI
′

31 be the filtered cross-correlation terms.

4.3 Doppler frequency shift estimation

In the following, we use the filtered cross-correlation terms
to estimate a DFS fD in a short-time sampling window.

Static and Dynamic Cross-correlation Term Separation.
The static component HS

i,j is a constant in the window
and its power is much higher than that of the dynamic
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Fig. 3: Observation matrix for unambiguous DFS estimation

human component HX
i,j,k, so the static cross-correlation

term (denoted as U12,j) can be separated by calculating the
mean value of the cross-correlation terms. The remaining
dynamic cross-correlation term (denoted as V12,j,k) at each
CSI sample is obtained by subtracting the mean value,

$
%

&

))He
j,k

))2Hh
1H

h
2H

S
1,jH

S
2,j = U12,j

))He
j,k

))2Hh
1H

h
2

"
HS

1,jH
X
2,j,k +HX

1,j,kH
S
2,j +HX

1,j,kH
X
2,j,k

#
= V12,j,k

,

(14)
where

$
..%

..&

U12,j =
1

Np

Np!

k=1

CSI
′

1,j,kCSI
′

2,j,k

V12,j,k = CSI
′

1,j,kCSI
′

2,j,k − U12,j

. (15)

Since the amplitude of HS
i,j may be far larger than that of

HX
i,j,k, we ignore the product term HX

1,j,kH
X
2,j,k in Eq. 14.

DFS Estimation using Subspace-based Method. From
Eq. 14, we can see that the dynamic cross-correlation term
of interest (e.g., HX

1,j,kH
S
2,j) is mixed with a side product

(e.g., H
X
2,j,kH

S
1,j), so the estimated DFS fD would be an

actual one or its negative. This phenomenon is called the
DFS ambiguity. To tackle this issue, many exisiting works
[19], [25], [26] adjust the CSI amplitude of each antenna by
adding or subtracting a real value. However, this intuitive
method seems to be signal-dependent and is not always
effective in multipath-rich scenarios. In this work, WiDFS
achieves unambiguous DFS estimation as follows:

First, we divide the equations in Eq. 14 to remove the

unknown term
)))He

j,k

)))
2
Hh

1,jH
h
2,j ,

HX
1,j,k

HS
1,j

+
H

X
2,j,k

H
S
2,j

=
V12,j,k

U12,j
. (16)

Likewise, we can obtain

$
......%

......&

HX
2,j,k

HS
2,j

+
H

X
3,j,k

H
S
3,j

=
V23,j,k

U23,j
,

HX
3,j,k

HS
3,j

+
H

X
1,j,k

H
S
1,j

=
V31,j,k

U31,j
.

(17a)

(17b)

By subtracting Eq. 17a from the conjugate of Eq. 17b and
subtracting Eq. 17b from the conjugate of Eq. 16, we have
$
....%

....&

HX
1,j,k

HS
1,j

−
HX

2,j,k

HS
2,j

=
V 31,j,k

U31,j

− V23,j,k

U23,j
= ∆W12,j,k

HX
2,j,k

HS
2,j

−
HX

3,j,k

HS
3,j

=
V 12,j,k

U12,j

− V31,j,k

U31,j
= ∆W23,j,k

. (18)

Then we compute the difference of the above equations,

∆Wj,k = ∆W12,j,k −∆W23,j,k

=
HX

1,j,k

HS
1,j

− 2
HX

2,j,k

HS
2,j

+
HX

3,j,k

HS
3,j

=
HX

2,j,k

HS
2,j

/
HX

1,j,k

HX
2,j,k

HS
2,j

HS
1,j

+
HX

3,j,k

HX
2,j,k

HS
2,j

HS
3,j

− 2

0. (19)

In free space without multipath interference, we can
apply far-field and narrowband assumptions to obtain

$
...........%

...........&

)))HX
1,j,k

))) ≈
)))HX

2,j,k

))) ≈
)))HX

3,j,k

)))
)))HS

1,j

))) ≈
)))HS

2,j

))) ≈
)))HS

3,j

)))

∠
HX

1,j,k

HX
2,j,k

≈ ∠
HX

2,j,k

HX
3,j,k

∠
HS

1,j

HS
2,j

≈ ∠
HS

2,j

HS
3,j

, (20)

where the function ∠· denotes the operator of computing
the phase shift of a complex number. Thus, we have

Γj,k =
HX

1,j,k

HX
2,j,k

HS
2,j

HS
1,j

+
HX

3,j,k

HX
2,j,k

HS
2,j

HS
3,j

≈ 2 cos

/

∠
HX

1,j,k

HX
2,j,k

HS
2,j

HS
1,j

0

(21)
Unfortunately, there exist multiple signal propagation paths
in an actual environment. However, for the following two
reasons, we can assume that Γj,k keeps unchanged, i.e.,
Γj,k = Γj . (1) HS

i,j is static environment-related and re-
main unchanged, then HS

1,j/H
S
2,j and HS

2,j/H
S
3,j are ap-

proximately constant. (2) Recall that we ignore the change
in the amplitude of HX

i,j,k in the window. The values of
HX

1,j,k/H
X
2,j,k and HX

2,j,k/H
X
3,j,k also do not vary over time.

Thus, ∆Wj,k can be rewritten as

∆Wj,k ≈ Γj−2

HS
2,j

[ρX2,je
−J [2π

fj
c dX

2 +2πfD(k−1)∆t] + NX
2,j,k].

(22)
The Fast Fourier Transform (FFT) is commonly used

to identify signal frequencies. However, given the small
sample size (i.e., 100 CSI samples), FFT may not provide
enough high estimation accuracy. Instead, WiDFS uses root
multiple signal classification (Root-MUSIC) algorithm [30]
to estimate fD . It outputs frequency estimates along with
the corresponding signal power estimates. As shown in Fig.
3, we build an observation matrix using ∆Wj,k in Eq. 22
at all subcarriers. Each column represents a separate obser-
vation. The number of snapshots is 30. To determine the
subspace dimension, we calculate the maximum eigenvalue
eigmax of the correlation matrix and then find the number of
eigenvalues above an empirical threshold 0.6eigmax. Finally,
we select a frequency estimate associate with the maximum
signal power as an optimal one. Fig.4 shows the measured
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an approximate elliptical trajectory

DFSs when a person walks four times along an elliptical
trajectory. The results are consistent with human movement,
and the smoothed results clearly reveal the DFS variation.

5 SEPARATING DYNAMIC HUMAN COMPONENT

This section uses the estimated DFS and CSI self-correlation
to build the complex-valued dynamic human components.

5.1 Random phase shift removal via self-correlation
First of all, the time-varying phase shifts ϕFO

j,k and ϕTO
j,k in

He
j,k are removed by applying a self-correlation operation

in WiDFS, that is, we multiply CSI i,j,k by its complex
conjugate CSI i,j,k and obtain ‖CSI i,j,k‖2. The product is
also called the CFR power, which is

‖CSI i,j,k‖2 =
"
He

j,kH
h
i

#"
HS

i,j +HX
i,j,k

#"
H

e
j,kH

h
i

#"
H

S
i,j +H

X
i,j,k

#

=
)))He

j,kH
h
i H

S
i,j

)))
2

* +, -
Staic Power Term

+

)))He
j,kH

h
i

)))
2
1
2
)))HS

i,jH
X
i,j,k

))) cos∠
"
H

S
i,jH

X
i,j,k

#
+

)))HX
i,j,k

)))
2
2

* +, -
Dynamic Power Term

,

(23)
In the pre-defined sampling window with 100 CSI sam-

ples, the calculated self-correlation terms at each RX antenna
(i = 1, 2, 3) and subcarrier (j = 1, 2, .., 30) are denoted as
CSIii = {‖CSI i,j,1‖2 , ...,

))CSI i,j,Np

))2}.

5.2 Dynamic power separation and refinement
Next, WiDFS uses the calculated CSI11, CSI22 and CSI33
to separate dynamic power terms in the window and then
refines them using the estimated DFS fD .

Separation of Static and Dynamic Power Terms. We
follow the same operation in Eq. 15 to calculate the static
and dynamic power terms (denoted as ui,j and vi,j,k, re-
spectively)
$
..%

..&

)))He
j,kH

h
i H

S
i,j

)))
2
= ui,j

)))He
j,kH

h
i

)))
2
1
2
)))HS

i,jH
X
i,j,k

))) cos∠
"
H

S
i,jH

X
i,j,k

#
+

)))HX
i,j,k

)))
2
2
≈ vi,j,k

,

(24)
where $

..%

..&

ui,j =
1

Np

Np!

k=1

‖CSI i,j,k‖2

vi,j,k = ‖CSI i,j,k‖2 − ui,j

. (25)

The term
)))HX

i,j,k

)))
2

can be ignored since it is much smaller
than other terms.

Filtering of Dynamic Power Terms of Interest. Since
the dynamic power terms vi,j,k of interest may be around
the estimated DFS fD , we refine vi,j,k using a lowpass
filter with the passband frequency of

33fD
33 + ∆f , where

the empirical frequency ∆f is set to 10 Hz in our scheme.
And if

33fD
33 > 15 Hz, we further apply a highpass filter

with the passband frequency of
33fD

33 − ∆f . The refined
dynamic power terms at each RX antenna and subcarrier
in the window are denoted as v

′

ii = {v′

i,j,1, ..., v
′

i,j,Np
}. For

single-object tracking, it is reasonable to assume that there is only
a dominant human reflection in each v

′

i,j,k.

5.3 Dynamic human component reconstruction
Here WiDFS depends on the filtered v

′

ii and the estimated
DFS fD to reconstruct the complex-valued dynamic human
component at each RX antenna and subcarrier.

Static-Dynamic Associated Component Estimation. At
first, we remove the unknown term

)))He
j,kH

h
i

))) by

v
′

i,j,k

ui,j
= 2

)))))
HX

i,j,k

HS
i,j

))))) cos∠
"
H

S
i,jH

X
i,j,k

#
. (26)

We substitute the proposed dynamic human component
HX

i,j,k described in Section 2.2 into the above equation (the
minor noise term is removed after filtering in Section 5.2),

v
′

i,j,k

ui,j
= 2

)))))
HX

i,j,k

HS
i,j

))))) cos
"
∠HS

i,j + ∠HX
i,j,k

#

= 2

)))))
HX

i,j,k

HS
i,j

)))))×

cos

4
∠HS

i,j − 2π
fj
c

1
dX + c

fD

fc
(k − 1)∆t+ (i− 1)∆d sin θX

25

= xi,j cos
6
2πfD (k − 1)∆t

7
+ yi,j sin

6
2πfD (k − 1)∆t

7
,

(27)
where
$
....%

....&

xi,j = 2

)))))
HX

i,j,k

HS
i,j

))))) cos
4
∠HS

i,j − 2π
fj
c

6
dX + (i− 1)∆d sin θX

75

yi,j = 2

)))))
HX

i,j,k

HS
i,j

))))) sin
4
∠HS

i,j − 2π
fj
c

6
dX + (i− 1)∆d sin θX

75 .

(28)
Specially, since the subcarrier frequency fj is very close to
the center frequency fc, we have fj/fc ≈ 1.

Given Np = 100 CSI samples at a RX antenna and
subcarrier in the window, we write Eq. 27 in a matrix form,

8

999:

1 0
cos

'
2πfD∆t

(
sin

'
2πfD∆t

(

...
...

cos
;
2πfD (Np − 1)∆t

<
sin

;
2πfD (Np − 1)∆t

<

=

>>>?

1
xi,j

yi,j

2
=

8

9999999:

v
′
i,j,1

ui,j

v
′
i,j,2

ui,j

...
v
′
i,j,Np

ui,j

=

>>>>>>>?

.

(29)
A least-squares method is applied to easily solve xi,j and
yi,j , so the static-dynamic associated component ZS,X

i,j at
the i-th antenna and the j-th subcarrier in the window is

ZS,X
i,j = wi,je

J atan2(yi,j ,xi,j)

= wi,je
J
%
∠H

S
i,j−2π

fj
c [d

X+(i−1)∆d sin θX ]
&

,
(30)
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Fig. 5: Signal reflections off human body. Recall from Eq. 19, ∆Wj,k represents the dynamic component caused by human
motion. Since human body has a complex surface, the transmit signals may not always be reflected to RX antennas.

where wi,j denotes the weight derived from the sum of
squared residuals. When the residual is minimum, we nor-
malize the weight to be maximum (or vice versa).

Dynamic Human Component Separation. Further, let
∆ϕh

12 and ∆ϕh
31 be the phase differences caused by WiFi

hardware diversity, which can be pre-estimated using our
proposed approach to be detailed in Section 7,

$
....%

....&

∆ϕh
12 = ∠

"
Hh

1H
h
2

#

∆ϕh
23 = ∠

"
Hh

2H
h
3

#

∆ϕh
31 = ∠

"
Hh

3H
h
1

#
. (31)

We combine them with the calculated static cross-correlation
terms U12,j and U31,j in Section 4 to conduct a transforma-
tion on ZS,X

2,j and ZS,X
3,j ,

$
.%

.&

w2,je
J
'
∠H

S
1,j−2π

fj
c (d

X+∆d sin θX)
(

= ZS,X
2,j e−J(∠U12,j−∆ϕh

12)

w3,je
J
'
∠H

S
1,j−2π

fj
c (d

X+2∆d sin θX)
(

= ZS,X
3,j eJ(∠U31,j−∆ϕh

31)
,

(32)
where $

%

&
∠U12,j −∆ϕh

12 = −
"
∠HS

2,j + ∠HS
1,j

#

∠U31,j −∆ϕh
31 = ∠HS

3,j + ∠HS
1,j

. (33)

Thus, the dynamic human components ZX
1,j , ZX

2,j , and ZX
3,j

at the j-th subcarrier in the window are reconstructed as
$
...%

...&

ZX
1,j = w1,je

−J
2πfj

c dX

= eJ∠HS
1,jZS,X

1,j

ZX
2,j = w2,je

−J
2πfj

c (dX+∆d sin θX) = eJ∠HS
1,jZS,X

2,j e−J(∠U12,j−∆ϕh
12)

ZX
3,j = w3,je

−J
2πfj

c (dX+2∆d sin θX) = eJ∠HS
1,jZS,X

3,j eJ(∠U31,j−∆ϕh
31)

,

(34)
where the distance dS1 between the transmitter and the
receiver Antenna 1 can be measured in advance, so we can
get the approximation ∠HS

1,j ≈ −mod
"
2π

fj
c d

S
1 , 2π

#
.

6 DETECTING AND TRACKING MOVING PERSON

This section describes how to leverage the estimated DFS
fD to detect the presence of a moving person and introduces

......CSI1 CSINp

Ø M – Number of sub-windows in a joint window for human tracking
Ø NP – Number of CSI samples in a sub-window for DFS estimation

......

W1 W2

W1

CSI Sample Sequence

Joint Window Sequence

W2 WM WM+1...... ......

......

1W

2W

CSINp+1 CSI2Np

Fig. 6: Combining multiple CSI sampling sub-windows for
reliable motion detection and human tracking

how to track a moving person using the calculated dynamic
human components ZX

i,j over multiple sampling windows.

6.1 Capture of Human body reflection
When the transmitter sends WiFi signals to space, the RX
antenna array may not capture all reflection signals off hu-
man since signal propagation is complicated by reflections
from the human body surface. To intuitively illustrate this
phenomenon, we plot the phase change of ∆Wj,k in Eq. 19
at 30 subcarriers in Fig. 5. We collect 6 seconds of CSI data in
a dynamic scenario that a person moves at a speed of about
1 m/s away from the receiver. It shows the phase variation
cannot match our expectation in some sampling time due to
the fact that some reflections may be invisible to the receiver.

To achieve robust passive human tracking, we combine
the human reflections over multiple CSI sampling sub-
windows W (as shown in Fig. 6), where each sub-window
has NP = 100 CSI samples as described before. And the
window W consisting of the amount of M sub-windows
is called the joint window. The two adjacent joint windows
overlap with (M − 1) sub-windows. The average compu-
tation time should be less than 0.1 s to enable real-time
tracking.
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Fig. 7: Detecting the absence or presence of human motion

6.2 Dynamic environment sensing
WiDFS performs passive human tracking only when a mov-
ing person is present. It uses the estimated fD and ∆Wj,k

in Eq. 19 in Section 4 to determine the absence or presence
of a moving person in the region of interest by

P = 1
30×MNp

M@
l=1

30@
j=1

)))))

Np@
k=1

eJ∠∆Wj,k[l]eJ2πfD[l](k−1)∆t

))))),

(35)
where ∆Wj,k[l] and fD[l] represent the corresponding esti-
mates in the l-th sub-window. The range of P is within (0, 1).
In a static scenario, the extracted ∆Wj,k is a noise term, so
P maintains in a low level. However, when a person moves
in the region, P will be close to 1. Our judging criteria is
that if P is lower (or higher) than a pre-defined threshold, it
indicates the absence (or presence) of a moving person.

In Fig. 7, we use an example to show the result of
dynamic environment sensing. A person moves randomly
and then sits on a chair for a while. The volunteer repeats the
two motions. We find that the sensing function could effec-
tively indicate the human motion status via a threshold. In
Section 9.4, a comprehensive experiment will be conducted
to determine this threshold in different scenarios.

6.3 Localization parameter estimation
WiDFS performs tracking using two fundamental parame-
ters. One is the AoA θX , the direction that the human reflec-
tions are received from at the RX antenna array. Another is
the reflection distance dX of a transmitted signal being re-
flected by the tracked person to an RX antenna. To guarantee
our system’s real-time performance, we separately calculate
the two parameters.

6.3.1 AoA
Based on the calculated dynamic human component ZX

i,j ,
the AoA θX in a joint window is estimated by

argmax
θX∈[−90◦,90◦]

M!

l=1

30!

j=1

)))))

3!

i=1

ZX
i,j [l]e

J2π
fj
c (i−1)∆d sin θX

))))). (36)

Due to the 2π phase ambiguity, the searching range of AoA
should be within [−90

◦
, 90

◦
]. In this way, the tracked person

is required to move on one side of the receive antenna array.
The angular searching spacing is set as 1◦ in WiDFS.

6.3.2 Human reflection distance
The human reflection distance dX in a joint window is
calculated by

argmax
dX∈(dX

min,d
X
max]

M!

l=1

3!

i=1

))))))

30!

j=1

ZX
i,j [l]Z

D[l]eJ2π
fj
c dX

))))))
, (37)

where $
....%

....&

ZD[l] = e
−J2π

ε−1)
ℓ=l

fD[ℓ]N∆t
, l < ε

ZD[l] = 1, l = ε

ZD[l] = e
J2π

l−1)
ℓ=ε

fD[ℓ]N∆t
, l > ε

. (38)

Here ε = M+1
2 and M is an odd number. The minimum

distance dXmin is equal to the length dS of the direct path
between the TX and RX antennas since the human reflection
distance is larger than dS . The maximum distance dXmax is
20 m, which is sufficiently large for indoor scenarios. The
distance searching spacing is set as 5 cm in WiDFS.

6.4 Localization parameter refinement
Since the estimated θX and dX may be relatively noisy, we
refine them using Kalman smoothers.

Let θX [L] and dX [L] be the current AoA and human
reflection distance in the L-th joint window after outlier re-
jection. The corresponding Kalman model is built as follows,

$
.%

.&

sin
"
θX [L+ 1]

#
≈ sin

"
θX [L]

#

dX [L+ 1] = dX [L] + c
fD [L]

fc

Np

fs

, (39)

where fD [L] is the median of {fD[1], fD[2], ..., fD[M ]}
in the L-th joint window. In the AoA Kalman smoother,
the noise covariance of the sine of AoA is set to 0.2. In
the distance Kalman smoother, the noise covariance of the
reflection distance and DFS are set as 20 cm and 5 Hz,
respectively. Fig. 8 and Fig. 9 show the estimated AoA
and human reflection distance without and with Kalman
smoothing.

6.5 Human localization
So far, the two core localization parameters, i.e., human
reflection distance dX and AoA θX , have been calculated.
The person position in a 2D coordinate system can then be
estimated using these estimated parameters.

As shown in Fig. 10, let dX→TX and dX→RX be the
distance of the tracked person to the transmitter and re-
ceiver, respectively, where dX = dX→TX + dX→RX . And
let θS be the AoA of the transmitter relative to the RX
antenna array, i.e., ∆d sin θS ≈ dS2 − dS1 ≈ dS3 − dS2 . Since
the phase differences caused by WiFi hardware diversity are
pre-estimated, the AoA θS is obtained by

argmax
θS∈[−90

◦
,90

◦
]

M!

l=1

30!

j=1

)))
"
ZS
12[l] + ZS

23[l]
#
e−J∆d sin θS

))), (40)

where $
%

&
ZS
12[l] = eJ(∠U12,j [l]−∆ϕh

12)

ZS
23[l] = eJ(∠U23,j [l]−∆ϕh

23)
. (41)
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According to the cosine formula, the distance dX→RX

can be calculated by

dX→RX =

'
dX

(2 −
'
dS1

(2

2[dX − dS1 cos (θX − θS)]
. (42)

Thus, the person’s position in a x-y coordinate system is
A
x = dX→RX sin θX

y = dX→RX cos θX
. (43)

7 WIFI HARDWARE DIVERSITY CALIBRATION

In [27], a method was proposed to calibrate the phase differ-
ence between antennas caused by manufacturing imperfec-
tion. However, the calibrated results are always wrapped
by an unknown π-radians ambiguity, meaning that the
estimated phase difference is the actual value or the actual
value plus π radians. Also, this method cannot calibrate the
antenna spacing. For example, a spacing error of 0.5 cm will
cause a phase deviation of about 0.557 radians, which will
significantly impact the AoA estimation accuracy. Here we
develop a novel WiFi hardware calibration algorithm. It is a
one-time procedure after the system is set up.

Here we use RX Antenna 1 and Antenna 2 as an ex-
ample. As shown in Fig. 11, we firstly place the TX an-
tenna at the right side of the RX antenna array. They are
deployed in a straight line. We measure multiple static com-
ponents denoted as {UR

12,j [1], U
R
12,j [2], ...}. We then place

the TX antenna at the left side of the array and obtain
{UL

12,j [1], U
L
12,j [2], ...}. The data collection is conducted in

a very low-multipath environment. Let ∆d12 be the spacing
between Antenna 1 and Antenna 2, then

$
.%

.&

∠UL
12,j = ∆ϕh

12 +
2πfc
c

∆d12 + 2πKL
12

∠UR
12,j = ∆ϕh

12 −
2πfc
c

∆d12 + 2πKR
12

, (44)

where KL
12 and KR

12 are unknown integers.

Then the antenna spacing ∆d12 is calculated by

∆d12 = c
2πfc

1
1
2∠

B@
l
eJ(∠UL

12,j [l]−∠UR
12,j [l])

C
+ πK12

2
,

(45)
where K12 is an integer making ∆d12 closest to our pre-
defined spacing (half a wavelength of about 2.8 cm).

Once ∆d12 is determined, we substitute it into Eq. 44 to
estimate hardware-related phase difference ∆ϕh

12,

∆ϕh
12 = ∠

@
l

6
eJ(∠UL

12,j [l]−
2πfc

c ∆d12) + eJ(∠UR
12,j [l]+

2πfc
c ∆d12)

7
.

(46)
Similarly, the distance ∆d23 and phase difference ∆ϕh

23

can also be measured based on the above process.

8 IMPLEMENTATION & EVALUATION

Implementation: (1) Hardware. We implement WiDFS using
two computers separately equipped with an Intel 5300 NIC,
shown in Fig. 12. One is served as a transmitter and has
one WiFi antenna, while another is a receiver that has three
external antennas to form a linear uniform antenna array.
These antennas are all omnidirectional and have 2 dBi gain.
(2) Software. The operating system of each laptop is Ubuntu
14.04 LTS with 3.16.0-30-generic Linux kernel version. They
are configured in the monitor mode via Linux 802.11n CSI
Tool [16], [31], [32]. The CSI sampling rate is 1 kHz. The
center frequency is 5.32 GHz. WiDFS is programmed by
Python 3.8 and implemented on a Mini PC with Intel(R)
Core CPU i5-7300U 2.6 GHz×4 and 3.8G memory. We adopt
csiread package1 to parse CSI data in real time.

WiFi Hardware Diversity Calibration. The manually
measured antenna spacing in the RX antenna array is 2.8 cm.
However, our hardware calibration algorithm outputs that
the spacing between Antenna 1 and Antenna 2 is 2.618 cm
while the spacing between Antenna 2 and Antenna 3 is 2.391
cm. It also shows the hardware-related phase difference
between Antenna 1 and Antenna 2 is 5.956 radians while
that between Antenna 2 and Antenna 3 is 1.418 radians.

Default Configuration. The transmitter and receiver are
placed at the same height, and their separation distance is
235 cm. The AoA of the transmitter relative to the receiver is
about −70◦. A CSI sampling window contains 100× 30× 3
samples for 3 RX antennas and 30 subcarriers, and a joint
window contains 9 CSI sampling sub-windows.

Evaluation. We evaluate WiDFS in a multipath-rich of-
fice environment with various types of strong reflectors
such as tables, chairs, metal lockers, computers, large-size

1. https://github.com/citysu/csiread
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displays, concrete ceiling, and tempered glass/hollow walls.
In each experiment, we ask a person to walk along with
three types of trajectories (shown in Fig. 14a, Fig. 15a and
Fig. 16a) in different office regions under different multipath
interference. For NLOS experiments, we firstly use card-
board boxes to block RX antennas, shown in Fig. 12c (the
scene on the left), so there is no LOS path from the tracked
person and the transmitter to the receiver. In this scene, a TI
IWR1642 mmWave radar besides the receiver can penetrate
the cardboard box to capture the ground-truth positions of
the tracked person. In addition, we also place other two
materials, i.e., plastic boxes and wooden boards, in front of
the transmitter and receiver to block the LOS path between
the person and the receiver, shown in Fig. 12c (the scene on
the right). However, the mmWave radar cannot penetrate
the two materials to obtain the ground truth. In the two
NLOS experiments, we deploy several landmarks on the
floor and ask the person to move around a landmark in
each experiment, where the ground truth is obtained by the
mmWave radar in LOS.

Baseline. We compare WiDFS to a state-of-the-art un-
supervised method Widar2.0 [25] with its implementation
software downloaded from the website2. The baseline has
the same system setup as ours. It also works with three
parameters, i.e., DFS, AoA, and human reflection distance.
However, our scheme WiDFS uses significantly different
key techniques compared with those used in Widar2.0.
(1) Widar2.0 firstly suppresses the image component from
cross-correlation terms by adding a constant factor to the
CSI amplitudes of the reference antenna and subtracting
another constant factor from the CSI amplitudes of other
antennas; (2) Widar2.0 applies a nonlinear optimization

2. http://tns.thss.tsinghua.edu.cn/wifiradar/Widar2.0Project.zip

solution to jointly estimate multiple signal parameters from
the separated dynamic human components, including DFS,
AoA, ToF (Time-of-Flight corresponding to the human re-
flection distance in our work) and attenuation; and (3)
Widar2.0 designs a path matching algorithm to optimize
these signal estimates and thereby achieves human tracking
using the optimized ToF and AoA. Overall, our scheme
can achieve better image suppression and more accurate
estimation at lower complexity, as will be seen from the
experimental results next. In addition, the Widar2.0 software
does not support real-time implementation, and hence its
tracking results are obtained offline. For fairness, we substi-
tute hardware calibration parameters into Widar2.0 and use
its algorithm in Matlab to track a person.

Ground Truth. We use a TI IWR1642 mmWave radar
to measure the person’s trajectory as ground truth. Such
a radar could achieve centimeter-level tracking accuracy.
It is placed beside the WiFi RX antenna array. We modify
the project3 in Python to perform single-target real-time
mmWave tracking as follows. We firstly obtain point cloud
data and use DBSCAN clustering algorithm to eliminate
some noisy points. We then adopt a Gaussian mixture to
capture the density center of refined cloud data as the
tracked target’s position. The localization results of WiFi
and mmWave are synchronized using 1-D data interpolation
based on their real-world sampling timestamps.

9 RESULTS

9.1 Comparison to state-of-the-art
We start by comparing WiDFS’s performance to Widar2.0.
Fig. 13 shows the CDF of the tracking error of WiDFS
and Widar2.0 after hardware diversity calibration. It shows
that Widar2.0 achieves a median tracking error of 108.4 cm
and a 90th percentile error of 240.6 cm. Comparatively, the
median and 90th percentile error of WiDFS are reduced to
72.31 cm and 170.8 cm, respectively, which could achieve
about 36 cm and 70 cm improvement over Widar2.0. It is
further noted that Widar2.0 performs backward smoothing
by using posterior localization estimates to inversely refine
the previous, which could result in large processing delay
and may not be used in a real-time tracking system.

To demonstrate the significance of WiFi hardware diver-
sity calibration, we plot the results of WiDFS without con-
ducting calibration for comparison. In this case, a median ac-
curacy of 112.9 cm and a 90th percentile error of 212.4 cm are

3. https://github.com/ibaiGorordo/AWR1642-Read-Data-Python-MMWA
VE-SDK-2
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Fig. 14: A case of ellipse path tracking
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Fig. 15: A case of line path tracking
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Fig. 16: A case of rectangle path tracking

achieved. The tracking error is significantly higher than that
after applying calibration. Fig. 14, Fig. 15 and Fig. 16 show
three cases of the trajectories estimated by WiDFS. Most
localization results could match the ground-truth trajectory.
It can be observed when the tracking target turns around (at
peak positions in these figures), some estimated reflection
distances exhibits larger errors than other cases. This may
mainly be attributed to that part of human reflections are
not be reflected to RX antennas. In addition, we know that
the human reflection distance should be larger than the LOS
distance between the transmitter and the receiver. However,
when the tracked person is close to the receiver, we find
that some estimates of the human reflection distance may
become smaller than the LOS distance due to the impact of
measurement noise. In this case, we set the person to be at
the origin in the 2D coordinate system in WiDFS.

9.2 Passive tracking accuracy in LOS and NLOS

Next, Fig. 17a and Fig. 17b plots the CDF of the tracking
error along the x- and y-axis dimensions in LOS and NLOS
cases. At first, Fig. 17a shows the median errors along x-
and y-axis in a LOS scenario (on the left in Fig. 12c without
cardboard boxes) are less than 32 cm and 56 cm, while Fig.
17b shows the results in another LOS scenario (on the right
in Fig. 12c without plastic boxes and wood boards) are less
than 37 cm and 49 cm. The 90th percentile errors along x-
and y-axis in the two LOS cases are less than (91 cm, 151 cm)
and (85 cm, 106 cm), respectively. Obviously, the x-axis has
a lower error than the y-axis, which is likely attributed to
that three RX antennas form a linear array along the x-axis.

In the NLOS scenario where cardboard boxes are used to
block the receiver, the tracking performance is very close to
the LOS case, shown in Fig. 17a. In this scenario, WiFi sig-
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Fig. 17: Tracking performance in LOS and NLOS
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Fig. 18: Motion threshold selection

nals may easily penetrate the cardboard boxes and the obsta-
cles may have little effect on WiFi signals. However, when
other materials are used to block the LOS path between the
person and the transceiver, Fig. 17b the median errors along
x- and y-axis are increased to (64 cm, 71 cm) for plastic-
box obstacles and (95 cm, 92 cm) for wood-board obstacles.
The thicker or denser obstacles will reduce reflected signal
strength even more. Moreover, recall from Section 5 that the
phase shift of the static component Hs

1,j at each subcarrier is
approximately calculated based on the manually-measured
distance of the transmitter to the receiver. However, the
obstacles may generate relatively strong reflection signals,
which cannot be ignored. They may reduce the efficiency
of removing the impact of the static component, thereby
introducing more position errors. Ideally, as long as the
receiver could capture reliable human body reflections in
NLOS cases, we believe that WiDFS enables performing
accurate tracking since an obstacle may introduce a same
phase shift on each subcarrier [33], [34].

We also conduct experiments to test WiDFS in NLOS
scenarios where a person moves behind a glass and partition
wall. Fig. 17c shows the change in CSI amplitudes at differ-
ent subcarriers (after lowpass filtering and mean removal).
The amplitudes change with human movement in the LOS
region, while they almost keep constant in NLOS. This
means the receiver may not capture human reflections due
to higher signal attenuation through the wall. We also find
that the corresponding motion confidence levels calculated
based on Eq. 35 are almost below the predefined motion
threshold (detailed in Section 9.3) so that WiDFS cannot
sense the presence of a moving person.

9.3 Motion threshold selection
This experiment aims to verify our motion detection method
in different scenarios, including office, kitchen, and meeting
room. We first ask each of the volunteers to separately stand

TABLE 1: 90th-percentile motion confidence level
Office Kitchen Meeting Room

Empty room 0.2998 0.2979 0.2915
Stand still 0.3094 0.2923 0.2881

Sit still 0.2992 0.3027 0.2847
Lie still 0.2932 0.2914 0.2922

still, sit still, and lie still. And we also keep the office empty
for testing. Table. 1 shows their 90th-percentile motion con-
fidence levels, which are almost less than 0.3. Then each
volunteer moves randomly at different velocities and mo-
tion directions. Fig. 18 shows that only about 3th-percentile,
1th-percentile, and 2th-percentile motion confidence levels
in the three scenarios are less than 0.3. In other words, when
the motion confidence level of 0.3 is selected in WiDFS to
detect whether there is a moving person, the false negative
rate (when WiDFS fails to detect human motion) is less than
about 3% and the false positive rate (when WiDFS fails to
detect static scenarios) is less than about 10%. The result
shows that the fixed motion threshold could be applied to
different environments. In the presence of human motion,
WiDFS will automatically perform our tracking algorithm.

In addition, we also test WiDFS in a meeting room,
shown in Fig. 19. The distance between the transmitter and
receiver is about 120 cm. Fig. 20 plots the CDF of the track-
ing accuracy along x- and y-axis. We can see that the median
errors are 44.20 cm and 64.98 cm, while the 90th percentile
errors are 111.6 cm and 170.2 cm. The tracking accuracy is
close to that in the office scenario. These results demonstrate
the robustness of WiDFS to different environments.

9.4 Impact of AFS on DFS estimation accuracy

This experiment is conducted to evaluate the impact of the
AFS when estimating the DFS. Firstly, we use the AoA
estimates in Fig. 8 to calculate the AoA difference ∆θXk
at successive sampling times. We then set ∆d = c/ (2fc)
(i.e., half a wavelength) and cos θX1 = 1 (which is maximal).
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Fig. 20: Tracking error in meeting room
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Fig. 21: Impact of AFS on DFS accuracy
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Fig. 25: Three trajectories under a joint window containing 31 CSI sampling sub-windows. Compared to the results in
Section 9.1, they could better match the ground truth. However, WiDFS needs more CSI samples for initialization to form
a joint window. The delay in each estimation will be increased to about 3s, but it will not accumulate over time.

TABLE 2: Running time of WiDFS and Widar2.0
Algorithm Language Platform Mean Std.

WiDFS Python Mini PC 0.076 s 0.018 s
WiDFS Python MacBook Pro 2019 0.024 s 0.002 s
WiDFS Matlab MacBook Pro 2019 0.016 s 0.002 s

Widar2.0 Matlab MacBook Pro 2019 0.136 s 0.021 s

According to the definition of the AFS in Section 2.2, we use
these parameters to calculate the AFS. Fig. 21 shows that
the AFS values for Antenna 2 and 3 are far smaller than the
DFS, so we can ignore the impact of the AFS in our model.

9.5 Realtime performance

WiDFS outputs a position estimate when receiving 100 ×
30 × 3 CSI samples from 3 antennas and 30 subcarriers.
The sampling interval is about 0.1 s. Any computation delay
larger than this upper bound may affect WiDFS’s real-time
performance. Table. 2 shows that the mean running time of
WiDFS (in Python) is 0.076 s on a Mini PC. We also run
WiDFS on a MacBook Pro with Intel Core i7 2.6 GHz ×6.
The csiread package is used to offline parse CSI data. The
running time is reduced to 0.024 s. Also, we program WiDFS
using Matlab. We parse raw CSI data to a .MAT file and then
exploit it to perform WiDFS and Widar2.0. The computation

time of WiDFS on MacBook Pro is 0.016 s, which is about 10
times faster than Widar2.0. This reduction benefits from the
fact that WiDFS does not need to simultaneously estimate
multi-dimensional localization parameters.

9.6 Accuracy vs. different parameters
The following will evaluate WiDFS’s tracking accuracy as
a function of different system parameters: transmitter-to-
receiver distance, motion speed, joint window size and
person position.

9.6.1 Impact of transmitter-to-receiver distance
We vary the transmitter-to-receiver distance from 100 cm
to 400 cm at a spacing of 100 cm. The RX antenna array
is fixed. We only change the position of the TX antenna
in this experiment. In each case, a person moves along the
same trajectory. Fig. 22 shows the minimum tracking error
occurs at a distance of 200 cm. This shows that there exist a
tradeoff between the separation distance and tracking accu-
racy. When the transmitter-to-receiver separation distance is
enlarged, the geometry of the tracked person relative to the
transmitter and receiver is good, which means that the sen-
sitivity to the distance measurement error will accordingly
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Fig. 26: Impact of person position

decrease. However, if the separation distance is too large,
our assumption that there exists one dominant direct signal
between the transmitter and receiver may become violated.
Surrounding objects produce static multipath signals that
we cannot neglect. In contrast, when the transmitter and
receiver are placed too closely, the strength of the direct
signal between them would overwhelm dynamic multipath.

9.6.2 Impact of motion speed
Fig. 23 shows the median tracking error when a person
moves along the same trajectory at different speeds, i.e.,
Slow walking (about 0.5∼1 m/s), Normal walking (1∼1.5
m/s), and Jogging (1.5∼2 m/s). The median error increases
gradually with the higher velocity. Recall from our algo-
rithm that we ignore the difference in DFS among different
RX antennas in a CSI sampling window. However, the
difference will increase at a higher movement speed. Our
future solution is to extend WiDFS to detect the presence
of a target moving very quickly and estimate the AFS. In
this way, the DFS for each RX antenna would be separately
estimated, thereby achieving more accurate tracking.

9.6.3 Impact of joint window size
We next vary the size of a joint window from 5 to 39 CSI
sampling sub-windows. Fig. 24 shows that the tracking
error gradually decreases as the number of sub-windows
increases. Such a result is expected since RX antennas may
not capture enough reliable human reflections in some sub-
windows, and it is challenging for WiDFS to dilute the im-
pact of the inaccurate dynamic components in a smaller joint
window size. This problem can be mitigated by utilizing a
larger joint window size. Fig. 25 shows three trajectories
used in Section 9.1 for evaluation when a joint window
contains 31 sub-windows. It shows that these trajectories are
all refined and can better match the ground truth. However,
a 3 s delay is introduced for each estimate under the joint
window with 31 sub-windows. Note that since the mean
estimation time is less than a sampling sub-window time, the
delay will not be accumulated over time.

9.6.4 Impact of person position
In the experiment, we ask a person to move to different
positions relative to the transceiver, and we test the impact
of different distances and directions on the localization
accuracy. We set 15 landmarks on the floor in the region of
interest. The person moves at a landmark each time. We use
the mmWave sensor to capture the ground-truth positions.
Fig. 26a shows all positions of the person moving at each

landmark. Fig. 26b and Fig. 26c shows the position errors
along the x- and y-axis of WiDFS. We can see that the local-
ization results at the middle landmarks are generally better
than others. When the person is closer to the transceiver, the
receiver can capture more reliable human reflections and
therebyWiDFS can achieve better localization accuracy.

10 RELATED WORK

This section reviews various techniques of WiFi-based track-
ing and sensing, including signal model-based active tracking,
signal model-based passive tracking, and deep learning-based
passive tracking. The signal model-based solutions are de-
signed by purely analyzing CSI models, while the deep
learning-based approaches generally require the use of pre-
collected training data. The difference between active and
passive systems is that the active tracking requires a target
carrying a WiFi device while the passive tracking is free
from this limitation and achieved only based on human
body reflections. Compared to previous works, WiDFS is
the first unsupervised real-time WiFi tracking system that
leverages novel DFS estimation and dynamic component
separation techniques to enable passive tracking.

10.1 Signal model-based active WiFi tracking
The topic of WiFi localization has attracted much atten-
tion in past years. Typically, ArrayTrack [27] constructs a
specialized MIMO-based WiFi receiver platform to estimate
AoA from a transmitter’s incoming signal, which could pin-
point the transmitter at decimeter-level accuracy. However,
its localization error is highly dependent on the number
of receivers and the relative geometry of the receivers to
the transmitter. SpotFi [22] is also a AoA-based solution
using COTS WiFi NICs. It estimates AoA and ToF of a
transmitter’s signal arriving at a three-antenna receiver via
smoothed MUSCI algorithm. However, this ToF is not an
actual value distorted by unknown time and frequency
shifts between the transmitter and receiver. Chronos [35] is
a ToF-based localization solution via COTS devices, which
achieves decimeter-level localization only using a receiver
equipped with multiple RX antennas. It works by combining
multiple frequency bands of 2.4 GHz and 5 GHz to compute
the ToF between the transmitter to each antenna of the
receiver. In practice, however, it is challenging to span
multiple frequency bands for COTS NICs. WiCapture [36] is
designed based on COTS WiFi devices. It estimates AoA and
complex attenuation of each signal propagation path and
then combines them to calculate the relative displacement
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of a transmitter. It just estimates a transmitter’s relative
trajectory rather than absolute positions. Navid et al. [13]
proposes a series of pre-processing methods to eliminate
random phase shifts due to transceiver clock asynchroniza-
tion. Then a MUSIC algorithm is applied to obtain ToF esti-
mates and thereby achieve decimeter-level localization. Our
work focuses on passive WiFi tracking and leverages ‘bad’
multipath interference to track a moving target’s trajectory.

10.2 Signal model-based passive WiFi tracking

The device-free sensing is a promising technique since
tracked targets do not require carrying any sensors. LiFS [37]
formulates the relationship between CSIs and a target loca-
tion based on a signal power fading model. Then it can rely
on the change in CSI amplitude to determine the absence
or presence of a person in the first Fresnel zone and locate
the target. However, this work requires deploying a large
number of receivers in advance (11 receiver PCs are used).
MaTrack [38] is a AoA-based solution which uses 2D MUSIC
algorithm to estimate absolute AoAs and relative ToFs of
static and dynamic paths. However, multiple receivers are
required to be deployed apart around a surveillance region
and the localization accuracy is subject to the precision of
random phase shift removal. Rui Zhou et al. [39] construct
a CSI fingerprint database by modeling the relationship
between CSI fingerprints and target locations. When a set of
new CSI samples comes, this method performs localization
by finding the most similar sample from the fingerprint
database. However, constructing such a fingerprint database
is a time-consuming task. Widar [40] and IndoTrack [19] are
DFS-based solutions. They both adopts a reference antenna
approach to coarsely separate each antenna’s dynamic com-
ponent from cross-correlation terms. However, the tracking
error will accumulate over time. FingerDraw [41] is a system
for finger trajectory tracking using WiFi signals. In this
work, the authors use a CSI-quotient model to remove
the impact of random gain and phase shifts in CSI. This
method is shown to be able to achieve improved sensitivity
due to the increased SNR. However, since the CSI-quotient
based solution cannot separate the static and dynamic com-
ponents, it may only achieve relative localization. In our
scheme WiDFS, the cross-correlation and self-correlation
based solution can extract the dynamic human component
and achieve absolute localization. Widar2.0 [25], mD-Track
[18], and WiPolar [15] are joint parameter estimation solu-
tions by simultaneously estimating signal attenuation, AoA,
ToF, and DFS from CSIs. Widar2.0 could completely mitigate
random phase shifts by CSI cross correlation between RX
antennas. However, its separated dynamic component is not
accurate enough. The localization accuracy of mD-Track and
WiPolar is determined by the accuracy of random phase
shift measurement. Moreover, the three solutions require
huge computations in each estimation and cannot achieve
real-time tracking. Our proposed WiDFS scheme only uses
a COTS transmitter (with 1 TX antenna) and receiver (with 3
RX antennas). It completely removes the impact of random
phase shifts via cross correlation. A novel DFS estimation al-
gorithm is developed to obtain unambiguous DFSs. On this
basis, WiDFS separately estimates the AoA and reflection
distance to achieve low-cost and real-time passive tracking.

10.2.1 Deep Learning-based WiFi tracking
Recently, many applications have been designed with the
help of deep learning technique to achieve fine-grained
localization/tracking. FreeTrack [42] is a deep neural net-
work (DNN)-based tracking system by feeding into CSI
amplitude fingerprints. To reduce the impact of environ-
ment change, FreeTrack needs to fine-tune the pre-trained
DNN with a few CSI samples from new environments.
DLoc [43] designs a novel DL-based framework by treating
WiFi localization as an image translation problem. It trans-
forms CSI data into an image and labels training data with
a customized robotic mapping platform. FiDo [14] could
significantly reduce the number of training data in new
scenarios. Even at the same position, different people may
induce different CSI data. FiDo adopts a domain-adaptive
solution and can pinpoint different persons only using few
labelled CSI data. Compared to these data-driven systems
that are sensitive to the changes in deployment environment
and transceiver position, WiDFS is an unsupervised system
and can still achieve high-precision passive tracking.

11 CONCLUSION

This paper introduces a device-free WiFi tracking system
that can track a moving person in real time at sub-meter po-
sition accuracy. The key design is a novel DFS algorithm that
enables measuring an unambiguous DFS when CSI cross-
correlation is exploited to mitigate the impact of transceiver
asynchronization. And novel algorithms of dynamic hu-
man component separation and localization parameter es-
timation are proposed to achieve high-precision and real-
time tracking. Our system prototype runs in a practical
multipath-rich scenario without requiring any environment-
specific training. Some video clips demonstrating real-time
tracking results are available from our website4.

One of the important future works is to extend our
method to achieve multi-person tracking. To fulfil this task,
three TX antennas can be utilized to build a multiple-input-
multiple-output (MIMO) system. The AoA resolution of the
MIMO WiFi system with 3 TX antennas and 3 RX antennas
may be achieved to be equivalent to that of a single-input-
multiple-output (SIMO) system (i.e., our WiDFS) with 9 RX
antennas. Therefore, the MIMO setup would be a promising
way to improve the accuracy in multi-person tracking.
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