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Abstract

The total least squares (TLS) method has been successfully applied to system identification in the errors-in-variables

(EIV) model, which can efficiently describe systems where input-output pairs are contaminated by noise. In this

paper, we propose a new gradient-descent TLS filtering algorithm based on the generalized correntropy induced

metric (GCIM), called as GCIM-TLS, for sparse system identification. By introducing GCIM as a penalty term

to the TLS problem, we can achieve improved accuracy of sparse system identification. We also characterize

the convergence behaviour analytically for GCIM-TLS. To reduce computational complexity, we use the first-

order Taylor series expansion and further derive a simplified version of GCIM-TLS. Simulation results verify the

effectiveness of our proposed algorithms in sparse system identification.
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1. Introduction

Sparse system identification (SSI) based on adaptive filtering (AF) has been widely studied [1, 2, 3, 4, 5, 6]. A

sparse system has long impulse response with many zero or near zero tap coefficients. Examples include wireless

systems with sparse multipath fading channels, acoustic channels and television transmission channels [1, 2]. In

the last two decades, a number of sparse AF algorithms have been derived for SSI. The priori sparsity knowledge5

is very important for adaptive SSI based on, e.g., least mean square (LMS) algorithms. And, various effective zero-

attracting methods have been developed to retrieve the priori sparsity knowledge implicitly. Well-known examples

include the `0-norm LMS [2], zero-attracting LMS (ZA-LMS) [3], reweighted ZA-LMS (RZA-LMS) [3] and Versoria

ZA-LMS [4]. In addition, the proportionate method is another efficient way to train AF algorithms for SSI [5, 6].

However, the above-mentioned sparse LMS algorithms suffer from performance degradation when the input10

signal is corrupted by noise. In addition, the input signal to the filter is often distorted by sampling, modeling and

instrumental errors [7, 8]. To deal with this problem, the errors-in-variables (EIV) model can be applied [9, 10].

As a useful approach based on the EIV model, the total least squares (TLS) can minimize the sum of squared

perpendicular distances from each point to the hyperplane defined by d = xTwo in a Euclidean vector space,

where x and wo are the input and impulse response, respectively [11]. Generally, a TLS problem can be solved15

by two categories of methods. The first is the direct method, which is based on the computation of singular-value
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decomposition (SVD) [12]. However, the high computational complexity of SVD limits the real-time applications

of TLS. The other one is an iterative method based on the Rayleigh quotient; it has lower complexity and has been

widely studied and applied in real-time signal processing [7, 13, 14].

Recently, in order to identify a sparse system using the EIV model, a reweighted `1-penalty is added to the20

cost function for the TLS problem, leading to the rewighted ZA-TLS (RZA-TLS) excitatory and inhibitory learning

[15]. However, the reweighted `1-penalty is suboptimal for solving a sparse problem. It is known that the `0-norm

defines the sparsity of a sparse system, however, it is an NP-hard combinatorial optimization problem. To solve this

intractable problem, various approximators for the `0-norm have been developed, such as the correntropy induced

metric (CIM) [16] and generalized CIM (GCIM) [17]. As a nonlinear metric, CIM with a proper value of the kernel25

width can be a good approximator for `0-norm. As an extension of CIM, GCIM with proper parameters can provide

better measure for different sparsity levels [18].

In this paper, we introduce and use the GCIM as a penalty term in the TLS problem, and propose a new

sparse AF algorithm, called as GCIM-TLS. The GCIM-TLS algorithm can perform efficiently in time-varying SSI

under the EIV model, because the GCIM penalty term can enable the algorithm to accurately measure the sparse30

information of the impulse response and the TLS method can suppress the input-output noise. In this work,

we further solve the following problems for combining TLS and GCIM: 1) Convergence is an important problem

for AF algorithms, and it is not a simple task to analytically prove the convergence of an algorithm. As a major

contribution, we provide rigorous convergence analysis for the proposed algorithms; 2) The exponential operations in

GCIM is computationally complicated for some real-world applications. Therefore, we propose an exponential-free35

algorithm, i.e., simplified GCIM-TLS (SGCIM-TLS). Without requiring the exponential operations, SGCIM-TLS is

more suitable for practical applications. Simulation results show that our proposed algorithms generally outperform

the zero-attracting LMS and TLS methods for sparse identification problems.

This paper is organized as follows. In Section 2, we give a brief introduction to the EIV model and the GCIM

concept. In Section 3, we introduce the proposed GCIM-TLS algorithm, conduct the convergence analysis, and40

present the SGCIM-TLS algorithm. In Section 4, simulation results are presented. Finally, some conclusions are

presented in Section 5.

2. Preliminary Knowledge

To make the paper self-contained, we first provide a brief description on the EIV model and TLS solution, and

then introduce the concept of GCIM.45

2.1. EIV model and TLS solution

Consider a general linear system

d(i) = wT
o x(i), (1)

where wo ∈ RL×1 is the unknown parameter vector to be identified, L is the length of taps, x(i) = [x(i), x(i −

1), . . . , x(i − L + 1)]T is the input data at instance i, and d(i) ∈ R denotes the corresponding output. Due to the

existence of various errors, we apply an EIV model to rewrite (1) as x̃(i) = x(i) + vin(i)

d̃(i) = d(i) + vout(i),
(2)
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where vin(i) ∈ RL×1 denotes the zero-mean input noise with auto-covariance matrix σ2
inIL×L, and vout(i) ∈ R

stands for the zero-mean output noise with variance σ2
out. Let the augmented input vector be x(i) = [x̃T (i), d̃(i)]T ∈

R(L+1)×1 and the augmented weight vector be w(i) = [wT (i),−1]T , where w(i) is the estimated filter weight vector

for wo. Hence, the output error is e(i) = x(i)Tw(i) = x̃(i)Tw(i)− d̃(i).50

In real-world signal processing, the following Rayleigh quotient is generally used as a TLS cost function [9]

J(i) =
w(i)TRw(i)

‖w(i)‖22
, (3)

where R = E
{
x(i)x(i)T

}
denotes the autocorrelation matrix of x(i), and ‖ · ‖2 is the `2-norm of a vector. To

solve the TLS problem, adaptive algorithms can be used to extract the eigenvector associated with the smallest

eigenvalue of R [15].

2.2. Generalized correntropy induced metric

In signal processing, the generalized correntropy (GC) has been widely used as an optimization criterion, since it

is an efficient non-linear and local similarity measure between two random variables [17, 19, 20]. Given two sample

vectors, e.g, a = [a1, a2, . . . , aN ]T and b = [b1, b2, . . . , bN ]T , the GC defines a metric between a and b as follows

GCIM(a, b) = α

√√√√ γ

N

(
1−

N∑
k=1

exp (−λ|ak − bk|α)

)
, (4)

where γ = α/(2βΓ(1/α)) is the normalization constant, Γ(·) is the Gamma function, α > 0 is the shape parameter,

β > 0 is the scale parameter, and λ = 1/βα is the kernel factor. Literature has proven that if b = 0, and

|ak| > δ > 0,∀k : ak 6= 0 as λ → ∞, then GCIMα(a,0) can be a good approximation for the `0-norm [17]. Hence,

we have

‖a‖0 ∼ GCIMα(a,0) =
γ

N

(
1−

N∑
k=1

exp (−λ|ak|α)

)
. (5)

As a good approximation to the `0-norm, the GCIM characterizes sparsity [18] and can be adopted as a penalty55

term in a cost function for SSI. In this paper, by combining the TLS problem with GCIM, we aim to derive a sparse

AF algorithm. The GCIM with different values of λ and α provides better selectivity in terms of zero-attraction,

which in turn leads to performance improvement when the system has high sparseness.

3. The Proposed GCIM-TLS Algorithm

Combining (3) and (5) together, we can obtain the following cost function

J̄(i) =
wT (i)Rw(i)

‖w(i)‖22
+ ρ

γ

L+ 1

(
1−

L+1∑
k=1

exp (−λ|wk(i)|α)

)
. (6)

Taking the gradient of (6) with respect to w(i) yields

∇J̄(i) =
‖w(i)‖22Rw(i)−

(
wT (i)Rw(i)

)
w(i)

‖w(i)‖42
+
ργλα

L+ 1
D(w(i))sign(w(i)), (7)

where D(w(i)) = diag
[
exp (−λ|w1(i)|α) |w1(i)|α−1, . . . , exp (−λ|wL+1(i)|α) |wL+1(i)|α−1

]
is a diagonal matrix, and

sign(w(i)) = [sign(w1(i)), . . . , sign(wL+1(i))]
T

denotes a column vector, with sign(·) being the sign operation. Using

the gradient descent to update the weight vector, we obtain

w(i+ 1) = w(i)− µ
‖w(i)‖22Rw(i)−

(
wT (i)Rw(i)

)
w̄(i)

‖w(i)‖42
− ηD(w(i))sign(w(i)), (8)
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where µ > 0 is the step-size, and η = µργλα
L+1 . Since (8) requires to compute R, which, in practice, is not known, this60

algorithm is referred to as a theoretical GCIM-TLS algorithm. An estimate of R can be generally used instead.

The values of parameters in the algorithm, in particularly λ and α, have an important impact on the performance

of the algorithm, as the scale of the GCIM-norm is mainly controlled by these values. From the theoretical point

of view, when λ→ 0, GCIM behaves like various norms (from `α-norm to `0-norm) of the data in different regions;

when λ→∞, GCIM can approximate the `0-norm irrespective of the values of α. However, from the experimental65

point of view, when λ is large enough, a large α value generally can not improve the filtering accuracy of GCIM-

based sparse adaptive algorithms. Hence, in practice, a relatively large value, such as 1000, is set for λ, and a

moderate value, such as 1.5 or 2, is set for α [18].

3.1. Convergence analysis

The stochastic approximation theory shows that, under some conditions, the asymptotic limit of the above

difference equations (8) can be analysed by using the following continuous time differential equations [9, 15]

dw(t)

dt
= −
‖w(t)‖22Rw(t)−

(
wT (t)Rw(t)

)
w(t)

‖w(t)‖42
− ηD(w(t))sign(w(t)). (9)

Let the eigenvalue decomposition of R be CΛCT , where C = [c1, . . . , cL+1] ∈ R(L+1)×(L+1) denotes a unitary

matrix, Λ = diag [λ1, . . . , λL+1] is a diagonal matrix with L+ 1 ordered eigenvalues, and λL+1 is the smallest one.

Since w(t) can be represented as a linear combination of the elements of C [9, 15], we obtain

w(t) =

L+1∑
k=1

fk(t)ck, R =

L+1∑
k=1

λkckc
T
k , (10)

where fk(t) is a scalar function. Therefore, (9) can be rewritten as

dw(t)

dt
=

L+1∑
k=1

dfk(t)

dt
ck =

−A
∑L+1
k=1 λkfk(t)ck +

(
wT (t)Rw(t)

)∑L+1
k=1 fk(t)ck

A2
− ηD(w(t))sign(w(t)), (11)

where A = ‖w(t)‖22. Let δ = −ηD(w(t)), some parameters can be set to constrain the bound of δsign(w(t)) in

[−δI, δI], where δ = max
{
x =

∣∣−η exp (−λ |wk(t)|α)|wk(t)|α−1
∣∣ , k ∈ [1, L+ 1]

}
. Therefore, we can assume that

δsign(w(t)) is distributed evenly from c1 to cL+1, and also assume that the contribution intensity of ck belongs to

[−δ′, δ′] with δ > δ′ > 0. Based on these assumptions, we have

dfk(t)

dt
=

(
wT (t)Rw(t)− λkA

)
fk(t)

A2
+ ε, (12)

where ε denotes a random variable uniformly distributed over [−δ′, δ′]. Since w(t) =
∑L+1
k=1 fk(t)ck, we obtain

fk(t) = wT (t)ck. In addition, if wT (0)cL+1 6= 0, we have ∀t : fL+1(t) 6= 0. Hence, we can denote hk(t) = fk(t)
fL+1(t)

for k ∈ [1, L]. And based on (12), we can obtain the following differential equation

dhk(t)

dt
=
fL+1(t)dfk(t)

dt − fk(t)dfL+1(t)
dt

f2L+1(t)

=
fL+1(t)

(
B−λkA
A2 fk(t) + ε

)
− fk(t)

(
B−λL+1A

A2 fL+1(t) + ε
)

f2L+1(t)

=
fL+1(t)fk(t)(λL+1 − λk)A−1 + ε(fL+1(t)− fk(t))

f2L+1(t)

=

(
λL+1 − λk

A
− ε

fL+1(t)

)
hk(t) +

ε

fL+1(t)
, (13)
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where B = w(t)TRw(t). The solution to (13) in [0,∞] is

hk(t) =
ε

fL+1(t)
exp

(
(λL+1 − λk)

∫ ∞
0

A−1dτ

)
exp

(
− ε

fL+1(t)
t

)
, (14)

If λL+1 is the smallest and the single one, and | ε
fL+1(t)

| � 1, then limt→∞ hk(t) → 0 for k ∈ [1, L]. Such results

lead to limt→∞ fk(t) → 0 for k ∈ [1, L]. Therefore, under the condition of enough training, we can conclude that

w(t) will approach the eigenvector cL+1 corresponding to the smallest eigenvalue, namely

lim
t→∞

w(t) = lim
t→∞

L+1∑
k=1

fk(t)ck = lim
t→∞

fL+1(t)cL+1. (15)

3.2. GCIM-TLS and its simplified version70

In practice, an instantaneous approximation method can be used to replace (8), i.e., replacing R by x(i)xT (i)

and yielding

w(i+ 1) = w(i)− µ
‖w(i)‖22x(i)xT (i)w(i)−

(
wT (i)x(i)xT (i)w(i)

)
w(i)

‖w(i)‖42
− ηD(w(i))sign(w(i)) (16)

= w(i)− µe(i)‖w(i)‖22x(i)− e2(i)w(i)

‖w(i)‖42
− ηD(w(i))sign(w(i)),

where e(i) = x(i)Tw(i) is the prediction error. And, (16) is the update equation for the GCIM-TLS algorithm.

The computational complexity of GCIM-TLS is slightly larger than that of RZA-TLS, because the term D(w(i))

additionally requires to calculate exp (−λ|wk(i)|α) |wk(i)|α−1 for k ∈ [1, L + 1]. To reduce the complexity, we can

apply the first-order Taylor series expansion to the exponential operations as follows

exp (−λ|wk(i)|α) ≈


1− λ|wk(i)|α︸ ︷︷ ︸

θk(i)

, |wk(i)| < λ−
1
α︸ ︷︷ ︸

φk(i)

0, otherwise.

(17)

Therefore, we call GCIM-TLS with the following update equation as simplified GCIM-TLS, named as SGCIM-TLS

w(i+ 1) = w(i)− µe(i)‖w(i)‖22x̄(i)− e2(i)w(i)

‖w(i)‖42
− ηDs(w(i))sign(w(i)), (18)

whereDs(w(i)) = diag
[
I(φ1(i))θ1|w1(i)|α−1, . . . , I(φL+1(i))θL+1(i)|wL+1(i)|α−1

]
with I(·) standing for an indicator

function. In addition, observing the third term D(w(i))sign(w(i)) in (16) or Ds(w(i))sign(w(i)) in (18), we can

find that such terms are similar to the derivative of (3) regularized with `α-norm ofw(i), i.e., ‖w(i)‖α. Thus the third

term in (18) becomes Dα(w(i))sign(w(i)) with Dα(w(i)) = diag
[
α|w1(i)|α−1, . . . , α|wL+1(i)|α−1

]
. Generally, the

α of `α-norm is not lower than 1, however, neither exp (−λ|wk(i)|α) in D(w(i)) nor I(φk(i))θk in Ds(w(i)) is75

greater than 1. Such a difference results in small weight adjustment in our proposed GCIM-TLS algorithms when

the weight is close to the optimum.

Remark: In practice, the step-size µ in both GCIM-TLS algorithms should be small enough to avoid instability

and divergence. In addition, because the prediction error is e(i) = x(i)Tw(i) = x̃(i)Tw(i) − d̃(i), after updating

(16) and (18), we need to set wL+1(i) = −1. Furthermore, we can set different values for α in GCIM, which can lead80

to various `0-norm approximations. For instances, if α = 1, GCIM becomes the `0-norm used in [2]; and if α = 2,

GCIM becomes the CIM used in [6, 16]. Hence, we expect that GCIM with different α values can result in different

performance improvement for SSI. As will be shown in the simulation results, in comparison with GCIM-TLS, our

proposed SGCIM-TLS algorithm can achieve very similar filtering performance in terms of convergence rate and

filtering accuracy, while it does not require the exponential operations. Hence, SGCIM-TLS is more suitable for85

hardware equipments, such as digital signal processor and field-programmable gate array.
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4. Simulation Results

In this section, some simulation results about synthetic models and real impulse responses for SSI are presented to

verify the efficiency of the filtering accuracy and convergence rate of proposed GCIM-TLS algorithms. Comparisons

are made with several related algorithms, i.e., RZA-LMS, `0-LMS, RZA-TLS and GD-TLS [7]. The filtering

performance of all the algorithms is measured by the error of the weight vector (EWV) defined as

EWV = 20 log10 (‖w(i)−wo‖2) . (19)

In addition, the following definition for the sparsity level of system is adopted [21]

ζ =
L

L−
√
L

(
1− ‖wo‖1√

L‖wo‖2

)
∈ [0, 1]. (20)

The definition shows that a sparser weight vector leads to a larger ζ → 1, while a more dispersive weight vector

results in a smaller ζ → 0. In the following experiments, unless stated otherwise, the length of wo is L = 64, wo is

randomly generated with ζ = 0.95, and ‖wo‖2 = 1. The input signal x(i) follows Gaussian distribution with zero90

mean and unit-variance, and the noise variances are σ2
in = σ2

out = 0.1. Thus the signal noise ratio is 10 dB. All

simulation results are averaged over 100 independent runs.

4.1. The influence of λ and α on our proposed algorithms

First, we study the influence of λ and α on the performance of two GCIM-TLS algorithms. We set the values

of λ and α over [50, 1000] and [1, 8], respectively. Other parameters are set as µ = 0.01 and ρ = 0.0001. In this95

part, the length of each trial is 3000, and we use the steady-state EWV (SS-EWV) to compare filtering accuracy

of GCIM-TLS and SGCIM-TLS. Here, SS-EWV is obtained by averaging over the last 100 EWV results of each

trial. Figure 1 plots the corresponding SS-EWV results. From this figure, we observe that: 1) Irrespective of the

λ values, when α ≥ 2.5, increasing α value does not have a notable effect on improving the filtering accuracy of

the two GCIM-TLS algorithms. This is because, when |wk(i)| < 1 and α − 1 is relatively large, the elements, i.e.,100

exp (−λ|wk(i)|α) |wk(i)|α−1 in D(w(i)), are very small, and then the gain vector D(w(i))sign(w(i)) has very small

entries. Although we can slightly adjust the weight vector, this will not notably improve the filtering accuracy of

our proposed algorithms. However, in this situation, SGCIM-TLS realizes almost the same misalignment as GCIM-

TLS; 2) When α is close to 1, a larger λ leads to worse filtering accuracy for these two algorithms. This is because,

when α → 1+, |wk(i)| < 1 and λ becomes large, the entry exp (−λ|wk(i)|α) |wk(i)|α−1 gets close to 1, and then105

D(w(i)) approaches to an identity matrix. In this case, D(w(i))sign(w(i)) will make too much adjustment of the

weight vector, and therefore worsen the filtering accuracy; 3) When α ∈ (1, 2.5), there exits a valley in the SS-EWV

surface, which means that moderate α values lead to a better filtering accuracy of the proposed algorithms; 4)

Although the difference of SS-EWV between GCIM-TLS and SGCIM-TLS is in the range of (−10, 2) dB, Figure 1

(b) shows that, in comparison with GCIM-TLS, SGCIM-TLS has a lower computational complexity but can achieve110

comparable steady-state misalignments in most cases except for a neighbourhood of α = 1.5.

Second, to better compare the filtering behaviours of both GCIM-TLS methods, we set α from {1.1, 1.5, 2, 3, 4},

λ from {100, 1000}, and other parameters are kept the same as before. Figure 2 plots the corresponding EWV

curves. This figure shows that: 1) In comparison with SGCIM-TLS, GCIM-TLS with some α values can achieve

better filtering accuracy; 2) When α = 1.1, the filtering performance of these two algorithms decreases with the115
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Figure 1: The SS-EWV results for both GCIM-TLS algorithms with L = 64 and ζ = 0.95. (a) Respective SS-EWV results; (b)

Difference of SS-EWV: GCIM-TLS - SGCIM-TLS.
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Figure 2: The EWV curves of GCIM-TLS and SGCIM-TLS with α ∈ {1.1, 1.5, 2, 3, 4}. (a) λ = 100; (b) λ = 1000.

increase of λ values, which is in accordance with the observation from Figure 1; 3) As revealed in Figure 1, when

α ∈ {3, 4}, GCIM-TLS and SGCIM-TLS achieve almost the same filtering results, but it is hard for them to make

further performance improvement; 4) When (α, λ) = (1.5, 100) and (α, λ) = (2, 1000), SGCIM-TLS demonstrates

similar filtering behaviours with GCIM-TLS, while the former does not require the exponential operations.

4.2. Performance comparisons under time-varying system120

Third, we test the filtering performance in terms of accuracy and convergence rate, by comparing our proposed

algorithms with RZA-LMS, `0-LMS, RZA-TLS and GD-TLS. The time-varying system (with varying weights) is

modelled by changing ωo to −ωo at a middle time. For all algorithms the step-size µ = 0.01, and other parameters

are set, shown in Figures 3 and 4, to realize similar initial convergence behaviours. Figure 3 plots the EWV curves

of these algorithms for different sparsity levels, i.e., ζ = 0.95 and ζ = 0.65. From this figure we have the following125

observations: 1) As expected, when the sparsity level is very high, namely, ζ = 0.95, the filtering accuracy of

GD-TLS is the worst among the six algorithms. Since GD-TLS does not use the sparsity knowledge of the sparse

system, it is not suitable for the SSI; 2) When ζ = 0.95, the TLS based sparse methods, including RZA-TLS and

our proposed algorithms, can realize better filtering accuracy than `0-LMS and RZA-LMS under EIV systems.

Although GCIM-TLS has a lower convergence rate after system change, it is superior to others in terms of steady-130

state misalignment; 3) When ζ = 0.65, GD-TLS achieves better filtering accuracy than that of RZA-LMS, `0-LMS

and RZA-TLS. Such results reveal that RZA-TLS is not robust to the variation of sparseness of a system. However,

in this situation, at the cost of reduced convergence rate, SGCIM-TLS achieves the best filtering accuracy among

the other methods.
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Figure 3: The EWV curves of these algorithms for weight time-varying systems. (a) ξ = 0.95; (b) ξ = 0.65.
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Figure 4: The EWV curves of these algorithms for sparsity time-varying system. (a) Synthetic model; (b) Real impulse responses.

Finally, we consider another time-vary system (with varying sparsity), which is modelled by changing ζ from135

0.95 to 0.65 and then to 0.35. Figure 4 (a) plots the corresponding EWV curves, and reveals that: 1) In comparison

with other algorithms, the filtering performance of GD-TLS is almost consistent in all cases; 2) Except for GD-

TLS, for the other algorithms, the filtering accuracy degrades when ζ decreases. Nevertheless, with ζ = 0.65 and

ζ = 0.35, SGCIM-TLS can achieve the smallest misalignment results1. Moreover, we also consider a practical

problem of identifying real impulse responses, i.e., the impulse response of level measurement device (LMD), the140

impulse response of echo path model 4 (M4) and the impulse response of echo path model 2 (M2), with ζ = 0.8306,

ζ = 0.7385 and ζ = 0.5870, respectively [22]. Here, we unify the length of these three impulse responses to be

L = 128, and set their `2-norms to be 1. All algorithms have the same parameter setting as those in Figure 4

(a). The EWV curves are plotted in Figure 4 (b). The figure shows that: 1) Our proposed algorithms achieve the

best filtering accuracy in all cases; and 2) With the decrease of ζ, SGCIM-TLS can realize comparable filtering145

performance as GCIM-TLS. Table 1 summarizes the corresponding SS-EWV results for performance comparisons.

In the table, the smallest SS-EWV values are highlighted in bold for different situations. Based on the above

observations and results, we can conclude that our proposed algorithms with different α and λ values can achieve

various and better filtering performance, compared to existing algorithms. However, how to set an optimal (α, λ)

pair remains as an open research problem.150

1Actually, as shown in Figure 2, compared with SGCIM-TLS, GCIM-TLS with the same parameter setting can achieve similar or

even better filtering performance.
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Table 1: The SS-EWV results of theses algorithms for time-varying systems.

Algorithms

Steady-State Error of Weight Vector (dB)

Synthetic Model Real Impulse Responses

Varying Weight Varying Sparsity (Fig.4 (a)) Varying Sparsity (Fig.4 (b))

ζ = 0.95 (Fig.3 (a)) ζ = 0.65 (Fig.3 (b))
ζ = 0.95 ζ = 0.65 ζ = 0.35

LDM M4 M2

ωo −ωo ωo −ωo ζ = 0.8306 ζ = 0.7385 ζ = 0.5870

`0-LMS -14.73 -15.05 -11.85 -11.77 -15.55 -11.59 -9.11 -10.01 -8.54 -7.93

RZA-LMS -14.27 -14.58 -11.28 -11.06 -14.97 -10.74 -8.02 -9.85 -8.42 -7.23

GD-TLS -13.55 -13.49 -13.55 -13.50 -13.52 -13.54 -13.55 -9.46 -9.38 -9.44

RZA-TLS -17.00 -17.00 -11.16 -10.58 -22.41 -10.18 -6.54 -10.18 -8.51 -7.38

GCIM-TLS -25.91 -24.66 -13.97 -14.06 -25.72 -14.19 -13.06 -14.63 -11.13 -12.90

SGCIM-TLS -22.17 -21.86 -16.29 -16.41 -21.72 -16.25 -15.32 -13.01 -11.43 -12.35

5. Conclusions

For sparse system identification in the EIV situation, a sparse adaptive filtering algorithm is proposed by injecting

the GCIM sparsity penalty term into the TLS cost function. The GCIM is a good approximation to the `0-norm

and can efficiently extract the sparsity information of a system. Exploiting this property, the proposed GCIM-

TLS outperforms many existing algorithms in terms of filtering accuracy. In addition, using the first-order Taylor155

series expansion, we obtain hardware-implementation-friendly SGCIM-TLS that avoids the exponential operation,

while achieving comparable filtering performance with GCIM-TLS. The convergence property is also characterized

analytically and verified by simulation results.
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