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Abstract—As a special case of the Volterra system, the second-
order Volterra (SOV) filter is very efficient for nonlinear system
identification. The improved correntorpy based on the general-
ized Gaussian density function has been proven robust against
impulsive noise. In this brief, we propose several SOV filters
based on a recursive maximum correntropy (RMC) algorithm for
nonlinear system identification. We first introduce a basic RMC
algorithm, which faces a trade-off between filtering accuracy
and tracking capability due to the use of a fixed forgetting
factor (FFF). Two RMCs with variable FF (VFF) are further
proposed to enhance the tracking ability. Simulation results
demonstrate that our proposed algorithms outperform existing
ones in impulsive noise environments and/or in time-varying
systems.

Index Terms—Correntropy, adaptive filtering, Volterra filter,
variable forgetting factor, system identification, impulsive noise.

I. INTRODUCTION

SYSTEM identification plays a key role in establishing
mathematical model for an unknown system from the

input-output signals. In the adaptive filtering field, linear
system identification has been widely studied and applied [1].
However, it is not very efficient in scenarios with intrinsic
complexity and nonlinearity [2], where nonlinear systems
identification can be a better solution. As a polynomial system,
the Volterra system has been widely studied and used in
nonlinear system identification. In practice, the second-order
Volterra (SOV) filter is often adopted, since it can realize
acceptable modelling accuracy and is computationally efficient
[3], [4]. Generally, the SOV filter can be adjusted by adaptive
filtering algorithms, which are derived typically from the
second-order statistics of the estimation error in the presence
of Gaussian noise.

However, in practice, impulsive noise which is sparse and
random with hign peak energy in the time domain, can sig-
nificantly degrade the performance of algorithms based on the
second-order statistics. Such impulsive noise can be modelled
well by a standard symmetric α-stable distribution, which can
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be represented by a characteristic function [5], i.e., φ(t) =
exp (−γ|t|α), where α ∈ (0, 2] stands for the characteristic
exponent describing the intensity of impulsive noise, and
γ > 0 is the dispersion of the noise and plays a role similar to
the variance of a Gaussian distribution. Therefore, researchers
have proposed and studied various optimization criteria for
robust learning. Examples include the least mean p-power
error (LMP) criterion [6], [7], logarithmic LMP (LLMP) [8],
kernel risk sensitive loss [9] and information theoretic criteria
[10], [11]. The improved correntorpy based on the generalized
Gaussian density function is a nonlinear and local similarity
measure, quantifying how similar two random variables are
in a neighborhood of the joint space controlled by the kernel
parameters [12]. In addition, the improved entropy can exploit
higher-order statistics of the estimation error to enhance the
robustness against non-Gaussian noise. Therefore, it has been
widely applied to develop robust learning algorithms [12]–
[16].

In this brief, we propose several recursive maximum cor-
rentropy (RMC) algorithms for nonlinear system identification
with impulsive noise: 1) We propose a basic RMC algorithm
by combining the SOV filter with the improved correntropy.
This is based on the fact that the improved correntropy can
provide robustness against outliers, and the recursive method
can achieve a smaller steady-state misalignment compared
with the gradient method and the affine projection method.
However, the basic RMC algorithm needs to overcome a
contradiction between the filtering accuracy and the tracking
capability, due to the use of a fixed forgetting factor (FFF); 2)
Inspired by the work on variable forgetting factor (VFF) [8],
[17]–[19], we further propose two variable forgetting factor
strategies, which are derived by using the squared a posteriori
error and the autocorrelation of a priori and a posteriori
errors, respectively. We then apply them to the basic RMC
algorithm, and leading to VFF-RMC-I and VFF-RMC-II,
respectively. Simulation results are provided and demonstrate
that our proposed VFF-RMC algorithms can not only maintain
excellent filtering accuracy of RMC, but also enhance its
tracking ability. Furthermore, in comparison with the adaptive
convex combination of two existing RMC algorithms [15],
VFF-RMC-II demonstrates better tracking behaviour and is
more computationally efficient.

II. PREPARATIONS

A. Second-order Volterra Filter

We consider a nonlinear system identified by a SOV filter
shown in Fig. 1, in which n is the time instance, v(n) is
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Fig. 1: Diagram of nonlinear system identified by a SOV filter.

the noise signal, z(n) is the desired output of the unknown
nonlinear system, d(n) = z(n) + v(n) is the observed output,
y(n) is the output of SOV filter, and e(n) = d(n) − y(n)
denotes the prediction error. Assume the unknown nonlinear
system can be represented by the following second Volterra
series

d(n) = z(n) + v(n) = wT
o u(n) + v(n), (1)

where wo ∈ RL×1 is a Volterra kernel of the SOV filter, and
u(n) is the expanded input vector. The variables wo and u(n)
are defined as follows

u(n) =
[
x1(n)T ,x2(n)T

]T
x1(n) = [x(n), . . . , x(n−N + 1)]

T

x2(n) = [x2(n), x(n)x(n− 1), . . . , x2(n−N + 2)

x(n−N + 2)x(n−N + 1), x2(n−N + 1)]T

wo =
[
wT
o1,w

T
o2

]T
wo1 = [wo1(0), wo1(1), . . . , wo1(N − 1)]

T

wo2 = [wo2(0, 0), wo2(0, 1), . . . , wo2(N − 2, N − 2)

wo2(N − 2, N − 1), wo2(N − 1, N − 1)]T ,

(2)

where wo1 is the linear kernel with length N , wo2 is the
second kernel with length 0.5N(N +1), x1(n) is the N most
recent inputs, and x2(n) is the second nonlinear combination
of x1(n). Hence, the total length of SOV is L = 0.5N(N+3).

B. Recursive Maximum Correntropy Algorithm for SOV Filter

In practice, non-Gaussian noise with high amplitude is
usually contained in v(n). To effectively approximate the
kernels in (1), we use the improved correntropy criterion1 to
derive a recursive algorithm to update the estimation w(n) of
wo, since the improved correntropy has higher-order absolute
moments of the error and is robust against the impulsive noise
[12].

For the sake of simplicity, we ignore the normalization
constant s/(2tΓ(s−1)) in (23) and consider an exponentially-
weighted cost function as follows

J(w(n)) =

n∑
i=1

βn−i exp (−τ |d(i)− y(i)|s) , (3)

where y(i) = w(n)Tu(i) is the output of the SOV filter,
β ∈ (0, 1] is a forgetting factor. Setting the gradient of (3)

1Defined in the Appendix A.

with respect to w(n) to a null vector, we get

w(n) = [R(n)]
−1
p(n)

R(n) =

n∑
i=1

βn−if(e(i))u(i)u(i)T

p(n) =

n∑
i=1

βn−if(e(i))y(i)u(i)

f(e(i)) = exp (−τ |e(i)|s) |e(i)|s−2

e(i) = d(i)− y(i) = d(i)−w(n)Tu(i),

(4)

where R(n) and p(n) stand for a weighted autocorrelation
matrix of the input and a weighted cross correlation vector
between the noisy output and the input, respectively. Under
fixed values of τ and s, the weight factor f(e(i)) suppresses
effectively the negative influence of impulsive noise and en-
hances the robustness of algorithms derived from the improved
correntropy.

We can then approximate R(n) in a recursive form as
R(n) ≈ βR(n − 1) + f(e(n))u(n)u(n)T . Based on the
matrix inversion Lemma (5.4) in [1], the inverse of R(n),
i.e., Q(n) = [R(n)]

−1, can be estimated as
Q(n) = β−1Q(n− 1)− β−1g(n)u(n)TQ(n− 1)

g(n) =
f(e(n))Q(n− 1)u(n)

β + f(e(n))u(n)TQ(n− 1)u(n)
.

(5)

Similarly, we get p(n) ≈ βp(n − 1) + f(e(n))d(n)u(n).
Combining p(n), (4) and (5), after some calculations, we get
the updated formulation of w(n) as

w(n) = w(n− 1) + g(n)e(n), (6)

where e(n) = d(n)−w(n− 1)Tu(n) denotes a priori error.
Algorithm 1 summarizes the RMC algorithm2, which can
achieve excellent filtering accuracy as can be seen from the
simulation results. It is noted that numerical simulations were
conducted due to the complexity of an analytical analysis.
However, simulation results also reveal that RMC need to
be balanced between the steady-state misalignment and the
tracking ability due to the use of the FFF. In the following
section, we present two VFF strategies to overcome this
problem.

III. RMC WITH VARIABLE FORGETTING FACTOR

Although, in RMC, the contradiction between filtering ac-
curacy and tracking capability can be resolved by the convex
combination method, the computational complexity is at least
doubled [15]. Alternatively, we propose two enhanced RMCs
with two VFF strategies derived from the squared a posteriori
error and the autocorrelation of a priori and a posteriori errors,
respectively.

A. VFF-RMC-I Based on a Posteriori Error

In this situation, (6) is rewritten as
w(n) = w(n− 1) + ḡ(n)e(n)

ḡ(n) =
f(e(n))Q(n− 1)u(n)

β(n) + f(e(n))‖u(n)‖2Q
, (7)

2RMC: step 1 to step 2 and step 6 with β(n) = βf ; VFF-RMC: step 1 to
step 5 and step 7, with β(n) = β?.
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Algorithm 1: Pseudocode of Proposed Algorithms
Initialization:
parameters: N > 0⇒ L = 0.5N(N + 3), τ > 0, s > 0, βf ∈ (0, 1],
a > b = c = d ∈ (0, 1), θ ∈ (1, 2], Nw ∈ [5, 9],
σ̂2
v(0) = σ̂2

e(0) = σ̂2
q (0) = q̂(0) = 0, w(0) = 0, Q(0) = I

Computation:
while {u(n), d(n)} (n ≥ 1) available do
1) y(n) = w(n− 1)Tu(n), e(n) = d(n)− y(n)
2) f(e(n)) = exp (−τ |e(n)|s) |e(n)|s−2, q(n) = f(e(n))‖u(n)‖2Q
3) Update σ̂2

v(n) by (12), σ̂2
e(n) by (13)

4) the variable forgetting factors

β? =

{
βf , σ̂e(n) ≤ θσ̂v(n)
VFF-I: (12)− (15) or VFF-II: (12), (13), (18) and (19)

5) Based on VFF or FFF used, one can choose β(n) ∈ {βf , β?}
6) For FFF, update w(n) by (6)
7) For VFF, update w(n) by (7)
end while

where ‖u(n)‖2Q = u(n)TQ(n−1)u(n). Defining a posteriori
error of RMC as ep(n) = d(n)−w(n)Tu(n) and, considering
(7), we get

ep(n) = e(n)
(
1− g(n)Tu(n)

)
. (8)

Squaring both sides of (8), and then taking the expectations,
we obtain

E
[
e2p(n)

]
= E

[
e2(n)

(
1− q(n)

β(n) + q(n)

)2
]

(a)
≈ E

[
e2(n)

]
E

[(
1− q(n)

β(n) + q(n)

)2
]
, (9)

where q(n) = f(e(n))‖u(n)‖2Q, E[·] is mathematical ex-
pectation, and the inequality (a) is obtained based on two
reasons: 1) f(e(n)) is bounded, and under impulsive noise,
f(e(n))→ 0, thus the effect of f(e(n)) can be ignored; 2) we
can assume that the input and error signals are uncorrelated.
In addition, E

[
e2p(n)

]
can be approximated by the variance

of system noise v(n), i.e., E
[
e2p(n)

]
≈ E

[
v2(n)

]
= σ2

v [19].
And, then we can get the following result from (9)

E

[(
1− q(n)

β(n) + q(n)

)2
]

=
σ2
v

σ2
e

, (10)

where σ2
e = E

[
e2(n)

]
denotes the power of e(n). Based on

(10), we can obtain a variable forgetting factor as

β(n) =
σqσv
σe − σv

, (11)

where σ2
q = E

[
q2(n)

]
. Theoretically, the impulsive noise

modelled by the α-stable distribution has σ2
v = ∞ with

α ∈ (0, 2). However, in practice, σ2
v can be estimated by the

following robust median operation [8]
σ̂2
v(n) = aσ̂2

v(n− 1) + (1− a)C(e(n))

C(e(n)) =
1.483(Nw − 1)

Nw + 4
med (εe(n))

εe(n) =
[
e2(n), . . . , e2(n−Nw + 1)

]T
,

(12)

where a ∈ (0, 1) is a weighting factor, med (·) denotes
the median operation, and Nw stands for the length of the

estimation window and is usually in [5, 9]. Similarly, the power
of e(n) can be estimated as follows

σ̂2
e(n) = bσ̂2

e(n− 1) + (1− b)C(e(n)), (13)

where b ∈ (0, 1) is a weighting factor. Since q(n) is related to
f(e(n)) and the weighted norm of input, in practice, σ2

q can
be estimated by an exponential window as

σ̂2
q (n) = cσ̂2

q (n− 1) + (1− c)q2(n), (14)

where c ∈ (0, 1) is also a weighting factor. Generally, we can
set a > b = c to realize a good filtering performance [19].

Observing the VFF β(n) in (11), we can anticipate that
σ̂e(n) ≤ σ̂v(n) may happen during the evolution of our
proposed algorithm. Therefore, when σ̂e(n) ≤ θσ̂v(n) with
θ ∈ (1, 2], β(n) can be replaced by a fixed value βf ∈ {0, 1}.
In addition, when the system changes, σ̂e(n) � σ̂v(n), and
thus (11) holds. Therefore, (11) can be modified as

β(n) =


βf , σ̂e(n) ≤ θσ̂v(n)

min

{
σ̂q(n)σ̂v(n)

σ̂e(n)− σ̂v(n)
, βf

}
, otherwise,

(15)

where min {·} is the minimum operation to set β(n) ∈ (0, 1).
Remark 1 : From (15) we can find that: 1) when σ̂e(n)�

σ̂v(n), a small β(n) is obtained, which enhances the tracking
ability of proposed algorithm when system changes; 2) when
σ̂e(n) is very close to σ̂v(n), a large fixed βf results in better
filtering accuracy of the proposed algorithm. We denote the
RMC with a variable forgetting factor in (15) as VFF-RMC-I,
which is summarized in Algorithm 1.

B. VFF-RMC-II Based on a Priori and a Posteriori Errors

Observing the related derivations of (15), we can find that
(9) is the key step, which relates β(n) to the powers of the
priori error and noise. Therefore, we can anticipate that there
exist other methods to obtain such relations, for example, the
autocorrelation of a priori and a posteriori errors. In this
situation, the goal is to obtain a forgetting factor β(n) that
can lead to the following equation

E [ep(n)e(n)] = E

[
e2(n)

(
1− q(n)

β(n) + q(n)

)]
(b)
≈ E

[
e2(n)

]
E

[
1− q(n)

β(n) + q(n)

]
= σ2

v , (16)

where the (b) is obtained in the same way as (a) in (9).
Therefore, after some calculations, (16) becomes

β(n) =
E [q(n)]σ2

v

σ2
e − σ2

v

. (17)

Based on the estimations in (12) and (13), and the remarks
on (15), we can rewrite (17) as

β(n) =


βf , σ̂e(n) ≤ θσ̂v(n)

min

{
q̂(n)σ̂2

v(n)

σ̂2
e(n)− σ̂2

v(n)
, βf

}
, otherwise

(18)

where q̂(n) is the estimation of E [q(n)] and is defined by

q̂(n) = dq̂(n− 1) + (1− d)q(n). (19)



4

where d ∈ (0, 1) is a weighting factor. In practice, we can set
a > b = d to achieve acceptable filtering performance [8].

Remark 2: Compared with (15), (18) has almost the
same function. However, (18) does not require the squared
operation. We call the RMC with a variable forgetting factor in
(18) as VFF-RMC-II, which is also summarized in Algorithm
1.

C. Computational Complexity

For the basic RMC algorithm, the main required computa-
tion is to update Q(n) in (5), and the complexity is O(L2).
Compared with RMC, the two VFF-RMCs require some addi-
tional computations as given in (12)-(15) and (12), (13), (18)
and (19), respectively. These computations are two compar-
isons, seven multiplications, and O(Nw logNw) in the median
operation. However, when a convex combination method is
used, e.g., the adaptive convex combination of two RMC
algorithms with control (AC-RMC-C) [15], the additional
complexity is at least O(L2). Therefore, in comparison with
AC-RMC-C, our proposed VFF-RMCs are computationally
more efficient. Furthermore, as will be seen from Section IV,
VFF-RMCs can achieve faster tracking than AC-RMC-C when
system changes. In addition, the recursive LLMP (RLLMP)
and improved VFF-RLLMP (IVFF-RLLMP) [8] are also able
to identify the SOV system. The computational complexity
of both RLLMP algorithms is also O(L2). However, our
proposed algorithms outperform them in terms of filtering
accuracy.

IV. SIMULATION RESULTS

In this part, we implement some examples of nonlinear
system identification to test the performance of our proposed
schemes in terms of filtering accuracy and tracking ability. A
unknown SOV system with N = 4 is defined by

wo =
[
wT
o1,w

T
o2

]T
, wo1 = [1,−0.8, 0, 1.9]

T

wo2 = [0.95, 0, 1.1, 0, 0, 0, 0,−0.63, 0, 0]
T

u(n) =
[
x1(n)T ,x2(n)T

]T
, z(n) = wT

o u(n).

(20)

which was used in [2], [8]. In the following experiments,
unless noted otherwise, the input x(n) is produced by a
Gaussian distribution with zero-mean and unit-variance, and
we use the normalized mean square deviation (NMSD) defined
as 20 log10

‖wo−w(n)‖
‖wo‖ to measure the filtering performance.

All simulation results are obtained by averaging over 100
independent runs.

First, we compare the filtering performance of RMC, VFF-
RMC-I and VFF-RMC-II under impulsive noise with α = 1.25
and γ = 1/15. In this experiment, the SOV changes wo to
−wo at n = 2000. For RMC, the parameters are βf = 0.99,
τ = 0.001, s = 1.4; For VFF-RMC-I and VFF-RMC-II,
a = 0.98, b = 0.95, Nw = 8, θ = 1.5, and other parameters
are the same with those for RMC. Fig. 2 plots the NMSD
filtering curves, and shows that : 1) before SOV changes, three
RMCs realize the same filtering performance, since two VFF-
RMCs have the same forgetting factor β(n) = 0.99; 2) after
SOV changes, the two VFF-RMCs can not only hold the filter-
ing accuracy in the steady-state, but also enhance the tracking
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Fig. 2: The NMSD curves of proposed RMCs with Gaussian
input and impulsive noise with α = 1.25 and γ = 1/15.

ability. This is particularly obvious for VFF-RMC-II, as VFF-
II achieves smaller forgetting factor than VFF-I after system
changes; 3) although the adaptation of β(n) lasts only some
iterations, it is very efficient for enhancing the convergence
rate of RMC after system changes. Furthermore, we have
conducted many experiments to test our proposed algorithms,
which can achieve convergence and realize acceptable filtering
accuracy and convergence rate3.

Then, we compare our proposed RMCs with AC-RMC-C,
RLLMP and IVFF-RLLMP. In this experiment, each algorithm
trains 12000 iterations. The white Gaussian input signal is used
for n ∈ (0, 6000], and then a coloured input signal is used for
n ∈ [6001, 12000], and it is generated by filtering a zero-
mean Gaussian signal with unity-variance through a second-
order system H(z) = (1 + 0.6z−1)/(1 + z−1 + 0.21z−2). For
the three RMC algorithms, they have the same parameters as
those in the previous. For AC-RMC-C, the large FFF is 0.99,
the small FFF is 0.9, the rate for adaption parameter is µχ =
0.9, the selection parameter is θ = 0.9, and the control factor
is ε2 = 0.003; For RLLMP, p = 1.2, and the FFF is 0.99;
For IVFF-RLLMP, the parameters are the same with those for
RLLMP, except that ς = 0.95, β = 0.98, θ = 1.5, and Nw =
8. Fig. 3 plots the NMSD filtering curves. From this figure, we
can observe that: 1) From the perspective of filtering accuracy,
all RMC algorithms outperform two RLLMP algorithms; 2)
VFF-RMC-II demonstrates the best tracking behaviour among
the four RMC algorithms; 3) In comparison with AC-RMC-
C, VFF-RMC-I can achieve better tracking ability, at a lower
complexity.

V. CONCLUSION

In this brief, the RMC algorithm is developed for SOV
system identification with impulsive noise. We also further
propose two VFF-RMCs to enhance the tracking ability of
RMC. Simulation results demonstrate that: 1) our proposed
algorithms achieve better filtering accuracy than LLMP based
algorithms; 2) based on the autocorrelation of a priori and a
posteriori errors, the variable forgetting factor introduced in
our algorithms can lead to better tracking ability for recursive-
type algorithms. Our algorithms may be further improved by
exploiting other relevance between the priori error and noise.

3Due to the page limit, some simulation results are plotted in a supplemen-
tary file.
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Fig. 3: The NMSD curves of compared algorithms with
Gaussian input signal for n ∈ (0, 6000] and with coloured
input signal H(z) for n ∈ [6001, 12000], and impul-
sive noise with α = 1.25 and γ = 0.1. The SOV
changes

[
wT
o1,w

T
o2

]T
to
[
wT
o1,−wT

o2

]T
,
[
wT
o1,w

T
o2

]T
to[

−wT
o1,w

T
o2

]T
and

[
wT
o1,w

T
o2

]T
to
[
−wT

o1,−wT
o2

]T
, at n =

3000, n = 6000 and n = 9000, respectively.

APPENDIX A
THE IMPROVED CORRENTROPY

As a local similarity measure between two random variables X
and Y , the correntropy has been widely used in adaptive system
identification [11], [20]–[22]. It is defined as

V (X,Y ) = E [κ(x− y)] =

∫
κ(x− y)dFx,y(x, y), (21)

where E [·] is the mathematical expectation, κ(·) is a Mercer kernel,
and Fx,y(x, y) is the joint distribution function of X and Y .
Generally, the κ(·) used in (21) is a Gaussian kernel defined by

κσ(x− y) = (
√

2π)−1 exp
(
−0.5σ−2|x− y|2

)
, (22)

where σ > 0 denotes the kernel size and (
√

2π)−1 is the normal-
ization parameter. However, Gaussian kernel is not always the best
choice, and hence the feature of V (X,Y ) is expanded by using
the following generalized Gaussian density function to replace the
Gaussian kernel [12]

κs,t(x− y) =
s

2tΓ(s−1)
exp (−τ |x− y|s) , (23)

where s > 0 is the shape parameter, t > 0 is the scale parameter,
τ = t−s is the kernel parameter, Γ(·) is the gamma function,
and s/(2tΓ(s−1)) denotes the normalization constant. Equation (23)
means that the correntropy with Gaussian kernel is a special case of
κs,t(x−y) with s = 2. Adapting to various situations, the correntropy
with (23) can realize satisfactory filtering performance by adjusting
the values of s and τ . Therefore, the new kernel can effectively extend
the properties and application scenarios of the correntropy. We call
equation (21) with the kernel (23) as the improved correntropy. In
practice, the joint distribution Fx,y(x, y) is unknown, and only a
finite number of data {xi, yi}Ni=1 are available, resulting in the sample
estimator of the improved correntropy, i.e.,

V̂ s,tN (X,Y ) =
1

N

N∑
i=1

κs,t(xi − yi). (24)

As proposed in [12], (24) can be used as a cost function for adaptation
algorithms with robustness against impulsive noises [12]–[16].
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