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We present two new results about exact learning by quantum computers.
First, we show how to exactly learn a k-Fourier-sparse n-bit Boolean function
from O(k1.5(log k)2) uniform quantum examples for that function. This im-
proves over the bound of Θ̃(kn) uniformly random classical examples (Haviv
and Regev, CCC’15). Additionally, we provide a possible direction to improve
our Õ(k1.5) upper bound by proving an improvement of Chang’s lemma for
k-Fourier-sparse Boolean functions. Second, we show that if a concept class C
can be exactly learned using Q quantum membership queries, then it can also
be learned using O

(
Q2

log Q log |C|
)

classical membership queries. This improves
the previous-best simulation result (Servedio and Gortler, SICOMP’04) by a
logQ-factor.

1 Introduction
1.1 Quantum learning theory
Both quantum computing and machine learning are hot topics at the moment, and their
intersection has been receiving growing attention in recent years as well. On the one hand
there are particular approaches that use quantum algorithms like Grover search [18] and
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the Harrow-Hassidim-Lloyd linear-systems solver [19] to speed up learning algorithms for
specific machine learning tasks (see [1, 8, 16, 28, 33] for recent surveys of this line of work).
On the other hand there have been a number of more general results about the sample
and/or time complexity of learning various concept classes using a quantum computer
(see [3] for a survey). This paper presents two new results in the latter line of work. In
both cases the goal is to exactly learn an unknown target function with high probability;
for the first result our access to the target function is through quantum examples for
the function, and for the second result our access is through membership queries to the
function.

1.2 Exact learning of sparse functions from uniform quantum examples
Let us first explain the setting of distribution-dependent learning from examples. Let C
be a class of functions, a.k.a. a concept class. For concreteness assume they are ±1-valued
functions on a domain of size N ; if N = 2n, then the domain may be identified with
{0, 1}n. Suppose c ∈ C is an unknown function (the target function or concept) that we
want to learn. A learning algorithm is given examples of the form (x, c(x)), where x is
distributed according to some probability distribution D on [N ]. An (ε, δ)-learner for C
w.r.t. D is an algorithm that, for every possible target concept c ∈ C, produces a hypothesis
h : [N ] → {−1, 1} such that with probability at least 1 − δ (over the randomness of the
learner and the examples for the target concept c), h’s generalization error is at most ε, i.e.,

Pr
x∼D

[c(x) ̸= h(x)] ≤ ε,

where x ∼ D means x is sampled according to the distribution D. In other words, from
D-distributed examples the learner has to construct a hypothesis that mostly agrees with
the target concept under the same D.

In the early days of quantum computing, Bshouty and Jackson [10] generalized this
learning setting by allowing coherent quantum examples. A quantum example for concept c
w.r.t. distribution D, is the following (⌈logN⌉ + 1)-qubit state:∑

x∈[N ]

√
D(x)|x, c(x)⟩.

Clearly such a quantum example is at least as useful as a classical example, because
measuring this state yields a pair (x, c(x)) where x ∼ D. Bshouty and Jackson gave
examples of concept classes that can be learned more efficiently from quantum examples
than from classical random examples under specific D. In particular, they showed that the
concept class of DNF-formulas can be learned in polynomial time from quantum examples
under the uniform distribution, something we do not know how to do classically (the
best classical upper bound is quasi-polynomial time [32]). The key to this improvement is
the ability to obtain, from a uniform quantum example, a sample S ∼ ĉ(S)2 distributed
according to the squared Fourier coefficients of c.1 This Fourier sampling, originally due
to Bernstein and Vazirani [7], is very powerful. For example, if C is the class of F2-
linear functions on {0, 1}n, then the unknown target concept c is a character function
χS(x) = (−1)x·S 2; its only non-zero Fourier coefficient is ĉ(S) hence one Fourier-sample
gives us the unknown S with certainty. In contrast, learning linear functions from classical

1Parseval’s identity implies
∑

S∈{0,1}n ĉ(S)2 = 1, so this is indeed a probability distribution.
2The linear functions with domain {0, 1}n and range {0, 1} are defined as (S · x) mod 2, for S ⊆ [n].

The definition of linear functions we give here are for functions with range {−1, 1} rather than {0, 1}.
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uniform examples requires Θ(n) examples. Another example where Fourier sampling is
proven powerful is in learning the class of ℓ-juntas on n bits.3 Atıcı and Servedio [5]
showed that (logn)-juntas can be exactly learned by a quantum learner under the uniform
distribution in time polynomial in n. Classically it is a long-standing open question if a
similar result holds when the learner is given uniform classical examples (the best known
algorithm runs in quasi-polynomial time [23]). These cases (and others surveyed in [3])
show that uniform quantum examples (and in particular Fourier sampling) can be more
useful than classical examples.4

In this paper we consider the concept class of n-bit Boolean functions (with domain
{0, 1}n and range {−1, 1}) that are k-sparse in the Fourier domain: ĉ(S) ̸= 0 for at most
k different S’s. This is a natural generalization of the above-mentioned case of learning
linear functions, which corresponds to k = 1. It also generalizes the case of learning
ℓ-juntas on n bits, which are functions of sparsity k = 2ℓ. Variants of the class of k-
Fourier-sparse functions have been well-studied in the area of sparse recovery, where the
goal is to recover a k-sparse vector x ∈ RN given a low-dimensional linear sketch Ax for a
so-called “measurement matrix” matrix A ∈ Rm×N . See [20, 22] for some upper bounds on
the size of the measurement matrix that suffice for sparse recovery. Closer to the setting
of this paper, there has also been extensive work on learning the concept class of n-bit
real-valued functions that are k-sparse in the Fourier domain. In this direction Cheraghchi
et al. [14] showed that O(nk(log k)3) uniform examples suffice to learn this concept class,
improving upon the works of Bourgain [9], Rudelson and Vershynin [26] and Candés and
Tao [11].

In this paper we focus on exactly learning the target concept from uniform examples,
with high success probability. So D(x) = 1/2n for all x, ε = 0, and δ = 1/3. Haviv and
Regev [21] showed that for classical learners O(nk log k) uniform examples suffice to learn
k-Fourier-sparse functions, and Ω(nk) uniform examples are necessary. In Section 3 we
study the number of uniform quantum examples needed to learn k-Fourier-sparse Boolean
functions, and show that it is upper bounded by O(k1.5(log k)2). For k ≪ n2 this quantum
bound is much better than the number of uniform examples used in the classical case.
Proving the upper bound is done in two phases. In the first phase we use the fact that
a uniform quantum example allows us to Fourier-sample the target concept and, with
some Fourier analysis of k-Fourier-sparse functions, we learn the Fourier span using O(rk)
examples, where r is the Fourier dimension of the target concept (see Section 2 for the
definition of Fourier dimension). In the second phase, we reduce the number of variables to
the dimension r of the Fourier support, and then invoke the classical learner of Haviv and
Regev to learn the target function from O(rk log k) classical examples. Since it is known
that r = O(

√
k log k) [27], the two phases together imply that O(k1.5(log k)2) uniform

quantum examples suffice to exactly learn the target with high probability. We also prove
a (non-matching) lower bound of Ω(k log k) uniform quantum examples, using techniques
from quantum information theory.

We believe that the sample complexity for Phase 1 of our learning algorithm is actually
Õ(k). Towards that end, we propose a possible way to prove the sample complexity of
our Phase 1 to Õ(k). The first step in Phase 1 of our algorithm is to obtain an S ̸= 0n

3We say f : {0, 1}n → {−1, 1} is an ℓ-junta if there exists a set S ⊆ [n] of size |S| ≤ ℓ such that f
depends only on the variables whose indices are in S.

4This is not the case in Valiant’s PAC-learning model [31] of distribution-independent learning. There
we require the same learner to be an (ε, δ)-learner for C w.r.t. every possible distribution D. One can show
in this model (and also in the broader model of agnostic learning) that the quantum and classical sample
complexities are equal up to a constant factor [4].
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such that ĉ(S) ̸= 0, where c is the k-Fourier-sparse target concept. It follows from Chang’s
lemma [13], a central result in additive combinatorics, that in expectation O(k

√
log k/

√
r)

Fourier-samples are sufficient to obtain one such S. In Section 3.3 we present an improve-
ment of Chang’s lemma for the case of k-Fourier-sparse Boolean functions. Using this
improvement we can show that in expectation O((k log k)/r) Fourier-samples are sufficient
to obtain an S ̸= ∅ such that ĉ(S) ̸= 0. We conjecture (Conjecture 1) a generalization
of our improvement of Chang’s Lemma which, if true, would imply that Phase 1 of our
algorithm can be done in Õ(k) many expected number of samples. Our improvement of
Chang’s lemma and the techniques used therein might be of independent interest.

1.3 Exact learning from quantum membership queries
Our second result is in a model of active learning. The learner still wants to exactly learn
an unknown target concept c : [N ] → {−1, 1} from a known concept class C, but now the
learner can choose which points of the truth-table of the target it sees, rather than those
points being chosen randomly. More precisely, the learner can query c(x) for any x of its
choice. This is called a membership query.5 Quantum algorithms have the following query
operation available:

Oc : |x, b⟩ 7→ |x, b · c(x)⟩,

where b ∈ {−1, 1}. For some concept classes, quantum membership queries can be much
more useful than classical. Consider again the class C of F2-linear functions on {0, 1}n.
Using one query to a uniform superposition over all x and doing a Hadamard transform,
we can Fourier-sample and hence learn the target concept exactly. In contrast, Θ(n)
classical membership queries are necessary and sufficient for classical learners. As another
example, consider the concept class C = {δi | i ∈ [N ]} of the N point functions, where
δi(x) = 1 iff i = x. Elements from this class can be learned using O(

√
N) quantum

membership queries by Grover’s algorithm, while every classical algorithm needs to make
Ω(N) membership queries.

For a given concept class C of ±1-valued function on [N ], let D(C) denote the mini-
mal number of classical membership queries needed for learners that can exactly identify
every c ∈ C with success probability 1 (such learners are deterministic without loss of
generality). Let R(C) and Q(C) denote the minimal number of classical and quantum
membership queries, respectively, needed for learners that can exactly identify every c ∈ C
with error probability ≤ 1/3.6 Servedio and Gortler [29] showed that these quantum and
classical measures cannot be too far apart. First, using an information-theoretic argument
they showed

Q(C) ≥ Ω
( log |C|

logN

)
.

Intuitively, this holds because a learner recovers roughly log |C| bits of information, while
every quantum membership query can give at most O(logN) bits of information. Note
that this is tight for the class of linear functions, where the left- and right-hand sides are
both constant. Second, using the so-called hybrid method they showed

Q(C) ≥ Ω(1/
√
γ(C)),

5Think of the set {x | c(x) = 1} corresponding to the target concept: a membership query asks whether
x is a member of this set or not.

6We can identify each concept with a string c ∈ {−1, 1}N , and hence C ⊆ {−1, 1}N . The goal is to learn
the unknown c ∈ C with high probability using few queries to the corresponding N -bit string. This setting
is also sometimes called “oracle identification” in the literature; see [3, Section 4.1] for more references.
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for some combinatorial parameter γ(C) that we will not define here (but which is 1/N for
the class C of point functions, hence this inequality is tight for that C). They also noted
the following upper bound:

D(C) = O

( log |C|
γ(C)

)
.

Combining these three inequalities yields the following relation between D(C) and Q(C)

D(C) ≤ O(Q(C)2 log |C|) ≤ O(Q(C)3 logN). (1)

This shows that, up to a logN -factor, quantum and classical membership query complex-
ities of exact learning are polynomially close. While each of the three inequalities that
together imply (1) can be individually tight (for different C), this does not imply (1) itself
is tight.

Note that Eq. (1) upper bounds the membership query complexity of deterministic
classical learners. We are not aware of a stronger upper bound on bounded-error classical
learners. However, in Section 4 we tighten that bound further by a logQ(C)-factor:

R(C) ≤ O

(
Q(C)2

logQ(C) log |C|
)

≤ O

(
Q(C)3

logQ(C) logN
)
.

This inequality is tight both for the class of linear functions and the class of point functions.
Our proof combines the quantum adversary method [2, 6, 30] with an entropic argument

to show that we can always find a query whose outcome (no matter whether it is 1 or −1)
will shrink the concept class by a factor ≤ 1 − log Q(C)

Q(C)2 . While our improvement over the
earlier bounds is not very large, we feel our usage of entropy to save a log-factor is new
and may have applications elsewhere.

2 Preliminaries
Notation. Let [n] = {1, . . . , n}. For an n-dimensional vector space, the standard basis
vectors are {ei ∈ {0, 1}n | i ∈ [n]}, where ei is the vector with a 1 in the ith coordinate
and zeros elsewhere. For x ∈ {0, 1}n and i ∈ [n], let xi be the input obtained by flipping
the ith bit in x.

For a Boolean function f : {0, 1}n → {−1, 1} and B ∈ Fn×n
2 , define f ◦ B : {0, 1}n →

{−1, 1} as (f ◦B)(x) := f(Bx), where the matrix-vector product Bx is over F2. Through-
out this paper, the rank of a matrix B ∈ Fn×n

2 will be taken over F2. Let B1, . . . , Bn be
the columns of B.

Fourier analysis on the Boolean cube. We introduce the basics of Fourier analysis
here, referring to [25, 34] for more. Define the inner product between functions f, g :
{0, 1}n → R as

⟨f, g⟩ = Ex∈{0,1}n [f(x) · g(x)],

where the expectation is uniform over all x ∈ {0, 1}n. For S ∈ {0, 1}n, the character
function corresponding to S is given by χS(x) := (−1)S·x, where the dot product S · x is∑n

i=1 Sixi. For every j ∈ [n], we use the notation χj to denote the function χ{j}. Observe
that the set of functions {χS}S∈{0,1}n forms an orthonormal basis for the space of real-
valued functions over the Boolean cube. Hence every f : {0, 1}n → R can be written
uniquely as

f(x) =
∑

S∈{0,1}n

f̂(S)(−1)S·x for all x ∈ {0, 1}n,
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where f̂(S) = ⟨f, χS⟩ = Ex[f(x)χS(x)] is called a Fourier coefficient of f . For i ∈ [n], we
write f̂(ei) as f̂(i) for notational convenience.

Parseval’s identity states that
∑

S∈{0,1}n f̂(S)2 = Ex[f(x)2]. If f has range {−1, 1},
then Parseval gives

∑
S∈{0,1}n f̂(S)2 = 1, so {f̂(S)2}S∈{0,1}n forms a probability distribu-

tion. The Fourier weight of function f on S ⊆ {0, 1}n is defined as
∑

S∈S f̂(S)2.
For f : {0, 1}n → R, the Fourier support of f is supp(f̂) = {S : f̂(S) ̸= 0}. The

Fourier sparsity of f is |supp(f̂)|. The Fourier span of f , denoted Fspan(f), is the span
of supp(f̂). The Fourier dimension of f , denoted Fdim(f), is the dimension of the Fourier
span. We say f is k-Fourier-sparse if |supp(f̂)| ≤ k.

We now state a number of known structural results about Fourier coefficients and
dimension.

Theorem 1 ([27]). The Fourier dimension of a k-Fourier-sparse f : {0, 1}n → {−1, 1} is
O(

√
k log k).7

Lemma 1 ([17, Theorem 12]). Let k ≥ 2. The Fourier coefficients of a k-Fourier-sparse
Boolean function f : {0, 1}n → {−1, 1} are integer multiples of 21−⌊log k⌋.

Definition 1. Let f : {0, 1}n → {−1, 1} and suppose B ∈ Fn×n
2 is invertible. Define fB as

fB(x) = f((B−1)Tx).

Lemma 2. Let f : {0, 1}n → R and suppose B ∈ Fn×n
2 is invertible. Then the Fourier

coefficients of fB are f̂B(Q) = f̂(BQ) for all Q ∈ {0, 1}n.

Proof. Write out the Fourier expansion of fB:

fB(x) = f((B−1)Tx) =
∑

S∈{0,1}n

f̂(S)(−1)(B−1S)·x =
∑

Q∈{0,1}n

f̂(BQ)(−1)Q·x,

where the second equality used ⟨S, (B−1)Tx⟩ = ⟨B−1S, x⟩ and the last used the substitu-
tion S = BQ.

The following lemma (Lemma 3) easily follows by applying Lemma 2 with an invertible
linear map B that maps ei to Bi, for every i ∈ [r].

Lemma 3. Let f : {0, 1}n → {−1, 1}, and B ∈ Fn×n
2 be an invertible matrix such that

the first r columns of B are a basis of the Fourier span of f , and f̂(B1), . . . , f̂(Br) are
non-zero. Then

1. The Fourier span of f̂B is spanned by {e1, . . . , er}, i.e., fB has only r influential
variables.

2. For every i ∈ [r], f̂B(i) ̸= 0.

Here is the well-known fact, already mentioned in the introduction, that one can
Fourier-sample from uniform quantum examples:

7Note that this theorem is optimal up to the logarithmic factor for the addressing function Addm :
{0, 1}log m+m → {−1, 1} defined as Addm(x, y) = 1 − 2yx for all x ∈ {0, 1}log m and y ∈ {0, 1}m, i.e., the
output of Addm(x, y) is determined by the value yx, where x is treated as the binary representation of a
number in {0, . . . , m − 1}. For the Addm function, the Fourier dimension is m and the Fourier sparsity
is m2.
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Lemma 4. Let f : {0, 1}n → {−1, 1}. There exists a procedure that uses one uniform
quantum example and satisfies the following: with probability 1/2 it outputs an S drawn
from the distribution {f̂(S)2}S∈{0,1}n, otherwise it rejects.

Proof. Using a uniform quantum example 1√
2n

∑
x |x, f(x)⟩, one can obtain 1√

2n

∑
x f(x)|x⟩

with probability 1/2: replace f(x) ∈ {−1, 1} by (1 − f(x))/2 ∈ {0, 1} unitarily, apply
the Hadamard transform to the last qubit and measure it. With probability 1/2 we
obtain the outcome 0, in which case our procedure rejects. Otherwise the remaining state
is 1√

2n

∑
x f(x)|x⟩. Apply Hadamard transforms to all n qubits to obtain

∑
S f̂(S)|S⟩.

Measuring this quantum state gives an S with probability f̂(S)2.

Information theory. We refer to [15] for a comprehensive introduction to classical
information theory, and here just remind the reader of the basic definitions. A random
variable A with probabilities Pr[A = a] = pa has entropy H(A) := −

∑
a pa log(pa). For a

pair of (possibly correlated) random variables A,B, the conditional entropy of A given B, is
H(A | B) := H(A,B)−H(B). This equals Eb∼B[H(A | B = b)]. The mutual information
between A and B is I(A : B) := H(A)+H(B)−H(A,B) = H(A)−H(A | B). The binary
entropy H(p) is the entropy of a bit with distribution (p, 1 − p). If ρ is a density matrix
(i.e., a trace-1 positive semi-definite matrix), then its singular values form a probability
distribution P , and the von Neumann entropy of ρ is S(ρ) := H(P ). We refer to [24,
Part III] for a more extensive introduction to quantum information theory.

3 Exact learning of k-Fourier-sparse functions
In this section we consider exactly learning the concept class C of k-Fourier-sparse Boolean
functions:

C = {f : {0, 1}n → {−1, 1} : |supp(f̂)| ≤ k}.

The goal is to exactly learn c ∈ C given uniform examples from c of the form (x, c(x)) where
x is drawn from the uniform distribution on {0, 1}n. Haviv and Regev [21] considered
learning this concept class and showed the following results.

Theorem 2 (Corollary 3.6 of [21]). For every n > 0 and k ≤ 2n, the number of uniform
examples that suffice to learn C with probability 1 − 2−Ω(n log k) is O(nk log k).

Theorem 3 (Theorem 3.7 of [21]). For every n > 0 and k ≤ 2n, the number of uniform
examples necessary to learn C with constant success probability is Ω(k(n− log k)).

Our main results in this section are about the number of uniform quantum examples
that are necessary and sufficient to exactly learn the class C of k-Fourier-sparse functions.
A uniform quantum example for a concept c ∈ C is the quantum state

1√
2n

∑
x∈{0,1}n

|x, c(x)⟩.

Our first theorem of this section (Section 3.1) gives an upper bound on the number of
uniform quantum examples that are sufficient to learn C by giving a learning algorithm.

Theorem 4. For every n > 0 and k ≤ 2n, the number of uniform quantum examples that
suffice to learn C with probability ≥ 2/3 is O(k1.5(log k)2).
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The learning algorithm has two phases: Phase 1 is described in Section 3.1.1 and
Phase 2 is discussed in Section 3.1.2.

In the theorem below (Section 3.2) we prove the following (non-matching) lower bound
on the number of uniform quantum examples necessary to learn C.

Theorem 5. For every n > 0, constant c ∈ (0, 1) and k ≤ 2cn, the number of uniform
quantum examples necessary to learn C with constant success probability is Ω(k log k).

In Section 3.3 we give a possible direction to prove an improved sample complexity for
Phase 1 of our learning algorithm.

3.1 Upper bound on learning k-Fourier-sparse Boolean functions
We split our quantum learning algorithm into two phases. Suppose c ∈ C is the unknown
concept, with Fourier dimension r. In the first phase the learner uses samples from the
distribution {ĉ(S)2}S∈{0,1}n to learn the Fourier span of c. In the second phase the learner
uses uniform classical examples to learn c exactly, knowing its Fourier span. Phase 1 uses
O(rk) uniform quantum examples (for Fourier-sampling) and Phase 2 uses O(rk log k)
uniform classical examples.

Theorem 6. Let k, r > 0. There exists a quantum learner that exactly learns (with high
probability) an unknown k-Fourier-sparse c : {0, 1}n → {−1, 1} with Fourier dimension
upper bounded by some known r, from O(rk log k) uniform quantum examples.

The learner may not know the exact Fourier dimension r in advance, but Theorem 1
gives an upper bound r = O(

√
k log k), so our Theorem 4 follows immediately from Theo-

rem 6.
Before we prove this Theorem 6, we first give a “trivial” algorithm for learning the

Fourier support of Fourier-sparse functions quantumly. Gopalan et al. [17] showed that
every k-Fourier-sparse Boolean function is “2−⌈log k⌉-granular”, i.e., every Fourier coefficient
of a k-Fourier-sparse Boolean function c is either 0 or an integer multiple of 2−⌈log k⌉. Using
this observation, if one is allowed to Fourier-sample from c, then each S with non-zero
ĉ(S) will be observed with probability Ω(1/k2), and using a coupon collector argument,
we obtain the entire Fourier support using O(k2 log k) many Fourier-samples. Our main
contribution in Theorem 6 is to use the Fourier dimension in order to improve this trivial
quantum algorithm. In particular observe that for functions with Fourier dimension log k
(such as (log k)-juntas), the theorem above scales as O(k log2 k) which is better than the
trivial algorithm by a factor of nearly k.

3.1.1 Phase 1: Learning the Fourier span

In this phase of the algorithm our goal is to learn the r-dimensional Fourier span of the
k-Fourier-sparse target concept c, using O(rk) Fourier-samples. The algorithm is very
simple: Fourier-sample more and more S’s and keep track of their span; stop when we
reach dimension r. The key is the following technical lemma, which says that if our current
span V ′ does not yet equal the full Fourier span V , then there is significant Fourier weight
outside of V ′. This implies that a small expected number of additional Fourier-samples
will give us an S ∈ V \ V ′, which will grow our current span. After r such grow-steps we
have learned the full Fourier span.

Lemma 5. Let V ⊆ {0, 1}n be the r-dimensional Fourier span of k-Fourier-sparse function
c : {0, 1}n → {−1, 1}, and V ′ ⊆ V be a proper subspace. Then

∑
S∈V \V ′ ĉ(S)2 ≥ 1/k.
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Proof. Let us assume the worst case, which is that dim(V ′) = r − 1. Because we can
do an invertible linear transformation on c as in Lemma 2, we may assume without loss
of generality that the one “missing” dimension corresponds to the variable xr (i.e., V =
span(V ′ ∪ {er})). Let g be the (not necessarily Boolean-valued) part of c with Fourier
coefficients in V ′:

g(x) :=
∑

S∈V ′

ĉ(S)χS(x).

Suppose, towards a contradiction, that the Fourier weight W :=
∑

S∈V \V ′ ĉ(S)2 is < 1/k.
This implies that c and g have the same sign on every x ∈ {0, 1}n, as follows (using
Cauchy-Schwarz):

|c(x) − g(x)| =

∣∣∣∣∣∣
∑

S∈V \V ′

ĉ(S)χS(x)

∣∣∣∣∣∣ ≤
√
kW < 1.

Since c depends on the variable xr, there exists an x ∈ {0, 1}n where xr is influential, i.e.,
c(x) ̸= c(xr). But g is independent of xr, which implies c(x) = sign(g(x)) = sign(g(xr)) =
c(xr), a contradiction. Hence W ≥ 1/k.

We now conclude Phase 1 by presenting a quantum learning algorithm that learns the
Fourier span of an unknown r-dimensional c ∈ C, given uniform quantum examples for c.

Theorem 7. Let k, r > 0. There exists a quantum learner that uses uniform quantum
examples for an unknown k-Fourier-sparse c : {0, 1}n → {−1, 1} with Fourier dimension r.
After processing each new quantum example it outputs a subspace of the Fourier span of c.
This sequence of subspaces is non-decreasing, and after an expected number of at most 2rk
quantum examples, the output equals the Fourier span of c.

This quantum learner can actually run forever, but if we know the Fourier dimension
r of c, or an upper bound r on the actual Fourier dimension (e.g., by Theorem 1), then
we can stop the learner after processing 6rk examples; now, by Markov’s inequality, with
probability ≥ 2/3 the last subspace will be the Fourier span of c.

Proof. In order to learn the Fourier span of c, the quantum learner simply takes Fourier-
samples until they span an r-dimensional space. Since we can generate a Fourier-sample
from an expected number of 2 uniform quantum examples (by Lemma 4), the expected
number of uniform quantum examples needed is at most twice the expected number of
Fourier-samples. If our current sequence of Fourier-samples spans an r′-dimensional space
V ′, with r′ < r, then Lemma 5 implies that the next Fourier-sample has probability at
least 1/k of yielding an S ̸∈ V ′. Hence an expected number of at most k Fourier-samples
suffices to grow the dimension of V ′ by at least 1. Since we stop at dimension r, the overall
expected number of Fourier-samples is at most 2rk.

3.1.2 Phase 2: Learning the function completely

In the above Phase 1, the quantum learner obtains the Fourier span of c, which we will
denote by T . Using this, the learner can restrict to the following concept class

C′ = {c : {0, 1}n → {−1, 1} | c is k-Fourier-sparse with Fourier span T }

Let dim(T ) = r. Let B ∈ Fn×n
2 be an invertible matrix whose first r columns form a basis

for T . Consider cB = c ◦ (B−1)T for c ∈ C′. By Lemma 3 it follows that cB depends on
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only its first r bits, and we can write cB : {0, 1}r → {−1, 1}. Hence the learner can apply
the transformation c 7→ c ◦ (B−1)T for every c ∈ C′ and restrict to the concept class

C′
r = {c′ : {0, 1}r → {−1, 1} | c′ = c ◦ (B−1)T for some c ∈ C′ and invertible B}.

We now conclude Phase 2 of the algorithm by invoking the classical upper bound of Haviv-
Regev (Theorem 2) which says that O(rk log k) uniform classical examples of the form
(z, c′(z)) ∈ {0, 1}r+1 suffice to learn C′

r. Although we assume our learning algorithm has
access to uniform examples of the form (x, c(x)) for x ∈ {0, 1}n, the quantum learner
knows B and hence can obtain a uniform example (z, c′(z)) for c′ by letting z be the first
r bits of BTx and c′(z) = c(x).

3.2 Lower bound on learning k-Fourier-sparse Boolean functions
In this section we show that Ω(k log k) uniform quantum examples are necessary to learn
the concept class of k-Fourier-sparse Boolean functions.

Theorem 8. For every n, constant c ∈ (0, 1) and k ≤ 2cn, the number of uniform quantum
examples necessary to learn the class of k-Fourier-sparse Boolean functions, with success
probability ≥ 2/3, is Ω(k log k).

Proof. Assume for simplicity that k is a power of 2, so log k is an integer. We prove the
lower bound for the following concept class, which was also used for the classical lower
bound of Haviv and Regev [21]: let V be the set of distinct subspaces in {0, 1}n with
dimension n− log k and

C = {cV : {0, 1}n → {−1, 1} | cV (x) = −1 iff x ∈ V, where V ∈ V}.

Note that every function in C has Fourier sparsity at most k, |C| = |V|, and each cV ∈ C
evaluates to 1 on a (1 − 1/k)-fraction of its domain.

We prove the lower bound for C using a three-step information-theoretic technique. A
similar approach was used in proving classical and quantum PAC learning lower bounds
in [4]. Let A be a random variable that is uniformly distributed over C. Suppose A = cV ,
and let B = B1 . . .BT be T copies of the quantum example

|ψV ⟩ = 1√
2n

∑
x∈{0,1}n

|x, cV (x)⟩

for cV . The random variable B is a function of the random variable A. The following
upper and lower bounds on I(A : B) are similar to [4, proof of Theorem 12] and we omit
the details of the first two steps here.

1. I(A : B) ≥ Ω(log |V|) because B allows one to recover A with high probability.

2. I(A : B) ≤ T · I(A : B1) using a chain rule for mutual information.

3. I(A : B1) ≤ O(n/k).
Proof (of 3). Since AB is a classical-quantum state, we have

I(A : B1) = S(A) + S(B1) − S(AB1) = S(B1),

where the first equality is by definition and the second equality uses S(A) = log |V|
since A is uniformly distributed over C, and S(AB1) = log |V| since the matrix

σ = 1
|V|

∑
V ∈V

|V ⟩⟨V | ⊗ |ψV ⟩⟨ψV |
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is block-diagonal with |V| rank-1 blocks on the diagonal. It thus suffices to bound
the entropy of the (vector of singular values of the) reduced state of B1, which is

ρ = 1
|V|

∑
V ∈V

|ψV ⟩⟨ψV |.

Let σ0 ≥ σ1 ≥ · · · ≥ σ2n+1−1 ≥ 0 be the singular values of ρ. Since ρ is a density
matrix, these form a probability distribution. Now observe that σ0 ≥ 1 − 1/k
since the inner product between 1√

2n

∑
x∈{0,1}n |x, 1⟩ and every |ψV ⟩ is 1 − 1/k. Let

N ∈ {0, 1, . . . , 2n+1 − 1} be a random variable with probabilities σ0, σ1, . . . , σ2n+1−1,
and Z an indicator for the event “N ̸= 0.” Note that Z = 0 with probability
σ0 ≥ 1 − 1/k, and H(N | Z = 0) = 0. By a similar argument as in [4, Theorem 15],
we have

S(ρ) = H(N) = H(N,Z) = H(Z) +H(N | Z)
= H(σ0) + σ0 ·H(N | Z = 0) + (1 − σ0) ·H(N | Z = 1)

≤ H
(1
k

)
+ n+ 1

k
≤ O

(n+ log k
k

)
using H(α) ≤ O(α log(1/α)).

Combining these three steps implies T = Ω(k(log |V|)/n). It remains to lower bound |V|.

Claim 1. The number of distinct d-dimensional subspaces of Fn
2 is at least 2Ω((n−d)d).

Proof. We can specify a d-dimensional subspace by giving d linearly independent vectors
in it. The number of distinct sequences of d linearly independent vectors is exactly (2n −
1)(2n − 2)(2n − 4) · · · (2n − 2d−1), because once we have the first t linearly independent
vectors, with span St, then there are 2n − 2t vectors that do not lie in St.

However, we are double-counting certain subspaces in the argument above, since there
will be multiple sequences of vectors yielding the same subspace. The number of sequences
yielding a fixed d-dimensional subspace can be counted in a similar manner as above and
we get (2d − 1)(2d − 2)(2d − 4) · · · (2d − 2d−1). So the total number of subspaces is

(2n − 1)(2n − 2) · · · (2n − 2d−1)
(2d − 1)(2d − 2) · · · (2d − 2d−1) ≥ (2n − 2d−1)d

(2d − 1)d
≥ 2Ω((n−d)d).

Combining this claim (with d = n − log k) and T = Ω(k(log |V|)/n) gives T =
Ω(k log k).

3.3 A potential direction to prove an improved sample complexity for Phase 1
In this section we give a potential direction to prove that in expectation Õ(k) Fourier-
samples are sufficient for Phase 1 of our learning algorithm presented in Section 3.1.1.
Recall Phase 1 of our learning algorithm. Given a k-Fourier-sparse function c, Phase 1
starts by finding an S ∈ supp(ĉ) such that S ̸= 0n. Lemma 5 implies that an expected
number of O(k) many Fourier-samples are sufficient to sample such an S. Chang’s lemma,
a central result in additive combinatorics, gives tighter bound on the expected number
of samples for this step. Chang’s lemma upper bounds the dimension of the span of the
“large” Fourier coefficients.
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Lemma 6 (Chang’s lemma). Let α ∈ (0, 1) and ρ > 0. For every f : {0, 1}n → {−1, 1}
that satisfies f̂(0n) = 1 − 2α, we have

dim(span{S : |f̂(S)| ≥ ρα}) ≤ 2 log(1/α)
ρ2 . (2)

Let us consider Chang’s lemma for a k-Fourier-sparse Boolean function c : {0, 1}n →
{−1, 1} of Fourier dimension r and let ρ ∈ (0, 1]. In particular, consider the case ρα = 1/k.
In this case, since all elements of the Fourier support satisfy |ĉ(S)| ≥ 1/k by Lemma 1, the
left-hand side of Eq. (2) equals the Fourier dimension r of c. Thus Chang’s lemma gives

r ≤ 2α2k2 log ρk ≤ 2α2k2 log k,

which implies

∑
S ̸=0n

ĉ(S)2 = Ω
( √

r

k
√

log k

)
. (3)

Thus an expected number of O((k
√

log k)/
√
r) many Fourier-samples are sufficient to ob-

tain an S ∈ supp(ĉ) such that S ̸= 0n in Phase 1. This is already an improvement from
what Lemma 5 guaranteed.

In this section we give an improvement of Chang’s lemma for k-Fourier-sparse Boolean
functions:

Theorem 9. Let α ∈ (0, 1) and k ≥ 2. For every k-Fourier-sparse f : {0, 1}n → {−1, 1}
that satisfies f̂(0n) = 1 − 2α and Fdim(f) = r, we have

f̂(0n) ≤ 1 − r

k log k .

We remark that in a follow-up paper [12], a subset of the authors gave a refinement of
the theorem above.

Before giving a proof of Theorem 9, let us first discuss how this theorem improves the
analysis of Phase 1 of our learning algorithm. Theorem 9 implies that for a k-Fourier-sparse
Boolean function c : {0, 1}n → {−1, 1} of Fourier dimension r,∑

S:S ̸=0n

ĉ(S)2 = Ω(r/(k log k)).

This is a better lower bound on the Fourier weight of c on the set {0, 1}n \ {0n} than that
obtained from Chang’s lemma (Equation 3). Thus an expected number of O((k log k)/r)
many uniformly quantum samples is sufficient to obtain an S ∈ supp(ĉ) such that S ̸= 0n.

We suspect that Theorem 9 can in fact lead to an Õ(k) learning algorithm for Phase 1.
Towards that end we make the following conjecture which can be viewed as a generalization
of Theorem 9.

Conjecture 1. Let n > 0 and 1 ≤ k ≤ 2n. For every k-Fourier-sparse f : {0, 1}n →
{−1, 1} with Fourier span V and Fourier dimension r, the following holds: for every r′ > 0
and S ⊂ V satisfying dim(span(S)) = r′, we have

∑
S∈span(S)

f̂(S)2 ≤ 1 − r − r′

k log k .
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If the above conjecture is true then it would be imply an Õ(k) learning algorithm for
Phase 1. Let c : {0, 1}n → {−1, 1} be a k-Fourier-sparse function of Fourier dimension r.
Assuming Conjecture 1 to be true we have

∑
S ̸∈span(S)

ĉ(S)2 ≥ r − r′

k log k .

So the expected number of samples to increase the dimension by 1 is ≤ k log k
r−r′ . Accordingly,

the expected number of Fourier-samples needed to learn the whole Fourier span of f is at
most

r∑
i=1

k log k
i

≤ O(k log k log r),

where the final inequality used
∑r

i=1
1
i = O(log r). We now proceed to the proof of Theo-

rem 9.

3.3.1 Proof of Theorem 9

We first define the following notation. For U ⊆ [r], let f (U) be the function obtained
by fixing the variables {xi}i∈U in f to xi = (1 + sign(f̂(i)))/2 for all i ∈ U . Note that
fixing variables cannot increase Fourier sparsity. For i, j ∈ [r], define f (i) = f ({i}) and
f (ij) = f ({i,j}). In this proof, for an invertible matrix B ∈ Fn×n

2 , we will often treat its
columns as a basis for the space Fn

2 . Recall fB(x) = f((B−1)Tx) from Definition 1. We
let f (i)

B be the function obtained by fixing xi = (1 + sign(f̂(i)))/2 in the function fB.
The core idea in the proof of the theorem is the following structural lemma, which says

that there is a particular xi that we can fix in the function fB without decreasing the
Fourier dimension very much.

Lemma 7. For every k-Fourier-sparse Boolean function f : {0, 1}n → {−1, 1} with
Fdim(f) = r, there exists an invertible matrix B ∈ Fn×n

2 and an index i ∈ [r] such
that Fdim(f (i)

B ) ≥ r − log k and f̂B(j) ̸= 0 for all j ∈ [r].

We defer the proof of the lemma to later and first conclude the proof of the theorem
assuming the lemma. Consider the matrix B defined in Lemma 7. Using Lemma 3 it follows
that fB has only r influential variables, so we can write fB : {0, 1}r → {−1, 1}, where
f̂B(j) ̸= 0 for every j ∈ [r]. Also, f̂B(0r) = f̂(0n) = 1 − 2α. For convenience, we abuse
notation and abbreviate f = fB. It remains to show that for every f : {0, 1}r → {−1, 1}
with f̂(j) ̸= 0 for all j ∈ [r], we have 2α = 1 − f̂(0r) ≥ r/(k log k). We prove this by
induction on r.

Base case. Let r = 1. Then k = 2 (since r ≥ log k and k ≥ 2 by assumption). Note
that the only Boolean functions with Fourier dimension 1 and |supp(f̂)| ≤ 2 are {χj ,−χj},
where χj = (−1)xj , for j ∈ [n]. In both these cases 1 − f̂(0r) = 1 and r/(k log k) = 1/2
(although the Fourier sparsity of χj is 1, we are implicitly working with a concept class of
2-sparse Boolean functions, hence k = 2).

Induction hypothesis. Suppose that for all p ∈ {1, . . . , r − 1} and k-Fourier-sparse
Boolean function g : {0, 1}p → {−1, 1} with Fdim(g) = p and ĝ(j) ̸= 0 for all j ∈ [p], we
have 1 − ĝ(0p) ≥ p/(k log k).
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Induction step. Let i ∈ [r] be the index from Lemma 7. Note that f (i) is still k-
Fourier-sparse and f̂ (i)(0r−1) = 1 − 2α + |f̂(i)|. Since |f̂(i)| ≥ 1/k (by Lemma 1), we
have

f̂ (i)(0r−1) ≥ 1 − 2α+ 1/k.

Since r−log k ≤ Fdim(f (i)) ≤ r−1, we can use the induction hypothesis on the function f (i)

to conclude that

2α ≥ 1 − f̂ (i)(0r−1) + 1
k

≥ r − log k
k log k + 1

k
= r

k log k .

This concludes the proof of the induction step and the theorem. We now prove Lemma 7.

Proof of Lemma 7. In order to construct B as in the lemma statement, we first make the
following observation.

Observation 1. For every Boolean function f : {0, 1}n → {−1, 1} with Fdim(f) = r,
there exists an invertible B ∈ Fn×n

2 such that:

1. The Fourier coefficient f̂B(1) is non-zero.

2. There exists a t ∈ [r] such that, for all j ∈ {2, . . . , t}, we have Fdim(f (j)
B ) ≤ r − t.

3. The Fourier span of f (1)
B is spanned by {et+1, . . . , er}.

4. For ℓ ∈ {t+ 1, . . . , r}, the Fourier coefficients f̂ (1)
B (ℓ) are non-zero.

We defer the proof of this observation to the end. We proceed to prove the lemma
assuming the observation. Note that Property 3 gives the following simple corollary:

Corollary 1. f (1)
B is a function of xt+1, . . . , xr and independent of x2, . . . , xt (and hence

f
(1)
B = f

(i1)
B = f

(1i)
B for every i ∈ {2, . . . , t}).

We now show that not only f (1)
B , but all the functions f (2)

B , . . . , f
(t)
B are independent of

x2, . . . , xt.

Claim 2. For all i ∈ {2, . . . , t}, f (i)
B is a function of {x1, xt+1, . . . , xr} and independent

of x2, . . . , xt.

Proof. Without loss of generality, let i = 2. By Observation 1 (property 4), the character
functions χt+1, . . . , χr are present in the Fourier expansion of f (1)

B . We have f (21)
B = f

(1)
B

by Corollary 1. Hence, for every ℓ ∈ {t + 1, . . . , r}, at least one of the characters χℓ or
χ1χℓ is present in the Fourier expansion of f (2)

B . Let yℓ be χℓ or χ1χℓ (depending on
which character function is present in the Fourier expansion of f (2)

B ). Note that the r − t
character functions yt+1, . . . , yr are linearly independent. By Observation 1 (Property 2),
we have Fdim(f (2)

B ) ≤ r − t, which implies Fspan(f (2)
B ) ⊆ span{yt+1, . . . , yr} and f

(2)
B is

independent of {x2, . . . , xt}. The same argument shows that for every i, k ∈ {2, . . . , t},
f

(i)
B is independent of xk.

Claim 3. There exists an assignment of (x1, xt+1, . . . , xr) to (a1, at+1 . . . , ar) in fB such
that the resulting function depends on all variables x2, . . . , xt.8

8Observe that in this assignment, we have x1 = (1 − sign(f̂(1)))/2. Otherwise, by assigning x1 =
(1 + sign(f̂(1)))/2 in fB , we would obtain the function f

(1)
B which we know is independent of {x2, . . . , xt}

by Corollary 1.
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Proof. Before proving the claim we first make the following observation. Let us consider
an assignment of (x1, xt+1, . . . , xr) = z in fB and assume that the resulting function fB,z

is independent of xi for some i ∈ {2, . . . , t}. Let us assign xi = (1 + sign(f̂B(i)))/2 in
fB,z and call the resulting function f

(i)
B,z. Firstly, f (i)

B,z = fB,z since fB,z was independent
of xi. Secondly, observe that fB,z = f

(i)
B,z could have alternatively been obtained by

first fixing xi = (1 + sign(f̂(i)))/2 in fB and then fixing (x1, xt+1 . . . , xr) = z. In this
case, by Claim 2, after fixing xi in fB, f (i)

B is independent of x2, . . . , xt and after fixing
(x1, xt+1, . . . , xr) = z, fB,z is a constant. This in particular shows that if there exists a z
such that fB,z is independent of xi for some i ∈ {2, . . . , t}, then fB,z is also independent
of x2, . . . , xt.

Towards a contradiction, suppose that for every assignment of (x1, xt+1, . . . , xr) = z to
fB, the resulting function fB,z is independent of xi, for some i ∈ {2, . . . , t}. Then by the
argument in the previous paragraph, for every assignment z, fB,z is also independent of xk

for every k ∈ {2, . . . , t}. This, however, contradicts the fact that x2, . . . , xt had non-zero
influence on fB (since B was chosen such that f̂B(j) ̸= 0 for every j ∈ [r] in Lemma 7).
This implies the existence of an assignment (x1, xt+1, . . . , xr) = (a1, at+1 . . . , ar), such that
the resulting function depends on all the variables x2, . . . , xt.

We now argue that the assignment in Claim 3 results in a function which resembles
the AND function on x2, . . . , xt, and hence has Fourier sparsity 2t−1.

Claim 4. Consider the assignment (x1, xt+1, . . . , xr) = (a1, at+1 . . . , ar) in fB as in
Claim 3, then the resulting function g equals (up to possible negations of input and output
bits) the (t− 1)-bit AND function.

Proof. By Claim 3, g depends on all the variables x2, . . . , xt. This dependence is such that
if any one of the variables {xi : i ∈ {2, . . . , t}} is set to xi = (1 + sign(f̂B(i)))/2, then
by Claim 2 the resulting function g(i) is independent of x2, . . . , xt. Hence, g(i) is some
constant bi ∈ {−1, 1} for every i ∈ {2, . . . , t}. Note that these bis are all the same bit b,
because first fixing xi (which collapses g to the constant bi) and then xj gives the same
function as first fixing xj (which collapses g to bj) and then xi. Additionally, by assigning
xi = (1 − sign(f̂B(i)))/2 for every i ∈ {2, . . . , t} in g, the resulting function must evaluate
to 1 − b because g is non-constant (it depends on x2, . . . , xt). Therefore g equals (up to
possible negations of input and output bits) the (t− 1)-bit AND function.

We now conclude the proof of Lemma 7. Let f : {0, 1}n → {−1, 1} be such that
Fdim(f) = r. Let B be as defined in Observation 1. Consider the assignment of
(xt+1, . . . , xr) = (at+1, . . . , ar) to fB as in Claim 4, and call the resulting function f ′

B.
From Claim 4, observe that by setting x1 = a1 in f ′

B, the resulting function is g(x2, . . . , xt)
and by setting x1 = 1 − a1 in f ′

B, the resulting function is a constant. Hence f ′
B can be

written as

f ′
B(x1, . . . , xt, at+1, . . . , ar) = 1 − (−1)x1+a1

2 ba1,at+1,...,ar + 1 + (−1)x1+a1

2 g(x2, . . . , xt),
(4)

where ba1,at+1,...,ar ∈ {−1, 1} (note that it is independent of x2, . . . , xt by Corollary 1).
Since g essentially equals the (t−1)-bit AND function (by Claim 4), g has Fourier sparsity
2t−1 and ĝ(0t−1) = 1 − 2−t+2. Hence the Fourier sparsity of f ′

B in Eq. (4) equals 2t. Since
f ′

B was a restriction of fB, the Fourier sparsity of f ′
B is at most k, hence t ≤ log k. This

implies Fdim(f (1)
B ) = r − t ≥ r − log k, concluding the proof.
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It remains to prove Observation 1, which we do now.

Proof of Observation 1. Let D ∈ Fn×n
2 be an invertible matrix that maximizes Fdim(f (1)

D )
subject to the constraint f̂D(1) ̸= 0. Suppose Fdim(f (1)

D ) = r − t. Let d1, . . . , dr−t be a

basis of Fspan(f (1)
D ) such that f̂ (1)

D (di) ̸= 0 for all i ∈ [r−t]. We now construct an invertible
C ∈ Fn×n

2 whose first r columns form a basis for Fspan(fD), as follows: let c1 = e1, and
for i ∈ [r − t], fix ct+i = di. Next, assign vectors c2, . . . , ct arbitrarily from Fspan(fD),
ensuring that c2, . . . , ct are linearly independent from {c1, ct+1, . . . , cr}. We then extend
to a basis {c1, . . . , cn} arbitrarily. Define C as C = [c1, . . . , cn] (where the cis are column
vectors). Finally, define our desired matrix B as the product B = DC. We now verify the
properties of B.

Property 1: Using Lemma 3 we have

f̂DC(1) = f̂D(Ce1) = f̂D(c1) = f̂D(1) ̸= 0,

where the third equality used c1 = e1, and f̂D(1) ̸= 0 follows from the definition of D.
We next prove the following fact, which we use to verify the remaining three properties.

Fact 1. Let C,D be invertible matrices as defined above. For every i ∈ [t], let (f (i)
D )C be the

function obtained after applying the invertible transformation C to f (i)
D and (fDC)(i) be the

function obtained after fixing xi to (1 + sign(f̂DC(i)))/2 in fDC . Then (fDC)(i) = (f (i)
D )C .

Property 2: Fact 1 implies that Fdim((fDC)(i)) = Fdim((f (i)
D )C). Since C is invert-

ible, Fdim((f (i)
D )C) = Fdim(f (i)

D ). From the choice of D, observe that for all i ∈ {2, . . . , t},

Fdim(f (i)
B ) = Fdim(f (i)

DC) = Fdim((f (i)
D )C) = Fdim(f (i)

D ) ≤ Fdim(f (1)
D ) = r − t,

where the inequality follows by definition of D.
Property 3: Note that Fspan(f (1)

D ) is contained in span{d1, . . . , dr−t} by construc-
tion. By making the invertible transformation by C, observe that Fspan((f (1)

D )C) ⊆
span{et+1, . . . , er} (since for all i ∈ [r − t], we defined ct+i = di). Property 3 follows
because (f (1)

D )C = f
(1)
DC = f

(1)
B by Fact 1.

Property 4: Using Fact 1, for every ℓ ∈ {t+ 1, . . . , r}, we have

(̂fB)(1)(ℓ) = ̂(fDC)(1)(ℓ) = ̂(f (1)
D )C(ℓ) = f̂

(1)
D (cℓ).

Since cℓ = dℓ−t, we have f̂ (1)
D (cℓ) = f̂

(1)
D (dℓ−t) and f̂ (1)

D (d1), . . . , f̂ (1)
D (dr−t) ̸= 0 by definition

of di, hence the property follows.

Proof of Fact 1. Let fD = g. We want to show that (g(i))C = (gC)(i). For simplicity fix
i = 1; the same proof works for every i ∈ [t]. Then,

(g(1))(x) =
∑

S∈{0}×{0,1}n−1

(ĝ(S) + ĝ(S ⊕ e1))χS(x).

On transforming g(1) using the basis C we have:

(g(1))C(x) =
∑

S∈{0}×{0,1}n−1

(ĝ(CS) + ĝ(C(S ⊕ e1))χS(x). (5)
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Consider the function gC . The Fourier expansion of gC is gC(y) =
∑

S∈{0,1}n ĝ(CS)χS(y)
and the Fourier expansion of the (gC)(1) can be written as

g
(1)
C (y) =

∑
S∈{0}×{0,1}n−1

(ĝ(CS) + ĝ(CS ⊕ Ce1))χS(y). (6)

Using Eq. (5), (6), we conclude that (g(1))C = (gC)(1), concluding the proof of the fact.

This concludes the proof of the observation.

This concludes the proof of the theorem.

4 Quantum vs classical membership queries
In this section we assume we can access the target function using membership queries
rather than examples. Our goal is to simulate quantum exact learners for a concept class C
by classical exact learners, without using many more membership queries. A key tool here
will be the (“nonnegative” or “positive-weights”) adversary method. This was introduced
by Ambainis [2]; here we will use the formulation of Barnum et al. [6], which is called the
“spectral adversary” in the survey [30].

Let C ⊆ {0, 1}N be a set of strings. If N = 2n then we may view such a string
c ∈ C as (the truth-table of) an n-bit Boolean function, but in this section we do not need
the additional structure of functions on the Boolean cube and may consider any positive
integer N . Suppose we want to identify an unknown c ∈ C with success probability at
least 2/3 (i.e., we want to compute the identity function on C). The required number of
quantum queries to c can be lower bounded as follows. Let Γ be a |C|×|C| matrix with real,
nonnegative entries and 0s on the diagonal (called an “adversary matrix”). Let Di denote
the |C| × |C| 0/1-matrix whose (c, c′)-entry is [ci ̸= c′

i].9 Then it is known that at least
(a constant factor times) ∥ Γ ∥/maxi∈[N ] ∥ Γ ◦Di ∥ quantum queries are needed, where
∥ · ∥ denotes operator norm (largest singular value) and ‘◦’ denotes entrywise product of
matrices. Let

ADV(C) = max
Γ≥0

∥ Γ ∥
maxi∈[N ] ∥ Γ ◦Di ∥

denote the best-possible lower bound on Q(C) that can be achieved this way.
The key to our classical simulation is the next lemma. It shows that if Q(C) (and

hence ADV(C)) is small, then there is a query that splits the concept class in a “mildly
balanced” way.

Lemma 8. Let C ⊆ {0, 1}N be a concept class and

ADV(C) = max
Γ≥0

∥ Γ ∥
maxi∈[N ] ∥ Γ ◦Di ∥

be the nonnegative adversary bound for the exact learning problem corresponding to C. Let
µ be a distribution on C such that maxc∈C µ(c) ≤ 5/6. Then there exists an i ∈ [N ] such
that

min(µ(Ci = 0), µ(Ci = 1)) ≥ 1
36ADV(C)2 .

9The bracket-notation [P ] denotes the truth-value of proposition P .
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Proof. Define unit vector v ∈ R|C|
+ by vc =

√
µ(c), and adversary matrix

Γ = vv∗ − diag(µ),

where diag(µ) is the diagonal matrix that has the entries of µ on its diagonal. This Γ
is a nonnegative matrix with 0 diagonal (and hence a valid adversary matrix for the
exact learning problem), and ∥ Γ ∥ ≥ ∥ vv∗ ∥ − ∥ diag(µ) ∥ ≥ 1 − 5/6 = 1/6. Abbreviate
A = ADV(C). By definition of A, we have for this particular Γ

A ≥ ∥ Γ ∥
maxi ∥ Γ ◦Di ∥

≥ 1
6 maxi ∥ Γ ◦Di ∥

,

hence there exists an i ∈ [N ] such that ∥ Γ ◦Di ∥ ≥ 1
6A . We can write v =

(
v0
v1

)
where

the entries of v0 are the ones corresponding to Cs where Ci = 0, and the entries of v1 are
the ones where Ci = 1. Then

Γ =
(
v0v

∗
0 v0v

∗
1

v1v
∗
0 v1v

∗
1

)
− diag(µ) and Γ ◦Di =

(
0 v0v

∗
1

v1v
∗
0 0

)
.

It is easy to see that ∥ Γ ◦Di ∥ = ∥ v0 ∥ · ∥ v1 ∥. Hence

1
36A2 ≤ ∥ Γ ◦Di ∥2 = ∥ v0 ∥2∥ v1 ∥2 = µ(Ci = 0)µ(Ci = 1) ≤ min(µ(Ci = 0), µ(Ci = 1)),

where the last inequality used max(µ(Ci = 0), µ(Ci = 1)) ≤ 1.

Note that if we query the index i given by this lemma and remove from C the strings
that are inconsistent with the query outcome, then we reduce the size of C by a factor
≤ 1 − Ω(1/ADV(C)2). Repeating this O(ADV(C)2 log |C|) times would reduce the size of
C to 1, completing the learning task. However, we will see below that analyzing the same
approach in terms of entropy gives a somewhat better upper bound on the number of
queries.

Theorem 10. Let C ⊆ {0, 1}N be a concept class and

ADV(C) = max
Γ≥0

∥ Γ ∥
maxi∈[N ] ∥ Γ ◦Di ∥

be the nonnegative adversary bound for the exact learning problem corresponding to C.

Then there exists a classical learner for C using O

(
ADV(C)2

log ADV(C) log |C|
)

membership

queries that identifies the target concept with probability ≥ 2/3.

Proof. Fix an arbitrary distribution µ on C. We will construct a deterministic classical
learner for C with success probability ≥ 2/3 under µ. Since we can do this for every µ, the
“Yao principle” [35] then implies the existence of a randomized learner that has success
probability ≥ 2/3 for every c ∈ C.

Consider the following algorithm, whose input is an N -bit random variable C ∼ µ:

1. Choose an i that maximizes H(Ci) and query that i.10

10Querying this i will give a fairly “balanced” reduction of the size of C irrespective of the outcome of the
query. If there are several maximizing is, then choose the smallest i to make the algorithm deterministic.
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2. Update C and µ by restricting to the concepts that are consistent with the query
outcome.

3. Goto 1.

The queried indices are themselves random variables, and we denote them by I1, I2, . . ..
We can think of t steps of this algorithm as generating a binary tree of depth t, where the
different paths correspond to the different queries made and their binary outcomes.

Let Pt be the probability that, after t queries, our algorithm has reduced µ to a
distribution that has weight ≥ 5/6 on one particular c:

Pt =∑
i1,...,it∈[N ]

b∈{0,1}t

Pr[I1 = i1, . . . , It = it, Ci1 . . . Cit = b] ·
[
∃c ∈ C s.t. µ(c | Ci1 . . . Cit = b) ≥ 5

6

]
.

Because restricting µ to a subset C′ ⊆ C cannot decrease probabilities of individual c ∈ C′,
this probability Pt is non-decreasing in t. Because N queries give us the target concept
completely, we have PN = 1. Let T be the smallest integer t for which Pt ≥ 5/6. We
will run our algorithm for T queries, and then output the c with highest probability under
the restricted version of µ we now have. With µ-probability at least 5/6, that c will have
probability at least 5/6 (under µ conditioned on the query-results). The overall error
probability under µ is therefore ≤ 1/6 + 1/6 = 1/3.

It remains to upper bound T . To this end, define the following “energy function” in
terms of conditional entropy:

Et = H(C | CI1 , . . . , CIt)
=

∑
i1,...,it∈[N ]

b∈{0,1}t

Pr[I1 = i1, . . . , It = it, Ci1 . . . Cit = b] ·H(C | Ci1 . . . Cit = b).

Because conditioning on a random variable cannot increase entropy, Et is non-increasing
in t. We will show below that as long as Pt < 5/6, the energy shrinks significantly with
each new query.

Let Ci1 . . . Cit = b be such that there is no c ∈ C s.t. µ(c | Ci1 . . . Cit = b) ≥ 5/6 (note
that this event happens in our algorithm with µ-probability 1−Pt). Let µ′ be µ restricted
to the class C′ of concepts c where ci1 . . . cit = b. The nonnegative adversary bound for
this restricted concept class is A′ = ADV(C′) ≤ ADV(C) = A. Applying Lemma 8 to µ′,
there is an it+1 ∈ [N ] with p := min(µ′(Cit+1 = 0), µ′(Cit+1 = 1)) ≥ 1

36A′2 ≥ 1
36A2 . Note

that H(p) ≥ Ω(log(A)/A2). Hence

H(C | Ci1 . . . Cit = b) −H(C | Ci1 . . . Cit = b, Cit+1) = H(Cit+1 | Ci1 . . . Cit = b)
≥ Ω(log(A)/A2).

This implies Et − Et+1 ≥ (1 − Pt) · Ω(log(A)/A2). In particular, as long as Pt < 5/6, the
(t+1)st query shrinks Et by at least 1

6Ω(log(A)/A2) = Ω(log(A)/A2). Since E0 = H(C) ≤

log |C| and Et cannot shrink below 0, there can be at most O
(

A2

logA log |C|
)

queries before

Pt grows to ≥ 5/6.
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Since ADV(C) lower bounds Q(C), Theorem 10 implies the bound

R(C) ≤ O

(
Q(C)2

logQ(C) log |C|
)

claimed in our introduction. Note that this bound is tight up to a constant factor for the
class of N -bit point functions, where Q(C) = Θ(

√
N), |C| = N , and R(C) = Θ(N) classical

queries are necessary and sufficient.

5 Future work
Neither of our two results is tight. As directions for future work, let us state two conjectures,
one for each model:

• k-Fourier-sparse functions can be learned from O(k ·polylog(k)) uniform quantum ex-
amples.

• For all concept classes C of Boolean-valued functions on a domain of size N we have:
R(C) = O(Q(C)2 +Q(C) logN).

Acknowledgements. We thank Swagato Sanyal for pointing out an error in a previous
version of this paper.
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