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Abstract

The minimum cut problem in an undirected and weighted graph G is to find the minimum
total weight of a set of edges whose removal disconnects G. We completely characterize the
quantum query and time complexity of the minimum cut problem in the adjacency matrix
model. If G has n vertices and edge weights at least 1 and at most τ , we give a quantum
algorithm to solve the minimum cut problem using Õ(n3/2√τ) queries and time. Moreover,
for every integer 1 ≤ τ ≤ n we give an example of a graph G with edge weights 1 and τ such
that solving the minimum cut problem on G requires Ω(n3/2√τ) queries to the adjacency
matrix of G. These results contrast with the classical randomized case where Ω(n2) queries
to the adjacency matrix are needed in the worst case even to decide if an unweighted graph is
connected or not.

In the adjacency array model, when G has m edges the classical randomized complexity
of the minimum cut problem is Θ̃(m). We show that the quantum query and time complexity
are Õ(

√
mnτ) and Õ(

√
mnτ +n3/2), respectively, where again the edge weights are between

1 and τ . For dense graphs we give lower bounds on the quantum query complexity of Ω(n3/2)
for τ > 1 and Ω(τn) for any 1 ≤ τ ≤ n.

Our query algorithm uses a quantum algorithm for graph sparsification by Apers and de
Wolf (FOCS 2020) and results on the structure of near-minimum cuts by Kawarabayashi and
Thorup (STOC 2015) and Rubinstein, Schramm and Weinberg (ITCS 2018). Our time efficient
implementation builds on Karger’s tree packing technique (STOC 1996).
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1 Introduction
Let G = (V,w) be a weighted graph, where w :

(
V
2

)
→ R≥0 assigns a non-negative weight to

every edge slot. We denote the edges of G, i.e. the edge slots that are given positive weight, by
E(G). For a nontrivial set ∅ 6= X ( V let ∆G(X) be the set of edges of G with exactly one
endpoint in X and one endpoint in X = V \X . A cut of G is a set of edges of the form ∆G(X) for
some nontrivial set X ⊆ V . We call X and X the shores of the cut. The minimum cut problem is
to determine the minimum of

∑
e∈∆G(X) w(e) over all non trivial subsets X . This is equivalent to

the minimum total weight of edges that need to be removed from G in order to disconnect it. We
call this minimum value λ(G). A set of edges ∆G(X) realizing λ(G) is called a minimum cut of
G. If G is unweighted λ(G) is known as the edge connectivity of G and is the minimum number
of edges whose removal disconnects G.

Computing the weight of a minimum cut of a graph is a fundamental computational prob-
lem that has been extensively studied in theoretical computer science since at least the 1960s
[GH61, FF62]. It is also a problem of great practical importance, with applications to cluster-
ing algorithms [Bot93] and evaluating network reliability, among others (see [PQ82] for a survey
of applications). Classically it is known that edge connectivity can be computed in nearly linear
time even by deterministic algorithms [KT19, HRW20]. For weighted graphs with m edges, the
weight of a minimum cut can be determined in nearly linear time1 Õ(m) by a randomized algo-
rithm [Kar00, MN20, GMW20] and in almost linear time O(m1+o(1)) by a deterministic algorithm
[Li21].

In this work we study quantum algorithms for the minimum cut problem in two standard models
for graph problems, the adjacency matrix and the adjacency array models. In the adjacency matrix
model a query consists of a pair {u, v} of vertices, and the answer is w({u, v}). The adjacency
array model allows 3 types of queries: one can query the degree of a vertex v, the name of the ith

neighbor of v, according to some arbitrary ordering, and the weight of the edge between v and its
ith neighbor.

For classical randomized algorithms, in the adjacency matrix model it is known that even de-
ciding if a graph is connected or not requires Ω(n2) queries in the worst case [DHHM06]. More
recently, the randomized query complexity of edge connectivity was studied by Bishnu, Ghosh,
Mishra and Paraashar [BGMP20] in a common generalization of the adjacency matrix and adja-
cency array models called the local query model. This model allows queries to the degree of a
vertex and to the ith neighbor of a vertex v, as in the adjacency array model, and also queries as
to whether or not {u, v} is an edge, as in the adjacency matrix model. Over simple graphs G
with m edges, they show an Ω(m) lower bound on the number of local queries needed by a ran-
domized algorithm to succeed with probability 2/3 for both the problems of determining the edge
connectivity and outputting a cut realizing the edge connectivity [BGMP20, Theorems 2 and 3].

In this work we completely characterize the quantum query and time complexity of the min-
imum cut problem in the adjacency matrix model. The complexity depends on what we call the
edge-weight ratio. We say a graph has edge-weight ratio τ if the ratio of the largest weight of the
graph to the smallest is at most τ . When the edge-weight ratio of an n-vertex graph is τ , we give

1The Õ(·) notation hides polylogarithmic factors in its argument.
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a bounded-error quantum algorithm to solve the minimum cut problem using Õ(n3/2
√
τ) queries

and time in the adjacency matrix model (Theorem 5). For the unweighted case, i.e. the case τ = 1,
one can see this bound is tight as Dürr, Heiligman, Høyer, and Mhalla [DHHM06] show that even
deciding if a graph is connected or not requires Ω(n3/2) quantum queries in the adjacency matrix
model. We extend this bound by showing that for any 1 ≤ τ ≤ n there is a graph family with edge-
weight ratio τ for which solving the minimum cut problem requires Ω(n3/2

√
τ) quantum queries

to the adjacency matrix (Theorem 35). For τ ≥ n one can always use the trivial O(n2) algorithm,
thus our results characterize the quantum query complexity of the minimum cut problem in the
adjacency matrix model for any value of τ .

For the adjacency array model, we give a bounded-error quantum algorithm that solves the
minimum cut problem in an n vertex, m edge graph with edge-weight ratio τ using Õ(

√
mnτ)

quantum queries (Theorem 21). The quantum algorithm runs in time Õ(
√
mnτ + n3/2) (Theo-

rem 5). In this case we do not know whether the bound is tight in all regimes. For unweighted
graphs (τ = 1) the best lower bound we know of is Ω(n), which again follows from a lower bound
for connectivity [DHHM06]. For any τ > 1 we show that the minimum cut problem requires
Ω(n3/2) quantum queries to the adjacency array (Theorem 37). Finally, for any 1 ≤ τ ≤ 5n/8 we
show a lower bound of Ω(τn) on the number of quantum adjacency array queries for solving the
minimum cut problem (Theorem 40).

In addition to computing the weight λ(G) of a minimum cut, all of our upper and lower bounds
also apply to outputting the edges or shores of a cut realizing λ(G).

1.1 Previous work
We are not aware of any previous work on the quantum complexity of exact global minimum cut.
The closest work to ours in topic is the recent paper of Apers and de Wolf [AdW20], which in par-
ticular shows that in a weighted graph a (1+ε)-approximation to the weight of a minimum cut can
be found in time Õ(n3/2/ε) in the adjacency matrix model and time Õ(

√
mn/ε) in the adjacency

array model. The sparsifier construction of Apers and de Wolf that yields this approximation also
plays a key role in our algorithm.

Another key work for us is the seminal paper of Dürr, Heiligman, Høyer and Mhalla [DHHM06]
which gives tight bounds for the quantum complexity of many graph problems in both the adja-
cency matrix and adjacency array models. In particular, they show that determining if a graph is
connected or not, i.e. determining if the minimum cut value is zero or positive, requires Ω(n3/2)
queries in the adjacency matrix model and Ω(n) queries in the adjacency array model. These are
still the best lower bounds we know of for simple graphs2 even for the more general problem of
computing the edge connectivity. Indeed, we show the Ω(n3/2) connectivity lower bound in the
adjacency matrix model is a tight lower bound even on the quantum complexity of edge connec-
tivity. In [DHHM06] it is also shown that finding a spanning forest in the adjacency matrix model
can be done with a quantum algorithm in queries and time Õ(n3/2), which is a result we will make
use of in our time efficient algorithm.

Two classical papers which inspired our algorithm are the works of Kawarabayashi and Thorup

2We use the term simple graph to mean an undirected, unweighted graph with no self-loops and no multiple edges.
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(KT) [KT19] and Rubinstein, Schramm, and Weinberg (RSW) [RSW18]. KT give the first near-
linear time deterministic algorithm to compute the edge connectivity of a simple graphG = (V,E).
A key idea of KT is to look at a contraction of the original graph G. Let P = {P1, . . . , Pk}
be a partition of V . The contraction G′ = Contract(G,P) is a multi-graph whose vertices are
labeled by the sets in P and which has all the edges of G whose endpoints lie in different sets
of P . KT first check the cardinality of all star cuts of the form ∆G({v}), which can be done
deterministically in linear time. To find the minimum non-star cut, KT show that any simple graph
G with minimum degree d has a contraction G′ = Contract(G,P) that preserves all of the near-
minimum non-star cuts of G, but which has only Õ(n/d) vertices and Õ(n) edges. Moreover, they
show how to find such a contraction deterministically in near-linear time. They then use Gabow’s
Õ(λ(G)|E(G)|) mincut algorithm [Gab95] to find a minimum cut in G′. If G has m edges then
λ(G′) = λ(G) ≤ m/n, and as |E(G′)| ∈ Õ(n), this gives a time bound that is nearly linear in m.

RSW follow a similar high-level approach to give a classical randomized algorithm that com-
putes the edge connectivity of a simple graph with cut queries. In the cut query model, when the
input is a graph G, an algorithm can query any nontrivial set X and receive the answer |∆G(X)|.
RSW show that the edge connectivity of a simple graph can be computed with high probability by
a randomized algorithm after O(n log(n)3) cut queries. In fact, this algorithm finds all minimum
cuts of the graph. The RSW algorithm again first evaluates all star cuts. They then remove the
log factors from the KT result to show there is a partition P of V such that G′ = Contract(G,P)
preserves all near-minimum cuts of G and has only O(n) edges.3 Moreover, they show how to
efficiently learn this contraction with cut queries. The log factors of the original KT proof were
also removed via another algorithmic proof by Lo, Schmidt, and Thorup [LST20].

Our quantum algorithm will follow the approach taken by RSW to learn such a contraction of
G, as is detailed in the next section.

1.2 Technical overview
In this overview we focus on the adjacency matrix model. Apart from the lower bound, most ideas
carry over in a straightforward way to the adjacency array model. We start off by explaining the
lower bound, as this clearly shows the origin of the n3/2

√
τ complexity.

Lower bound on the quantum query complexity. For the lower bound we construct a family
of graphs on 2n vertices with edge weights in {1, τ}. Partition the 2n vertices into two sets A and
B each of size n. Make a complete graph among the vertices in A where every edge has weight τ
and do the same to B. This ensures that w(∆G(X)) ≥ τ(n− 1) for any ∅ 6= X ⊂ A, and the same
for B. This large value gives us “cover” to hide either k − 1 or k edges of weight 1 between A
and B. If k < τ(n− 1) these edges will constitute the unique minimum cut, and thus an algorithm
that outputs the weight of the minimum cut must determine if we hid k − 1 or k edges. This is
equivalent to determining if there are k−1 or k marked items in a search space of size n2, for which
a quantum query lower bound of Ω(

√
kn2) is known [NW99]. In our case, with k = τ(n− 1)− 1

this gives a bound of Ω(n3/2
√
τ). Thus we see that ultimately the lower bound for minimum cut

3An O(n) bound on the number of edges implies an O(n/d) bound on the number of vertices in a black-box way.
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boils down to the difficulty of counting for quantum algorithms. We will see how a similar task
arises in the upper bound as well.

Upper bound on the quantum query complexity. We first describe a quantum algorithm for
computing the edge connectivity of an unweighted graph. We will follow the outline of the RSW
cut query algorithm, which proceeds in the following way. The algorithm first computes the degree
of every vertex of G, thereby determining the minimum cardinality of a star cut. The task is then
reduced to finding the minimum cardinality of a non-star cut. To do this, the RSW algorithm
first produces an ε-cut sparsifier of the graph, following an algorithm due to Benczúr and Karger
[BK15]. An ε-cut sparsifier ofG = (V,E) is a sparse weighted graphH whose edge set is a subset
of E, but where edges are allowed to be weighted. For every nontrivial X the weight of the cut
∆H(X) in H is within a factor of 1± ε of |∆G(X)|.

For ε = 1/100, the algorithm finds an ε-cut sparsifier H of G. The algorithm is able to write
H down in memory and then, without further queries, it can compute the weight of a minimum cut
in H , say it is λ(H), and enumerate all non-star cuts of H whose weight is at most (1 + 3ε)λ(H).
With high probability this includes the shores of all non-star minimum cuts of G. Let T be the set
of all shores of these cuts. The algorithm then computes the coarsest partitionP = {P1, . . . , Pk} of
the vertex set with the property that for all Pj ∈ P and u, v ∈ Pj it holds that u, v ∈ X or u, v ∈ X
for all X ∈ T . We call P the set of atoms of T , denoted atoms(T ). As T is the set of shores
of all non-star near-minimum cuts, this means that, for every Pj ∈ P , no non-star near-minimum
cut has an edge with both endpoints in Pj; as P is the coarsest partition with this property, among
such partitions it minimizes the number of edges between components of the partition. A key fact
is that Contract(G,P) is a sparse graph.

Lemma 1 ([KT19, RSW18, LST20]). Let G = (V,E) be a simple n-vertex graph with minimum
degree d. For a nonnegative ε < 1, let T = {X : |X|, |X| ≥ 2 and |∆G(X)| ≤ λ(G) + εd},
that is the set of shores of all non-star cuts whose weight is at most λ(G) + εd, and let G′ =
Contract(G, atoms(T )). Then |E(G′)| = O(n).

By the definition of P in this lemma, one can also see that G′ preserves all of the non-star
near-minimum cuts of G. As we already know the minimum degree of G, to determine λ(G) it
suffices to compute the edge connectivity of G′. For a query algorithm, to do this it suffices to
learn the O(n) edges of the graph G′; then one can compute the edge connectivity of G′ without
further queries. The edge connectivity of G is then the minimum of the minimum degree of G and
the edge connectivity of G′.

We phrase the RSW algorithm in an abstract way in terms of four computational primitives.
We indicate oracle access to G by square brackets and put the parameters explicitly given to the
routines in parentheses.

1. FindMinStar[G](δ) — a routine that given oracle access to G finds the minimum weight of
a star cut of G with error probability at most δ.

2. Cut-Sparsifier[G](ε, δ) — a routine that given oracle access to G outputs an ε-cut sparsifer
of G with error probability at most δ.
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3. LearnCutAtoms(H,λ, δ) — a routine that given an explicit description of a graph H , a cut
threshold λ, and an error probability δ, outputs P , the atoms of the shores of all cuts of
weight at most λ, with error probability at most δ.

4. LearnContraction[G](P ,M, δ) — a routine that given oracle access to G and a partition P
of the vertex set, learns Contract(G,P) if it has at most M edges and otherwise outputs
NULL, again with error probability at most δ.

In Theorem 19, we show a general upper bound on the query complexity of edge connectivity in
terms of the sum of the query complexity of the routines in steps (1), (2), and (4). Step (3) requires
no queries. It is somewhat surprising that a randomized algorithm designed for cut queries leads
to an optimal quantum query algorithm in the adjacency matrix model. We hope that phrasing the
algorithm in this abstract way will make it easy to further apply it to other computational models.

In terms of quantum query complexity in the adjacency matrix model, the cost of the 4 steps are
as follows. Item (1) can be done with O(n3/2) queries by composing the O(

√
n) query quantum

minimum finding algorithm over the n vertices with the n query classical algorithm to evaluate
the degree of a vertex. The quantum complexity of (2) was recently studied by Apers and de
Wolf [AdW20]. They show that even an ε-spectral sparsifier can be found in time Õ(n3/2/ε) in
the adjacency matrix model. For our purposes, we take ε = 1/100 giving an Õ(n3/2) bound here.
Item (3) costs no queries as the routine is given an explicit description ofH . Item (4) is very similar
to the problem that we saw in the lower bound: we have to learn up to M edges in a search space
of size O(n2) which can be done with O(n

√
M) queries. By Lemma 1 we can take M = O(n)

resulting in an O(n3/2) quantum query bound for this step.
These bounds when taken together imply a quantum algorithm for edge connectivity making

Õ(n3/2) queries in the adjacency matrix model.

Extension to weighted graphs. The query complexity of steps 1–3 does not change for weighted
graphs. The complexity of step 4, however, depends on the upper bound M on the number of
edges in the graph Contract(G,P), which does depend on the edge weights. To extend the above
algorithm to weighted graphs, we prove the following generalization of Lemma 1.

Lemma 2. Let G = (V,w) be a weighted graph with |V | = n and where every edge has weight
at most τ . Let d = minu∈V w(∆G({u})). For a nonnegative ε < 1, let T = {X : |X|, |X| ≥
2 and w(∆G(X)) ≤ λ(G) + εd} and let G′ = Contract(G, atoms(T )). Then

w(E(G′)) ≤ 68τn

(1− ε)2
.

This lemma is tight as can be seen from the cycle graph with all edge weights τ . Because the
bound necessarily depends on τ , applying this lemma back to the cut query or sequential models
does not seem to lead to good algorithms.4 For quantum algorithms, however, it is exactly what is
needed.

4The randomized cut query complexity of minimum cut for weighted graphs was recently resolved using different
techniques by Mukhopadhyay and Nanongkai [MN20].
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If the edge-weight ratio is τ , for constant ε Lemma 2 implies an O(τn) upper bound on the
number of edges in the contracted graph Contract(G,P). This means that the LearnContraction
step can be performed with O(n3/2

√
τ) queries. Together with the Ω(n3/2

√
τ) query lower bound

mentioned above we obtain the following tight characterization of the query complexity of mini-
mum cut in the adjacency matrix model in terms of the edge-weight ratio.

Theorem 3. Let G = (V,w) be an n-vertex weighted graph with edge-weight ratio τ . There is a
quantum algorithm that finds the weight and shores of a minimum cut ofG with probability at least
3/4 after Õ(n3/2

√
τ) queries to the adjacency matrix of G. Moreover, there is a family of graphs

with edge-weight ratio τ for which computing the weight of a minimum cut with bounded-error
requires Ω(n3/2

√
τ) quantum queries to the adjacency matrix.

The upper bound for this theorem is given in Theorem 21, and the lower bound in Theorem 35.

Upper bound on the quantum time complexity. Let us now consider the time complexity of
the above algorithm, corresponding to the total number of queries and elementary gates in the
quantum circuit model that the algorithm uses. Steps (1) and (4) are ultimately applications of
Grover’s algorithm and can be implemented in time which is just a O(log(n)) factor more than
their query complexity. For step (2), Apers and de Wolf already give a time complexity upper
bound of Õ(n3/2/ε). Thus to get an upper bound on the time complexity it suffices to analyze
the routine LearnCutAtoms(H,λ, δ) from step (3). Given a graph H , this subroutine requires us
to output the atoms of T , where T is the set of shores of all near-minimum cuts of H . For this
discussion, one should take near-minimum cuts to mean cuts of weight at most (1 + 1/100)λ(H).
It is known that an n-vertex graph H has at most O(n2) cuts of weight < 3λ(H)/2 [HW96]. Thus
we know that |T | is not too large. However, we still need to efficiently find these near-minimum
cuts.

To do this we build on Karger’s seminal work [Kar00] that connects near-minimum cuts with
tree packings. Consider a spanning tree T of H , as in Fig. 1. A cut in H with shore X is said to
2-respect T if it cuts at most 2 edges of T , that is |∆T (X)| ≤ 2. Karger showed how to efficiently
construct a set of O(log n) spanning trees in H so that every near-minimum cut 2-respects at least
one of them. As each tree has at most n − 1 +

(
n−1

2

)
=
(
n
2

)
2-respecting cuts, this family of trees

defines a set of shores T ′ of cardinality O(n2 log n) which necessarily contains T . A graph can
potentially contain

(
n
2

)
minimum cuts, as witnessed by the cycle graph, thus this bound is nearly

tight. Unfortunately, iterating over T ′ is still too costly for us.
As we are only interested in atoms(T ), and not T itself, it suffices for us to find a set S

such that atoms(S) = atoms(T ). We call such an S a generating set for atoms(T ). Our next
observation is that there necessarily exists a generating set for atoms(T ) of sizeO(n). This follows
by a greedy argument: set S = ∅ and iterate over all cut shores X ∈ T , adding X to S iff
atoms(S ∪ X) 6= atoms(S). The resulting S has the same atoms as T . Moreover, |S| ≤ n − 1
since every element added to S creates at least one new atom, there are at most n atoms in total,
and S = ∅ has 1 atom. While a good start, this still leaves the problem of efficiently finding a
small generating set.

We are able to give an explicit description of an O(n log(n)) size generating set. First consider
a single spanning tree T of H . For any f ∈ E(T ) ∪ E(T )(2) we let shore(f) denote the cut
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Figure 1: Graph H (thin grey edges) with spanning tree T (thick black edges). The cut with shore
X 2-respects T since |∆T (X)| = |{e, e′}| ≤ 2. There are at most

(
n
2

)
such cuts.

shore such that ∆T (shore(f)) = f . 5 Now define an unweighted graph L(T ) whose vertex set is
E(T ) and where f ∈ E(T )(2) is an edge of L(T ) iff shore(f) is a near-minimum cut of H (i.e.,
shore(f) ∈ T ). We show an example in Fig. 2. Further, let O(T ) = {e ∈ E(T ) : ∃X ∈ T :
∆T (X) = {e}} index the set of near-minimum cuts that 1-respect T . We prove the following
lemma.

Lemma 4. Let T ′ = {X ∈ T : |∆T (X)| ≤ 2} be the shores in T whose corresponding cuts
2-respect T . If F is a spanning forest of L(T ) then S(T ) = {shore(f) | f ∈ E(F ) ∪ O(T )} is a
generating set for atoms(T ′).

Moreover, since |E(F )| ≤ n − 2 and |O(T )| ≤ n − 1 we have |S(T )| ≤ 2n − 3. Taking the
union of S(T ) over all of the log(n) spanning trees T of Karger’s tree packing gives a generating
set S for T of size O(n log(n)).

Figure 2: Left: A spanning tree T (thick black edges) of the graph H (thin grey edges) with
minimum cut λ(H) = 2. Right: The associated graph L(T ) with vertex set E(T ) and f ∈ E(T )(2)

an edge ofL(T ) iff shore(f) is the shore of a near-minimum cut inH (in this case, a near-minimum
cut is a cut of weight ≤ 3

2
λ(H)).

We cannot explicitly write down the graph L(T ), but using an efficient data structure for eval-
uating 2-respecting cuts [MN20, GMW21] we can in O(log(n)) time determine whether or not

5As ∆T (X) = ∆T (X), for uniqueness we define a root r in T and choose shore(f) so that it does not contain r.
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{e, e′} is an edge of L(T ). This essentially gives us adjacency matrix access to L(T ), and hence
we can use the Õ(n3/2) time quantum algorithm from [DHHM06] to construct a spanning forest
F of L(T ). We note that it is conceivable that there exists an efficient classical algorithm to do
this. However this would require using further properties of L(T ) since classically computing a
spanning forest in the adjacency matrix model requires Ω(n2) queries.

Once we have the O(n log n) size generating set S, we still cannot naively compute the atoms
of S because this would again be too costly. Rather, we find the atoms of S in Õ(n) time by
combining a random hashing scheme with an efficient data structure based on Euler tour trees
[HK95]. This shows that a quantum algorithm can implement step (3), LearnCutAtoms, in time
Õ(n3/2). Note that this running time is independent of the kind of oracle access we have toG. This
gives the following theorem.

Theorem 5. Let G = (V,w) be an n-vertex weighted graph with m edges and edge-weight ratio
τ . There is a quantum algorithm that finds the weight and shores of a minimum cut of G with
probability at least 2/3 in query and time complexity Õ(n3/2

√
τ) in the adjacency matrix model

and Õ(
√
mnτ + n3/2) in the adjacency array model.

1.3 Open problems
A few open problems remain from this work.

1. In the adjacency array model there remains a significant gap between the upper and lower
bounds we are able to show. For dense graphs the upper bound is Õ(n3/2

√
τ) and we have

the lower bounds Ω(n3/2) for τ > 1 and Ω(τn) for 1 ≤ τ ≤ n. We suspect that the quantum
query complexity of the minimum cut problem in the adjacency array model is Θ̃(n) for
simple graphs (τ = 1) and Θ̃(

√
mnτ) for weighted graphs (1 < τ ≤ m/n), but were unable

to prove this.

2. We have given a quantum algorithm with running time Õ(m+n3/2) for the subroutine Learn-
CutAtoms. By building on our insights we believe that this routine can even be performed
by a classical randomized algorithm in near-linear time Õ(m). This would improve the run-
ning time of our quantum algorithm for the minimum cut problem in the adjacency array
model from Õ(

√
mnτ + n3/2) to Õ(

√
mnτ). It also seems of more general interest, giving

a weighted (but potentially randomized) generalization of the algorithm by Kawarabayashi
and Thorup [KT19] for finding a contraction of G that preserves all near-minimum cuts and
only has O(τn) total weight of edges.

3. What is the quantum complexity of determining a (1+ε)-approximation of the minimum cut
weight? Apers and de Wolf [AdW20] gave a (1 + ε)-approximation algorithm with time and
query complexity Õ(

√
mn/ε) in the adjacency array model. For the unweighted case, our

algorithm improves this in terms of query complexity by exactly computing the minimum cut
with Õ(

√
mn) queries. Can one approximate the weight of a minimum cut in an unweighted

graph with even fewer queries?
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2 Preliminaries
For a natural number n ≥ 1 we let [n] = {1, . . . , n}. For a real number x we let bxe denote the
closest integer to x.

2.1 Graph basics and notation
Let V be a finite set and V (2) the set of all subsets of V of cardinality 2. We represent a weighted
undirected graph as a pair G = (V,w) where w : V (2) → R is a non-negative function. We let
V (G) be the vertex set of a graph G and E(G) = {e ∈ V (2) : w(e) > 0} be the set of edges of G.
We extend the weight function to sets S ⊆ V (2) by w(S) =

∑
e∈S w(e). We say that G is simple if

w : V (2) → {0, 1} and in this case also denote G as G = (V,E), where E is the set of edges. We
call the ratio of the largest edge weight of G to the smallest the edge-weight ratio of G.

For a subset X ⊆ V we use the shorthand X = V \ X , and we say X is non-trivial if
∅ 6= X ( V . For disjoint sets X, Y ⊆ V we use E(X, Y ) for the set of edges with one endpoint in
X and one endpoint in Y . For a non-trivial set X , let ∆G(X) = {{i, j} ∈ E(G) : i ∈ X, j ∈ X}
be the set of edges of G with one endpoint in X and one endpoint in X . A cut of G is a set of the
form ∆G(X) for some non-trivial set X . We call X and X the shores of the cut ∆G(X). We call a
cut of the form ∆G({u}) a star cut, and refer to all other cuts as non-star cuts. The weight of a cut
S is w(S), which in the case of a simple graph equals |S|. We let λ(G) = min∅6=X(V w(∆G(X))
be the minimum weight of a cut in G. We call a cut realizing this bound a minimum cut. We call
a cut ∆G(X) satisfying w(∆G(X)) ≤ αλ(G) an α-near minimum cut. In the case where G is
simple we call λ(G) the edge connectivity of G. We will only use the term edge connectivity in
the context of unweighted graphs.

Definition 6 (Vertex Contraction). Let G = (V,w) be a weighted graph and P = {S1, . . . , Sk} be
a partition of V . Define Contract(G,P) to be the k-vertex weighted graph G′ = (P , w′) where
w′({Si, Sj}) = w(E(Si, Sj)) for each {Si, Sj} ∈ P (2).

Note that as long as |P| ≥ 2 it will hold that λ(Contract(G,P)) ≥ λ(G).
We will also need to make use of graph sparsifiers.

Definition 7 (Cut sparsifier). For a weighted graph G = (V,w) and ε > 0 an ε-cut sparsifier
H = (V,w′) of G satisfies

1. H is a reweighted subgraph of G, that is w′(e) > 0 only if w(e) > 0.

2. It holds that (1− ε)w(∆G(X)) ≤ w′(∆H(X)) ≤ (1 + ε)w(∆G(X)) for all ∅ 6= X ( V .

Cut sparsifiers were first defined by Benczúr and Karger [BK15] who showed that a weighted
graph G has an ε-cut sparsifier H with O(n log(n)/ε2) edges, and H can be constructed by a ran-
domized algorithm in time O(m log3(n)). Fung, Hariharan, Harvey and Panigrahi [FHHP19] have
since shown that a cut sparsifier with the same bound on the number of edges can be constructed by
a randomized algorithm in time O(m) + Õ(n/ε2), and Batson, Spielman and Srivastava [BSS12]
have given a deterministic polynomial time construction of sparsifiers with only O(n/ε2) edges.
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2.2 Atoms
A family of subsets T = {X1, . . . , Xk} of V induces a partition of V given by the regions in the
Venn diagram of T . We call the resulting sets of this partition the atoms of T :

Definition 8 (Atoms). Let V be a finite set and let T = {X1, . . . , Xk} where eachXi ⊆ V . Define
atoms(T ) = {A1, . . . , A`} to be a partition of V such that

1. For any Aj ∈ atoms(T ) and u, v ∈ Aj it holds that for all Xi ∈ T either u, v ∈ Xi or
u, v ∈ X i.

2. atoms(T ) is the coarsest partition with property (1).

Definition 9 (Generating set). Let V be a finite set and T a set of subsets of V . We say that S ⊆ T
is a generating set for atoms(T ) if atoms(S) = atoms(T ).

Proposition 10. Let V be a finite set and T1, T2 two sets whose elements are subsets of V . Let
S1,S2 be generating sets for atoms(T1), atoms(T2) respectively. Then S1 ∪ S2 is a generating set
for atoms(T1 ∪ T2).

Proof. As S1 ⊆ T1,S2 ⊆ T2 by the definition of a generating set, S1∪S2 ⊆ T1∪T2 and atoms(T1∪
T2) is a refinement of atoms(S1 ∪ S2). Now we show that for any u, v that are in different sets
of atoms(T1 ∪ T2) there is a set S ∈ S1 ∪ S2 which separates them. This will imply that in fact
atoms(T1 ∪ T2) = atoms(S1 ∪ S2).

If u, v are in different sets of atoms(T1 ∪T2) then there must be a T ∈ T1 ∪T2 which separates
them. Suppose without loss of generality that T ∈ T1. Then since atoms(S1) = atoms(T1) and
u, v are in different sets of atoms(T1), there must be an S ∈ S1 which separates u and v. This
completes the proof.

2.3 Quantum query and computational models
For general background on the quantum query model we refer the reader to [HLŠ07]. Here we
restrict ourselves to describing the quantum implementation of the input oracles in the adjacency
matrix and adjacency array models.

In the adjacency matrix model, on input a weighted graph G = (V,w), classically one can
query any {u, v} ∈ V (2) and receive the answer w({u, v}). We now describe how to model this by
a quantum query. We will assume that the edge weights are given as binary decimal numbers with
M1 bits before the decimal and M2 bits after the decimal for a total of M = M1 + M2 bits. The
state of the quantum query algorithm will have three registers, a query register, an answer register,
and a workspace register. The state of the algorithm will in general be in a superposition of the
basis states |{u, v}〉|b〉|a〉 where {u, v} ∈ V (2), b ∈ {0, 1}M and a ∈ A for an arbitrary finite set
A. On input graph G = (V,w), the input oracle OG acts on a basis state |{u, v}〉|b〉|a〉 as

OG|{u, v}〉|b〉|a〉 = |{u, v}〉|b⊕ w({u, v})〉|a〉 .

In the adjacency array model, on input a weighted n-vertex graph G = (V,w) one can make
two types of queries. In the first type, one can query a vertex v ∈ V and receive its degree deg(v).
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The second type is specified by a family of functions {fv : [deg(v)] → V }v∈V such that fv(i)
corresponds to the ith neighbor of vertex v (according to some arbitrary but fixed ordering). A query
consists of a pair (v, i) for i ∈ [deg(v)] and the returned answer is the pair (fv(i), w({v, fv(i)})).
In this paper we will only need to model the second type of query quantumly. This is because
our upper bounds are larger than n so we can let the algorithm classically query all degrees at
the start of the algorithm, and in our lower bound on the query complexity of edge connectivity
for weighted graphs we assume the algorithm already knows the degree of every vertex. The
state of the quantum query algorithm will again have a query register, an answer register, and a
workspace register, with the state of the algorithm in general being in a superposition of the basis
states |(v, i)〉|x〉|b〉|a〉 where v ∈ V, i ∈ [deg(v)], x ∈ {0, . . . , n− 1}, b ∈ {0, 1}M , and a ∈ A for
an arbitrary finite set A. We further let τ : V → {0, 1, . . . , n − 1} be a bijection where |V | = n.
Then the input oracle OG acts on a basis state in the following way:

OG|(v, i)〉|x〉|b〉|a〉 = |(v, i)〉|x+ τ(fv(i)) mod n〉|b⊕ w({v, fv(i)})〉|a〉 .

In Section 5 we will further show that our query algorithms can be implemented in a time ef-
ficient manner. We analyze the time complexity in terms of the standard quantum circuit model
augmented with two types of oracles. One is the oracle for the input, either in the adjacency ma-
trix or array model, and the second is an oracle to a classical memory of Õ(n) bits. The latter
corresponds to a quantum random-access-memory or QRAM. We further assume that we can clas-
sically update a value in this Õ(n) bit classical memory in time Õ(1). The assumption of QRAM
access is also required for the time efficiency of the sparsifier construction in [AdW20] which our
algorithms build on, and in fact is a necessary (but sometimes inexplicit) assumption in the time
analysis of many quantum algorithms for graph problems, e.g. [DHHM06, AŠ06, BCJ+13].

2.4 Quantum algorithmic primitives
We now go over the quantum subroutines we will need. We need several variants of quantum
search.

Theorem 11 (Quantum search [Gro97]). Given oracle access to a string x ∈ {0, 1}N such that
|x| > 0, there is a quantum algorithm that with probability at least 9/10 returns an i such that
xi = 1. The algorithm makes O(

√
N) queries to x and has time complexity O(

√
N log(N)).

Theorem 12 (Exact quantum search, [BHMT02, Theorem 4]). Given a positive integer k and
oracle access to a string x ∈ {0, 1}N with |x| = k, there is a quantum algorithm that returns
an i such that xi = 1 with certainty. The algorithm makes O(

√
N/k) queries to x and has time

complexity O(
√
N/k log(N)).

Theorem 13 (Based on [BCdWZ99, Theorem 3]). Given t, N ∈ N with 1 ≤ t ≤ N and oracle
access to x ∈ {0, 1}N , there is a quantum algorithm such that

• if |x| ≤ t then the algorithm outputs x with certainty, and

• if |x| > t then the algorithm reports so with probability at least 9/10.
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The algorithm makes O(
√
tN) queries to x and has time complexity O(

√
tN log(N)).

Proof. Initialize S = ∅. For k = t down to 1, do: (i) run exact quantum search (from Theorem 12)
on xwith parameter k, returning an index i, (ii) query xi and if xi = 1 then add i to S and “unmark”
xi for all future iterations, i.e. implicitly return xi = 0 to future queries of the algorithm.

Finally, run normal quantum search (from Theorem 11) on the indices of x outside of S to
check that there are no more solutions. If this returns an i 6∈ S such that xi = 1, then report
|x| > t, otherwise return the string y where yi = 1 if i ∈ S and yi = 0 otherwise.

The query complexity of the algorithm is

O

(
t∑

k=1

√
N

k

)
+O(

√
N) = O(

√
tN) ,

and its time complexity is similarly O(
√
tN log(N)), as claimed.

For correctness, first note that if |x| > t then necessarily an index i such that xi = 1 is
remaining in the final step. Quantum search Theorem 11 will find such an index with probability
at least 9/10. It remains to prove that x is learned with certainty if |x| ≤ t. To this end, assume for
contradiction that |S| < |x|. Then necessarily there was an iteration k′ between t and 1 such that
k′ = |x|. In such case, however, the remaining k′ runs of exact quantum search will each return
a nonzero index, and so all nonzero indices will be found. This proves that necessarily all indices
are found in the first t iterations of exact quantum search, and hence the final quantum search step
cannot find an additional nonzero index.

Theorem 14 (Quantum minimum finding [DH96]). Let N,M ∈ N be positive integer and f :
[N ] → R. There is a quantum algorithm that with probability at least 2/3 outputs an element of
argmini∈[N ] f(i). The algorithm makesO(

√
N) oracle calls to f and has time complexity Õ(

√
N).

Theorem 15 ([AdW20, Theorem 1]). LetG be a weighted n-vertex graph withm edges. There is a
quantum algorithm that with high probability outputs an explicit description of an ε-cut sparsifier
H ofGwith Õ(n/ε2) edges in query and time complexity Õ(

√
mn/ε) in the adjacency array model

or Õ(n3/2/ε) in the adjacency matrix model.

Apers and de Wolf actually show a stronger theorem than this in that their algorithm can output
a spectral sparsifier instead of just a cut sparsifier. We will not need this additional property,
however.

2.5 Problems related to minimum cuts
Let G = (V,w) be a weighted graph. There are three outputs related to a minimum cut of G that
one could want from an algorithm: the weight of a minimum cut, the shores of a minimum cut,
or the edges in a minimum cut. The relationship between the complexity of these problems is not
always obvious, and can depend on the computational model one is studying. All the upper and
lower bounds we prove in this paper apply to all three problems.
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Say the edge-weight ratio of G is τ . As an example of how we can apply the quantum search
algorithm Theorem 13, we show that, given the shores of a minimum cut inG, a quantum algorithm
can also find the edges of the cut with O(n3/2

√
τ) and O(

√
mnτ) queries in the adjacency matrix

and array models respectively. As this matches the complexity of our upper bounds, we will only
explicitly mention finding the weight and shores of a minimum cut in Theorem 21.

Proposition 16. Let G = (V,w) be an n-vertex weighted graph with edge-weight ratio τ . Let
∆G(X) be a minimum cut of G. Given X , a quantum algorithm can with probability at least 3/4
output ∆G(X) with O(n3/2

√
τ) queries and time complexity Õ(n3/2

√
τ) in the adjacency matrix

model, and O(
√
mnτ) queries and time complexity Õ(

√
mnτ) in the adjacency array model.

Proof. Consider the adjacency matrix model first. With O(n) queries and time O(n log(n)) we
can identify the smallest and largest edge weights of G except error probability at most 1/8. Thus
by rescaling we will henceforth assume that the smallest edge weight is 1 and largest edge weight
is at most τ .

Let x ∈ {0, 1}(
n
2) denote a bit string labeled by elements of V (2) and set x({u, v}) = 1 iff

{u, v} ∈ E(G) and u and v are not both in X or both in X . GivenX , a query to x can be answered
by a single query to the adjacency matrix of G. As the largest weight of an edge of G is at most τ
and ∆G(X) is a minimum cut, w(∆G(X)) ≤ τ(n − 1). As every edge of G has weight at least 1
we also have |x| ≤ τ(n− 1). Thus by Theorem 13, except with error probability 1/8, we can learn
x, and therefore also ∆G(X), with O(n3/2

√
τ) queries and time Õ(n3/2

√
τ).

The statement for the adjacency array model follows from Theorem 13 by a similar argument.

3 Number of edges in near-minimum cuts
In this section, we generalize Lemma 1 to weighted graphs. Our proof follows that of Rubinstein,
Schramm, and Weinberg [RSW18].

Lemma 2. Let G = (V,w) be a weighted graph with |V | = n and where every edge has weight
at most τ . Let d = minu∈V w(∆G({u})). For a nonnegative ε < 1, let T = {X : |X|, |X| ≥
2 and w(∆G(X)) ≤ λ(G) + εd} and let G′ = Contract(G, atoms(T )). Then

w(E(G′)) ≤ 68τn

(1− ε)2
.

Before proving this lemma we first state and prove a claim.

Claim 17. Let V be a finite set of cardinality n and r ≤ n be a positive integer. Let T =
{X1, . . . , Xk} where each Xi ⊆ V . Let T0 = V and for i = 1, . . . , k let Ti = {X1, . . . , Xi}.
Suppose that T has the property that for all i = 0, . . . , k − 1 there is a set Aj ∈ atoms(Ti) that is
refined into two sets each of cardinality ≥ r in atoms(Ti+1). Then |T | ≤ n

r
− 1.
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Proof. To each Ti for i = 1, . . . , k we associate a binary tree Bi. Each vertex of Bi has a label,
which will be an element of ∪ij=0atoms(Tj). The treeB1 has root v, labeled by V , and two children
v0, v1 labeled by the two elements X1, X1 ∈ atoms(T1). Note that by definition |X1|, |X1| ≥ r.

In general, the tree Bi+1 is formed from Bi as follows. Initially, set Bi+1 = Bi. Then for every
leaf u of Bi which is labeled by a set Y ∈ atoms(Ti) of size ≥ 2r, if Y is refined into sets Y1, Y2

in atoms(Ti+1), then in Bi+1 the node u is given two children labeled by Y1 and Y2, respectively.
Note that this construction has the property that only internal vertices of Bi that are labeled by sets
of size≥ 2r have children. Call a vertex big if it is labeled by a set of size≥ r and small otherwise.
By construction, every internal vertex of Bi has at least one big child.

Let bi be the number of big leaves in Bi. We now show by induction that i ≤ bi − 1. This will
prove the claim as the leaves of Bi partition V and therefore bi ≤ n/r.

For i = 1 we have that bi = 2 since |X1|, |X1| ≥ r, thus the base case holds. Now suppose
that i ≤ bi − 1, we will show that i + 1 ≤ bi+1 − 1. By definition of T , there must be some set
Y ∈ atoms(Ti) which is refined into two sets Y1, Y2 both of cardinality at least r in atoms(Ti+1).
Further, Y will label some leaf of u of Bi and u will have two children which are big in Bi+1. Any
other big leaf of Bi which becomes an internal vertex of Bi+1 must have at least one child which
is big. This shows that bi+1 ≥ bi + 1 and gives the inductive step.

Now we are ready for the proof of Lemma 2.

Proof of Lemma 2. Let α = β = 1
4
(1 − ε) so that α + β ≤ 1

2
(1 − ε). Let K ⊆ T be formed as

follows. Initialize K to be empty. Then do the following: while there is an X ∈ T such that there
is an A ∈ atoms(K), A1, A2 ∈ atoms(K ∪X) such that A = A1 ∪ A2 and |A1|, |A2| ≥ βd

τ
, add

X to K. By Claim 17, at the end of this process |K| ≤ τn
βd

. Let K = ∪X∈K∆G(X) be the set of
edges of cuts with shores in K. Throughout this proof, cuts will always be with respect to G and
we will henceforth drop the subscript to simply write ∆(X).

Let S ⊆ V be the set of vertices v such that w(E(v, V \ {v}) ∩ K) ≥ α · w(v). We say that
v ∈ V is small if for the A ∈ atoms(K) with v ∈ A there is an X ∈ T such that atoms(K ∪X)
refines A into A1, A2 with v ∈ A1 and |A1| < βd

τ
.

Claim 18. If v is small then v ∈ S.

Proof. Let X ∈ T be the shore of a cut which witnesses that v is small. Let us assume without
loss of generality that v ∈ X . Suppose for contradiction that v 6∈ S. There are three possibilities
for an edge {u, v}: either {u, v} ∈ K, or u ∈ A1, or u ∈ A2. Let the total weight of these kind of
edges be wK, w1, w2, respectively. Thus w(v) = wK+w1 +w2. We further know that wK < αw(v)
by the assumption that v 6∈ S and that w1 < βd since |A1| < βd

τ
and the maximum edge weight is

τ . This means w2 > w(v)− αw(v)− βd. Further note that v contributes weight at least w2 to the
weight of ∆(X).

As ∆(X) is not a star cut, we can consider the cut ∆(X ′) where X ′ = X \ {v}. We claim that
w(∆(X ′)) < λ, which is a contradiction. The only difference between w(∆(X)) and w(∆(X ′)) is
the contribution of v. The weight of edges involving v in ∆(X ′) is at most wK+w1 < αw(v)+βd.
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Thus

w(∆(X))− w(∆(X ′)) ≥ w2 − (wK + w1)

> w(v)− 2αw(v)− 2βd

≥ d(1− 2α− 2β)

≥ εd ,

implying that w(∆(X ′)) < λ.

Let G′ = Contract(G, atoms(T )). We now bound w(E(G′)). We claim that every edge in G′

is either in K or is incident to a vertex in S. For if {u, v} ∈ E(G′) but {u, v} 6∈ K, then for a cut
∆(Y ) for Y ∈ T with {u, v} ∈ ∆(Y ) it must be the case that there is an A ∈ atoms(K) such that
u, v ∈ A and that for the A1, A2 ∈ atoms(K ∪Y ) with A = A1∪A2, one of A1, A2 has size < βd

τ
.

This means that either u or v is small and so by Claim 18, {u, v} is incident to S.
The number of sets in K is at most τn

βd
and for each X ∈ K we have w(∆(X)) ≤ λ + εd ≤

(1 + ε)d. Thus we have that w(K) ≤ (1 + ε) τn
β

.
Let us now bound the weight of edges incident to S. As each vertex v ∈ S has weight at least

αw(v) amongst edges in K we have that α
2

∑
v∈S w(v) ≤ w(K). Thus overall we find

w(E(G′)) ≤ w(K)

(
1 +

2

α

)
≤ (1 + ε)(α + 2)

τn

αβ

≤ 68τn

(1− ε)2
.

The bound in Lemma 2 is tight up to constant factors. To see this, consider a cycle graph with
uniform edge weight τ . Every edge participates in some minimum cut, and hence G = G′ and
w(E(G′)) = τn.

4 Query-efficient quantum algorithm for minimum cut
We first describe a query-efficient quantum algorithm to find the weight and shores of a minimum
cut. In Section 5 we make this algorithm time-efficient. Our quantum query algorithm for mini-
mum cut mainly relies on Lemma 2, and is inspired by a classical randomized algorithm for edge
connectivity in the cut query model by Rubinstein, Schramm, and Weinberg (RSW) [RSW18].
The RSW cut query algorithm is based on 4 subroutines whose input/output behavior we describe
in Algorithms 1–4 below. For weighted graphs, we need an additional subroutine to compute the
maximum weight of an edge in the graph which is stated in Algorithm 5. We describe all these
subroutines in an abstract way to make it easy to (i) describe the time-efficient algorithm in the
next section, and (ii) to instantiate this algorithm for other query models in the future. We indicate
oracle access to G by square brackets and put the parameters explicitly given to the routines in
parentheses.
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Algorithm 1 FindMinStar[G](δ)

Input: Oracle access to a weighted graph G, error parameter δ.
Output: With probability at least 1 − δ output v ∈ argminu∈V w(∆G({u})) and dmin =

minu∈V w(∆G({u})).

Algorithm 2 Cut-Sparsifier[G](ε, δ)

Input: Oracle access to a weighted graph G, sparsifier accuracy parameter ε, error parameter
δ.

Output: With probability at least 1 − δ output an integer-weighted ε-cut sparsifier H of G
with Õ(n/ε2) edges.

Algorithm 3 LearnCutAtoms(H,λ, δ)
Input: Adjacency array description of H , cut threshold λ, and error parameter δ.
Output: Define the set T = {X : |X|, |X| ≥ 2, w(∆H(X)) ≤ λ}. With probability at least

1− δ output atoms(T ).

Algorithm 4 LearnContraction[G](P ,M, δ)

Input: Oracle access to a weighted graph G, a partition P of V (G), a natural number M , and
error parameter δ.

Output: Let G′ = Contract(G,P). With probability at least 1− δ return G′ if the number of
edges of G′ is at most M , and otherwise return NULL.

Algorithm 5 FindMaxWeight[G](δ)

Input: Oracle access to a weighted graph G, error parameter δ.
Output: With probability at least 1− δ output τ , the maximum weight of an edge of G.

We combine these subroutines in Algorithm 6 to give a template for solving the minimum cut
problem in an abstract query model.
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Algorithm 6 Query algorithm for minimum cut
Input: Oracle access to a weighted graph G
Output: λ(G) and the shores of a minimum cut of G.

1: (v, dmin)← FindMinStar[G]( 1
20

).
2: τ ← FindMaxWeight[G]( 1

20
).

3: H = (V,w′)← Cut-Sparsifier[G]( 1
100
, 1

20
).

4: Compute λ(H).
5: P = {S1, . . . , Sk} ← LearnCutAtoms(H, (1 + 1

100
)λ(H), 1

20
).

6: G′ ← LearnContraction[G](P , 100τn, 1
20

). If G′ = NULL then abort.
7: Compute the weight λ(G′) and shores (Y, V (G′) \ Y ) of a minimum cut in G′.
8: If dmin ≤ λ(G′) output (dmin, ({v}, V \{v})). Otherwise, let Z = ∪Si∈Y Si and output

(λ(G′), (Z,Z)).

Theorem 19. Let G be a weighted graph with n vertices, minimum edge weight at least 1, and
maximum edge weight τ . Algorithm 6 finds the weight and shores of a minimum cut of G with
probability at least 3/4. The number of queries of the algorithm is the sum of the number of queries
of the subroutines FindMinStar[G]( 1

20
), FindMaxWeight[G]( 1

20
), Cut-Sparsifier[G]( 1

100
, 1

20
), and

LearnContraction[G](P , 100τn, 1
20

).

Proof. Queries to the input graph G are only made in steps 1, 2, 3, and 6. This gives the statement
about the complexity of the algorithm.

Next let us deal with the error probability. With probability at least 16/20 steps 1–5 return
correctly by the definition of these subroutines and the error parameter provided. Let us now
assume this is the case. Then H = (V,w′) is a valid ε-sparsifier of G for ε = 1/100. Let X ∈ T .
Then we have

w(∆G(X)) ≤ (1 + ε)w′(∆H(X)) ≤ (1 + ε)(1 + 3ε)λ(H) ≤ (1 + ε)2(1 + 3ε)λ(G) .

We have (1 + ε)2(1 + 3ε) ≤ 11
10

by the choice of ε, and so w(∆G(X)) ≤ 11
10
λ(G) ≤ λ(G) +

1
10
dmin since λ(G) ≤ dmin. Thus by Lemma 2, the total weight of edges in Contract(G,P) will

be at most 100τn. As we assume the minimum weight of an edge is at least 1, the number of
edges in Contract(G,P) will also be at most 100τn. Hence except with probability at most 1/20,
LearnContraction will correctly return Contract(G,P) in step 5.

We have now argued that with probability at least 3/4 all subroutines will correctly return. We
now argue correctness assuming that this is the case. In this case, G′ will be a valid contraction of
G and so λ(G′) ≥ λ(G). Thus if λ(G) is achieved by a star cut the algorithm will return correctly.

Let us now assume that dmin > λ(G) and let ∆G(X) be a non-star cut withw(∆G(X)) = λ(G).
We have

w′(∆H(X)) ≤ (1 + ε)w(∆G(X)) = (1 + ε)λ(G) ≤ 1 + ε

1− ε
λ(H) ≤ (1 + 3ε)λ(H) ,

where the last step holds as ε ≤ 1
3
. This means X ∈ T and therefore no edge of ∆G(X) will

be contracted in G′ = Contract(G,P). Thus λ(G′) ≤ λ(G) and as the edge connectivity cannot
decrease in a contraction in fact λ(G′) = λ(G). Hence the algorithm returns correctly in step 8.
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Lemma 20. Let G = (V,w) be a weighted graph with n vertices and m edges. Subroutines
FindMinStar[G]( 1

20
), FindMaxWeight[G]( 1

20
), Cut-Sparsifier[G]( 1

100
, 1

20
) can be implemented by a

quantum algorithm with query and time complexity Õ(n3/2) in the adjacency matrix and Õ(
√
mn)

in the adjacency array model.
LearnContraction[G](P , 100τn, 1

20
) can be implemented by a quantum algorithm with query

and time complexity Õ(n3/2
√
τ) in the adjacency matrix and Õ(

√
mnτ) in the adjacency array

model.

Proof. First note that in the adjacency array model we may assume that m ≥ n. Otherwise,√
mn ≥ m and we can perform each task classically in Õ(m) time and queries. We consider each

of the subroutines in turn:
FindMinStar[G]( 1

20
): In the adjacency matrix model we can compute w(∆G({v}) with n− 1

classical queries to the adjacency matrix. We can compose this with quantum minimum finding
to find the minimum weight of a star cut and a vertex realizing this in query and time complexity
Õ(n3/2) by Theorem 14.

In the adjacency array model we first classically query the degrees of all the vertices with
n queries. In a simple graph this suffices to determine the minimum weight of a star cut. In a
weighted graph we continue as follows. For 1 ≤ ` ≤ dlog ne, define the bucket B` ⊆ V as the
subset of nodes v that have degree in [2`−1, 2`). As the sum of the degrees is 2m we have that
|B`| ≤ 2m/2`−1. Finding the minimum minv∈B`

w(∆G({v})) over a single bucket has quantum
query and time complexity Õ(

√
mn): we can compute w(∆G({v})) for a single v ∈ B` using at

most 2` classical queries, and then do quantum minimum finding over the |B`| ≤ 2m/2`−1 nodes
in B`. This has total query and time complexity Õ(2`

√
2m/2`−1) ∈ Õ(

√
m2`) ∈ Õ(

√
mn). We

do this for each of the dlog ne buckets and we output the minimum overall weight and a vertex
realizing this. This yields a total time and query complexity Õ(

√
mn).

FindMaxWeight[G]( 1
20

): This amounts to finding the maximum of a set of n2 numbers in the
adjacency matrix model, or m numbers in the adjacency list model. By Theorem 14 this has query
and time complexity Õ(n) and Õ(

√
m), respectively.

Cut-Sparsifier[G]( 1
100
, 1

20
): A 1

100
-cut sparsifier with Õ(n/ε2) edges can be constructed with

high probability in query and time complexity Õ(n3/2) in the adjacency matrix model or Õ(
√
mn)

in the adjacency array model by Theorem 15.
LearnContraction[G](P , 100τn, 1

20
): First we handle a trivial case. If τ ≥ n then we can

classically learn the input in time n2 = O(n3/2
√
τ) in the adjacency matrix model and time m =

O(
√
mnτ) in the adjacency array model. Thus we can assume τ < n.

First we do the adjacency matrix case. Let x ∈ R(n
2) be a vector whose entries are labeled by

elements of V (2) and where x(e) = w(e) if the endpoints of e are in distinct elements of P and
x(e) = 0 otherwise. A query to an entry of x can be answered with one query to the adjacency
matrix of G. Let x̂ ∈ {0, 1}(

n
2) be defined by x̂(e) = 1 if w(e) > 0 and x̂(e) = 0 otherwise. We

can also answer a query to x̂ with one query to the adjacency matrix ofG. By Theorem 13 in query
and time complexity Õ(n3/2

√
τ) in the adjacency matrix model we can with probability at least

9/10 output x̂ if |x̂| ≤ 100τn and otherwise output NULL. We can then classically query x in the
non-zero locations of x̂ with 100τn = O(n3/2

√
τ) more classical queries to output x. This fulfils
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the specification of LearnContraction.
Similarly, in the adjacency array model let x ∈ Rm be labeled by entries of the adjacency array

of G and define x(e) = w(e) if the endpoints of e are in distinct elements of P and x(e) = 0
otherwise. Let x̂(e) = 1 if x(e) > 0 and x̂(e) = 0 otherwise as before. A query to an entry of x
or x̂ can be answered with one query to the adjacency array of G. Again by Theorem 13, in query
and time complexity Õ(

√
mnτ) in the adjacency array model we can with probability at least 9/10

output x̂ if |x̂| ≤ 100τn and otherwise output NULL. With 100τn = O(
√
mnτ) more queries we

can then output x.

Theorem 21. Let G = (V,w) be an n-vertex weighted graph with m edges and edge-weight
ratio τ . There is a quantum algorithm that finds the weight and shores of a minimum cut of G
with probability at least 3/4 after Õ(n3/2

√
τ) queries to the adjacency matrix of G or Õ(

√
mnτ)

queries to the adjacency array.

Proof. First we use the minimization analogue of FindMaxWeight to find the minimum edge
weight α. Then by normalizing by 1/αwe may assume that all edge weights are at least 1 and apply
Theorem 19. The bound on the quantum query complexities then follows from Lemma 20.

5 Time-efficient quantum algorithm for minimum cut
In this section we describe a quantum algorithm for computing the weight of a minimum cut
of a weighted graph with time complexity Õ(

√
mnτ + n3/2) in the adjacency array model and

Õ(n3/2
√
τ) in the adjacency matrix model. In the adjacency matrix model this is optimal up to

polylogarithmic factors. Our algorithm is a time-efficient implementation of Algorithm 6. The
running time of this algorithm is the sum of the running time of its 4 subroutines, and we have
already analyzed the complexity of 3 of those subroutines in Lemma 20. Thus it now suffices to
give a time-efficient implementation of the subroutine LearnCutAtoms, as formalized in the next
lemma.

Lemma 22. Let κ(n) denote the maximum time complexity of a quantum algorithm for the sub-
routine LearnCutAtoms(H, (1 + 1

100
)λ(H), 1

20
) over weighted n-vertex graphs H with Õ(n) edges.

Let G be a weighted graph with n vertices, m edges, and edge-weight ratio τ . There is a quantum
algorithm to compute the weight and shores of a minimum cut of G with probability at least 2/3
that runs in time κ(n) + Õ(

√
mnτ) in the adjacency array model and κ(n) + Õ(n3/2

√
τ) in the

adjacency matrix model.

Proof. First we use minimum finding Theorem 14 to determine the minimum α and maximum
β edge weights with error probability at most 1/12. This requires time Õ(

√
m) in the adjacency

array model and Õ(n) in the adjacency matrix model and so will be low order to the time bounds
stated in the lemma. From α, β we compute the edge-weight ratio τ = β/α. By multiplying all
edge weights by 1/α we may assume that the minimum edge weight is 1 and the maximum edge
weight is τ .

If τ > m/n (in the adjacency array model) or τ > n (in the adjacency matrix model), then we
simply run a randomized near-linear time algorithm (e.g., [Kar00]) for calculating the weight and
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shores of a minimum cut of G. This then takes time Õ(m) ∈ Õ(
√
mnτ) in the array model and

Õ(n2) ∈ Õ(n3/2
√
τ) in the matrix model. We can hence assume that τ ≤ m/n in the array model

and τ ≤ n in the matrix model.
We use a quantum implementation of Algorithm 6. By Theorem 19 this algorithm has error

probability at most 1/4, thus our overall error probability will be at most 1/3 as desired. For the
running time it suffices to analyze the quantum time complexity of all 8 steps. In Lemma 20 we
show that the time complexity of steps 1–3 and 6 is Õ(

√
mnτ) in the adjacency array model and

Õ(n3/2
√
τ) in the adjacency matrix model. For step 4, we can use a randomized near-linear time

algorithm (e.g., [Kar00]) for calculating the weight and shores of a minimum cut of H . As H has
Õ(n) edges this takes time Õ(n). In step 7, we compute the weight and shores of a minimum cut in
G′ which has at most 100τn edges by the definition of LearnContraction. This takes time Õ(τn),
which is Õ(

√
mnτ) in the array model (by the assumption τ ≤ m/n) or Õ(n3/2

√
τ) in the matrix

model (by the assumption τ ≤ n). Finally, step 8 is trivial and the quantum time complexity of
step 5 is exactly κ(n).

This section is hence devoted to proving the following theorem.

Theorem 23. Let H be an n-vertex weighted graph with m edges. There is a quantum algorithm
that implements LearnCutAtoms(H, (1 + 1

100
)λ(H), 1

20
) in time Õ(m+ n3/2).

In particular, Theorem 23 implies that κ(n) ∈ Õ(n3/2), and hence we find a time-efficient
quantum algorithm.

Theorem 5. Let G = (V,w) be an n-vertex weighted graph with m edges and edge-weight ratio
τ . There is a quantum algorithm that finds the weight and shores of a minimum cut of G with
probability at least 2/3 in query and time complexity Õ(n3/2

√
τ) in the adjacency matrix model

and Õ(
√
mnτ + n3/2) in the adjacency array model.

Proof. Follows from Lemma 22 and Theorem 23.

5.1 Tools
Our time efficient algorithm builds on a number of tools, which we first introduce here.

5.1.1 2-respecting cuts and Karger’s theorem

In his seminal work on a near-linear time randomized algorithm for minimum cut [Kar00], Karger
combined sparsification with the notion of tree-respecting cuts. Consider an n-vertex graph G =
(V,w), a spanning tree T and a cut with shore X . We say that the cut 2-respects T if it cuts at most
2 edges of T , i.e., |∆T (X)| ≤ 2, and strictly 2-respects T if |∆T (X)| = 2. Note that the set of cuts
which 2-respect T depends only on E(T ) and not the weight of edges in T . Note also that there
are n− 1 +

(
n−1

2

)
=
(
n
2

)
cuts that 2-respect T .

Karger proved that we can efficiently construct a set of O(log n) spanning trees of G such that
every minimum cut of G will 2-respect a constant fraction of them. This effectively reduces the
exponentially large search space for finding a minimum cut to the set of merely O(n2 log n) cuts
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that 2-respect one of the spanning trees. For our purpose, we will use these spanning trees as an
efficient representation of the near-minimum cuts of the graph. For this, we need a slight general-
ization of Karger’s theorem on tree-respecting cuts. This shows we can efficiently find O(log n)
spanning trees such that any (1 + 1/16)-near-minimum cut 2-respects a constant fraction of them,
while Karger’s statement was only for minimum cuts. This only requires a minor modification of
Karger’s proof, but for completeness we provide a proof in Appendix A.

Throughout this section we will use the phrase “with high probability” to mean with probability
at least 1− 1/nc for an arbitrary constant c.

Theorem 24 ([Kar00, Theorem 4.1]). Let G = (V,w) be a weighted graph with n vertices and m
edges. There is a randomized algorithm that in time O(m log2(n) + n log4(n)) time constructs a
set of O(log n) spanning trees such that every (1 + 1/16)-near minimum cut of G 2-respects 1/4
of them with high probability.

Karger states the runtime of the algorithm in this theorem as O(m+ n log3(n)), but we opt for
a simpler proof rather optimizing log factors.

5.1.2 Data structures

We will frequently need to refer to a 2-respecting cut both by its shores and the edges of the tree it
cuts. We develop some notation to make this easier.

Definition 25 (Notation for 2-respecting cuts). Let T be a tree on vertex set V with root r. Define
N(T ) = E(T )∪E(T )(2). For f ∈ N(T ) define shore(f) to be the set X ⊆ V such that ∆T (X) =
f and X does not contain r. For X ⊆ V such that |∆T (X)| ≤ 2, let cutedges(X) = ∆T (X). We
overload both these notations to sets so that shore(Q) = {shore(f) : f ∈ Q} for Q ⊆ N(T ) and
similarly cutedges(T ) = {∆T (X) : X ∈ T } for a set T of shores of 2-respecting cuts of T .

With some preprocessing time, we can efficiently evaluate the weight of 2-respecting cuts. The
following lemma is very useful.

Lemma 26 ([GMW21, Lemma 1]). Given a weighted graph G = (V,w) with n vertices and m
edges, and a spanning tree T of G, we can construct in O(m log n) time a data structure that,
for any f ∈ N(T ), reports the weight w(∆G(shore(f))) of the corresponding 2-respecting cut in
O(log n) time.

Another data structure that we use is based on the Euler tour technique [TV84, HK95]. This
is a way of representing a tree that is useful to access and modify data in subtrees. Consider an
undirected tree T = (VT , ET ) with root r ∈ VT . To T we associate the directed graph ~T =

(VT , ~ET ) obtained by replacing every edge in ET by a pair of directed edges in opposite directions.
Now let ET ∈ ( ~ET )2(n−1) denote an Euler tour in ~T , starting and ending in root r. ET is a sequence
of 2(n− 1) edges as each directed edge is traversed exactly once.

For every node u in VT , let f(u) be the index in ET of the edge that points toward u, and let
`(u) be the index of the last edge that points toward u. Now if T (u) is the subtree of T induced
by vertex u and all of its descendants, then the subsequence of ET starting at f(u) and ending at
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`(u) (both included) is an Euler tour representation of T (u). Hence any subtree corresponds to a
subsequence of ET . We can use this to prove the lemma below, which will be useful to compute
atoms(T ) from a set T of shores of cuts that 2-respect a given tree.

Given a tree whose nodes have some key value, we call a subtree-add the increasing or de-
creasing of the key value in a subtree by some fixed amount.

Lemma 27. Let T = (VT , ET ) be a tree with key values {ku | u ∈ VT} of O(log n) bits. There is
a data structure that implements M subtree-adds in time Õ(n+M).

Proof. Fix a root node r. Represent T by an Euler tour ET ∈ ( ~ET )2(n−1) and define f(u), `(u) for
each u ∈ V as above. Associate to ET a list A of length 2(n − 1) to store the key values, setting
A(i) = ku if the i-th entry of ET is an edge whose tail is u. Adding value α to the keys of nodes
in subtree T (u) amounts to adding α to every entry in the subsequence in A starting with f(u) and
ending with `(u) (both included). Call such an operation ADD(α, f(u), `(u)).

To implement M ADD operations, create a second emtpy list B with length 2(n − 1). For
every operation ADD(α, f(u), `(u)), set B(f(u)) = B(f(u)) + α and if `(u) < 2(n − 1) set
B(`(u) + 1) = B(`(u) + 1)− α. Now do a partial sum transformation of B:

1: Create list sB of length 2(n− 1) with sB(1) = B(1) and sB(i) = 0 for all i ∈ [2, 2(n− 1)].
2: for i = 2, 3, . . . , 2(n− 1) do
3: Set sB(i) = sB(i− 1) +B(i).
4: end for

In total this has time complexity Õ(n + M) (assuming Õ(1) cost for arithmetic operations). The
final key values are now given by setting ku = A(f(u)) +B(f(u)).

5.2 Generating set for a single tree
Let G = (V,w) be an n-vertex weighted graph and T be a spanning tree of G. Let Q ⊆ E(T )(2)

andM = shore(Q). In words,M is an arbitrary set of shores of cuts that strictly 2-respect T . The
next lemma gives an explicit generating set S for atoms(M) with |S| ≤ n − 2. We first make a
definition that will be used throughout this section.

Definition 28 (separate). Let V be a finite set and X ⊆ V . For u, v ∈ V we say that X separates
u, v if exactly one of them is in X .

Lemma 29. Let T be a tree on a vertex set V of cardinality n. LetM⊆ 2V be a set of shores that
strictly 2-respect T and let Q = cutedges(M). Define the graph L = (E(T ), Q) and let F be a
spanning forest of L. Then S = shore(E(F )) is a generating set for atoms(M).

Proof. Clearly E(F ) ⊆ Q thus S ⊆M. This means that atoms(M) is a refinement of atoms(S).
Thus to show atoms(S) = atoms(M) it suffices to show that any u, v ∈ V that are in different
sets of atoms(M) are also in different sets of atoms(S).

The key fact we need is that if ∆T (X) = {e, e′} then X separates u, v iff exactly one of e, e′ is
on the path from u to v in T . Suppose that u, v are in different sets of atoms(M), that is there is an
X ∈ M which separates them. Say that ∆T (X) = {ein, eout} where ein is on the u− v path in T
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and eout is not. Then {ein, eout} ∈ Q and therefore there must be a path between ein and eout in the
spanning forest F . Let (e0, e1, e2, . . . , ek), where e0 = ein, ek = eout, be the sequence of vertices
on this path in F . As ein is on the u−v path in T and eout is not, there must be consecutive vertices
ei, ei+1 where ei is on the u− v path in T and ei+1 is not. As {ei, ei+1} ∈ E(F ) there is an X ∈ S
which separates u and v.

Lemma 30. Let G = (V,w) be an n-vertex weighted graph with m edges and T a spanning tree
of G. For a real number α ≥ 1, let T = {X ⊆ V : w(∆G(X)) ≤ αλ(G), |∆T (X)| ≤ 2}. There
is a quantum algorithm that outputs with high probability a set Q ⊆ N(T ) in time Õ(m + n3/2)
such that |Q| ≤ 2n− 3 and S = shore(Q) is a generating set for atoms(T ).

Proof. Let T1 = {X ∈ T : |∆T (X)| = 1} and T2 = {X ∈ T : |∆T (X)| = 2}. Let
Q1 = cutedges(T1) and Q2 = cutedges(T2). Let F be a spanning tree for L = (E(T ), Q2).
By Lemma 29, R = shore(E(F )) is a generating set for atoms(T2) and |R| ≤ n − 2 as F is a
spanning tree of an n − 1-vertex graph. Thus by Proposition 10, S = T1 ∪ R is a generating set
for T of size at most 2n− 3. Thus taking Q = Q1 ∪ E(F ) satisfies the conditions of the lemma.

Now we must show how to efficiently output Q. We can first run a near-linear time classical
randomized algorithm to compute λ(G) [Kar00]. We then in near-linear time set up the data
structure given by Lemma 26. For an f ∈ N(T ) this lets us check in timeO(log(n)) if f ∈ Q1∪Q2.
We can then cycle over the edges e ∈ E(T ) to create the set Q1 classically in time Õ(n). It now
remains to construct a spanning tree of L = (E(T ), Q2). For any f ∈ E(T )(2) we can use the data
structure to check in O(log n) time if f ∈ Q2. This gives us adjacency matrix access to L with
O(log n) overhead for each query. Now we can use the quantum algorithm from [DHHM06] that
with high probability outputs a spanning forest of an n vertex graph in the adjacency matrix model
with Õ(n3/2) queries and time. Thus we can use this algorithm to construct a spanning forest F of
L. We then output Q = Q1 ∪ E(F ) as desired.

Now we have an implicit representation cutedges(S) of a generating set S for atoms(T ),
where T is the set of near-minimum cuts of a graph G that 2-respect a tree T . What we need,
however, is to actually output atoms(T ). In the following lemma we show how to do this efficiently
by combining random hashing with Euler tour trees.

Lemma 31. Let T be a tree on a vertex set V of size n, Q ⊆ N(T ), and S = shore(Q). Given
input Q there is a classical algorithm that with probability at least 1 − 1/n outputs atoms(S) in
time Õ(n+ |Q|).

Proof. Let M be a large integer to be chosen later and consider the following algorithm. Pick
` ∈ ZM uniformly at random and give every vertex u ∈ V the key value ku = `. For every f ∈ Q,
do:

• Pick ` ∈ ZM uniformly at random and set ku = ku + ` (modM) for all u ∈ shore(f).

Now if u and v are in the same set of atoms(S), that is no set of S separates them, then ku = kv.
On the other hand, if u and v are in different sets of atoms(S) then there is some f ∈ Q such that
u ∈ shore(f) and v 6∈ shore(f), or vice versa. In this case, ku and kv are pairwise independent
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and distributed uniformly at random in ZM . Hence ku = kv with probability 1/M . Taking a union
bound over all pairs u, v, we see that with probability at least 1−

(
n
2

)
/M we have that ku 6= kv for

all u, v in different sets of atoms(S). If we set M = n3 and we let P({ku}) denote the partition
induced by gathering nodes with the same key value, then P({ku}) = atoms(S) with probability
at least 1− 1/n.

The cost of actually implementing this algorithm is dominated by sequentially updating for
every f ∈ Q the key value for all nodes in shore(f). This amounts to changing the key value in at
most 2 subtrees of T :

• If f = e ∈ E(T ), then shore(f) is the subtree T (u) of some node u and we have to change
the key value in T (u).

• If f = {e, e′} ∈ E(T )(2), then we distinguish two cases. If one of the two cut edges is a
descendant of the other then shore(f) is of the form T (u) \ T (v) for two nodes u, v ∈ V .
In this case we can update the key values by adding ` to T (u) and subtracting ` from T (v).
If neither of the edge is a descendant of the other then shore(f) is of the form T (u) ∪ T (v),
and we can update the key values by adding ` to T (u) and T (v).

In Lemma 27 we show how to change the key values in |Q| subtrees in total time Õ(n+ |Q|) using
Euler tour trees.

We can now put all these pieces together into the following algorithm.

Algorithm 7 Algorithm for finding atoms of the shores of 2-respecting near-minimum cuts
Input: Explicit description of G = (V,w), a spanning tree T of G, a real number α ≥ 1.
Output: atoms(T ) where T = {X : w(∆G(X)) ≤ αλ(G) and |∆T (X)| ≤ 2}.

1: Compute λ(G).
2: Create data structure as in Lemma 26 for evaluating the weight of cuts in G that 2-respect T .
3: Compute Q such that shore(Q) is a generating set for atoms(T ) by Lemma 30.
4: Use Lemma 31 to find and return atoms(shore(Q)) = atoms(T ).

Lemma 32. Let G = (V,w) be an n-vertex weighted graph with m edges and T a spanning
tree of G. Let α ≥ 1 be a real number and T = {X : w(∆G(X)) ≤ αλ(G) and |∆T (X)| ≤
2}. Algorithm 7 outputs atoms(T ) with high probability and can be implemented by a quantum
algorithm in time Õ(m+ n3/2).

5.3 Time-Efficient quantum algorithm for LearnCutAtoms
We now describe a time-efficient quantum algorithm for outputting atoms(T ), where T is the set
of shores of all (1 + 1/100)-near-minimum cuts of a weighted graph H . This algorithm combines
Karger’s tree packing Theorem 24 with the algorithm that produces the atoms of shores of cuts that
2-respect a tree from the previous section (Lemma 32).
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Algorithm 8 LearnCutAtoms(H,λ, δ)
Input: Explicit description of an n-vertex weighted graph H = (V,w) with m edges, a cut

threshold λ ≤ (1 + 1/16)λ(H), and an error parameter δ.
Output: atoms(T ) where T = {X ⊆ V : w(∆G(X)) ≤ λ}.

1: Construct set of K ∈ O(log n) spanning trees {Ti} using Theorem 24.
2: for i = 1, 2, . . . , K do
3: Use Algorithm 7 to find atoms(Ti) where Ti = {X ⊆ V : w(∆G(X)) ≤
λ and |∆Ti(X)| ≤ 2}.

4: end for
5: Output atoms(∪iatoms(Ti)).

Theorem 23. Let H be an n-vertex weighted graph with m edges. There is a quantum algorithm
that implements LearnCutAtoms(H, (1 + 1

100
)λ(H), 1

20
) in time Õ(m+ n3/2).

Proof. We use Algorithm 8. First let us argue correctness. As λ ≤ (1 + 16)λ(H), by Theorem 24
for every X ∈ T there will be a tree Ti such that ∆Ti(X) ≤ 2. This means that T = ∪Ki=1Ti.
Hence atoms(T ) = atoms(∪Ti) = atoms(∪atoms(Ti)). By Lemma 32, step (3) correctly outputs
atoms(Ti) for i = 1, . . . , K with high probability, and thus step (5) will output atoms(T ) with
high probability.

Now let us analyze the complexity. Step (1) can be done in Õ(m) time by a classical random-
ized algorithm by Theorem 24. Step (3) can be done by a quantum algorithm in time Õ(m+ n3/2)
by Lemma 32, and thus the for loop has the same time bound as K = O(log n).

Finally, we need to explain how to (classically) implement step (5). First we give every node
v ∈ V a key value kv = 0. Then, for each i = 1, . . . , K, we iterate over the node set and append
a log n-bit string to the key value of every node, indicating the component of atoms(Ti) of which
it is part. At the end of this routine every node has a O(log2 n)-bit key value that indicates its
component in atoms(T ). The total runtime for this step is Õ(n). Thus overall the running time is
Õ(m+ n3/2).

6 Lower bounds
In this section we present lower bounds on the complexity of edge connectivity and weighted
minimum cut.

First we describe some existing lower bounds for the case of simple graphs. Let CONn be the
problem of deciding if an input simple graph on n vertices is connected or not. This is a special case
of edge connectivity, where one wants to decide if the edge connectivity is zero or positive. Dürr,
Heiligman, Høyer and Mhalla [DHHM06] proved the following quantum query lower bounds on
the complexity of CONn.

Theorem 33 ([DHHM06]). The bounded-error quantum query complexity of CONn is Θ(n3/2) in
the adjacency matrix model and Θ(n) in the adjacency array model.
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This theorem shows that, in the adjacency matrix model, Theorem 21 is tight up to polylogarithmic
factors for simple graphs. For the adjacency array model there is still a gap between the Ω(n) lower
bound from Theorem 33 and the Õ(

√
mn) upper bound for simple graphs given by Theorem 21.

For the minimum cut problem in a weighted graph we prove separate and distinct lower bounds
for the adjacency matrix model and the adjacency array model. All our lower bounds essentially
follow by forcing the algorithm to solve a counting problem in order to compute the weight of a
minimum cut. We then use the following theorem by Nayak and Wu that gives a lower bound on
the quantum query complexity of exact counting.

Theorem 34 ([NW99, Corollary 1.2]). Let k,N ∈ N with 2k + 1 ≤ N . Assume query access
to x ∈ {0, 1}N with the promise that |x| = k + 1 or |x| = k − 1. Any quantum algorithm that
correctly decides whether |x| = k + 1 or |x| = k − 1 with probability at least 2/3 must make
Ω(
√
Nk) queries.

6.1 Adjacency matrix model
In the adjacency matrix model we show that for any integer 1 ≤ τ ≤ (bn/2c − 1)/2, in the worst
case Ω(n3/2

√
τ) adjacency matrix queries are needed to compute the weight of a minimum cut of

a graph with edge weights in {1, τ}. This matches the upper bound in Theorem 21, and hence
settles the quantum query complexity of weighted minimum cut in the adjacency matrix model.
For τ = 1 this reproduces the aforementioned Ω(n3/2) bound which follows from [DHHM06].

Theorem 35. Let n, τ ∈ N satisfy 1 ≤ τ ≤ (bn/2c − 1)/2. There is a family of n-vertex graphs
G all of which have edge weights in {0, 1, τ} such that any quantum algorithm that for every
graph G ∈ G computes with probability at least 2/3 the weight of a minimum cut in G must make
Ω(n3/2

√
τ) queries in the adjacency matrix model. Similarly, any quantum algorithm that for

every graph G ∈ G computes with probability at least 2/3 the shores (X,X) of a cut realizing the
minimum weight must make Ω(n3/2

√
τ) queries in the adjacency matrix model.

Proof. Let V be an n-element set and partition V into disjoint sets V = V0 t V1 where |V0| =
bn/2c, |V1| = dn/2e. Choose a distinguished vertex v0 ∈ V0, and let V ′0 = V0 \ {v0}. Let
N = |V ′0 × V1| and let g : V ′0 × V1 → [N ] be a bijection. For every x ∈ {0, 1}N we define a
weighted graph Gx = (V,wx) where

• wx({u, v}) = τ if u, v ∈ V0 or u, v ∈ V1,

• wx({u, v}) = x(g({u, v})) if (u ∈ V ′0 , v ∈ V1) or (u ∈ V1, v ∈ V ′0),

• wx({u, v}) = 0 otherwise.

Let k = τ(bn/2c − 1). In the following ∆Gx(·) will always be with respect to Gx and we drop the
subscript. For any x it holds that wx(∆(V0)) = |x| and wx(∆({v0})) = k. Now consider any x
and a subset ∅ 6= Y ( V different from V0 or V1. We can prove that wx(∆(Y )) ≥ k. To this end
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note that either ∅ 6= Y ∩ V0 ( V0 or ∅ 6= Y ∩ V1 ( V1. First assume that the former is the case.
Then

wx(∆(Y )) =
∑

u∈Y,v /∈Y

wx({u, v}) ≥
∑

u∈Y ∩V0,v∈V0\Y

wx({u, v}) ≥ k,

as k is the weight of a minimum cut in the complete weighted graph over bn/2c nodes with all
edge weights τ . If instead ∅ 6= Y ∩ V1 ( V1 then a similar argument shows that wx(∆(Y )) ≥
τ(dn/2e − 1) ≥ k.

Thus if |x| < k then ∆(V0) will be the unique minimum cut of Gx, and the weight of a
minimum cut in Gx will be wx(∆(V0)) = |x|. On the other hand, if |x| > k then the weight of a
minimum cut in Gx will be k, which is realized by the star cut ∆({v0}) (and potentially other cuts
in Gx) but not by ∆(V0) as wx(∆(V0)) = |x| > k.

Let S = {x ∈ {0, 1}N : |x| ∈ {k − 1, k + 1}} and G = {Gx : x ∈ S}. Suppose there
was a T query algorithm in the adjacency matrix model that for any Gx ∈ G with probability
at least 2/3 output the weight of a minimum cut in Gx. If the output is < k then we know that
|x| = k − 1 and if the output is k then we know that |x| = k + 1. Moreover, any query to the
adjacency matrix of Gx can be simulated by a query to x, thus such an algorithm gives a T query
algorithm to determine if |x| = k − 1 or |x| = k + 1 when we are promised one of these is the
case. Since τ ≤ (bn/2c − 1)/2 we have 2k + 1 ≤ N and therefore we may apply Theorem 34 to
obtain T ∈ Ω(

√
Nk) = Ω(n3/2

√
τ).

Similarly, a T query algorithm in the adjacency matrix model that for any Gx ∈ G with prob-
ability at least 2/3 outputs the shores of a cut realizing the minimum weight also implies a T
query algorithm to determine if |x| = k − 1 or |x| = k + 1. In this case, if |x| = k − 1 then
the output must be (V0, V 0) as these are the shores of the unique minimum cut in Gx. On the
other hand, if |x| = k + 1 then (V0, V 0) is not a correct output. Thus the output of the algorithm
lets us determine with probability at least 2/3 if |x| = k − 1 or |x| = k + 1 and we again have
T ∈ Ω(

√
Nk) = Ω(n3/2

√
τ).

6.2 Adjacency array model
Given adjacency array access to a graph with edge-weight ratio τ , we showed an upper bound of
Õ(
√
mnτ) on the quantum query complexity of computing the weight of a minimum cut. In this

section we prove two distinct lower bounds, each of which is tight in a specific regime. First we
show that for any τ > 1 there exists a family of dense graphs on n vertices with edge-weight ratio τ
for which computing the weight of a minimum cut requires Ω(n3/2) queries to the adjacency array.
This shows that the adjacency array upper bound of Theorem 21 is tight for dense weighted graphs
with constant (but non-unit) edge-weight ratio. Secondly and using a different approach, for any
1 ≤ τ ∈ O(n) we prove an Ω(τn) lower bound for a family of dense graphs with edge-weight
ratio τ . This shows that we cannot get a quantum speedup when τ ∈ Ω(n).

6.2.1 Constant edge-weight ratio

For the first bound we first need a claim about the minimum cuts of a complete weighted bipartite
graph.
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Claim 36. Let n ≥ 8 be a multiple of 4 and G = (L t R,w) be a weighted bipartite graph with
bipartition L,R where |L| = 3n/4, |R| = n/4. Further suppose that for every x ∈ L, y ∈ R it
holds that w({x, y}) ≥ 1. Then any cut of G that is not of the form ∆G({x}) for x ∈ L has weight
at least n/2.

Proof. First consider a star cut ∆G({y}) for y ∈ R. This has weight at least 3n/4, since this is the
degree of y and all edges have weight at least 1.

It now remains to show the claim holds for non-star cuts. Consider a general non-star cut with
shore X ∪Y with X ⊆ L, Y ⊆ R. Let k = |X|, ` = |Y |. As it is a non-star cut we have k+ ` ≥ 2.
By complementing as needed we may also assume that k ≤ 3n/8. We also have the obvious
constraints that ` ≤ n/4 and k, ` ≥ 0.

As G is a complete weighted bipartite graph with every edge weight at least one we have

w(∆G(X ∪ Y )) ≥ k(n/4− `) + `(3n/4− k) .

As k ≤ 3n/8 the term `(3n/4 − k) is greater than n/2 whenever ` ≥ 2. Thus we can focus on
` ∈ {0, 1}. If ` = 0 then k ≥ 2 and so the weight of the cut is at least k(n/4) = n/2 as desired. If
` = 1 then the weight of the cut is k(n/4− 1) + 3n/4− k which is always at least 3n/4 as long as
n ≥ 8.

This claim means that if minx∈Lw(∆G({x})) < n/2 then this value will be the weight of a
minimum cut in G. We can leverage this to show a lower bound as follows. In the next proof, for
a function f : {0, 1}n → {0, 1} we will use Q1/3(f) to denote the quantum query complexity of
computing f with error at most 1/3.

Theorem 37. Let n ≥ 8 be a multiple of 4 and 0 < ε ≤ 1. There is a family of n-vertex graphs
G all of which have edge weights in {1, 1 + ε} such that any quantum algorithm that for every
graph G ∈ G computes with probability at least 2/3 the weight of a minimum cut in G must make
Ω(n3/2) queries in the adjacency array model. Similarly, any quantum algorithm that for every
graph G ∈ G computes with probability at least 2/3 the shores (X,X) of a cut realizing the
minimum weight must make Ω(n3/2) queries in the adjacency array model.

Proof. Let X = {x ∈ {0, 1}n/4 : |x| = bn/8c − 1} and Y = {y ∈ {0, 1}n/4 : |y| = bn/8c + 1}.
For every x = (x(1), . . . , x(3n/4)) ∈ (X ∪ Y )3n/4 we associate a bipartite graph Gx = (L t R,wx)
where L = {1, . . . , 3n/4}, R = {3n/4 + 1, . . . , n} and wx({i, j}) = 1 + ε · x(i)(j − 3n/4) for
every i ∈ L, j ∈ R. We set G = {Gx : x ∈ (X ∪ Y )3n/4}.

Define the function g : X ∪ Y → {0, 1} where g(x) = 0 iff x ∈ X . We have Q1/3(g) ∈ Ω(n)
by Theorem 34. Let f : {0, 1}3n/4 → {0, 1} be the AND function, for which Q1/3(f) ∈ Ω(

√
n).

By the composition theorem for quantum query complexity [HLŠ07, Rei11], we have Q1/3(h) ∈
Ω(n3/2) for the composed function h = f ◦ g3n/4.

Let x = (x(1), . . . , x(3n/4)) ∈ (X ∪ Y )3n/4. If h(x) = 1 then x(i) ∈ Y for all i ∈ [3n/4]
and the weight of the star cut ∆Gx({i}) = n/4 + ε · (bn/8c + 1). As ε ≤ 1 this will be the
weight of a minimum cut in Gx by Claim 36. On the other hand if h(x) = 0 then some x(i) ∈ X
and ∆Gx({i}) = n/4 + ε · (bn/8c − 1) and this will be the weight of a minimum cut of Gx.
Thus computing the weight of a minimum cut of Gx lets us evaluate h(x). Further, given oracle
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access to x we can simulate queries to Gx in the adjacency array model. Let Ax be a 3n/4-by-n/4
matrix whose ith row is the vector 1 + εx(i). Then the vertical concatenation of A with AT is a
valid adjacency array for Gx. To a degree query on vertex i we simply answer n/4 if 1 ≤ 3n/4
and 3n/4 if 3n/4 + 1 ≤ i ≤ n. We can also answer a query to the name and weight of the j th

neighbor of i with one query to x. This shows that the (1/3)-error quantum query complexity of
computing the weight of a minimum cut on graphs in G in the adjacency array model is at least
Q1/3(f ◦ g3n/4) ∈ Ω(n3/2).

Finally, suppose a quantum query algorithm can compute a shore of a minimum cut in Gx with
T queries. We know that this shore must be of the form {v} for a vertex v ∈ L. Thus with with
O(n) more queries the algorithm can classically compute the weight of a minimum cut by querying
the weight of the neighbors of v. Thus T + O(n) ∈ Ω(n3/2), which means T ∈ Ω(n3/2). This
completes the proof.

6.2.2 Large edge-weight ratio

Let n ∈ N be a multiple of 4 and V be a vertex set with |V | = n. Partition V into four sets
V1, V2, V3, V4.

Now consider an integer τ such that 1 ≤ τ ≤ 5n/8 and τn/10 is an integer. Fix a set S of
τn/10 “edge disjoint” quadruples (u1, u2, u3, u4) ∈ V1 × V2 × V3 × V4. By edge disjoint we mean
no pair of consecutive elements (ui, ui+1) or (u4, u1) appears in more than one quadruple. We fix
an enumeration of S and refer to the vertices in the `th quadruple as u`1, u

`
2, u

`
3, u

`
4.

For every x ∈ {0, 1}τn/10 we define an n-vertex weighted graphGx = (V,wx) wherewx({u, v}) =
τ if u 6= v ∈ Vi for some i ∈ [4], and for ` ∈ [τn/10] we set

wx({u`1, u`2}) = wx({u`3, u`4}) = x`,

wx({u`2, u`3}) = wx({u`4, u`1}) = 1− x` .

Otherwise, wx({u, v}) = 0. In words, on each Vi we have a complete graph with all edge weights
τ , and for each ` ∈ [τn/10] we either add unit weight edges {u`1, u`2}, {u`3, u`4} or {u`2, u`3}, {u`4, u`1}
depending on x`. The construction is depicted in Fig. 3.

There are a few important points to note about this definition. First, the edge-weight ratio ofGx

is τ . Second, for anyX that nontrivially intersects some Vi we have thatw(∆Gx(X)) ≥ τ(n/4−1).
This means that such an X cannot be the shore of a minimum cut of Gx. Third, by construction
the degree of every vertex of Gx is independent of x. This means that degree queries to Gx can be
trivially answered and give us no information about x.

Lemma 38. We can simulate a single query to Gx in the adjacency array model using a single
query to x.

Proof. We first handle degree queries. This can be answered with no queries to x as the degree of
a vertex is independent of x.

Now consider a query (v, k) ∈ V × [deg(v)] to which we must answer the name u of the k-th
neighbor of v and the edge weight wx({u, v}). For clarity of exposition, we assume v = ut1 ∈ V1;
the other cases are handled similarly.
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Figure 3: Figure of graph Gx. If x` = 1 then we add edges {u`1, u`2} and {u`3, u`4}. If x` = 0 then
we add edges {u`2, u`3} and {u`4, u`1}.

• If k ≤ n/4−1 then return the k-th neighbor u of v inside V1 and edge weightwx({u, v}) = τ .

• If k ≥ n/4 then let j = k − n/4 + 1. Letting ` denote the index of the j th quadruple of S
containing v we query x`.

– If x` = 1 then return neighbor u`2 and edge weight w({v, u`2}) = 1.

– If x` = 0 then return neighbor u`4 and edge weight w({v, u`4}) = 1.

In total this takes a single query to x, which proves the lemma.

Now we can prove the following lemma.

Lemma 39. Fix integers n and τ such that 1 ≤ τ ≤ 5n/8 and τn/10 ∈ N. Consider a string
x ∈ {0, 1}τn/10 and the corresponding graph Gx. If |x| < τn/20 then Gx has a unique minimum
cut with shores (X,X) = (V1 ∪ V2, V3 ∪ V4) and weight w(∆Gx(X)) = 2|x|. If |x| > τn/20 then
Gx has a unique minimum cut with shores (X,X) = (V1 ∪ V4, V2 ∪ V3) and weight w(∆Gx(X)) =
2(τn/10− |x|).

Proof. First consider any cut shore that nontrivially intersects some Vi. Since the subgraph Gx[Vi]
induced on Vi is a complete graph with edge weights τ , this implies that such a cut has weight at
least τ(|Vi| − 1) = τ(n/4 − 1). Now consider the small set of remaining cut shores that trivially
intersect the Vi’s. The weight of each one of these cuts can be easily expressed as a function of the
Hamming weight |x| of the input:

w(∆Gx(Vi)) = τn/10,

w(∆Gx(V1 ∪ V3)) = w(∆Gx(V2 ∪ V4)) = 2τn/10,

w(∆Gx(V1 ∪ V2)) = w(∆Gx(V3 ∪ V4)) = 2|x|,
w(∆Gx(V1 ∪ V4)) = w(∆Gx(V2 ∪ V3)) = 2(τn/10− |x|).
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It is clear that all minimum weight cuts will be among these cuts, and the lemma easily follows.

Using this lemma we can prove the following theorem.

Theorem 40. Let τ, n ∈ N be such that 1 ≤ τ ≤ 5n/8 and τn/20 ∈ N. There exists a family
of n-vertex graphs G ′ with Ω(n2) edges, all of which have edge weights in {1, τ}, such that any
quantum algorithm that for every graph G′ ∈ G ′ computes with probability at least 2/3 the weight
of a minimum cut in G′ must make Ω(nτ) queries in the adjacency array model. Similarly, any
quantum algorithm that for every graph G′ ∈ G ′ computes with probability at least 2/3 the shores
(X,X) of a cut realizing the minimum weight must make Ω(nτ) queries in the adjacency array
model.

Proof. First consider the set of strings X ⊆ {0, 1}τn/10 with Hamming weight

|x| = bτn/100e ± 1 < τn/20.

By Lemma 39 the graph Gx, x ∈ X , has a unique minimum cut with shores (V1 ∪ V2, V3 ∪ V4) and
weight 2|x|. Now let G ′ = {Gx : x ∈ X} and assume the existence of a quantum algorithm that
for every Gx ∈ G ′ computes with probability at least 2/3 the weight 2|x| of a minimum cut in G′

with at most q queries to the adjacency array of Gx. By Lemma 38 this is equivalent to outputting
the Hamming weight |x| with probability at least 2/3 for any x ∈ X while making only q queries
to x. Using Theorem 34 this implies the lower bound q ∈ Ω(τn).

Next consider the set of strings X ′ ⊆ {0, 1}τn/10 that have Hamming weight |x| = τn/20± 1.
By Lemma 39 the graph Gx, x ∈ X ′, again has a unique minimum cut. If |x| = τn/20− 1 then its
shores are (V1 ∪ V2, V3 ∪ V4), while if |x| = τn/20 + 1 then its shores are (V1 ∪ V4, V2 ∪ V3). Now
assume that there exists a quantum algorithm that with probability at least 2/3 returns the shores
of a minimum weight cut of Gx with at most q queries to the adjacency array of Gx. By Lemma 38
this is equivalent to distinguishing |x| = τn/20− 1 from |x| = τn/20 + 1 with probability at least
2/3 for any x ∈ X while making only q queries to x. Using Theorem 34 this implies the lower
bound q ∈ Ω(τn).

Acknowledgements
We would like to thank Ronald de Wolf for discussions which started this paper, and in particular
a conversation which led to Theorem 35. We also thank Debmalya Panigrahi and Miklos Santha
for helpful conversations on this topic. Simon Apers is supported in part by the Dutch Research
Council (NWO) through QuantERA ERA-NET Cofund project QuantAlgo 680-91-034. Troy Lee
is supported in part by the Australian Research Council Grant No: DP200100950.

References
[AdW20] Simon Apers and Ronald de Wolf. Quantum speedup for graph sparsification, cut

approximation and Laplacian solving. In Proceedings of the 61st Annual Symposium
on Foundations of Computer Science (FOCS), pages 637–648. IEEE, 2020.

32
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A Karger’s theorem
In this appendix we prove a slight generalization of Karger’s theorem [Kar00, Theorem 4.1] which
is needed for our time-efficient algorithm. We begin by introducing some needed tools.

A.1 Tools
Matula [Mat93] gave an O(m/ε) time deterministic algorithm to compute a (2+ε)-approximation
to the edge connectivity of a simple graph (or multigraph). The algorithm can also be adapted to
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give a constant factor approximation to the weight of a minimum cut in an integer-weighted graph
in time O(m log2(n)), see Appendix A of [GMW20].

Lemma 41 (Matula’s approximation algorithm [Mat93, GMW20]). Let G = (V,w) be an integer-
weighted graph with m edges and n vertices. There is a constant c and a deterministic algorithm
that in time O(m log2(n)) outputs a value λ̃ such that λ̃/c ≤ λ(G) ≤ λ.

To efficiently construct a tree-packing we will also need to use random sampling. The following
lemma is the heart of Karger’s skeleton construction [Kar99]. We recommend the presentation in
[BLS20, Lemma 14].

Lemma 42 ([Kar99]). LetG be an unweighted multigraph withm edges. For an integer d ≥ 2 and
real numbers ε, γ with ε ≤ 1/3, let p = 3d(lnn)/(ελ(G)). In timeO(pm log(n)) we can randomly
sample dpme edges of G. With probability 1− 1/nd the resulting graph H has the properties that

1. The minimum cut of H is within a (1 + ε) factor of pλ(G) = 3d ln(n)/ε2.

2. For every X ⊆ V we have (1− ε)w(∆G(X)) ≤ w(∆H(X)) ≤ (1 + ε)w(∆G(X)).

Another very useful tool we use is the Nagamochi-Ibaraki construction which shows that for an
integer-weighted graph G with m edges, in time O(m log(n)) one can construct a graph G′ whose
total edge weight is nc and which preserves all cuts of G of weight at most c.

Lemma 43 ([NI92]). LetG = (V,w) be an n-vertex integer-weighted graph withm edges. For any
positive integer c there is a deterministic algorithm that in time O(m log n) produces an integer-
weighted graphG′ = (V,w′) with total edge weightO(cn) such that for allX ⊆ V with ∆G(X) ≤
c it holds that w(e) = w′(e) for all e ∈ ∆G(X). Thus in particular ∆G(X) = ∆G′(X) and
w(∆G(X)) = w′(∆G′(X)) for all X with ∆G(X) ≤ c.

We combine the tools of Matula’s approximation algorithm, random sampling, and the sparse
certificate of Nagamochi-Ibaraki into the following lemma.

Lemma 44. LetG = (V,w) be an integer-weighted graph and let 0 < δ < 1 be a parameter. There
is anO(m log2(n)+n log(n)) time randomized algorithm to create a weighted graphH = (V,wH)
such that

1. H has O(n log(n)/ε2) edges.

2. The minimum cut of H has value λ(H) = O(log n).

3. If X ⊆ V is such that w(∆(X)) ≤ (1 + δ)λ(G) then wH(∆(X)) ≤ (1 + 3δ)λ(H).

Proof. First, by Lemma 41, in time O(m log2(n)) we can find a constant factor approximation λ̃
satisfying λ̃/c ≤ λ(G) ≤ λ̃ . Next we apply the Nagamochi-Ibaraki algorithm to G with threshold
t = (1 + δ)λ̃. In O(m log(n)) time this produces an integer-weighted graph G2 = (V,w′) with
total edge weight O(tn) such that for every X ⊆ V with w(∆G(X)) ≤ (1 + δ)λ̃ it holds that
w(∆G(X)) = w′(∆G(X)).

We now view G2 as an unweighted multigraph with O(tn) edges and apply Lemma 42. Let
p = ln(n)/λ̃. We randomly choose dpE(G2)e = O(n ln(n)) edges of G2 and let the resulting
graph be H . This can be done in time O(n log(n)). By Lemma 42 the graph has the stated
properties. The total running time is O(m log2(n) + n log(n)).
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A.2 Tree packing
With these preliminaries in place we now turn to actually constructing a tree packing. We first need
the definition, and a lemma of Karger.

Definition 45 (Weighted tree packing). Let G = (V,w) be an integer-weighted graph. A weighted
tree packing is a set of spanning trees ofG, each with an assigned weight, such that the total weight
of trees containing any edge e ∈ E(G) is at most w(e). The value of the packing is the total weight
of trees in it.

Lemma 46 ([Kar00, Lemma 2.3]). Given a weighted tree packing of value βc and a cut of value
αc, at least a (3− α/β)/2 fraction of the trees by weight 2-constrain the cut.

Gabow gives an algorithm to construct a near optimal tree packing in an unweighted multi-
graph. The following is an easy adaptation to an integer-weighted graph.

Lemma 47 ([Gab95]). Let G = (V,w) be an integer-weighted graph with n vertices and m edges.
There is a deterministic algorithm that finds an integer-weighted tree packing ofG of value at least
λ(G)/2 in time O(m(λ(G)2 log(n) + log2(n))).

Proof. For a multigraph H with n vertices and m′ edges, Gabow [Gab95] gives a deterministic
algorithm that finds a tree packing of weight λ(H)/2 in time m′λ(H) log(n). The only difference
with our case is that G is an integer-weighted graph instead of a multigraph. We can of course
view G as a multigraph but it becomes too expensive to run Gabow’s algorithm if this significantly
blows up the number of edges.

Thus we first use Lemma 41 to compute λ̃ such that λ̃/c ≤ λ(G) ≤ λ̃ in time O(m log2(n)).
Then we make a pass through the edges of G and form a graph G′ where any edge of weight
larger than λ̃ in G is thresholded down to λ̃. Thus when viewed as a multigraph G′ will only
have O(mλ(G)) edges. Any tree packing of G is also a tree packing of G′ as the value of any
tree packing is at most λ(G) ≤ λ̃. We can then apply Gabow’s algorithm to G′ to obtain the
theorem.

We are finally ready to prove the slight generalization of Karger’s theorem that we require.

Theorem 24 ([Kar00, Theorem 4.1]). Let G = (V,w) be a weighted graph with n vertices and m
edges. There is a randomized algorithm that in time O(m log2(n) + n log4(n)) time constructs a
set of O(log n) spanning trees such that every (1 + 1/16)-near minimum cut of G 2-respects 1/4
of them with high probability.

Proof. In O(m) time we can find the minimum weight α of an edge of G. Multiplying all edge
weights by 1/α we obtain a graph where all edge weights are at least 1 and that has the same set
of (1 + 1/16)-near minimum cuts as G. Thus without loss of generality now assume that G has all
edge weights at least 1.

In O(m) time we create the integer-weighted graph G′ = (V,w′) where w′(e) = b100w(e)e.
Note that as we assume that every edge of G has weight at least 1, for any X ⊆ V we have

0.995w(∆G(X)) ≤ w(∆G′(X))

100
≤ 1.005w(∆G(X)) . (1)
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Thus if ∆G(X) is a (1+ε)-near minimum cut ofG then ∆G′(X) is a (1+ε)(1.005)2-near minimum
cut of G′. With ε = 1/16 it follows that ∆G′(X) is a 1 + 1/12-near minimum cut of G′.

Next we apply Lemma 44 to G′ to in time O((m + n) log2(n)) create a graph H with the
properties specified there. We then use Lemma 47 to find a tree packing of weight at least λ(H)/2
and which contains O(log(n)) trees since λ(H) = O(log(n)). Now let ∆G(X) be a (1 + 1/16)-
near minimum cut of G. Then ∆G′(X) is a (1 + 1/12)-near mincut of G′ and by Lemma 44,
∆H(X) is a 1 + 1/4-near mincut of H . Therefore by Lemma 46 at least 1/4 of the trees in the
packing will 2-respect ∆H(X). These trees must also 2-respect ∆G(X) since it has the same shore
X .
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