
On the cut dimension of a graph

Troy Lee∗ Tongyang Li† Miklos Santha‡ Shengyu Zhang§

Abstract

Let G = (V,w) be a weighted undirected graph with m edges. The cut dimension of G is
the dimension of the span of the characteristic vectors of the minimum cuts of G, viewed as
vectors in {0, 1}m. For every n ≥ 2 we show that the cut dimension of an n-vertex graph is at
most 2n− 3, and construct graphs realizing this bound.

The cut dimension was recently defined by Graur et al. [GPRW20], who show that the
maximum cut dimension of an n-vertex graph is a lower bound on the number of cut queries
needed by a deterministic algorithm to solve the minimum cut problem on n-vertex graphs.
For every n ≥ 2, Graur et al. exhibit a graph on n vertices with cut dimension at least 3n/2−
2, giving the first lower bound larger than n on the deterministic cut query complexity of
computing mincut. We observe that the cut dimension is even a lower bound on the number of
linear queries needed by a deterministic algorithm to solve mincut, where a linear query can
ask any vector x ∈ R(

n
2) and receives the answer wTx. Our results thus show a lower bound of

2n− 3 on the number of linear queries needed by a deterministic algorithm to solve minimum
cut on n-vertex graphs, and imply that one cannot show a lower bound larger than this via the
cut dimension.

We further introduce a generalization of the cut dimension which we call the `1-approximate
cut dimension. The `1-approximate cut dimension is also a lower bound on the number of lin-
ear queries needed by a deterministic algorithm to compute minimum cut. It is always at least
as large as the cut dimension, and we construct an infinite family of graphs on n = 3k + 1
vertices with `1-approximate cut dimension 2n− 2, showing that it can be strictly larger than
the cut dimension.

∗Centre for Quantum Software and Information, University of Technology Sydney. Email: troyjlee@gmail.com
†MIT, Email: tongyang@mit.edu
‡CNRS, IRIF, Université de Paris; Centre for Quantum Technologies and Majulab, National University of Singa-

pore. Email: miklos.santha@gmail.com
§Tencent Quantum Laboratory. Email: shengyzhang@tencent.com

1

1 Introduction
Let G = (V,w) be a weighted undirected n-vertex graph where w is an

(
n
2

)
-dimensional non-

negative real vector assigning a (possibly zero) weight to each edge slot. For a nontrivial subset
∅ 6= X (V , let ∆(X) be the set of edges of G with one endpoint in X and one endpoint in
X̄ = V \X . A cut S in G is a subset of edges of the form ∆(X) for a nontrivial set X . The sets
X and X̄ are called the shores of the cut. For a cut S, its weight is the sum of the weights of the
edges in S, denoted w(S). The minimum cut problem is to find the minimum of w(S) over all
cuts S. The study of algorithms for the minimum cut problem in theoretical computer science goes
back at least to the 1960’s and has given rise to a vast and beautiful literature. Minimum cut is also
a problem of great practical importance with applications to, for example, clustering algorithms
and evaluating network reliability. Randomized algorithms can solve the minimum cut problem in
nearly linear time: in 1996 Karger gave an algorithm with running time O(m log3(n)) to compute
the minimum cut of a weighted graph with m edges [Kar00]. This was the best known bound
until very recently when two independent works improved on it. Gawrychowski, Mozes, and
Weimann [GMW20a] gave a randomized algorithm with running time O(m log2(n)) [GMW20a]
and Mukhopadhyay and Nanongkai [MN20] gave a randomized algorithm with time complexity
O(m log2(n)

log logn
+ n log6(n)). Gawrychowski, Mozes, and Weimann [GMW20b] later improved the

running time of the Mukhopadhyay and Nanongkai algorithm to O(m log2(n)
log logn

+ n log3+ε(n)).
For simple graphs G, randomized algorithms are known with running times O(m log(n)) and

O(m + n log3(n)) [GNT20]. For simple graphs even nearly linear time deterministic algorithms
are known. Kawarabayashi and Thorup gave an O(m log12(n)) time algorithm [KT19], which was
subsequently improved to O(m(log(n) log log n)2) by Henzinger, Rao, and Wang [HRW20].

Our work spans two aspects of the study of the minimum cut problem. The first is to query
complexity lower bounds on minimum cut. A natural model in which to study the query complexity
of minimum cut is for algorithms allowed to make cut queries. A cut query algorithm can query
any subset ∅ 6= X (V and receives the answer w(∆(X)). One motivation to study cut query
algorithms comes from submodular function minimization. The cut function f(X) = w(∆(X)) is
a submodular function, and finding the minimum cut value is equivalent to finding the minimum
value of f over all nontrivial sets X . The problem of minimizing a submodular function is often
studied with respect to an evaluation oracle, which in the case of the cut function is exactly a cut
query.

Harvey [Har08] observed that results on the deterministic communication complexity of de-
ciding graph connectivity [HMT88] imply that any deterministic cut query algorithm to compute
minimum cut, or even to decide if the graph is connected or not, must make at least cn cut queries,
for a constant c < 1. Analogous results on the randomized communication complexity of con-
nectivity [BFS86] imply an Ω(n/ log(n)) lower bound on the number of cut queries needed by a
randomized algorithm to compute minimum cut (or even connectivity).

On the algorithms side, Rubinstein, Shramm, and Weinberg [RSW18] gave a randomized al-
gorithm computing the minimum cut of a simple graph with Õ(n) many cut queries. Recently,
Mukhopadhyay and Nanongkai [MN20] used a different approach based on Karger’s 2-respecting
tree algorithm [Kar00] to also give a randomized Õ(n) cut query algorithm to compute minimum

2

cut in a general undirected weighted graph.
For deterministic cut query algorithms, there remains a large gap between the best upper and

lower bounds. We are not aware of any deterministic algorithm for minimum cut better than
learning the entire graph, which can take Ω(n2/ log(n)) cut queries in the worst case. On the
lower bound side, Graur, Pollner, Ramaswamy, and Weinberg [GPRW20] recently introduced a
very interesting lower bound technique called the cut dimension, which we now describe. Let
G = (V,w) be a weighted undirected graph with n vertices and m edges, and let M(G) be the
set of minimum cuts of G. For a cut S ∈ M(G), let χ(S) ∈ {0, 1}m be the characteristic vector
of S amongst the m edges of G. Let ~M(G) = {χ(S) : S ∈ M(G)}. The cut dimension of
G, denoted cdim(G), is the dimension of span(~M(G)). It is shown in [GPRW20] that for any
n-vertex graph G, the cut dimension cdim(G) is a lower bound on the deterministic cut query
complexity of computing minimum cut on weighted n-vertex graphs. Moreover, for every n ≥ 2
they construct an n-vertex graph G with cut dimension 3n/2− 2.

Besides showing lower bounds on cut query complexity, the cut dimension is a natural measure
of the complexity of mincuts in a graph. There is a rich literature on the possible structure of
mincuts in a graph. Perhaps the first result of this kind is the cactus representation of mincuts by
[DKL76]. A cactus for a graph G is a sparse weighted graph C that represents all the mincuts
of G. One consequence of the cactus representation is that the number of possible mincuts in an
n-vertex weighted graph is at most

(
n
2

)
. This upper bound was later given an algorithmic proof via

Karger’s famous contraction algorithm ([Kar93], Theorem 6.1). The n-vertex cycle graph has
(
n
2

)
many minimum cuts and shows that this bound can be tight.

While the cycle has
(
n
2

)
many mincuts, these cuts live in an n-dimensional space as the n-vertex

cycle only has n edges. Is it possible to construct graphs with many cuts that also have high cut
dimension? We show that this is not possible, and in fact the cut dimension of an n-vertex graph
is at most 2n− 3.

Theorem 1 (Main Upper Bound). For any weighted undirected graph G on n ≥ 2 vertices it holds
that cdim(G) ≤ 2n− 3.

Like the cactus representation, this shows another aspect in which the mincuts of a graph are
constrained to have a relatively simple structure. We further show that this bound is tight by
constructing graphs with cut dimension 2n− 3 for every n ≥ 2.

Theorem 2 (Main Lower Bound). For every n ≥ 2 there exists an n-vertex weighted undirected
graph G with cdim(G) = 2n− 3.

In addition to shedding further light on the structure of minimum cuts, this improves the best
known lower bound on the deterministic cut query complexity of the minimum cut problem to
2n − 3. We additionally show that the cut dimension is even a lower bound on a stronger query
model called the linear query model, recently studied in [ACK20]. In the linear query model, the
algorithm can query any vector x ∈ R(n

2) and receives the answer 〈w, x〉, the inner product of w
and x. Linear queries can be much more powerful than cut queries as one can completely learn
an unweighted graph with a single linear query. By an information theoretic argument learning an

3

unweighted graph can require Ω(n2/ log(n)) many cut queries since each cut query reveals at most
O(log(n)) bits.

We further introduce a lower bound technique which is a generalization of the cut dimension
that we call the `1-approximate cut dimension. This technique looks not just at mincuts in the
graph, but all cuts. We again look at the span of the dimension of these cuts with an additional
twist. Suppose the weight of a minimum cut in G is λ and cut S has w(S) = λ + δ. Abusing
notation we will let S represent both a set of edges and the characteristic vector S ∈ {0, 1}(

n
2)

of S among all edge slots. The vector S can be perturbed to S − u for any vector u ≥ 0 with
‖u‖1,w ≤ δ. Here ‖u‖1,w =

∑
i |w(i) · u(i)| is the `1 norm of u weighted by the edge weights of

the graph. The `1-approximate cut dimension ofG is then the minimum over all valid perturbations
of the dimension of the span of the perturbed cut vectors.

The minimization over all perturbations makes the `1-approximate cut dimension a difficult
quantity to lower bound. We are able to show, however, that the `1-approximate cut dimension
can be strictly larger than the cut dimension. For every k ∈ N and n = 3k + 1, we construct
an unweighted n-vertex graph G whose `1-approximate cut dimension is 2n − 2. This has the
following application.

Theorem 3. Any deterministic linear query algorithm that correctly computes the minimum cut of
all n-vertex weighted undirected graphs must make at least 2n− 2 queries in the worst case.

Computing the minimum cut of a graph with cut queries is a special case of finding the non-
trivial minimum of a symmetric submodular function f : 2V → R with evaluation queries. That
is, to find minX:∅6=X(V f(S) for a submodular f that satisfies f(X) = f(V \ X) for all X ⊆ V .
As linear queries are more powerful than cut queries, Theorem 3 also implies a 2n − 2 evalua-
tion query lower bound for a deterministic algorithm finding a nontrivial minimum of a symmetric
submodular function, which is currently the best known.

1.1 Techniques
We give two different proofs of the 2n − 3 upper bound on the cut dimension and two different
techniques to create graphs with cut dimension 2n − 3. The first proof is direct and uses the
combinatorial uncrossing technique, and in particular a key lemma of Jain [Jai01] in his factor
of 2 approximation algorithm for the survivable network design problem. The second proof is by
induction and follows a framework for constructing a cactus representation of the mincuts of a
graph [DKL76, FF09]. The second proof uses very few properties of mincuts and seems better
suited to also upper bound the `1-approximate cut dimension, one of our main open questions.

Key to both proofs is the concept of when cuts cross each other. Two cuts ∆(X),∆(Y) are
said to cross if all four of the intersections X ∩ Y, X̄ ∩ Y,X ∩ Ȳ , X̄ ∩ Ȳ are non-empty. Note that
in the definition of crossing it does not matter which shore we take to define the cut, thus crossing
is a property of the cuts themselves. A family L of cuts is called cross-free if for all cuts S, T ∈ L
it holds that S and T do not cross.

First upper and lower bound proof In the first upper bound proof, we first show that any cross-
free family of cuts has cardinality at most 2n − 3 (see Section 4.1). We then use Jain’s lemma

4

[Jai01] (stated in Lemma 19) to conclude that for a maximal cross-free subset L ⊆M(G) it holds
that ~L = {χ(S) : S ∈ L} spans the set ~M(G). This shows that the cut dimension of a graph is at
most 2n− 3.

In the first lower bound proof we use a tree-representation of a cross-free family of cuts to
show that in a complete graph the cut vectors of a cross-free family of cuts are linearly independent
(Lemma 27). Thus the lower bound reduces to constructing a graph whose minimum cuts are a
cross-free family of cuts of size 2n−3. Such a construction has already been given by Chandra and
Ram [CR04]. We go a step further, however. For any L which is a cross-free family of cuts from a
complete n-vertex graph with |L| = 2n− 3, in Theorem 31 we explicitly give the edge weights of
a complete weighted graph G such thatM(G) = L and therefore cdim(G) = 2n− 3. This task is
made easier by Lemma 29, which states that if L is a cross-free family of cuts of size 2n − 3 that
all have the same weight, then this must be the weight of a minimum cut of the graph. This lemma
is again shown by the combinatorial uncrossing technique. This reduces the construction problem
to solving the linear program of finding a positive vector w that makes all cuts in L have the same
weight. We explicitly give a solution to this linear program by viewing it as a flow problem on the
tree-representation of L.

Second upper and lower bound proof The second upper bound proof is by induction and fol-
lows methods to construct a cactus representation of mincuts [DKL76, FF09]. In the base case
n = 2 it is easy to see that the cut dimension is at most 2n− 3 = 1. For the inductive step, when G
is an n > 2 vertex graph, there are 3 cases to consider. We call a cut of the form ∆({v}) a star cut,
and we will refer to all other cuts as non-star cuts. The first case is where all cuts inM(G) are star
cuts. As the graph has n vertices there are at most n star cuts and so in this case the cut dimension
is at most n ≤ 2n − 3. The second case is where for every non-star cut S ∈ M(G) there is a cut
T ∈ M(G) which crosses S. In this case [DKL76] show that the graph must be a cycle and the
cut dimension is again at most n ≤ 2n− 3.

The interesting case is where there is a non-star cut ∆(V0) ∈ M(G) which is not crossed by
any other cut inM(G). Let V1 = V̄0. In this case we use a decomposition ofG along the cut ∆(V0),
that we call the separation ofG, into two smaller graphsGb, for b ∈ {0, 1}. The graphGb is formed
from G by contracting V1−b into a single new vertex v1−b. We show that cdim(G) ≤ cdim(G0) +
cdim(G1)− 1 which implies immediately the upper bound. Indeed, let k = |V0| ≥ 2. Then G0 is a
graph on k+ 1 vertices and G1 is a graph on n− k+ 1 vertices, both of which are less than n. The
inductive hypothesis therefore gives cdim(G) ≤ 2(k + 1)− 3 + 2(n− k + 1)− 3− 1 = 2n− 3.

For the second lower bound proof we use the merge operation which creates from two graphs
Gb, for b ∈ {0, 1}, and a specified vertex v1−b from each, a composed graph G where the vertices
v0, v1 are not present but the cut ∆(V0) reflects the structure of the star cuts at v0 and v1 in the
original graphs. The operations separation and merge are inverses in the sense that if we apply
merge to {G0, G1} followed by separation on the resulting graph G, we receive back {G0, G1}.
We also show that the inequality cdim(G) ≤ cdim(G0) + cdim(G1) − 1 holds with equality if
∆(V0) is a connected graph. This enables us to construct inductively a sequence of graphs G(n) on
n vertices whose cut dimension is 2n− 3. In the base case G(3) is the complete graph on 3 vertices
where all the edges have the same weight. Then G(n) is defined as the merge of G(3) and G(n−1)

5

where the specified vertices can be chosen arbitrarily. Since the separation of G(n) along the newly
constructed complete cut gives back G(3) and G(n−1), from the inductive hypothesis we conclude
that cdim(G) = cdim(G0) + cdim(G1)− 1 = 2n− 3.

`1-approximate cut dimension As the cut dimension is at most 2n− 3, we have to look to other
methods in order to show larger lower bounds, if possible. We propose a generalization of the cut
dimension which we call the `1-approximate cut dimension. In order to motivate this, we quickly
explain why the cut dimension is a lower bound on the linear query complexity of mincut. The
main idea behind the cut dimension lower bound on query complexity is to answer all queries
of the algorithm according to an n-vertex graph G = (V,w). Supposing the algorithm makes k
queries, we package these into a k-by-

(
n
2

)
matrix A whose rows are the query vectors. If there

is a cut S ∈ M(G) which is not in the rowspace of A, then by the Fredholm alternative there
is a vector z such that Az = 0, where 0 is the all-zero vector, but 〈S, z〉 > 0 and furthermore
z(i) = 0 whenever w(i) = 0. Thus for a sufficiently small ε > 0 we have that w − εz ≥ 0 and so
G′ = (V,w − εz) defines a valid non-negatively weighted graph that has all the same answers to
the queries of the algorithm as G. On the other hand, the weight of a minimum cut in G′ is strictly
smaller than that of G and thus as the algorithm cannot distinguish G and G′ it cannot correctly
compute the weight of a minimum cut in all n-vertex graphs.

The `1-approximate cut dimension extends this adversary argument to include all the cuts of G
instead of just the mincuts. If the minimum cut weight of G is λ and S is a cut with weight λ+ δ,
then the algorithm will still fail if there is a z such that

1. w − z ≥ 0

2. Az = 0

3. 〈S, z〉 > δ.

The reason is the same: the graph G′ = (V,w − z) has all the same answers to the queries made
by the algorithm as G yet has a cut with weight strictly smaller than λ.

Taking the dual of the corresponding linear program shows that such a vector z will not exist iff
S−u is in the rowspace of A for a vector u ≥ 0 with ‖u‖1,w ≤ δ. This leads us to define the (w, c)
one-sided row-by-row `1 approximate rank of a matrix. For a matrix Y ∈ RM×N this is defined
by a weight vector w ∈ RN and a cost vector c ∈ RM with c ≥ 0. It is the minimum rank of a
matrix Ỹ such that Ỹ ≤ Y and ‖Y (i, :)− Ỹ (i, :)‖1,w ≤ c(i) for every row i, where Y (i, :) denotes
the ith row of Y . Let G = (V,w) be a graph and the weight of a minimum cut in G be λ. The
`1-approximate cut dimension of a graph G = (V,w), denoted c̃dim(G), is the (w, c) one-sided
row-by-row `1-approximate rank of the matrix Y whose rows are the vectors S ∈ {0, 1}(

n
2) for

every cut S of G, and where c = Y w − λ1, and 1 is the all-one vector.
Lower bounding the rank under such an `1 perturbation is a difficult task. However, we are

able to show an infinite family of graphs whose `1-approximate cut dimension is 2n − 2, thereby
showing the `1-approximate cut dimension can be strictly larger than the cut dimension. This
lower bound is of a “direct sum” type. We show that the `1-approximate cut dimension of K4, the
complete graph on 4 vertices, is 6, giving a tight lower bound of 6 on the number of linear queries

6

needed to compute minimum cut on a 4 vertex graph. We then show that the direct union (see
Definition 6) of k copies of K4 has `1-approximate cut dimension 6k. The proof is tailored to the
specific properties of the cut vectors of K4, and makes use of Gaussian elimination and properties
of diagonally dominant matrices.

Near-mincuts Related to the `1-approximate cut dimension is the question of the cut dimension
of near-mincuts. For α ≥ 1 call a cut S of a graph G an α-near-mincut if its weight is at most
α times the weight of a minimum cut of G. Let Mα(G) = {S : S is an α-near-mincut of G}.
It is known that |Mα(G)| ≤

(
n
2

)
for α < 4/3 [NNI97] (see also the beautiful proof given in

Theorem 15 of [GR95]). Even for α < 3/2 the number of α-near-mincuts is O(n2) [HW96],
which is a sharp threshold as there exist graphs with Ω(n3) many 3/2-mincuts. There is also a
generalization of the cactus representation of mincuts in terms of a tree of deformable polygons
that applies to α-near-mincuts for α < 6/5 [BG08]. in Section 8 we show that if G is a simple
graph then dim(span(~Mα(G))) = O(n) for any α < 2 (Theorem 41). This bound is tight as for
α = 2 the unweighted complete graph Kn witnesses dim(span(~M2(Kn))) =

(
n
2

)
. For weighted

graphs, on the other hand, we show that for any α > 1 there exists an n-vertex weighted graph G
with dim(span(~Mα(G))) =

(
n
2

)
.

1.2 Open Problems
Several interesting open problems remain from this work.

• There is still a large gap between the known upper and lower bounds on the deterministic
cut/linear query complexity of minimum cut. What is the right answer? We conjecture there
is a deterministic cut query algorithm for minimum cut making O(n2−ε) many queries for
some ε > 0.

• Is the `1-approximate cut dimension O(n) for any n-vertex graph? Also can one show a
general direct sum theorem for the `1-approximate cut dimension?

1.3 Organization
The rest of the paper is organized as follows. We review necessary backgrounds about graphs,
operations on graphs, and query models in Section 2. In Section 3, we show that the cut dimension
is a lower bound on the deterministic linear query complexity of computing minimum cut. We
then prove that the cut dimension is at most 2n− 3 in Section 4, and give an explicit construction
of graphs with cut dimension 2n− 3 in Section 5. In Section 6, we give another proof for both the
upper and lower bounds on 2n − 3 using graph operations. In Section 7 we show a 2n − 2 lower
bound on `1-approximate cut dimension which implies Theorem 3. Finally, in Section 8 we show
that for a simple graph G and 1 ≤ α < 2 it holds that dim(span(~Mα(G))) = O(n).

7

2 Preliminaries
For every natural number n, we denote by [n] the set {1, 2, . . . , n}. For a vector z ∈ Rn we write
z ≥ 0 if every coordinate of the vector is at least 0, and similarly we write z = 0 if z is the all-zero
vector. We denote the scalar product of two vectors z, z′ ∈ Rn by 〈z, z′〉. For any matrix, denote
the rank of A by rk(A). We denote the disjoint union of sets X and Y by X t Y.

2.1 Graphs, cuts, sets
An undirected weighted graph on n vertices is a couple G = (V,w), where V is the set of vertices
with |V | = n, the set of edge slots V (2) is the set of subsets of V with cardinality 2, and the weight
function w : V (2) → R is non-negative. We refer to the vertex set of G as V (G). The set of edges
of G is defined as E = {e ∈ V (2) : w(e) > 0}. When in a graph G = (V,w) the weight of every
edge is 1, we say that the graph is unweighted, and we refer to it also as G = (V,E); such graph
is also called a simple graph. For an edge e = {u, v}, we say that u and v are the endpoints of e.
For a subset X ⊆ V of the vertices, we denote by E(X) the set of edges in E which have both
endpoints in X , and for disjoint subsets X, Y ⊆ V , we denote by E(X, Y) the set of edges with
exactly one endpoint in each of the two sets. We extend the weight function w to any subset E ′ of
the edges by w(E ′) =

∑
e∈E′ w(e). We will deal only with graphs which have at least 2 vertices.

We fix an ordering v1 < v2 < · · · < vn of the vertices which induces also an ordering
{v1, v2}, {v1, v3}, . . . , {vn−1, vn} of the edge slots as well as an ordering e1 < e2 < . . . < em

of the m = |E| edges. We view w ∈ R(n
2) as a vector whose ith coordinate gives the (possibly

zero) weight of the ith edge slot according to this ordering, and we define ~w ∈ Rm as the re-
striction of w to the edges. With some slight abuse of notation, for a set of edges S ⊆ E, we
use the same symbol S to also denote the characteristic vector in {0, 1}(

n
2) of S among all edge

slots. We further need the characteristic vector of S ⊆ E among the m edges E, for which we
use the notation χ(S) ∈ {0, 1}m. For a family F of subsets of the edges, we use the notation
~F = {χ(S) ∈ {0, 1}m : S ∈ F}.

For X ⊆ V , we denote by X̄ the set V \X . A cut S is a set E(X, X̄) for some ∅ 6= X (V .
We call X and X̄ the shores of S, and we denote the cut by ∆(X). A cut is a star cut if one of its
shores is a singleton, otherwise it is non-star cut. If the singleton shore of a star cut S is {v}, then
we say that S is a star cut at v. The weight of a cut is the sum of the weights of its edges. For a cut
S we define the graph of the cut S as the unweighted graph G(S) = (V ′, E ′) where V ′ is the set
of vertices in V that are endpoints of at least one edge in S, and E ′ = S. We say that a cut S is
connected if G(S) is a connected graph. A cut is a minimum cut, or mincut, for short, if no other
cut has smaller weight. We denote byM(G) be the set of minimum cuts of G. The cut dimension
of G is cdim(G) = dim(span(~M(G))).

Let V be a set of size n. Two sets X, Y ⊆ V are said to overlap if X ∩ Y 6= ∅, X̄ ∩ Y 6=
∅, X ∩ Ȳ 6= ∅. A family G of subsets of V is said to be laminar if for all X, Y ∈ G it holds that
X and Y do not overlap. A set family G ⊆ 2V is said to be closed under overlaps if for every
X, Y ∈ G that overlap it holds that X ∩ Y,X ∪ Y ∈ G. A laminar subset L ⊆ G is said to be
maximal in G if for every X ∈ G − L there is a Y ∈ L such that X, Y overlap. We say a laminar

8

subset L is maximal if it is maximal in 2V .
The sets X, Y ⊆ V cross if they overlap and additionally X̄ ∩ Ȳ 6= ∅. Note that if X, Y cross

then so do X, Ȳ . A set family G ⊆ 2V is said to be cross-free if for all X, Y ∈ G it holds that X
and Y do not cross. Observe that if X and Y do not cross then either Y or Ȳ is a subset of X or X̄ .
Let G = (V,w) be a graph with n vertices. Two cuts ∆(X) and ∆(Y) of G are crossing if X and
Y are crossing. Let F = {∆(X1), . . . ,∆(Xk)} be a set of cuts of G. We say that F is cross-free
family of cuts if G = {X1, . . . , Xk} is cross-free. Note that it does not matter which shore we take
to be in G.

There is a close relationship between cross-free families of cuts and laminar sets. Let F =
{∆(X1), . . . ,∆(Xk)} be a cross-free family of cuts where each Xi ⊆ V , and let X ′i = Xi if
v1 6∈ Xi and X ′i = X̄i otherwise. The beach of F is the set G = {X ′1, . . . , X ′k}. For a family of
sets G ⊆ 2V we say that it is proper if ∅, V 6∈ G, and we say that it is complement free if it does
not contain X, Y with Y = X̄ .

Claim 4. Let F be a cross-free family of distinct cuts and G its beach. Then G is proper, comple-
ment free and laminar.

Proof. First, G does not contain ∅ or V because these are not shores of cuts. It is complement
free because F contains distinct cuts, and its beach contains exactly one representative shore from
each cut. Finally, we show that it is laminar. Let X1, X2 ∈ G. By definition of a beach, neither of
these sets contain v1, thus X̄1 ∩ X̄2 6= ∅. Therefore if X1, X2 overlapped they would also cross, in
contradiction to F being a cross-free family of cuts.

A mincut is crossless if no other mincut crosses it. Observe that a star mincut is always cross-
less. Also, if a mincut ∆(X) is crossless then for every mincut ∆(Y), either Y or Ȳ is a subset ofX
or X̄ . Crossing mincuts have a nice structural property which was already observed by [DKL76].

Claim 5. Let G = (V,w) be a weighted graph. If ∆(X),∆(Y) ∈ M(G) cross then ∆(X ∩
Y),∆(X ∪ Y) ∈M(G).

Proof. We have ∆(X ∩ Y) 6= ∅ and ∆(X ∪ Y) 6= V because ∆(X) and ∆(Y) cross. The cut
function is submodular therefore we have

w(∆(X ∩ Y)) + w(∆(X ∪ Y)) ≤ w(∆(X)) + w(∆(Y)).

Let c be the weight of a minimum cut in G. Then the right hand side of the above inequality is
equal to 2c, while its left hand side is at least 2c. Therefore w(∆(X ∩ Y)) + w(∆(X ∪ Y)) = 2c
from which the statement follows.

2.2 Operations on graphs
We will use several operations on graphs. The first of these is the direct union.

Definition 6 (direct union). For two graphs G0 = (V0, w0), G1 = (V1, w1) with disjoint vertex
sets, and for vertices v0 ∈ V0 and v1 ∈ V1, the direct union of G0 and G1 at vertices v0, v1 is the

9

fusion of the two by identifying v0 and v1. Formally, the direct union is Gv0
0 ⊕Gv1

1 = (V,w) where
V = (V0 ∪ V1 ∪ {v}) \ {v0, v1}, for a new vertex v 6∈ V0 ∪ V1. The weight function of Gv0

0 ⊕Gv1
1

is defined by

w({x, y}) =

wb({x, y}) if x, y ∈ Vb \ {vb}, b ∈ {0, 1},
wb({x, vb}) if x ∈ Vb \ {vb}, y = v, b ∈ {0, 1},
0 otherwise.

The cut dimension of a direct union is a simple function of the cut dimensions of its compo-
nents.

Claim 7. Let G = Gv0
0 ⊕ Gv1

1 be the direct union of G0 and G1 at vertices v0, v1. Let cb be the
weight of a minimum cut in Gb, for b = 0, 1. Then cdim(G) = cdim(G0) + cdim(G1) if c0 = c1,
and cdim(G) = cdim(Gb) if cb < c1−b.

Proof. Let ∆(X) be an arbitrary cut of G where v 6∈ X . If X 6⊆ Vb, for b ∈ {0, 1}, then the weight
of the cut ∆(X) is at least c0 + c1, and therefore it is not a minimum cut. If X ⊆ Vb, for some
b ∈ {0, 1} then the weight of ∆(X) in G is the same as the weight of ∆(X) in Gb. Therefore
if c0 = c1 then every mincut in G0 and every mincut of G1 is a mincut of G, and these are the
only mincuts. Since their supports are disjoint, we have cdim(G) = cdim(G0) + cdim(G1). If
cb < c1−b then only the mincuts of Gb are mincuts of G, and therefore cdim(G) = cdim(Gb).

The next two operations, which are inverses of each other, give a decomposition of a graph
along a cut into two smaller graphs, and a composition of two graphs into a bigger one by un-
folding a star cut in each components. The decomposition operation was essentially defined
in [FF09]. Let G = (V,w) be a weighted graph and let Z be a cut in G with shores X0 and
X1 = V \X0. The separation of G along the cut Z, denoted by sep(G,Z), is the set of two graphs
{G0 = (V0, w0), G1 = (V1, w1)}, where Vb = Xb ∪ {v1−b}, for b = 0, 1 with new vertices v0, v1.
The respective weight functions are defined by wb({x, y}) = w({x, y}) for any x, y ∈ Xb, and
wb({x, v1−b}) =

∑
y∈V1−b

w({x, y}) for any x ∈ Xb.
Let G0 = (V0, w0), G1 = (V1, w1) be two graphs on disjoint vertex sets, and let vb ∈ V1−b be

arbitrary vertices for b ∈ {0, 1}. The merge of G0 and G1 along the vertices v1, v0, denoted by
mer({(G0, v1), (G1, v0)}), is the graph G = (V,w), where V = (V0 ∪ V1) \ {v0, v1}. The weight
function in G is defined by w({x, y}) = wb({x, y}) if x, y ∈ Vb, for b ∈ {0, 1}, and

w({x, y}) = w0({x, v1})w1({v0, y}), if x ∈ V0 and y ∈ V1.

It follows from the definitions sep is the left inverse of mer if the star cut at v1 in V0 and the star
cut at v0 in V1 both have weight one, and sep is the right inverse of mer if the weight of the cut Z
is one. We formally state the former property.

Claim 8. Let G0 = (V0, w0) and G1 = (V1, w1) have disjoint vertex sets, and let vb ∈ V1−b such
that wb(∆(v1−b)) = 1, for b = 0, 1. Let Z be the cut in mer({(G0, v1), (G1, v0)}) whose shores
are V0 \ {v1} and V1 \ {v0}. Then w(Z) = 1 and

sep(mer({(G0, v1), (G1, v0)}), Z) = {G0, G1}.

10

2.3 Query models
Definition 9 (MINCUTn). The input in the MINCUTn problem is an n-vertex weighted undi-
rected graph G = (V,w). The required output on G is the weight of a minimum cut in G.

A deterministic algorithm correctly solves the MINCUTn problem if it outputs the correct
mincut weight for every n-vertex input graph G. We consider algorithms given two models of
query access to the input graph G = (V,w), linear queries and cut queries. A linear query for G
is a vector x ∈ R(n

2), and the query is answered by 〈x,w〉. A cut query is a vector x ∈ {0, 1}(
n
2)

which is the characteristic vector of a cut in the complete n-vertex graph. The answer to a cut query
is again 〈x,w〉. Clearly any cut query algorithm can be simulated by a linear query algorithm.

We use Dcut(MINCUTn) to denote the minimum, over all deterministic query algorithms A
that correctly solve MINCUTn, of the maximum over all n-vertex input graphs G = (V,w) of
the number of cut queries made by A on G. Dlin(MINCUTn) is defined analogously for linear
queries.

Some authors instead define the output of the minimum cut problem to be a cut S that achieves
the minimum weight, rather than the weight itself. Over n-vertex weighted graphs let us denote
this problem as ARGMINCUTn. For linear and cut queries, an algorithm that finds a minimum
cut S can also return the weight of S with one additional query. Thus Dlin,cut(ARGMINCUTn) ≥
Dlin,cut(MINCUTn)− 1, and the lower bounds we prove for MINCUTn can be applied, minus 1,
to ARGMINCUTn as well.

3 Lower bounds on the linear query complexity of MINCUT
Graur et al. [GPRW20] introduce the cut dimension as a means to show lower bounds on the
deterministic cut query complexity of computing minimum cut.

Theorem 10 ([GPRW20]). If there is an n-vertex weighted graph G = (V,w) with cdim(G) = k
then Dcut(MINCUTn) ≥ k.

We show that this theorem even holds with respect to a stronger computational model where
the algorithm is able to make linear queries. We also give a generalization of the cut dimension
to a quantity which is at least as large, and can be strictly larger, that we call the `1-approximate
cut dimension. We now give an overview of the Graur et al. [GPRW20] argument in the context of
linear queries and how we can extend it.

The proof of Theorem 10 is based on an adversary argument. Suppose a deterministic algorithm
makes k linear queries and consider the execution of the algorithm on a fixed n-vertex graph
G = (V,w) whose set of minimum cuts isM(G). Make a k-by-

(
n
2

)
matrix A whose rows are the

query vectors asked by the algorithm. Suppose we can find a vector z ∈ R(n
2) such that

1. w − z ≥ 0,

2. Az = 0,

11

3. There is a cut S ∈M(G) such that 〈S, z〉 > 0.

The existence of such a vector z means the algorithm cannot correctly compute minimum cut
weight on all weighted n-vertex graphs. The reason is that G′ = (V,w − z) is a valid non-
negatively weighted graph by (1), has the same answers on all queries asked by the algorithm by
(2), and by (3) has minimum cut weight at most 〈S,w − z〉 = 〈S,w〉 − 〈S, z〉 < 〈S,w〉, which is
strictly less than the minimum cut weight of G. As with k queries the algorithm cannot distinguish
whether the input is G or G′, it cannot correctly output the minimum cut weight for all n-vertex
weighted graphs.

A weaker condition than (3) suffices for this argument to work. Suppose that the minimum cut
weight in G is c∗. Then the argument still goes through with the condition

3’. There is a cut S such that 〈S, z〉 > 〈S,w〉 − c∗.

This is because the algorithm cannot distinguish the graph G with minimum cut weight c∗ from
the graph G′ = (V,w − z) which has minimum cut weight at most 〈S,w − z〉 < c∗.

In order to understand what kind of bound this argument gives, for fixed w,A, S we define the
quantity α(w,A, S) which is given by the following linear program.

α(w,A, S) = maximize
z

〈S, z〉

subject to w − z ≥ 0

Az = 0

Taking the dual of this program gives

α(w,A, S) = minimize
v

〈S − ATv, w〉

subject to S − ATv ≥ 0

The dual tells us that a vector z having large overlap with S and satisfying items (1), (2) above
exists iff the vector S is far away from the rowspace of A. The notion of far away here is a one-
sided `1 distance weighted by w. It is one-sided because the condition S − ATv ≥ 0 tells us we
are looking to approximate S by vectors in the rowspace of A that are entrywise at most S. As
S −ATv ≥ 0 and w ≥ 0 this means 〈S −ATv, w〉 =

∑
i |w(i) · (S(i)−ATv)| = ‖S −ATv‖1,w,

where ‖u‖1,w is defined to be
∑

i |u(i)w(i)|. Thus the value of the dual can be interpreted as the
one-sided ‖ · ‖1,w distance between S and the rowspace of A.

This leads us to define an `1 approximate version of the cut dimension. The notion we need is
given by the following definitions.

Definition 11 (one-sided row-by-row `1-approximate rank). Let Y ∈ RM×N be a matrix, w ∈
RN a weight vector and c ∈ RM a cost vector. We define the (w, c) one-sided row-by-row `1-
approximate rank of Y to be the minimum rank of a matrix Ỹ such that Ỹ ≤ Y and ‖Y (i, :
)− Ỹ (i, :)‖1,w ≤ c(i), for all 1 ≤ i ≤M .

12

Definition 12 (`1-approximate cut dimension). LetG = (V,w) be an n-vertex weighted undirected
graph with minimum cut weight c∗. Let M be (2n−1 − 1)-by-

(
n
2

)
matrix whose rows are S ∈

{0, 1}(
n
2) for all cuts S of G. Let c = Mw − c∗1, where 1 is the all one vector. Then the

`1-approximate cut dimension of G, denoted c̃dim(G), is the (w, c) one-sided row-by-row `1-
approximate rank of M .

Theorem 13. If there is an n-vertex graph weighted graph G = (V,w) with c̃dim(G) = k then
Dlin(MINCUTn) ≥ k.

Proof. Let G = (V,w) be a graph with c̃dim(G) = k and let c∗ be the minimum cut weight of
G. Suppose for contradiction there is a deterministic k − 1 linear query algorithm that correctly
computes the minimum cut of any n-vertex graph. Run this algorithm answering queries according
to G and package the queries into a (k − 1)-by-

(
n
2

)
matrix A.

As the algorithm is correct, for every cut S of G it must be the case that α(w,A, S) ≤ 〈S,w〉−
c∗. If not, the graph G′ = (V,w − z), where z is an optimal solution to the primal of α(w,A, S),
has minimum cut weight strictly smaller than c∗, yet G′ cannot be distinguished from G by the
algorithm. Thus by the dual formulation of α(w,A, S), this means that for every cut S of G there
is a vector S̃ = ATv in the rowspace of A such that S̃ ≤ S and ‖S − S̃‖1,w ≤ 〈S,w〉 − c∗. The
matrix M̃ whose rows are S̃ for all cuts S therefore witnesses that c̃dim(G) ≤ rk(A) ≤ k − 1, a
contradiction.

Lemma 14. For any weighted graph G = (V,w) we have cdim(G) ≤ c̃dim(G).

Proof. Suppose thatG = (V,w) has minimum cut weight c∗, and letM(G) be the set of minimum
cuts of G. Let M be the (2n−1 − 1)-by-

(
n
2

)
matrix whose rows are S ∈ {0, 1}(

n
2) for all cuts S of

G and let c = Mw − c∗.
Let Y be the submatrix of M where rows are restricted to cuts in M(G) and columns are

restricted to the edge slots e where w(e) > 0. Thus the rows of Y are exactly the vectors χ(S)
for S ∈ M(G). and the rank of Y is cdim(G). Any matrix M̃ which satisfies M̃ ≤ M and
‖M(i, :) − M̃(i, :)‖1,w ≤ c(i) for all i must contain Y as a submatrix, as c(i) = 0 for rows i
that correspond to minimum cuts and w is positive on the edge slots labeling the columns of Y .
Thus rk(M̃) ≥ rk(Y) for any (w, c) one-sided row-by-row `1 approximation M̃ of M , giving the
lemma.

In Section 7 we will see that c̃dim(G) can be strictly larger than cdim(G). From Theorem 13
and Lemma 14 we obtain the following corollary.

Corollary 15. If there is an n-vertex weighted graph G = (V,w) with cdim(G) = k then
Dlin(MINCUTn) ≥ k.

4 The cut dimension is at most 2n− 3

In this section we prove Theorem 1 that cdim(G) ≤ 2n− 3 for any undirected weighted graph G
on n ≥ 2 vertices. This will follow from two facts:

13

1. For n ≥ 2 a cross-free family of cuts in an n-vertex graph has cardinality at most 2n− 3.

2. IfL ⊆M(G) is a maximal cross-free subset of the mincuts ofG then span(~L) = span(~M(G)).

We remind the reader that ~L = {χ(S) : S ∈ L} where χ(S) ∈ {0, 1}|E| is the characteristic vector
of the cut S amongst the edges of G.

These two facts are presented in the next two subsections.

4.1 Cardinality of a cross-free family of cuts
Recall from Claim 4 that if L is a cross-free family of cuts then the beach G of L is a laminar
family of sets. A standard inductive proof shows that a laminar family of subsets of a universe of
cardinality n that contains no singletons has size at most n−1, and thus a laminar family in general
has size at most 2n − 1. A beach has the additional properties of being proper and complement
free which allows one to prove an upper bound of 2n− 3. This is mentioned by Goemans [Goe06]
in the paragraph after Theorem 4 under the heading “Size of a Laminar Family”, who observes
that the standard inductive proof also implies the bound is attained only if the family includes the
universe and at least one set and its complement. See also Corollary 2.15 of [KV18], where it is
shown that a proper laminar family has cardinality at most 2n− 2.

Lemma 16. Let n ≥ 2, V a set of cardinality n, and G ⊆ 2V be a family of sets which is proper
and laminar. Then |G| ≤ 2n− 2. If G is proper, laminar, and complement free then |G| ≤ 2n− 3.

Proof. First we show the 2n − 2 upper bound. We prove by induction. Consider first the base
case where n = 2 and V = {v1, v2}. As ∅, V 6∈ G the only possible elements to include in G are
{v1}, {v2} and |G| ≤ 2 = 2n− 2.

Now we assume the statement is true for families of sets on a universe of n − 1 elements and
show it holds for families of sets on a universe of size n. Let G ⊆ 2V be a proper laminar family.
We say that X ∈ G is maximal if there is no set Y ∈ G with X ⊂ Y . Let X1, . . . , Xm be the
maximal sets in G. Note that we must have Xi ∩ Xj = ∅ for all i 6= j ∈ [m]. This is because
for distinct maximal sets Xi −Xj, Xj −Xi 6= ∅ thus if Xi ∩Xj 6= ∅ they would be overlapping.
If ∪mi=1Xi (V then the result already holds by the induction hypothesis. Thus we may assume
m ≥ 2 and X1, . . . , Xm form a partition of V . The family F1 = {Y : Y (X1} is a laminar family
on the universe X1 which does not contain X1. Hence by the induction hypothesis it has at most
2|X1| − 2 many sets. This holds for all i = 1, . . . ,m, thus including X1, . . . , Xm the total number
of sets is

∑m
i=1 2|Xi| −m ≤ 2n− 2.

Now we show the 2n − 3 upper bound additionally assuming the family is complement free.
We show this result directly using the upper bound of 2n − 2 we have just shown on the size of
proper laminar families. Let G ⊆ 2V be proper, laminar, and complement free, and let X1, . . . , Xm

be the maximal sets in G, which again must be disjoint. The number of subsets strictly contained
in Xi is at most 2|Xi| − 2 by the previous result. Thus, including X1, . . . , Xm we can upper bound
the size of G by

∑m
i=1 2|Xi|−m. If m > 2 then the upper bound of 2n−3 already holds. If m = 1

then as G is a proper family we must have |X1| ≤ n− 1 in which case the upper bound of 2n− 3
holds as well. Finally, consider the case m = 2. In this case, if |X1 ∪ X2| < n then the bound

14

already holds. If X1 ∪ X2 = V then X2 = X̄1 and we must exclude one of these sets, giving a
bound of 2n− 2− 1 = 2n− 3.

Remark 17. From the proof in the proper, laminar, complement-free case we can observe for what
maximal sets equality in the upper bound can hold. The first is the case where there are three max-
imal sets X1, X2, X3 that form a partition of [n]. With V = [6] an example of this type saturating
the bound is G = {{1}, . . . , {6}, {1, 2}, {3, 4}, {5, 6}}. The second is the case where there are two
maximal sets X1, X2 that form a partition of [n] and exactly one of X1, X2 is not included. The
latter includes the case where there is a single maximal set X1 of size |X1| = n− 1. For V = [6],
an example of this type is G = {{2}, . . . , {6}, {2, 3}, {2, 3, 4}, {2, 3, 4, 5}, {2, 3, 4, 5, 6}}.

Chandran and Ram (Lemma 2.13 in [CR04]) show that if the setM(G) of minimum cuts of a
graph G is cross-free, then |M(G)| ≤ 2n− 3. This is an easy corollary of Lemma 16, which gives
something more general.

Corollary 18. Let G = (V,w) be a graph on n ≥ 2 vertices. Let L ⊆ M(G) be a subset of
minimum cuts that is cross-free. Then |L| ≤ 2n− 3.

4.2 Spanning
Let L ⊆ M(G) be a maximal cross-free subset of M(G). Here maximal means that for any
cut S ∈ M(G) \ L there is a cut T ∈ L that crosses S. The fact that span(~L) = span(~M(G))
essentially follows from a key lemma of Jain in his factor of 2 approximation algorithm for the sur-
vivable network design problem (Lemma 4.2 in [Jai01]). Another application of a similar lemma
can be found in Goeman’s approximation algorithm for the bounded-degree minimum spanning
tree problem [Goe06].

The context of Jain’s lemma is slightly different than ours, as we now explain. Instead of
mincuts, Jain considers the set of cuts T which saturate the inequalities of a particular linear
program. He shows that the set T has the property that if ∆(X),∆(Y) ∈ T cross then either

1. ∆(X ∩ Y),∆(X ∪ Y) ∈ T and χ(∆(X)) +χ(∆(Y)) = χ(∆(X ∩ Y)) +χ(∆(X ∪ Y)), or

2. X \ Y, Y \X ∈ T and χ(∆(X)) + χ(∆(Y)) = χ(∆(X \ Y)) + χ(∆(Y \X)).

As shown by Dinitz, Karzanov, and Lomonosov [DKL76], for crossing mincuts ∆(X),∆(Y) both
items (1), (2) hold (see Proposition 45 for a proof). Thus Jain’s lemma applies toM(G) as well.

Lemma 19 ([Jai01]). Let G = (V,w) be a graph and L ⊆ M(G) be a maximal cross-free family
of mincuts. Then span(~L) = span(~M(G)).

For completeness, we include a full proof of Lemma 19 in Appendix A.
We now can give the first proof of our main upper bound that for any n ≥ 2 an n-vertex graph

G = (V,w) has cdim(G) ≤ 2n− 3.

Proof of Theorem 1. Follows from Corollary 18 and Lemma 19.

15

5 Explicit construction of graphs with cut dimension 2n− 3

In this section we prove Theorem 2 by giving a general technique to explicitly construct graphs of
cut dimension 2n − 3. We focus on constructing graphs G = (V,w) where w is strictly positive,
i.e. where G is a complete weighted graph. The main lemma of this section, Lemma 27, shows
that, in a complete weighted graph, for any cross-free family of cuts L the vectors in ~L are linearly
independent.

Thus to construct a graph with cut dimension 2n−3 it suffices to construct a complete weighted
graph whose set of mincuts is a cross-free family of cuts of cardinality 2n − 3. Such a graph is
constructed for every n ≥ 2 in Theorem 5.2 of [CR04]. Combining this construction with our
linear independence result Lemma 27 gives a proof of our main lower bound Theorem 2.

In Section 5.3 we go further and show for any maximal cross-free family F ⊆ 2[n] there is a
complete weighted graph G = ([n], w) withM(G) = {∆(X) : X ∈ F}. Moreover, we give an
explicit formula for the weight vector w. Part of this construction is a lemma, Lemma 29, which
may be of independent interest: it says that if L is a maximal family of cross-free cuts in a graph
G, and all cuts in L have the same weight c, then c is the weight of the minimum cut in G.

A key tool for showing the linear independence of cuts from a cross-free family is the tree
representation of a laminar family, which we go over next.

5.1 Tree representation
Definition 20. For an unweighted directed graph G = (V,E) we let δ+(X) = {(x, y) ∈ E : x ∈
X, y ∈ V −X}. For a singleton v ∈ V we write δ+(v) instead of δ+({v}).

Definition 21 (Arborescence). An arborescence is a directed rooted tree where all edges point
away from the root. A vertex of an arborescence which is not the root or a leaf we call an internal
vertex.

Definition 22 (Tree representation). Let T be a directed graph whose underlying undirected graph
is a tree. Let U be a finite set and φ : U → V (T). For e = (x, y) ∈ E(T) define Se as

Se = {s ∈ U : φ(s) is in the same connected component of T − e as y} .

Then (T, φ) defines a set family F = F(T, φ) where F = {Se : e ∈ E(T)}. We say that (T, φ) is
a tree representation of (U,F). We call (T, φ) a faithful tree representation if |E(T)| = |F|. For
v ∈ V (T), if there is a u ∈ U such that φ(u) = v then we say that v has a label.

We will need the fact that a laminar set family has a faithful tree representation by an arbores-
cence. A textbook proof of this fact can be found in Korte and Vygen Proposition 2.14 [KV18].
While they do not explicitly say the tree representation they construct is faithful, this is clear from
the proof.

Proposition 23. Let (U,F) be laminar family. Then there is a faithful tree representation (T, φ)
of (U,F) where T is an arborescence.

16

Recall from Claim 4 that if L is a cross-free family of cuts then its beach G is laminar, and thus
has a tree representation.

Lemma 24 (Tree structure of maximal cross-free families). Let L be a maximal family of cross-
free cuts of a graph G = ([n], w) and G ⊆ 2[n] its beach. Then in a faithful tree representation
(T, φ) of G it holds that

1. The root r is labeled by 1 and has |δ+(r)| = 1

2. There are n− 1 leaves of T each with a distinct label in {2, . . . , n}.

3. Every internal vertex v has |δ+(v)| = 2.

Proof. As by the definition of a beach, sets do not contain 1, this means that 1 must be the label of
the root. As star cuts do not cross any other cut, if L is maximal it must contain all the star cuts.
This means that G contains the sets {2}, . . . , {n}, {2, . . . , n}. Thus the outdegree of the root must
be 1, as this outgoing edge represents the set {2, . . . , n}. Further there must be n− 1 leaves which
are labeled by 2, . . . , n. We have now accounted for all the labels, thus no internal vertex has a
label. Further, if there was a leaf v with parent u such that v did not have a label, then (u, v) would
represent the empty set, which by definition is not in G. Thus there are exactly n− 1 leaves.

It remains to show that every internal vertex v of T which is not the root has |δ+(v)| = 2. Let v
be an internal vertex, and as v is not the root, let u be its parent, and as v is not a leaf letw be a child
of v. If |δ+(v)| = 1 then the edges (u, v), (v, w) would represent the same set, as v is not labeled.
This contradicts the fact that (T, φ) is a faithful tree representation. Now suppose |δ+(v)| > 2
and let w, x, y be three of its children. Consider the sets X1, X2, X3 ∈ G represented by the edges
(v, w), (v, x), (v, y). Further the edge (u, v) represents a set A ∈ G with X1 ∪X2 ∪X3 ⊆ A. We
claim that in this case L is not maximal because the cut ∆(X1 ∪X2) does not cross any cut in L.
Indeed, X1∪X2 is contained in all the sets represented by edges on the path from v to the root, and
is disjoint from the sets represented by any other edge of T . Thus we have a contradiction.

Corollary 25. Let L be a maximal family of cross-free cuts of a graph G = ([n], w). Then |L| =
2n− 3.

Proof. Let G be the beach of L and (T, φ) a faithful tree representation of G. As (T, φ) is faithful
|E(T)| = |L|. Let T ′ be the undirected graph underlying T . Clearly |E(T ′)| = |E(T)|. We use
Lemma 24 to count |E(T ′)|. Let i be the number of internal vertices of T ′, each of which has
degree 3. There are also n non-internal vertices each of which has degree 1. Thus |E(T ′)| =
(3i + n)/2. Also as T ′ is a tree |E(T ′)| = |V (T ′)| − 1 = n + i − 1. Hence i = n − 2 and
|L| = |E(T)| = |E(T ′)| = 2n− 3.

5.2 Linear independence

We now show the main theorem of this section that in a complete weighted graph any set ~L of cut
vectors of a cross-free family of cuts L is linearly independent. We will use the tree representation
(T, φ) of the beach G of L to do this via the following lemma.

17

Lemma 26. Let T be an arborescence with root r and ψ : E(T) → R. Let U be a finite set and
φ : U → V (T). Suppose that T, φ, ψ have the property that

1. The root r is labeled and has |δ+(r)| = 1.

2. Every internal vertex v is unlabeled and has |δ+(v)| = 2.

3. Every leaf of T has a label.

4. For every s, t ∈ U it holds that
∑

e∈φ(s)−φ(t) ψ(e) = 0, where φ(s)− φ(t) is the set of edges
on the undirected path from φ(s) to φ(t).

Then ψ is identically 0.

Proof. We will prove by induction on the depth of the arborescence. We need a slightly different
statement for the inductive hypothesis since when considering a sub-arborescence T ′ of T we do
not know that the root of T ′ has property (1).

Inductive hypothesis: Let T be an arborescence with root r that is unlabeled and has |δ+(r)| =
2, and further suppose T, φ, ψ satisfy conditions (2)-(4) of the proposition. Then letting u, v be
the children of r it holds that ψ((r, u)) = −ψ((r, v)) and for any other edge e ∈ E(T), e 6=
(r, u), (r, v) it holds that ψ(e) = 0.

For the base case consider a tree of depth 1, with root r and two children u, v which are leaves.
As they are leaves, u, v are labeled which, considering the path from u to v, means ψ((r, u)) +
ψ((r, v)) = 0. This concludes the base case.

Now we prove the inductive step. Let r be the root of a tree with children u, v. We consider
two cases:

Case 1: one of u, v is a leaf. Suppose without loss of generality that u is a leaf and v is an
internal node with children v1, v2. By the inductive hypothesis ψ((v, v1)) + ψ((v, v2)) = 0 and ψ
is identically 0 on the subtrees rooted at v1, v2. Let y1, y2 be leaves that are descendants of v1, v2

respectively (and can possibly be y1, y2 themselves). Considering the path from u to y1 and y2 we
have the equations

ψ((r, u) + ψ((r, v)) + ψ((v, v1)) = 0

ψ((r, u) + ψ((r, v)) + ψ((v, v2)) = 0

As ψ((v, v1)) + ψ((v, v2)) = 0, adding these equations shows that ψ((r, u) + ψ((r, v)) = 0, as
desired. Substituting this back into the equations further implies that ψ((v, v1)) = ψ((v, v2)) = 0
so ψ is identically 0 on the subtree rooted at v completing this case.

18

Case 2: both u, v are internal vertices. Let the children of u be u1, u2 and the children of v be
v1, v2. By the inductive hypothesis, ψ(·) is identically zero on the sub-trees rooted at u1, u2, v1, v2

and we haveψ((u, u1))+ψ((u, u2)) = ψ((v, v1))+ψ((v, v2)) = 0. We must show thatψ((u, u1)) =
ψ((u, u2)) = ψ((v, v1)) = ψ((v, v2)) = 0 and that ψ((r, u)) + ψ((r, v)) = 0.

Let x1, x2 be a leaves that are descendants of u1, u2, respectively, and similarly let y1, y2 be
leaves that are descendants of v1, v2, respectively. By assumption all of these leaves are labeled.
Considering the paths from xb − yb′ for b, b′ ∈ {0, 1} we obtain the following four constraints on
ψ:

ψ((u, u1)) + ψ((r, u)) + ψ((r, v)) + ψ((v, v1)) = 0

ψ((u, u1)) + ψ((r, u)) + ψ((r, v)) + ψ((v, v2)) = 0

ψ((u, u2)) + ψ((r, u)) + ψ((r, v)) + ψ((v, v1)) = 0

ψ((u, u2)) + ψ((r, u)) + ψ((r, v)) + ψ((v, v2)) = 0

Adding all four equations and using ψ((u, u1)) + ψ((u, u2)) = ψ((v, v1)) + ψ((v, v2)) = 0 shows
that ψ((r, u)) + ψ((r, v)) = 0. Taking this into account, adding the first two equations then shows
ψ((u, u1)) = 0, and adding the last two equations shows ψ((u, u2)) = 0. This then also means
ψ((v, v1)) = ψ((v, v2)) = 0.

We have now shown the inductive statement holds. It remains to see why this implies the
lemma. Let r be the root of the tree, let u be the child of r, and let u1, u2 be the children of u.
By the inductive statement we have that ψ((u, u1)) + ψ((u, u2)) = 0 and ψ is identically zero on
the subtree rooted at u1 and the subtree rooted at u2. Let x1, x2 be leaves which are descendants
of u1, u2, respectively. As the root has a label, considering the path from r to u1 implies that
ψ((r, u))+ψ((u, u1)) = 0 and considering the path from r to u2 implies ψ((r, u))+ψ((u, u2)) = 0.
Adding these equations implies that ψ((r, u)) = 0, from which it then follows that ψ((u, u1)) =
ψ((u, u2)) = 0.

Lemma 27. Let G = ([n], w) be a complete weighted graph and let L be a cross-free family of
cuts. Then ~L = {χ(S) : S ∈ L} form a linearly independent set of vectors.

Proof. We may assume that L is a maximal cross-free family, as showing that a superset of ~L is
linearly independent implies that ~L is as well. Thus suppose L is a maximal cross-free family and
let G be its beach. Let (T, φ) be a faithful tree representation of G. By Lemma 24 we have that
(T, φ) satisfy conditions (1)-(3) of Lemma 26.

Now we ask the question: for an edge {i, j} ∈ E(G) which sets S ∈ L contain it? This has
a very nice description in terms of the tree decomposition. Let u, v ∈ V (T) be the vertices with
φ(i) = u, φ(j) = v. Then the sets containing i are the sets represented by edges from the root to u;
the sets containing j are the sets represented by the edges on the path from the root to v. Therefore
the sets which contain i but not j or j but not i, are exactly those represented by the edges on the
path from u to v in the undirected tree underlying T . Thus the cuts which contain the edge {i, j}
are exactly those with a shore which is represented by an edge on the path from u to v in undirected
graph underlying T .

19

Consider a linear combination
∑

S∈L αSχ(S) = 0 which is equal to the all zero vector. The
{i, j} coordinate of this equation says that

∑
S∈L,{i,j}∈S αSχ(S)({i, j}) = 0. This sum is exactly

over the sets represented by edges on the path from φ(i) to φ(j). As this sum must be zero for
every edge {i, j}, this says that if we let ψ(e) = αS where the edge e represents a shore of S then
for any two labeled vertices u, v ∈ V (T) the sum of ψ(e) over the edges on the path from u to v is
zero. Thus also condition (4) of Lemma 26 is satisfied. Hence all of the conditions of Lemma 26
hold which implies that ψ must be identically zero and therefore all coefficients αS = 0. This
shows that {χ(S) : S ∈ L} is a linearly independent set.

We can now give the first proof of our main lower bound result on the cut dimension Theorem 2,
which says that for every integer n ≥ 2 there is an n-vertex weighted graph G = (V,w) with
cdim(G) ≥ 2n− 3.

Proof of Theorem 2. For every integer n ≥ 2, Theorem 5.2 of [CR04] constructs a complete
weighted graph G = (V,w) on n vertices such thatM(G) is a cross-free family of size |M(G)| =
2n − 3. By Lemma 27 the vectors in ~M form a linearly independent set, thus cdim(G) ≥
2n− 3.

5.3 Constructing graphs with a cross-free set of mincuts
In this subsection we explicitly construct, for any maximal cross-free family F ⊆ 2[n], a complete
weighted graph G = ([n], w) withM(G) = {∆(X) : X ∈ F}. This task is made easier by the
next lemma. We first need a definition.

Definition 28. Let F ⊆ 2V . For a subset X ⊆ V , let overlapF(X) = {Y ∈ F : X, Y overlap}.

Lemma 29. Let G = (V,w) be a graph and L be a maximal cross-free family of cuts. Suppose
that for all S ∈ L it holds that w(S) = c. Then the weight of a minimum cut in G is c.

Proof. Let G be the beach of L. Suppose for a contradiction that the weight of a minimum cut of
G is < c. Let T = {Z : ∅ 6= Z (V, v1 6∈ Z,Z 6∈ G, w(∆(Z)) < c} and

X = argmin
Z
{|overlapG(Z)| : Z ∈ T } .

In the following we always use overlap(·) with respect to G and drop the subscript. As |overlap(X)| ≥
1, let Y ∈ overlap(X). As shown in Appendix A Lemma 46, both |overlap(X ∩ Y)| and
|overlap(X ∪ Y)| are strictly smaller than |overlap(X)|. Thus it must be the case that X ∩ Y,X ∪
Y 6∈ T . Let us take the case of X ∩ Y . It does not contain v1, as neither X nor Y do, and it is a
nonempty set by the definition of overlap. Thus it must be the case that either w(∆(X ∩ Y)) ≥ c
or that X ∩ Y ∈ G, which implies w(∆(X ∩ Y)) = c. The same argument holds for X ∪ Y , thus
both w(∆(X ∩ Y)), w(∆(X ∪ Y)) ≥ c.

However by submodularity of the cut function we have w(∆(X ∩ Y)) + w(∆(X ∪ Y)) ≤
w(∆(X)) +w(∆(Y)), which implies that at least one of ∆(X ∩ Y),∆(X ∪ Y) must have weight
< c. Hence we have a contradiction and the lemma holds.

20

We will additionally need the following theorem which follows from Theorem 5.1 in [CR04].

Theorem 30 ([CR04]). LetG = (V,w) be a complete weighted graph. ThenM(G) is a cross-free
family of cuts.

Theorem 31. Let n ≥ 2 and L be a maximal cross-free family of cuts in the n-vertex complete
graph. LetA be an |L|-by-

(
n
2

)
matrix whose rows are the vectors χ(S) for S ∈ L and let z = AT1.

Define w(e) = 2−z(e)+1 for e ∈ [n](2). Then G = ([n], w) is a complete weighted graph with
cdim(G) = 2n− 3 andM(G) = L.

Proof. It is clear from the definition that w > 0 and so defines a complete weighted graph. We will
show that Aw = 1. By Lemma 29 this shows that the minimum cut weight of G is 1 and so the set
of minimum cuts includes L. As w defines a complete weighted graph, by Theorem 30 the set of
minimum cuts in G is cross-free and therefore must be exactlyM(G) = L, since L is maximal.
Further, |L| = 2n− 3 by Corollary 25 and the vectors in ~L are linearly independent by Lemma 27,
thus cdim(G) = 2n− 3.

It remains to show Aw = 1. We do this using an alternative way of viewing the assignment of
edge weights. Let G ⊆ 2[n] be the beach of L, and (T, φ) be a faithful tree representation of G. For
vertices u, v ∈ V (T) let d(u, v) be the length of the shortest path between u, v in the undirected
graph underlying T . Now let {i, j} ∈ [n](2) and suppose φ(i) = u, φ(j) = v. We claim that
w({i, j}) = 2−d(u,v)+1. The sets of G containing i are the sets represented by edges from the root
to u; the sets of G containing j are the sets represented by the edges on the path from the root to
v. Therefore the sets which contain i but not j or j but not i, are exactly those represented by the
edges on the path from u to v in the undirected tree underlying T . As (T, φ) is faithful, each of
these edges represents a different set, and therefore the number of edges on the path from u to v is
exactly the number of sets of L which contain {i, j}.

We now continue with the proof that Aw = 1 using this interpretation of the weights. For
any cut S ∈ L with shore X ∈ G, take the edge (u, v) ∈ E(T) representing X . Now imagine
we remove the edge (u, v) from T which disconnects T into two components. Let Tu be the
component containing u and Tv the component containing v. From Tu, which contains the root r
of T , we create a graph T ′u whose underlying undirected graph is the same as Tu, but for which all
edges are directed away from u. Thus in T ′u, vertex u becomes the root and r becomes a leaf. Now
by item (2) of Lemma 24, every non-leaf vertex in Tv and T ′u has out-degree 2. We inject a unit of
flow into u in the graph T ′u and let it propagate according to the rule that at every non-leaf vertex
half of the flow is routed along each outgoing edge. We similarly inject a unit of flow into v in
the graph Tv and let it propagate according to the same rule. Thus in the tree Tv, each leaf a gets
f(a) = 2−d(a,v) amount of flow, where d(a, v) is the number of edges along the path from v to a in
Tv. Similarly, if b is a leaf in the tree T ′u, the amount of flow arriving at b is f(b) = 2−d(b,u). Now
let {i, j} ∈ [n](2) with i ∈ X, j ∈ X̄ and observe that the way we defined w({i, j}) satisfies

w({i, j}) = 2−d(φ(i),φ(j))+1 = 2−d(φ(i),v)−d(φ(j),u) = f(φ(i)) · f(φ(j)) .

Thus the weight of the cut S is∑
i∈X,j∈X̄

w({i, j}) =
∑

i∈X,j∈X̄

f(φ(i)) · f(φ(j)) =

(∑
i∈X

f(φ(i))

)
·

∑
j∈X̄

f(φ(j))

 = 1 · 1 = 1 .

21

6 Another proof using graph operations
In this section we give another proof of our main theorems: we prove that the cut dimension of any
n-vertex graph is at most 2n − 3 and we also prove that this upper bound is tight. An important
role will be played by the following lemma, giving an explicit characterization of graphs having
at least one non-star mincut, where none of these mincuts is crossless. This characterization has
originally appeared in [Bix75, DKL76]. More modern presentations can be found in Lemma 2.9
of [CR04] or Lemma 2 of [FF09].

Lemma 32. Suppose that G = (V,w) is a graph which has a non-star mincut, and every non-star
mincut is crossed by a non-star mincut. Then G is a cycle where all edges have the same weight.

Let us denote by Cn the cycle on the n vertex set V = {v1, . . . , vn} and with edge set E =
{{v1, v2}, . . . , {vn−1, vn}, {vn, v1}}, where the weight of every edge is the same. We also need
that the cut dimension of Cn is at most n. In fact, it is easy to prove that the its cut dimension is
exactly n when n ≥ 3.

Lemma 33. The cut dimension of C2 is 1, and cdim(Cn) = n, for n ≥ 3.

Proof. The statement for n = 2 is obvious. For n ≥ 3 we have cdim(Cn) ≤ n as the graph only
has n edges and thus the cut vectors are elements of Rn which has dimension n.

For the lower bound we construct a set of n linearly independent minimum cut vectors in Cn.
Label the coordinates of the vectors by the edges {v1, v2}, . . . , {vn−1, vn}, {vn, v1}. We define the
sets X1 = {v1, v2} and Xk = {v2, . . . , vk}, for 2 ≤ k ≤ n.

We claim that the cut vectors ξk = χ(∆(Xk)), for 1 ≤ k ≤ n, are linearly independent. Let
ei be the ith standard basis vector in Rn. Then we see that ξ1 = e2 + en and ξk = e1 + ek, for
2 ≤ k ≤ n. Thus ξ2 + ξn − ξ1 = 2e1, so e1 is in the span of these vectors. Also ek = ξk − e1 is
in the span for 2 ≤ k ≤ n. Hence these n vectors span all of Rn and therefore must be linearly
independent.

6.1 Two lemmas on graph operations
The main technical part of the second proof of our main theorems is played by the two lemmas
in this section. The second lemma gives an upper bound on the cut dimension of a graph G in
function of the cut dimension of the smaller graphs obtained when G is separated along a crossless
non-star minimum cut Z. Moreover, this upper bound becomes an equality when in addition the
cut Z is connected. Our upper and lower bounds for the cut dimension are respectively almost
immediate consequences of these results.

Lemma 34. Let G = (V,w) be a weighted graph and let Z ∈ M(G) be a crossless non-star
minimum cut defined by shores X0, X1 = V \X0. For b ∈ {0, 1}, letMb = {S ∈ M(G) : S ⊆
Z ∪ E(Xb)}. Let sep(G,Z) = {G0 = (V0, w0), G1 = (V1, w1)} as defined in Section 2, where

22

Vb = Xb ∪ {v1−b}, for b ∈ {0, 1}, with v0, v1 6∈ X0 ∪X1. Then dim(span(~Mb)) = cdim(Gb), for
b ∈ {0, 1}.

Proof. We prove the statement for b = 0, the other case follows in exactly the same manner. Let
m = |E| and partition E into three disjoint sets E = E(X0) t Z t E(X1). Call a vertex x ∈ X0

friendly if it has a neighbor in X1, that is there exists an edge {x, y} ∈ Z for some y ∈ X1. The
edges in Z can then be partitioned into the disjoint union of sets Zx, over all friendly x, where
Zx = {e ∈ Z : x ∈ e}.

Let M(G0) be the set of all minimum cuts of G0. The set ~M(G0) is composed of m0 di-
mensional vectors where m0 = |E(X0)| + deg(v1). Observe that deg(v1) is the number of
friendly vertices in X0. We can partition the edges of G0 into two sets E(X0) t Z1 where
Z1 = {{x, v1} : x is friendly}.

We define a natural bijection ψ : M0 → M(G0) as follows. Let S be a mincut inM0 with
shores X ′ and V \X ′, where X ′ ⊆ X0. Note that we can assume this because Z is crossless. Then
ψ(S) is the mincut inM(G0) whose shores areX ′ and (X0\X ′)∪{v1}. Let k = |M0| = |M(G0)|.

We now consider two matrices C and D, where C is a k-by-m matrix and D is a k-by-m0

matrix. Fix an ordering S1, . . . , Sk of M0 and let the ith row of C be χ(Si), the characteristic
vector of the cut Si. Likewise the ith row of D is χ(ψ(Si)). We have rk(C) = dim(span(~M0))
and rk(D) = cdim(G0).

The columns of C,D are labeled by edges. For C, we label the edges according to the partition
E = E(X0)tZ tE(X1), with edges in E(X0) coming first, then edges from Z, then edges from
E(X1). For D, we label the edges according to the partition E(X0) t Z1, again with edges from
E(X0) coming first and then those from Z1. We observe the following facts:

• The edges in E(X0) are common in G and G1, and χ(ψ(Si))(e) = χ(Si)(e), for every
Si ∈ M0 and edge e ∈ E(X0). This means that columns of C and D labeled by an edge
e ∈ E(X0) are identical.

• For an edge e ∈ E(X1), we have that χ(Si)(e) = 0, for every Si ∈M0. Thus columns of C
labeled by an edge e ∈ E(X1) are all zero.

• Finally, for a friendly x ∈ X0 consider any edge e = {x, y} ∈ Zx and the edge f =
{x, v1} ∈ Z1. Then the eth column of C and the f th column of D are identical because for
every Si ∈M0 we have χ(Si)(e) = 1 iff x ∈ X ′ iff χ(ψ(Si))(f) = 1.

These points together imply that D is actually a submatrix of C, which can be obtained by taking
the columns labeled by edges in E(X0) and then taking |Z1| more columns of C by choosing one
e ∈ Zx for every friendly x ∈ X0. Therefore rk(D) ≤ rk(C).

We can also see that rk(C) ≤ rk(D) as C can be obtained from D by repeating columns
labeled by edges in Z1 several times and adding all zero columns, and neither of these operations
increase the rank.

Lemma 35. Let G,Z,G0, G1 as in Lemma 34. Then cdim(G) ≤ cdim(G0) + cdim(G1)− 1, and
if Z is connected then the equality holds.

23

Proof. We first prove that cdim(G) ≤ cdim(G0) + cdim(G1) − 1. The important fact is that
M(G) ⊆ M0 ∪M1 because Z is a crossless mincut. Also sinceM0,M1 ⊆ M(G) we in fact
haveM(G) =M0 ∪M1. Therefore

cdim(G) = dim(span(~M(G)))

= dim(span(~M0 ∪ ~M1))

= dim(span(span(~M0) ∪ span(~M1)))

= dim(span(~M0)) + dim(span(~M1))− dim(span(~M0) ∩ span(~M1))

= cdim(G0) + cdim(G1)− dim(span(~M0) ∩ span(~M1)) .

We use Lemma 34 to obtain the last equality. Notice that Z ∈ M0 ∩M1, which implies that
dim(span(~M0) ∩ span(~M1)) ≥ 1, and thus cdim(G) ≤ cdim(G0) + cdim(G1)− 1.

We now prove the inequality in the reverse direction, whenZ is connected. Let db = cdim(Gb)−
1, for b = 0, 1. Let Zb be the star cut at v1−b in Gb. Since these are mincuts, we can extend them to
a basis in the respective graphs. Therefore there exist A1, . . . Ad0 ⊂ X0 and B1, . . . Bd1 ⊂ X1

such that the family {χ(∆(A1)), . . . , χ(∆(Ad0)), χ(Z0)} is independent in span(~M(G0)) and
the family {χ(∆(B1)), . . . , χ(∆(Bd1)), χ(Z1)} is independent in span(~M(G1). We claim that in
span(~M(G)) the set {χ(∆(A1)), . . . , χ(∆(Ad0)), χ(∆(B1)), . . . , χ(∆(Bd1)), χ(Z)} of size d0 +
d1 + 1 is independent.

Let us suppose on the contrary that a non-trivial linear combination of these d0 +d1 +1 vectors
gives 0. Then there exist non all zero real numbers a1, . . . , ad0 , b1, . . . , bd1 and ε ∈ {0, 1} such that

d0∑
i=1

aiχ(∆(Ai)) +

d1∑
j=1

bjχ(∆(Bj)) = εχ(Z). (1)

We define the function S : V → R by

S(x) =

{∑
x∈Ai

ai if x ∈ X0,∑
x∈Bj

bj if x ∈ X1.

If x ∈ X0 and y ∈ X1 are arbitrary elements and {x, y} ∈ Z, then χ(∆(Ai))({x, y}) = 1 iff
x ∈ Ai and χ(∆(Bj))({x, y}) = 1 iff y ∈ Bj . Therefore for every {x, y} ∈ Z, the coordinate
{x, y} of Eq. (1) gives

S(x) + S(y) = ε. (2)

From Eq. (1) we can also deduce that for every {x, x′} ∈ E(X0) we have

d0∑
i=1

aiχ(∆(Ai))({x, x′}) = 0, (3)

24

and for every {y, y′} ∈ E(X1) we have

d1∑
j=1

bjχ(∆(Bj))({y, y′}) = 0. (4)

Let {x0, y0} be an arbitrary edge in Z, where x0 ∈ X0 and y0 ∈ X1. We set s0 = S(x0) and
s1 = S(y0). We know from Eq. (2) that

s0 + s1 = ε.

We claim that for every {x, y} ∈ Z, where x ∈ X0 and y ∈ X1, we have S(x) = s0 and S(y) = s1.
For this consider an arbitrary breadth first search tree with root x0. Since the graph of the cut Z,
the graph G(Z) = (V ′, Z), is a connected bipartite graph, every vertex in V ′ ∩X0 will be at some
even depth of the tree, and every vertex in V ′ ∩X1 at some odd depth of the tree. Going through
all the vertices depth by depth starting with x0 at depth 0, Eq. (2) gives the claim.

We now distinguish two cases. In the first case at least one of s0 and s1 is non-zero, say without
loss of generality that s0 6= 0. For i = 1, . . . , d0, we define

a′i = ai/s0.

Then Eq. (3) implies that in G0, for every {x, x′} ∈ E(X0), we have

d0∑
i=1

a′iχ(∆(Ai))({x, x′}) = 0. (5)

Also in G0, if x ∈ X0 then χ(∆(Ai))({x, v1}) = 1 iff x ∈ Ai. Therefore

d0∑
i=1

a′iχ(∆(Ai))({x, v1}) = s0/s0 = 1. (6)

Therefore Eqs. (5) and (6) imply that

d0∑
i=1

a′iχ(∆(Ai)) = χ(Z0), (7)

which contradicts the linear independence of {χ(∆(A1)), . . . , χ(∆(Ad0)), χ(Z0)}.
In the second case s0 = s1 = 0, and thus for all {x, y} ∈ Z, with x ∈ X0 and y ∈ X1, we have

S(x) = S(y) = 0. Therefore in G0, for every edge {x, v1},
d0∑
i=1

aiχ(∆(Ai))({x, v1}) = 0, (8)

and similarly in G1, for every edge {y, v0},
d1∑
j=1

bjχ(∆(Bj))({y, v0}) = 0. (9)

25

Since a1, . . . , ad0 , b1, . . . , bd1 are not all zero, either a1, . . . , ad0 is not all zero or b1, . . . , bd1 is
not all zero. If a1, . . . , ad0 is not all zero then from Eqs. (3) and (8) it follows that the family
{χ(∆(A1)), . . . , χ(∆(Ad0))} is dependent in span(~M(G0)). If b1, . . . , bd1 is not all zero then
similarly from Eqs. (4) and (9) it follows that the family {χ(∆(B1)), . . . , χ(∆(Bd1))} is dependent
in span(~M(G1)). In either case, we reach a contradiction.

6.2 The upper bound
We now can give our second proof of the upper bound on the cut dimension Theorem 1.

Proof of Theorem 1. The proof is by induction. For the base case n = 2, the only graph to be
considered consists of a single edge and the cut dimension is 1 = 2n− 3.

Now let n ≥ 3, and we assume the inductive hypothesis holds for all graphs on at most n − 1
vertices. We consider 3 cases.

Case 1: The graph G has only star mincuts, say at vertices v1, . . . vk, for some 1 ≤ k ≤ n. As
there are only k mincuts here we have cdim(G) ≤ k ≤ n ≤ 2n− 3 for n ≥ 3.

Case 2: There is a non-star mincut in G, and every non-star mincut is crossed by a non-star
mincut. Then by Lemma 32, the graph G is a cycle where the edges have all the same weight. In
this case by Lemma 33, we have cdim(G) = cdim(Cn) = n ≤ 2n− 3 for n ≥ 3.

Case 3 is where we use the induction hypothesis: Suppose that G has a non-star crossless
mincut Z with shores X0 and X1 = V \ X0. Let |X0| = k. Then by Lemma 35 there are graphs
G0, G1 such that cdim(G) ≤ cdim(G0) + cdim(G1) − 1, where G0 is a graph on k + 1 vertices,
and G1 is a graph on n− k + 1 vertices. Therefore by the inductive hypothesis

cdim(G) ≤ 2(k + 1)− 3 + 2(n− k + 1)− 3− 1 = 2n− 3 .

6.3 The lower bound
We now give our second proof of Theorem 2 that for every n ≥ 2 there exist graphs G with
cdim(G) = 2n− 3. We need a slightly more detailed statement for the inductive hypothesis which
is given in the following theorem.

Theorem 36. For every integer n ≥ 2, there is a complete weighted graph G = (V,w) on n
vertices with cut dimension 2n− 3 and minimum cut weight 1, and where for every v ∈ V , the star
cut ∆({v}) is a minimum cut.

Proof. For n = 2 the statement is satisfied by the graph consisting of a single edge of weight one
which has cut dimension one and where the two star cuts are minimum cuts. For n = 3 we may
take the complete graph G(3) = (V (3), w(3)) with all weights 1/2, which has cut dimension 3.

Now assume that there exists a graph G(n−1) = (V (n−1), w(n−1)) on n − 1 vertices satisfying
the inductive hypothesis. Let us consider a copy of G(3) = (V (3), w(3)) where V (3) = {t, u, v0}
and V (n−1) ∩ V (3) = ∅. We choose v1 ∈ V (n−1) arbitrarily. We claim that the n-vertex graph

26

1

2
3

4

5

6
7

8

Figure 1: Example graph G showing the necessity of the connected condition in Lemma 34. Red
edges have weight 2 and black edges have weight 1. The minimum cut weight is 4 and the cuts
achieving this are all the star cuts and ∆({1, 2}),∆({3, 4}),∆({5, 6}),∆({7, 8}),∆({1, 2, 3, 4}).

Gn = (V (n), w(n)) defined as mer({(G(n−1), v1), (G(3), v0)}) satisfies the statement. It follows
from the definition of the merge operation that G(n) is a complete weighted graph and that its star
cuts are of weight one. In addition Claim 8 asserts that if Z is the cut in Gn whose shores are
V (n−1) \ {v1} and V (3) \ {v0} then w(Z) = 1.

We now claim that the weight of a minimum cut of G(n) is one and that the mincut Z is
crossless. Consider a non-star cut ∆(X). If both vertices t, u are on the same shore then the
weight of ∆(X) is the same as the analogous cut in G(n−1) and therefore is at least one. If ∆(X)
crosses Z, then we suppose without loss of generality that t ∈ X, u ∈ X̄ . We show that the weight
of ∆(X) is greater than one, which then implies both claims. The cut contains the edge {t, u}
which has weight 1/2. For every y ∈ V (n−1) \ {v1}, the cut either contains the edge {t, y} or the
edge {u, y}, and these edges have the same weight. Thus the total weight of such edges is half
of the weight of Z, that is 1/2. In addition, the cut contains also at least one edge from G(n−1),
therefore its total weight is greater than one.

Finally Claim 8 says that sep(G(n), Z) = {G(n−1), G(3)}. Since Z is a crossless non-star
minimum cut that is also connected, Lemma 35 implies that cdim(G(n)) = cdim(G(n−1)) +
cdim(G(3))− 1, which is 2n− 3 by the inductive hypothesis.

6.4 On the tightness of Lemma 35
One can wonder whether the connectedness of Z is a necessary hypothesis in Lemma 35. In fact
it is, when Z ∈M(G) is not connected then we can have cdim(G) < cdim(G0) + cdim(G1)− 1.
An example is given in Fig. 1. The mincuts in this graph are all the star cuts and

∆({1, 2}),∆({3, 4}),∆({5, 6}),∆({7, 8}),∆({1, 2, 3, 4}) .

Thus no mincuts cross each other. Also none of the non-star mincuts are connected.
Consider the case where Z = ∆({1, 2, 3, 4}). When we separate G along this cut we see

that G0 = G1 and they are equal to the graph in Fig. 2. The mincuts in G0 are all star cuts and

27

1

2

3

4

5

Figure 2: The graph G0. Red edges have weight 2 and black edges have weight 1. The minimum
cut weight is 4 and the cuts achieving this are all the star cuts and ∆({1, 2}),∆({3, 4}). The cut
dimension is 7.

∆({1, 2}),∆({3, 4}). All non-star mincuts in G0 are connected so one can use Lemma 34 to
compute that cdim(G0) = 7, i.e. all these mincut vectors are linearly independent. However, the
cut dimension of G is clearly at most 12 as it only has 12 edges. Direct computation shows that in
fact cdim(G) = 11.

7 `1-approximate cut dimension
In this section, we use the `1-approximate cut dimension method to show Theorem 3 that for any
k ∈ N and n = 3k + 1, it holds that Dlin(MINCUTn) ≥ 2n− 2.

Let K4 be the complete graph on 4 vertices with all edge weights equal to 1. The theorem will
follow from showing that the `1-approximate cut dimension of the direct union of k copies of K4

has `1-approximate cut dimension 6k. We start with the base case k = 1 to build up the notation
and intuition that will be needed for the general case. The following definition and fact will be
useful.

Definition 37 (Strictly diagonally dominant). LetA ∈ Rn×n be a matrix. We say that the ith row of
A is strictly diagonally dominant if |A(i, i)| >

∑
j 6=i |A(i, j)|. We say that A is strictly diagonally

dominant iff all of its rows are.

It is well known that a strictly diagonally dominant matrix has full rank. One way to prove this
is via the following fact, which we will make use of in the proof of Theorem 3.

Fact 38. Let A ∈ Rn×n be a matrix whose ith row is strictly diagonally dominant. If Au = 0 for a
vector u 6= 0 then |ui| < ‖u‖∞.

Proof. Suppose for a contradiction that for some u 6= 0 it holds that Au = 0 and |ui| = ‖u‖∞
where the ith row of A is strictly diagonally dominant. By normalizing and flipping the sign of u if
necessary we may assume ‖u‖∞ = 1 and A(i, i)ui = |A(i, i)|. Thus∑

j

A(i, j)uj = |A(i, i)|+
∑
j 6=i

A(i, j)uj ≥ |A(i, i)| −
∑
j 6=i

|A(i, j)| > 0 ,

28

v

a

b

c

3

5

6

1 2

4

Figure 3: The complete graph on 4 vertices with all edge weights equal to 1. The labels on edges
indicate the ordering of edges used to represent cut vectors in the proof.

a contradiction.

7.1 `1-approximate cut dimension of K4

We label the vertices of K4 by a, b, c, v, and use the ordering of edges indicated in Fig. 3. Let X
be the 7-by-6 matrix whose rows correspond to the cut vectors of all the nontrivial cuts

X =

1 1 1 0 0 0
1 0 0 1 1 0
0 1 0 1 0 1
0 0 1 0 1 1
0 1 1 1 1 0
1 0 1 1 0 1
1 1 0 0 1 1

. (10)

The cut vectors in X are given in the order

∆({a}),∆({b}),∆({c}),∆({a, b, c}),∆({a, b}),∆({a, c}),∆({b, c}) .

The first 4 rows correspond to star cuts which are minimum cuts of weight 3 in K4. The last three
rows correspond to cuts which have weight 4 in K4. Thus to show a lower bound of 6 on the
number of linear queries needed to compute the minimum cut of a 4 vertex graph, we need to show
that the w = (1, 1, 1, 1, 1, 1), c = (0, 0, 0, 0, 1, 1, 1) one-sided `1 approximate rank of X is 6.

Claim 39. Let w = 1 ∈ R6, and c = (0, 0, 0, 0, 1, 1, 1). The (w, c) one-sided `1 approximate rank
of X is 6.

Proof. The rank of X at most 6 as this is the number of columns, which takes care of the upper
bound.

29

Now consider the lower bound. To do this we need to lower bound the rank of the matrix

Z = X −
[
04,2 04,2 04,2

A1 A2 A3

]
where each of A1, A2, A3 ≥ 0 are 3-by-2 matrices and every row of A1 +A2 +A3 sums to at most
1. As the first 4 rows of X correspond to vectors of minimum cuts, no error is allowed on the first
4 rows.

The first 4 rows of Z are equal to the first 4 rows of X , as there is no perturbation allowed on
these rows. By doing elementary row operations on the first four rows, which do not change the
rank, we can transform the first four rows of Z into the reduced row echelon form of X(1 : 4, :).
Thus we arrive at the following matrix.

1 0 0 0 0 −1
0 1 0 0 −1 0
0 0 1 0 1 1
0 0 0 1 1 1
0 1 1 1 1 0
1 0 1 1 0 1
1 1 0 0 1 1

−
[
04,2 04,2 04,2

A1 A2 A3

]
.

Now we do column operations to zero out the entries in the first four rows and last two columns.
For a m-by-2 matrix A we will use the notation A◦ to denote the matrix A with the order of the
columns swapped. We arrive at

1 0 0 0 0 0
0 1 0 0 0 0
0 0 1 0 0 0
0 0 0 1 0 0
0 1 1 1 0 −2
1 0 1 1 −2 0
1 1 0 0 2 2

−
[
04,2 04,2 04,2

A1 A2 A◦1 − A2 − A◦2 + A3

]
.

Finally, we can do row operations to zero out the first four columns in the last three rows.

1 0 0 0 0 0
0 1 0 0 0 0
0 0 1 0 0 0
0 0 0 1 0 0
0 0 0 0 0 −2
0 0 0 0 −2 0
0 0 0 0 2 2

−
[
04,2 04,2 04,2

03,2 03,2 A◦1 − A2 − A◦2 + A3

]
.

The task has now reduced to showing the matrix

Z ′ =

 2 0
0 2
−2 −2

+ A1 − A2 − A◦2 + A◦3

30

v

a(1)

b(1)

c(1)

a(2)

b(2)

c(2)

3

5

6

9

11

12

1 2

4

78

10

X(2) =

[
X 07,6

07,6 X

]

Figure 4: Example of the direct union of two copies of K4. With the order-
ing of the edges given by the edge labels, the matrix of cut vectors of the cuts
∆({a(i)}),∆({b(i)}),∆({c(i)}),∆({a(i), b(i), c(i)}),∆({a(i), b(i)}),∆({a(i), c(i)}),∆({b(i), c(i))}
for i ∈ [2] becomes the matrix X(2) on the right.

has rank 2 for any A1, A2, A3 satisfying the constraints. Let us simplify the matrix A1−A2−A◦2 +
A◦3. First, let A′1 = A1 +A◦3. Next, note that D = A2 +A◦2 has the property that D(i, 1) = D(i, 2)
for i ∈ [3]. In the sequel we call this the partner property.

As the row sum of A′1 +A2 is at most 1, unless A′1(1 : 2, 1 : 2) = 02,2 and at least one row sum
of A2(1 : 2, 1 : 2) is equal to 1 the first two rows of Z ′ will be strictly diagonally dominant. If the
first two rows of Z ′ are strictly diagonally dominant then the rank of Z ′ must be 2, thus we now
handle the “unless” case.

First, suppose exactly one row sum of A2(1 : 2, 1 : 2) is equal to 1. Say without loss of
generality it is the second one, thus the first row of Z ′ is strictly diagonally dominant. Then for a
sufficiently small ε we can multiply the first column by 1− ε so that the first row remains strictly
diagonally dominant and the second row becomes strictly diagonally dominant as well. This does
not increase the rank and thus shows again that the rank of Z ′ is 2.

The remaining case is where both rows of A2(1 : 2, 1 : 2) sum to one. In this case by the
partner property we have

Z ′(1 : 2, 1 : 2) =

[
1 −1
−1 1

]
.

On the other hand, the last row of Z ′ must have both entries ≤ −1. Thus the determinant of the
submatrix formed by the first row and the third is strictly negative and so Z ′ has rank 2.

7.2 Direct union of K4 with itself
Now we prove the general case. The key to the proof is the following lemma.

Lemma 40. Let k ∈ N and B be the 3k-by-2k matrix

B =

[
2I2k

−2Ik ⊗ [1, 1]

]
.

31

For any matrices 3k-by-2k matrices A1, A2 satisfying the conditions

1. A1, A2 ≥ 0

2. (partner property) For all i ∈ [3k] and j ∈ [k] it holds that A2(i, 2j − 1) = A2(i, 2j).

3. Every row of A1 + A2/2 sums to at most 1

it holds that B + A1 − A2 has rank 2k.

Proof. The rank is at most 2k as that is the number of columns; we focus on showing the columns
are linearly independent.

Let Z = B+A1−A2. We call the first 2k rows of Z rows of type I, and the last k rows of type
II. If a type I row is not strictly diagonally dominant, we call it full. Notice that a type I row i is full
if and only if the ith row of A1 is zero and the ith row of A2 sums to 2. In this case, Z(i, j) ≤ 0 for
every j 6= i and it holds that Z(i, i) = −

∑
j 6=i Z(i, j). For i ∈ [k] we call 2i− 1 and 2i partners.

Suppose for contradiction there is a vector ~u 6= 0 such that A~u = 0. As ~u 6= 0 by normalizing
and multiplying by −1 as needed we may assume that ‖u‖∞ = 1 and i is a coordinate with
~u(i) = 1. By Fact 38 the ith row of Z, which is a type I row, cannot be strictly diagonally
dominant. Thus the ith row must be full. Therefore for Z(i, :)~u = 0 to hold it must be the case that
~u(j) = 1 for every j where A2(i, j) > 0. Such a j must exist as the ith row of A2 sums to 2. So let
j be a coordinate with A2(i, j) > 0 and let j′ be the partner of j. By the partner property we also
have A2(i, j′) > 0 and therefore ~u(j) = ~u(j′) = 1.

Now consider the type II row ` for which B(`, j) = B(`, j′) = −2. As B(`, t) = 0 for
t 6∈ {j, j′} this means

Z(`, :)~u = Z(`, j) + Z(`, j′) +
∑

t6∈{j,j′}

Z(`, t)~u(t)

≤ B(`, j) + A1(`, j) +B(`, j′) + A1(`, j′) + ‖~u‖∞
∑

t6∈{j,j′}

|Z(`, t)|

≤ −4 +
∑
t

A1(`, t) + A2(`, t)

≤ −2 ,

and we have arrived at a contradiction.

With Lemma 40 in hand we are now ready to prove Theorem 3.

Proof of Theorem 3. Let G(1), . . . , G(k) be k copies of K4 where the vertices in G(i) are labeled by
a(i), b(i), c(i), v(i) for i ∈ [k]. The graph G is formed by taking the direct union of G(1), . . . , G(k) at
the vertices v(1), . . . , v(k). That is, the vertices v(1), . . . , v(k) are all identified by a common vertex
denoted v. See Fig. 4 for an illustration of the graph for k = 2.

The cuts of G we focus on are the 7k cuts given by

∆({a(i)}),∆({b(i)}),∆({c(i)}),∆({a(i), b(i), c(i)}),∆({a(i), b(i)}),∆({a(i), c(i)}),∆({b(i), c(i)} ,

32

for i ∈ [k]. For any i ∈ [k] the cuts ∆({a(i)}),∆({b(i)}),∆({c(i)}),∆({a(i), b(i), c(i)}) achieve
the minimum cut weight of G, which is 3, and the cuts ∆({a(i), b(i)}),∆({a(i), c(i)}),∆({b(i), c(i)}
have weight 4.

With an ordering of the edges as exemplified in Fig. 4, the matrix of cut vectors of these cuts
is X(k) = Ik ⊗ X , where X is the matrix from Eq. (10). In every nonzero block of X(k) the
first four rows are minimum cuts with weight 3 and the last 3 rows are cuts with weight 4. Let
c′ = (0, 0, 0, 0, 1, 1, 1). The theorem will follow from Theorem 13 by showing that the w =
16k, c = 1k ⊗ c′ one-sided `1 approximate rank of X(k) is 6k.

To do this, we must show that X(k) − A has rank 6k for any matrix A ≥ 0 which is all zero
on any row of Ik ⊗ X corresponding to a minimum cut, and where the row sum of A is at most
1 on any row of Ik ⊗ X corresponding to a cut of weight 4. In order to make reference to the
base case, it will be useful to partition the columns into k blocks of 6 columns, where the ith block
is further partitioned into blocks of size 2 represented by the 7k-by-2 matrices A(i)

1 , A
(i)
2 , A

(i)
3 . In

other words, we view A as follows

A =
[
A

(1)
1 A

(1)
2 A

(1)
3 · · · A

(k)
1 A

(k)
2 A

(k)
3

]
where each A(i)

j for j ∈ [3], i ∈ [k] is a 7k-by-2 matrix.
As in the base case, we begin by doing Gauss-Jordan elimination on the rows corresponding

to mincuts of each X block in X(k). These operations only touch rows corresponding to mincuts
where A is zero, thus they do not change A. After these operations we arrive at the matrix Ik ⊗
X ′ − A where

X ′ =

1 0 0 0 0 −1
0 1 0 0 −1 0
0 0 1 0 1 1
0 0 0 1 1 1
0 1 1 1 1 0
1 0 1 1 0 1
1 1 0 0 1 1

Next, as in the base case, we do column operations to zero out the last two columns in the first four
rows of each block of X ′. This gives us the matrix Ik ⊗X ′′ − A′ where

X ′′ =

1 0 0 0 0 0
0 1 0 0 0 0
0 0 1 0 0 0
0 0 0 1 0 0
0 1 1 1 0 −2
1 0 1 1 −2 0
1 1 0 0 2 2

and the ith block of A′ looks like

[A
(i)
1 A

(i)
2 A

(i)◦
1 − A(i)

2 − A
(i)◦
2 + A

(i)
3]. .

33

Here A(i)◦
1 denotes the matrix A(i)

1 with the order of the columns swapped. Finally, we use X ′′(1 :
4, 1 : 4) to zero out all other entries of Ik ⊗ X ′′ − A′ in the first 4 columns of each block. This
brings us to the matrix Ik ⊗X ′′′ − A′′ where

X ′′′ =

1 0 0 0 0 0
0 1 0 0 0 0
0 0 1 0 0 0
0 0 0 1 0 0
0 0 0 0 0 −2
0 0 0 0 −2 0
0 0 0 0 2 2

and the ith block of A′′ is

[07k,2 07k,2 A
(i)◦
1 − A(i)

2 − A
(i)◦
2 + A

(i)
3] .

Again, each ofA(i)
1 , A

(i)
2 , A

(i)
3 is zero on rows corresponding to minimum cuts. Thus by multiplying

the last two columns of each block by −1 and permuting rows and columns we can transform
Ik ⊗X ′′′ − A′′ into the form [

I4k 04k,2k

03k,4k B + A1 − A2

]
where B,A1, A2 satisfy the conditions of Lemma 40. Thus a rank lower bound of 6k follows from
the lower bound of 2k on the rank of B + A1 − A2 given in Lemma 40.

8 The dimension of approximate mincuts
Let G be a weighted graph and λ the weight of a minimum cut in G. For α ≥ 1 define an
α-near-mincut of G to be a cut S whose weight is at most αλ. Let Mα(G) be the set of all α-
near-mincuts of G and ~Mα(G) = {χ(S) : S ∈ Mα(G)}. In this section, we look at cdimα(G) =

dim(span(~Mα(G))).
The first observation is that if α = 2 then the unweighted complete graphKn satisfies cdimα(Kn) =(

n
2

)
. For simple graphs we can show α = 2 is a sharp threshold.

Theorem 41. Let 1 ≤ α < 2 be a constant and G be a simple n-vertex graph. Then cdimα(G) =
O(n).

The key to this theorem is the following lemma of Rubinstein, Schramm, and Weinberg [RSW18].

Lemma 42 (Lemma 2.6 [RSW18]). Let G be a simple graph with minimum degree dmin and
minimum cut value λ. For constant 0 ≤ ε < 1 let T be the set of non-star cuts of G whose weight
is at most λ+ εdmin. Then | ∪T∈T T | = O(n).

34

Proof of Theorem 41. Let G be a simple graph. To prove the theorem we create a set of O(n)

vectors that span ~Mα(G). LetMα(G) = T t S, where T is the set of non-star cuts ofMα(G)
and S is the set of star cuts ofMα(G). Let E ′ = ∪T∈T T be the set of edges involved in the cuts
in T . Let ~L = {ei : i ∈ E ′}. Note that from the definition of dmin, there is a star cut with cut
value dmin, which implies that λ ≤ dmin. As a result, every α-near-mincut has cut value at most
αλ ≤ λ+ (α− 1)dmin, and hence by Lemma 42 we have | ~L| = O(n). Also span(~T) ⊆ span(~L).
Thus span(~Mα(G)) ⊆ span(~L ∪ ~S). As |S| ≤ n this is a spanning set of size O(n).

In a previous version of this work we conjectured that for an n-vertex weighted graphG it holds
that cdimα(G) = O(n) for any α < 4/3. This turns out to be false, however. The reason is that,
on the one hand, in a graph G = (V,w) the characteristic vector of a cut χ(S) depends only on the
set of edges, but not the weight of these edges. On the other hand, w(S) does of course depend
on the weight of the edges. We can utilize this difference to construct an example as follows. Let
us start with a cycle Cn with all edge weights being 1. While Cn has

(
n
2

)
mincuts with weight 2,

these mincuts live in an n-dimensional space as Cn only has n edges. We can then turn Cn into a
complete weighted graph G by adding a tiny weight ε = 2(α− 1)/

(
n
2

)
edge to all pairs of vertices

that are not adjacent in the cycle. As adding edges cannot decrease the minimum cut weight, the
weight of a minimum cut in G is at least 2. Further, if X is the shore of a minimum cut in Cn then
in the graph G we have w(∆(X)) ≤ 2 +

(
n
2

)
ε = 2α, as the weight is at most its weight in Cn plus

the weight of all added edges. Thus ∆(X) is an α-near-mincut in G. Further, the characteristic
vectors χ(∆(X)) ∈ {0, 1}(

n
2) of these cuts in G now live in an

(
n
2

)
-dimensional space and become

linearly independent. This example demonstrates that a reasonable extension of the cut dimension
to near-mincuts should take into account the magnitude of the edge weights, as the `1-approximate
cut dimension does.

We now give the formal proof that the graph G mentioned above has the correct properties.

Lemma 43. Let n ∈ N. Let Cn be the cycle on n vertices and G the beach ofM(Cn). Let Kn be
the complete graph on n vertices. Let T = {∆(X) : X ∈ G}, where here ∆(X) ∈ {0, 1}(

n
2) is the

cut in Kn with shore X . Then dim(span(~T)) =
(
n
2

)
.

Proof. For this proof we assume the vertices are labeled by 0, . . . , n− 1 and use addition modulo
n. We will show that all of the standard basis vectors e{i,j} are in span(~T). For concreteness, we
show how to construct the vectors e{0,j}; by symmetry the same argument can then be used for any
e{i,j}.

We will actually construct the vectors Ej =
∑j

k=1 e{0,k}. This suffices as e{0,j} = Ej − Ej−1.
First note that e{0,1} = 1

2
(χ(∆({0}) + χ(∆({1})) − χ(∆({0, 1}))), and thus is in span(~T) as all

the vectors on the right hand side are in ~T .
Now let j > 1 and X = {1, . . . , j}, X ′ = X ∪ {0}. Then

χ(∆(X))(e)− χ(∆(X ′))(e) =

1 if e = {0, k}, k ∈ X
−1 if e = {0, k}, k ∈ X̄ ′

0 otherwise
.

Thus Ej = 1
2
(∆({0}+ χ(∆(X))− χ(∆(X ′))).

35

Theorem 44. Let n ∈ N. For any α > 1 there exists a graph G = ({0, . . . , n − 1}, w) such that
cdimα(G) =

(
n
2

)
.

Proof. We again use addition modulo n on the labels of the vertices. Let ε = 2(α − 1)/
(
n
2

)
.

Define w({i, i + 1}) = 1 for i ∈ {0, . . . , n − 1} and for any other i, j let w({i, j}) = ε. Let
G = ({0, . . . , n − 1}, w). Thus G is the graph of the cycle Cn with edges of weight ε added
between all pairs of vertices that are not adjacent in the cycle. The weight of a minimum cut of G
is at least that of Cn, which is 2, as adding edges cannot decrease the weight of a cut. Further, if
X is the shore of a minimum cut in Cn then in the graph G we have w(∆(X)) ≤ 2 +

(
n
2

)
ε = 2α,

as the weight is at most its weight in Cn plus the weight of all added edges. Thus ∆(X) is an
α-near-mincut in G and cdimα(G) is at least

(
n
2

)
by Lemma 43. It also clearly cannot be larger

than
(
n
2

)
and so the theorem is proved.

Acknowledgments
Troy Lee is supported in part by the Australian Research Council Grant No: DP200100950. Re-
search at CQT is funded by the National Research Foundation, the Prime Minister’s Office, and
the Ministry of Education, Singapore under the Research Centres of Excellence programme’s re-
search grant R-710-000-012-135. In addition, this work has been supported in part by the Quan-
tERA ERA-NET Cofund project QuantAlgo and the ANR project ANR-18-CE47-0010 QUDATA.
Tongyang Li is supported by the ARO contract W911NF-17-1-0433, NSF grant PHY-1818914,
and an NSF QISE-NET Triplet Award (grant DMR-1747426).

References
[ACK20] Sepehr Assadi, Deeparnab Chakrabarty, and Sanjeev Khanna. Graph connectivity and

single element recovery via linear and OR queries. CoRR, abs/2007.06098, 2020.

[BFS86] László Babai, Peter Frankl, and Janos Simon. Complexity classes in communication
complexity theory (preliminary version). In 27th Annual Symposium on Foundations
of Computer Science, Toronto, Canada, 27-29 October 1986, pages 337–347, 1986.

[BG08] András A. Benczúr and Michel X. Goemans. Deformable polygon representations
and near-mincuts. In Martin Grøtschel and Gyula O. H. Katona, editors, Building
Bridges: Between Mathematics and Computer Science, volume 19 of Bolyai Society
Mathematical Studies, pages 103–135. Springer, 2008.

[Bix75] R. E. Bixby. The minimum number of edges and vertices in a graph with edge con-
nectivity n and m n-bonds. Netw., 5(3):253–298, July 1975.

[CR04] L. Sunil Chandran and L. Shankar Ram. On the number of minimum cuts in a graph.
SIAM J. Discret. Math., 18(1):177–194, 2004.

36

[DKL76] Efim A. Dinitz, Alexander V. Karzanov, and Michael V. Lomonosov. On the structure
of the system of minimum edge cuts of a graph. Studies in discrete optimization,
1976.

[FF09] Tamás Fleiner and András Frank. A quick proof for the cactus representation of
mincuts. EGRES Quick Proof, 2009-03, 2009.

[GMW20a] Pawel Gawrychowski, Shay Mozes, and Oren Weimann. Minimum cut in
O(m log2 n) time. In Artur Czumaj, Anuj Dawar, and Emanuela Merelli, editors,
47th International Colloquium on Automata, Languages, and Programming, ICALP
2020, July 8-11, 2020, Saarbrücken, Germany (Virtual Conference), volume 168 of
LIPIcs, pages 57:1–57:15. Schloss Dagstuhl - Leibniz-Zentrum für Informatik, 2020.

[GMW20b] Pawel Gawrychowski, Shay Mozes, and Oren Weimann. A note on a recent algorithm
for minimum cut. In Proceedings of the 2021 SIAM Symposium on Simplicity in
Algorithms, SOSA 2021, January 11-12, 2021, pages 74–79. SIAM, 2021.

[GNT20] Mohsen Ghaffari, Krzysztof Nowicki, and Mikkel Thorup. Faster algorithms for edge
connectivity via random 2-out contractions. In Shuchi Chawla, editor, Proceedings
of the 2020 ACM-SIAM Symposium on Discrete Algorithms, SODA 2020, Salt Lake
City, UT, USA, January 5-8, 2020, pages 1260–1279. SIAM, 2020.

[Goe06] Michel X. Goemans. Minimum bounded degree spanning trees. In 47th Annual IEEE
Symposium on Foundations of Computer Science (FOCS 2006), 21-24 October 2006,
Berkeley, California, USA, Proceedings, pages 273–282. IEEE Computer Society,
2006.

[GPRW20] Andrei Graur, Tristan Pollner, Vidhya Ramaswamy, and S. Matthew Weinberg. New
query lower bounds for submodular function minimization. In Thomas Vidick, editor,
11th Innovations in Theoretical Computer Science Conference, ITCS 2020, January
12-14, 2020, Seattle, Washington, USA, volume 151 of LIPIcs, pages 64:1–64:16.
Schloss Dagstuhl - Leibniz-Zentrum für Informatik, 2020.

[GR95] Michel X. Goemans and V. S. Ramakrishnan. Minimizing submodular functions over
families of sets. Comb., 15(4):499–513, 1995.

[Har08] Nicholas J. A. Harvey. Matchings, matroids and submodular functions. PhD thesis,
Massachusetts Institute of Technology, Cambridge, MA, USA, 2008.

[HMT88] András Hajnal, Wolfgang Maass, and György Turán. On the communication com-
plexity of graph properties. In Proceedings of the 20th Annual ACM Symposium on
Theory of Computing, May 2-4, 1988, Chicago, Illinois, USA, pages 186–191, 1988.

[HRW20] Monika Henzinger, Satish Rao, and Di Wang. Local flow partitioning for faster edge
connectivity. SIAM J. Comput., 49(1):1–36, 2020.

37

[HW96] Monika Rauch Henzinger and David P. Williamson. On the number of small cuts in
a graph. Inf. Process. Lett., 59(1):41–44, 1996.

[Jai01] Kamal Jain. A factor 2 approximation algorithm for the generalized Steiner network
problem. Comb., 21(1):39–60, 2001.

[Kar93] David R. Karger. Global min-cuts in RNC, and other ramifications of a simple
min-cut algorithm. In Vijaya Ramachandran, editor, Proceedings of the Fourth An-
nual ACM/SIGACT-SIAM Symposium on Discrete Algorithms, 25-27 January 1993,
Austin, Texas, USA, pages 21–30. ACM/SIAM, 1993.

[Kar00] David R. Karger. Minimum cuts in near-linear time. J. ACM, 47(1):46–76, 2000.

[KT19] Ken-ichi Kawarabayashi and Mikkel Thorup. Deterministic edge connectivity in
near-linear time. J. ACM, 66(1):4:1–4:50, 2019.

[KV18] Bernhard Korte and Jens Vygen. Combinatorial Optimization: Theory and Algo-
rithms. Springer, 2018.

[Lov93] László Lovász. Combinatorial problems and exercises (2. ed.). North-Holland, 1993.

[MN20] Sagnik Mukhopadhyay and Danupon Nanongkai. Weighted min-cut: sequential, cut-
query, and streaming algorithms. In Proceedings of the 52nd Annual ACM SIGACT
Symposium on Theory of Computing, STOC 2020, Chicago, IL, USA, June 22-26,
2020, pages 496–509, 2020.

[NNI97] Hiroshi Nagamochi, Kazuhiro Nishimura, and Toshihide Ibaraki. Computing all small
cuts in an undirected network. SIAM J. Discret. Math., 10(3):469–481, 1997.

[RSW18] Aviad Rubinstein, Tselil Schramm, and S. Matthew Weinberg. Computing exact min-
imum cuts without knowing the graph. In 9th Innovations in Theoretical Computer
Science Conference, ITCS 2018, January 11-14, 2018, Cambridge, MA, USA, pages
39:1–39:16, 2018.

A Jain’s spanning lemma
In this appendix we prove Lemma 19. The proof uses the following key property of mincuts which
goes back at least to work of Dinitz, Karzanov, and Lomonosov [DKL76].

Proposition 45 ([DKL76] “Lemma on a quadrangle”). Let G = (V,w) be a graph. For any
crossing mincuts ∆(X),∆(Y) of G it holds that

χ(∆(X)) + χ(∆(Y)) = χ(∆(X ∩ Y)) + χ(∆(X ∪ Y)) .

38

Proof. If ∆(X),∆(Y) cross then ∆(X ∩ Y),∆(X ∪ Y) are mincuts of G by Claim 5. Further, by
counting the number of times an edge appears on each side it can be seen (eg. Ex. 6.48 in [Lov93])
that

χ(∆(X)) + χ(∆(Y)) = χ(∆(X ∩ Y)) + χ(∆(X ∪ Y)) + 2χ(E(X − Y, Y −X)) . (11)

Let the minimum cut value of G be λ. Let m be the number of edges in G and ~w ∈ Rm be the
positive vector resulting from restricting w to the edges of G. The inner product of ~w with the left
hand side of Eq. (11) is 2λ, and with the righthand side is 2λ+ 2〈~w, χ(E(X − Y, Y −X))〉. Thus
〈~w, χ(E(X − Y, Y −X))〉 = 0, which implies χ(E(X − Y, Y −X)) = 0 since ~w is positive and
χ(E(X − Y, Y −X)) is nonnegative.

Jain’s proof uses the technique of combinatorial uncrossing. Recall the definition of overlapG(X)
from Definition 28. A key to the proof is the following simple lemma about overlapG(X).

Lemma 46 ([Jai01]). Let F ⊆ 2V be a set family closed under overlaps and G ⊆ F be a maximal
laminar subset of F . Then for any X ∈ F − G and Y ∈ overlapG(X)

overlapG(X ∩ Y) ⊂ overlapG(X) (12)
overlapG(X ∪ Y) ⊂ overlapG(X) . (13)

Proof. In the following we always refer to overlap(X) with respect to G and drop the subscript.
We first show Eq. (12). First note that Y ∈ overlap(X)− overlap(X ∩ Y). Thus to show Eq. (12)
it suffices to show overlap(X ∩ Y) ⊆ overlap(X). Let W ∈ overlap(X ∩ Y). We want to show
that W ∈ overlap(X), i.e. that it cannot be the case that W ⊆ X,X ⊆ W , or X ∩W = ∅. We
know that the last one cannot hold because W ∈ overlap(X ∩ Y) implies W ∩ (X ∩ Y) 6= ∅.

Also as W,Y ∈ G they do not overlap and thus either Y ⊆ W,W ⊆ Y , or Y ∩ W = ∅.
Again the last one cannot hold as W ∩ (X ∩ Y) 6= ∅. The following table shows that assuming
W 6∈ overlap(X) leads to a contradiction in all 4 remaining cases.

Y ⊆ W W ⊆ Y

W ⊆ X
Y ⊆ X

Y 6∈ overlap(X)
W ⊆ X ∩ Y

W 6∈ overlap(X ∩ Y)

X ⊆ W
X ∩ Y ⊆ W

W 6∈ overlap(X ∩ Y)
X ⊆ Y

Y 6∈ overlap(X)

We now show Eq. (13), which follows similarly. Again Y ∈ overlap(X) − overlap(X ∪ Y)
thus it suffices to show overlap(X ∪ Y) ⊆ overlap(X). Let W ∈ overlap(X ∪ Y). We want to
show that W ∈ overlap(X), i.e. that is not the case that either W ∩X = ∅, X ⊆ W , or W ⊆ X .
We cannot haveW ⊆ X because this meansW ⊆ X∪Y which contradictsW ∈ overlap(X∪Y).
As W,Y ∈ G they do not overlap, so we also know either Y ⊆ W,W ∩ Y = ∅, or W ⊆ Y . The
last one again cannot hold as it implies W ⊆ X ∪ Y . The following table shows that assuming
W 6∈ overlap(X) leads to a contradiction in the remaining 4 cases.

39

Y ⊆ W W ∩ Y = ∅

X ⊆ W
X ∪ Y ⊆ W

W 6∈ overlap(X ∪ Y)
X ∩ Y = ∅

Y 6∈ overlap(X)

X ∩W = ∅ Y ∩X = ∅
Y 6∈ overlap(X)

W ∩ (X ∪ Y) = ∅
W 6∈ overlap(X ∪ Y)

We are now ready to show the key lemma of Jain.

Lemma 19 ([Jai01]). Let G = (V,w) be a graph and L ⊆ M(G) be a maximal cross-free family
of mincuts. Then span(~L) = span(~M(G)).

Proof. It is clear that span(~L) ⊆ span(~M(G)) so we focus on the other direction.
Let F be the beach of M(G). By Claim 5 F is closed under overlaps. Let G ⊆ F be the

beach of L. As L is a maximal cross-free subset ofM(G) it follows that G is a maximal laminar
subset of F . Thus |overlapG(X)| ≥ 1 for all X ∈ F − G. In the following we will always refer to
overlap(X) with respect to G and drop the subscript.

Suppose for a contradiction that span(~L) is a strict subset of span(~M(G)). Let

X = argmin
Z∈F−G

{|overlap(Z)| : χ(∆(Z)) 6∈ span(~L)} .

As overlap(X) ≥ 1, let Y ∈ overlap(X). By Lemma 46

|overlap(X ∩ Y)| < |overlap(X)| (14)
|overlap(X ∪ Y)| < |overlap(X)| . (15)

By the definition of X , and as F is closed under overlaps, we must have χ(∆(X ∩ Y)), χ(∆(X ∪
Y)) ∈ span(~L). Also as Y ∈ G we have χ(∆(Y)) ∈ ~L which implies by Proposition 45 that

χ(∆(X)) = χ(∆(X ∩ Y)) + χ(∆(X ∪ Y))− χ(∆(Y)) .

This implies χ(∆(X)) ∈ span(~L), a contradiction.

40

	Introduction
	Techniques
	Open Problems
	Organization

	Preliminaries
	Graphs, cuts, sets
	Operations on graphs
	Query models

	Lower bounds on the linear query complexity of MINCUT
	The cut dimension is at most 2n-3
	Cardinality of a cross-free family of cuts
	Spanning

	Explicit construction of graphs with cut dimension 2n-3
	Tree representation
	Linear independence
	Constructing graphs with a cross-free set of mincuts

	Another proof using graph operations
	Two lemmas on graph operations
	The upper bound
	The lower bound
	On the tightness of lem:crosslessB

	1-approximate cut dimension
	1-approximate cut dimension of K4
	Direct union of K4 with itself

	The dimension of approximate mincuts
	Jain's spanning lemma

