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Abstract

Let G be an n-vertex graph with m edges. When asked a subset S of vertices, a cut query on
G returns the number of edges of G that have exactly one endpoint in S. We show that there is a
bounded-error quantum algorithm that determines all connected components of G after making
O(log(n)6) many cut queries. In contrast, it follows from results in communication complexity
that any randomized algorithm even just to decide whether the graph is connected or not must
make at least Ω(n/ log(n)) many cut queries. We further show that with O(log(n)8) many cut
queries a quantum algorithm can with high probability output a spanning forest for G.

En route to proving these results, we design quantum algorithms for learning a graph using
cut queries. We show that a quantum algorithm can learn a graph with maximum degree d
after O(d log(n)2) many cut queries, and can learn a general graph with O(

√
m log(n)3/2)

many cut queries. These two upper bounds are tight up to the poly-logarithmic factors, and
compare to Ω(dn) and Ω(m/ log(n)) lower bounds on the number of cut queries needed by a
randomized algorithm for the same problems, respectively.

The key ingredients in our results are the Bernstein-Vazirani algorithm, approximate count-
ing with “OR queries”, and learning sparse vectors from inner products as in compressed sens-
ing.
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1 Introduction
The cut and additive functions of an n-vertex undirected graph G = (V,E) are c : 2V → N
defined as c(S) = |E(S, V \ S)|, and a : 2V → N defined as a(S) = |E(S, S)|, where E(S, T )
is the set of edges between sets S, T ⊆ V . In this paper we study quantum algorithms for several
graph problems when the algorithm has oracle access to a cut or additive function for the graph.
In particular, we look at the problems of learning all the edges of a graph, determining if the graph
is connected, outputting a spanning tree, and determining properties of the graph such as if it is
bipartite or acyclic.

Motivation to study algorithms with cut or additive query access comes from at least two dif-
ferent sources. Algorithms with a cut oracle have been studied for computing the minimum cut of
a graph [RSW18, MN20], and the study of graph algorithms with an additive oracle began in con-
nection with an application to genomic sequencing [GK98, ABK+04]. We describe the previous
works on these topics and their connection to our results in turn.

Rubinstein et al. [RSW18] give a randomized algorithm that exactly computes the size of a
minimum cut in an n-vertex unweighted and undirected graph with Õ(n) many cut queries 1.
More recently, [MN20] generalizes this result to also give a randomized Õ(n) cut query algorithm
to exactly compute the size of a minimum cut in a weighted and undirected graph. These results are
tight up to the polylogarithmic factors. As observed by Harvey [Har08], known lower bounds on
the communication complexity of determining if a graph is connected—when divided by log(n),
the number of bits needed to communicate the answer of a cut query—give lower bounds on the
number of cut queries needed by an algorithm to solve connectivity, and thus also min-cut. It is
known that the deterministic communication complexity of connectivity is Ω(n log(n)) [HMT88]
and the randomized communication complexity is Ω(n) [BFS86], which gives the tightness of the
upper bounds for the cut query complexity claimed above.

Computing the minimum cut with a cut oracle is a special case of the problem of submodular
function minimization with an evaluation oracle. For an n-element set Ω, a function f : 2Ω → R
is submodular if it satisfies f(S ∩ T ) + f(S ∪ T ) ≤ f(S) + f(T ) for all S, T ⊆ Ω. As the truth
table of f is exponentially large in n, submodular functions are often studied assuming access to an
evaluation oracle for f , which for any S ⊆ Ω returns f(S). The submodular function minimization
problem is to compute minS⊆Ω f(S). The cut function is a submodular function, thus computing
the minimum cut of a graph with a cut oracle is a special case of this problem 2. The ellipsoid
method was originally used to show that submodular function minimization in general can solved
in polynomial time with an evaluation oracle [GLS81, GLS88], and the current record shows that
this can be done withO(n3) many calls of the evaluation oracle [Jia20], improving on the bound of
Õ(n3) by Lee, Sidford, and Wong [LSW15]. If M = maxA⊆V |f(A)| then the current best known
weakly polynomial algorithm makesO(n2 log(nM)) many queries [LSW15], and the best pseudo-
polynomial time algorithm makesO(nM3 log(n)) many queries [CLSW17]. The best lower bound
on the number of evaluation oracle queries required to find the minimum value of a submodular

1The Õ() notation hides polylogarithmic factors in n.
2The cut function is a symmetric submodular function, c(S) = c(V \S). For symmetric submodular functions the

minimization problem becomes to find a non-trivial minimizer ∅ ⊂ S ⊂ V .
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function is Ω(n) for deterministic algorithms and Ω(n/ log(n)) for randomized algorithms, coming
from the above mentioned communication bounds on determining if a graph is connected.

Quantum algorithms for submodular function minimization have been studied for approximat-
ing minS⊆Ω f(S) [HRRS19]. For the problem of exact minimization no quantum algorithm has
been considered. Here we study the problem which is the source of the best known classical lower
bounds on submodular function minimization, the problem of determining if a graph is connected
with a cut oracle. For this special case, we show that there is a surprisingly efficient quantum
algorithm: we give a quantum algorithm that determines if a graph is connected or not with high
probability after O(log(n)6) many cut queries (Theorem 44). With the same number of queries
the algorithm can output the connected components of the graph, and can be extended to output a
spanning forest after O(log(n)8) many cut queries (Theorem 51). We leave deciding if minimum
cut can also be computed by a quantum algorithm with a polylogarithmic number of cut queries as
a tantalizing open problem.

Additive queries were originally defined because of an application to genomic sequencing.
One technique for sequencing a genome is to first use shotgun sequencing to come up with random
segments of DNA called contigs. To complete the sequencing of the genome it remains to fill the
gaps between the contigs, and thus also figure out how the contigs are connected to one another.
This can be done through polymerase chain reaction (PCR) techniques. To do this, one makes
primers, short sequences that pair to the end of a contig. When two contigs are connected by a
gap and the primers for each end of this gap are placed in solution with them, the PCR technique
can connect the contigs by filling in the gap of base pairs between them. If there are n contigs, the
process of putting separately all pairs of primers together with them to find the contigs connected
together can take

(
n
2

)
PCR experiments. This complexity led to the development of multiplex

PCR, where one places many primers together with the contigs at once. The algorithmic question
becomes, what is the best way to add primers to the contigs in order to fill all gaps between contigs
while minimizing the number of multiplex PCR assays?

Grebinski and Kucherov nicely formalize this algorithmic problem in the language of graph
theory [GK98]. They give several possible models, depending on exactly what information one
assumes to learn from a multiplex PCR assay. The additive query arises if one assumes that when
primers are placed together with contigs, one can read from the result the number of contigs that
were paired. A weaker model only assumes that when primers are placed together with contigs,
one learns whether or not there is a pairing of contigs. In this model, when one queries a subset of
vertices S, one learns whether or not |E(S, S)| > 0. We call these empty subgraph queries.

In the genomic sequencing application, the primary goal is to learn all the edges in the graph.
Furthermore, for this application the graph is guaranteed to have degree at most 2. Grebinski
and Kucherov [GK98] show that a Hamiltonian cycle can be learned by a randomized algorithm
with O(n log n) many empty subgraph queries, and [ABK+04] gives a nonadaptive randomized
algorithm to learn a matching with O(n log n) many empty subgraph queries. After these works,
the complexity of learning general weighted graphs with additive queries was also extensively
studied [GK00, CK10, Maz10, BM10, BM11]. Notable results are that a graph of maximum
degree d can be learned with O(dn) many additive queries [GK00], and that an m-edge graph can
be learned with O(m logn

logm
) many additive queries [CK10, BM11]. Both of these results are tight up
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to a logarithmic factor in n.
We show the additive quantum query complexity of learning a graph with maximum degree d is

Θ(d log(n/d)) (see Corollary 27 and Corollary 34), and that a graph with m edges can be learned
after O(

√
m log n + log(n)) many cut queries (see Corollary 27), which is tight up to logarithmic

factors (see Corollary 33). It is straightforward to show that a cut query can be simulated by 3 ad-
ditive queries. Somewhat surprisingly, we show that in general for weighted graphs simulating an
additive query can require Ω(n) many cut queries (see Theorem 26). Nonetheless, our algorithms
for learning graphs can also be made to work with cut queries, at the expense of an additional mul-
tiplicative logarithmic factor. The quantum algorithm for efficiently learning a low degree graph
with cut queries is a key subroutine in our algorithm for connectivity.

1.1 Our techniques
We begin by giving an overview of our quantum algorithm for learning a graph of maximum degree
d. The high level idea follows the O(dn) classical algorithm given in [GK00]. The starting point is
the basic principle of compressed sensing: a sparse vector can be learned from its dot product with
a few random vectors. Say y ∈ {0, 1}n has at most d ones. With high probability, we can learn y
from the values of xT1 y, . . . , x

T
k y for k = 3d log n where each xi ∈ {0, 1}n is chosen randomly (see

Lemma 1). Moreover, this algorithm is non-adaptive, thus given a matrix Y ∈ {0, 1}n×n where
each column has at most d ones, we can learn Y with high probability from the product XY where
X ∈ {0, 1}k×n is chosen randomly with k = 3d log n. We can apply this principle to learn the
adjacency matrix AG of a graph G of maximum degree d.

Classically, a single product xTAG can be computed with O(n) cut queries. We will show how
to use the Bernstein-Vazirani algorithm [BV97], to compute xTAG with a constant number of cut
queries, provided the graph G is bipartite. We can then apply this to learn a general graph G as
the complete graph can be covered by O(log n) many complete bipartite graphs. This leads to an
overall complexity of Õ(d) many cut queries.

These results can be phrased more generally in terms of learning an m-by-n matrix A when
given the ability to query xTAy for Boolean vectors x ∈ {0, 1}m, y ∈ {0, 1}n. We call such queries
matrix cut queries, and they provide a very clean way of formulating our results 3 Such queries are
also used in the classical learning results [GK00, Maz10, BM11], and we find it useful to make
them explicit here.

Our algorithm for connectivity is a contraction based algorithm. If we find an edge between
vertices u and v, we can merge u and v into a single vertex without changing the connectivity of
the graph. More generally, if we know that a set S1 of vertices is connected, and a disjoint set S2

of vertices is connected, and we learn that there is an edge between a vertex in S1 and a vertex in
S2, we can merge S1 and S2 without changing the connectivity of the graph.

Our algorithm for connectivity proceeds in rounds, and maintains the invariant of having a par-
tition of the vertex set V into sets S1, . . . , Sk, each of which is known to be connected. We call

3We term these matrix cut queries because of the relation to the cut norm of a matrix A, defined as
maxx∈{0,1}m,y∈{0,1}n |xTAy|. The cut norm played a crucial role in the matrix decomposition results of [FK99]
used for efficient approximation algorithms for maximum cut and other graph problems.
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such sets Si supervertices, and the number of Sj such that there is an edge between a vertex in Si
and a vertex in Sj the superdegree of Si. A round proceeds by first in parallel approximating the
superdegree of each Si. For this we use ideas originating with Stockmeyer [Sto83] for approxi-
mately counting the number of ones in a vector y ∈ {0, 1}n with OR queries, queries that for a
subset S ⊆ {1, . . . , n} answer 1 iff there is an i ∈ S with yi = 1. We show that we can efficiently
simulate the OR queries needed in the context of approximating the superdegree by cut queries.
For supervertices whose superdegree is below a threshold—taken to be Θ(log(n)2)—we learn all
of their superneighbors with polylogarithmically many cut queries using our techniques for learn-
ing a matrix with sparse columns. To take care of the supervertices with superdegree above the
threshold, we randomly sample k/2 many of the Sj . With high probability every high superdegree
supervertex will be connected to at least one Sj in the sample set, and moreover we show that we
can learn edges witnessing this fact with polylogarithmically many cut queries. We then contract
the supervertices according to all the edges learned in the round, and show that we either learn that
the graph is disconnected or arrive at a new partition of V into at most k/2 many connected sets.
In this way, the algorithm terminates in at most O(log n) many rounds, and as each round uses
polylogarithmically many cut queries we arrive at the polylogarithmic complexity.

1.2 Related work
As far as we are aware, ours is the first work studying quantum algorithms using a cut or ad-
ditive query oracle. Quantum algorithms for graph problems typically use the adjacency matrix
or adjacency list input model. Early work [DHHM06, SYZ04, Zha05] gives tight bounds for
many graph problems in these models. For example, it is shown in [DHHM06] that the quan-
tum query complexity of connectivity is Θ(n3/2) in the adjacency matrix model and Θ(n) in
the adjacency list model, the quantum query complexity of minimum spanning tree is Θ(n3/2)
in the adjacency matrix model and Θ(

√
nm) in the adjacency list model, for a graph with m

edges. Focusing on the adjacency matrix model, the quantum query complexity of Bipartite-
ness and of Graph Matching is Ω(n3/2) [Zha05], and that of Scorpion graph is Θ̃(

√
n) , which

is the lowest possible quantum query complexity for total graph properties [SYZ04]. Also see
[MSS07, Bel12, JKM13, LMS17, Gal14] for triangle finding, [CK12] for general graph minor-
closed graph properties, and [BCG+20] for discussions on partial graph properties.

In the time complexity model, recent work of Apers and de Wolf [AdW19] shows that a cut
of size at most (1 + ε)-times that of the minimum cut can be found in time Õ(

√
mn/ε) given

adjacency list access to the graph. Their work more generally shows that an ε-cut sparsifier of a
graph with Õ(n/ε2) many edges can be found in time Õ(

√
mn/ε). Originally defined in [BK96],

an ε-cut sparsifier of a graph G is a reweighted subgraph H such that the value of every cut in H
is a multiplicative (1 + ε)-approximation of the corresponding cut value in G.

In the classical setting, a recent work [RWZ20] studies a generalization of matrix cut queries
where for a fixed field F one can access an input matrix A ∈ Fm×n through queries of the form
xTAy for x ∈ Fm, y ∈ Fn. They examine the complexity of an assortment of problems from graph
theory, linear algebra, and statistics in this model.
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1.3 Organization
The rest of the paper is organized as follows. In Section 2, we set up the model and notation,
and give some algorithmic ingredients such as degree estimation by OR queries, and a quantum
primitive of vector learning that is used a number of times in later sections. In Section 3 and
Section 4 we introduce several oracles for accessing a matrix or a graph, and discuss their relative
powers. Some intermediate results built on these oracles will be presented, which lead to the
cut oracle algorithms in the next sections: Section 5 for computing connected components by
O(log(n)6) queries, and Section 6 for computing spanning forest by O(log(n)8) cut queries. Two
applications of the latter algorithm will also be given, which test if a graph is bipartite or acyclic,
also with O(log(n)8) many cut queries. The paper concludes with several open problems.

2 Preliminaries and primitives
For a positive integer M , we denote {0, 1, 2, . . . ,M − 1} by [M ]. For two vectors X, Y ∈ [M ]k,
we denote their dot product over the integers byX ·Y =

∑k
i=1XiYi. For a set S ⊆ {1, . . . ,M} we

denote the complement of S by S̄. For a set U , we let Ũ = {{u} : u ∈ U}. For a string x ∈ {0, 1}n
we use |x| for the Hamming weight of x, i.e. the number of ones. Let ORn : {0, 1}n → {0, 1}
denote the OR function, i.e. the function such that ORn(x) = 1 iff |x| > 0. Let MAJn : {0, 1}n →
{0, 1} denote the Majority function, i.e. the function such that MAJn(x) = 1 iff |x| ≥ dn/2e.
When the input length is clear from context we will drop the subscript.

In pseudocode for our algorithms we will use some Matlab-like notation. We use zeros(k, `)
and ones(k, `) to denote the k-by-` all zeros matrix and all ones matrix, respectively. For M a
k-by-` matrix and H ⊆ {1, . . . , k}, R ⊆ {1, . . . , `} we use M(H,R) to refer to the |H|-by-|R|
submatrix ofM given by selecting the rows ofM inH and columns ofM inR. We will further use
the shorthand M(i : j, k : `) for M(H,R) where H = {i, i+ 1, . . . , j} and R = {k, k + 1, . . . , `}.
To denote the ith column of M we will use M(:, i). Similarly for a vector x ∈ Rk, we use
x(H) ∈ R|H| to denote the vector formed by selecting the coordinates in H . For column vectors
x ∈ Rk, y ∈ R` we use [x; y] ∈ Rk+` for the column vector formed by vertically concatenating
them. For a vector x ∈ Rk and d ≤ k, we say that x is d-sparse if at most d coordinates in x are
nonzero. We use `0(x) to denote the sparsity, i.e. the number of nonzero entries, of vector x.

We will frequently encounter the situation where we have a set S = {S1, . . . , Sk} and take a
subset H ⊆ S where H = {Si1 , . . . , Sit}. We use ind(H) = {i1, . . . , it} to return the indices of
the elements in H .

Lemma 1. Let r,M, d be positive integers with M ≥ 2 and d ≤ r/2. Let N ≤ d
(
r
d

)
Md be the

number of d-sparse strings in [M ]r. Let A be an N -by-r matrix whose rows are all the d-sparse
strings in [M ]r. Let R be a random r-by-q Boolean matrix, with each entry chosen independently
and uniformly from {0, 1}. If q = d2d log(eMr/d) + 2 log(d) + log(1/δ)e then AR mod M will
have distinct rows with probability at least 1− δ.
Proof. Let Ai, Aj be two different rows of A. Then for a random vector z ∈ {0, 1}r, Prz[Aiz mod
M = Ajz mod M ] ≤ 1/2. Therefore PrR[AiR mod M = AjR mod M ] ≤ 1/2q. The result
follows by a union bound over the

(
N
2

)
pairs of distinct rows.
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Definition 2 (OR query). For x ∈ {0, 1}` and S ⊆ {1, . . . , `} an OR query OR(x, S) returns
∨i∈Sxi. For strings x(1), . . . , x(k) ∈ {0, 1}` and a subset S ⊆ {1, . . . , `}, a k-OR query returns the
string a ∈ {0, 1}k where ai = OR(xi, S).

The problem of estimating the Hamming weight of a string x using OR queries was considered
in the seminal work of Stockmeyer [Sto83]. We recount his basic analysis here, modifying it for
our application of using k-OR queries to estimate the Hamming weight of x(1), . . . , x(k) in parallel.

Fact 3. For all x ≥ 1 (
1− 1

x

)x
<

1

e
<

(
1− 1

x

)x−1

Definition 4. Let x ∈ {0, 1}`. An r-out-of-` sample consists of uniformly at random choosing r
many elements of {1, . . . , `} with replacement. An r-test consists of taking an r-out-of-` sample
S and querying OR(x, S). When OR(x, S) = 1, we say that the r-test S succeeds.

Lemma 5. Let x ∈ {0, 1}` and suppose that |x| = t. The probability that an r-test S succeeds is

Pr
S

[OR(x, S) = 1] = 1−
(

1− t

`

)r
,

where the probability is taken over the choice of an r-out-of-` sample S. In particular,

1− exp

(
−rt
`

)
< Pr

S
[OR(x, S) = 1] < 1− exp

(
− rt

`− t

)
Proof. As S is chosen with replacement, the probability that any element i ∈ S satisfies xi = 1
is exactly t

`
. The first statement follows accordingly. The second statement follows by applying

Fact 3 to the first statement.

Definition 6 (Good estimate). We say that b ∈ Rk is a good estimate of c ∈ Rk if b(i)/4 ≤ c(i) ≤
2b(i) for all i ∈ {1, . . . , k}.

Next we see how to use k-OR queries to estimate the Hamming weights of k given strings.

Lemma 7. Let x(1), . . . , x(k) ∈ {0, 1}`. Taking a = 200
⌈
log
(
k(dlog `e+1)

δ

)⌉
, Algorithm 1 outputs

a vector b that is a good estimate of (|x(1)|, . . . , |x(k)|) with probability at least 1− δ after making
O
(

(log(`) + 1) log
(
k(log(`)+1)

δ

))
many k-OR queries.

Proof. First we argue about the complexity. There are dlog `e + 1 iterations of the outer for loop,
and inside the loop we make a many k-OR queries. Thus the total number of k-OR queries is

O(a(log(`) + 1)) = O

(
(log(`) + 1) log

(
k(log(`) + 1)

δ

))
.
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Algorithm 1 Approximate Count(δ)
Input: k-OR oracle for strings x(1), . . . , x(k) ∈ {0, 1}`, error bound δ
Output: A vector b ∈ Rk that is a good estimate of (|x(1)|, . . . , |x(k)|) with probability 1− δ.

1: a← 200
⌈
log
(
k(dlog `e+1)

δ

)⌉
2: for j = 0 to dlog `e do
3: for q = 1 to a do
4: Sq ← randomly choose min(2j, `) many elements from {1, . . . , `} with replacement
5: ansq ← (OR(x(1), Sq), . . . ,OR(x(k), Sq))
6: end for
7: for i = 1 to k do
8: B(i, j)← MAJ(ans1(i), . . . , ansa(i))
9: end for

10: end for
11: for i = 1 to k do
12: s← argminj{B(i, j) = 1}
13: b(i)← `

2s

14: end for

Now we argue about the error probability. Fix some x(i), which will henceforth be called x.
Say the estimate the algorithm gives for |x| is α. We will upper bound the probability that α is a
bad estimate for |x|, and then use a union bound over the k many strings to get the final result.

Suppose that r = 2j is such that r ≥ `/|x|. Then if S is a r-out-of-` sample, by Lemma 5

Pr
S

[OR(x, S) = 1] > 1− exp

(
−r|x|

`

)
≥ 1− 1

e
> 0.6 .

Thus by a Chernoff bound, the probability that the majority of a many r-tests is 0 is at most
exp(−a/200). As the algorithm must perform an r-test for an r satisfying `/|x| ≤ r ≤ 2`/|x|, this
means our estimate α will satisfy |x| ≤ 2α, except with probability at most exp(−a/200).

To bound the probability that our estimate is too large, we first need to treat the special case
where |x| ≥ `/2. In this case, the probability that the majority of a many 2-tests is 1 is at least
1− exp(−a/200). The algorithm is therefore correct in this case with at least this probability as it
outputs a valid answer if either a majority of 1-tests or a 2-tests succeeds.

For the remainder of the proof, therefore, we assume that |x| < `/2. Suppose that r = 2j is
such that `/r > 4|x|. Then if S is an r-out-of-` sample, by Lemma 5

Pr
S

[OR(x, S) = 1] < 1− exp

(
− r|x|
`− |x|

)
≤ 1− exp

(
−2r|x|

`

)
≤ 1− exp(−1/2) ≤ 0.4 .

Thus by a Chernoff bound, the probability that the majority of a many r-tests is 1 is at most
exp(−a/200). By a union bound, the probability that an r-test will be 1 for any r = 2j with
r < `/(4|x|) is at most dlog `e exp(−a/200). Thus, our estimate α will satisfy α/4 ≤ |x| except
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with probability dlog `e exp(−a/200). Thus by a union bound, overall we will produce an estimate
α satisfying α/4 ≤ |x| ≤ 2α except with probability (dlog `e+ 1) exp(−a/200).

Finally, by a union bound over the k many strings the total failure probability will be at most
k(dlog `e+ 1) exp(−a/200), giving the lemma.

Lemma 8. Let x(1), . . . , x(k) ∈ {0, 1}` be such that t/8 ≤ |x(i)| ≤ 2t for all i ∈ {1, . . . , k}. For
δ > 0, sample with replacement 8` ln(k/δ)

t
elements of {1, . . . , `}, and call the resulting set R. Then

• PrR[∃i ∈ {1, . . . , k} : |x(i)(R)| = 0] ≤ δ,

• PrR[∃i ∈ {1, . . . , k} : |x(i)(R)| > 64 ln(k/δ)] ≤ δ.

Proof. Let x ∈ {0, 1}` with t/8 ≤ |x| ≤ 2t. The probability that |x(R)| = 0 is at most δ/k by
Lemma 5. Thus the first item holds by a union bound over the k many strings x(1), . . . , x(k).

For the second item, note ln(k/δ) ≤ ER[|x(R)|] ≤ 16 ln(k/δ). By a Chernoff bound, the
probability that |x(R)| is a factor c larger than its expectation is at most exp(−(c− 1) ln(k/δ)/3).
Thus taking c = 4 the probability that |x(R)| > 64 ln(k/δ) is at most δ/k. The second item then
holds by a union bound over the k many strings x(1), . . . , x(k).

Next we give our quantum primitive algorithm for learning a vector from subset sums. Note
that different than state learning in many previous work, here we aim to learn all entries of the
vector precisely and correctly. This algorithm will be repeatedly used in various forms in later
sections.

Lemma 9. Let x ∈ [M ]k and suppose we have an oracle that for any subset S ⊆ [k] returns∑
i∈S xi mod M . Then there is a quantum algorithm which learns x with m = dlog(M)e queries

without any error.

Proof. We can represent all the elements of [M ] usingm bits. We first describe how we can use the
oracle to compute t · x mod M for any t ∈ [M ]k. Let t = (t1, . . . , tk) and let ti =

∑m−1
j=0 2jti(j),

where ti(j) ∈ {0, 1}. Then

t · x mod M =
m−1∑
j=0

2j(t(j) · x mod M) mod M

where t(j) = (t1(j), t2(j), . . . , tk(j)) ∈ {0, 1}k. Now t(j) · x mod M can be computed with one
call to the oracle, thus t · x mod M can be computed with m calls to the oracle.

With a quantum algorithm we can do this in superposition over all t. Combining this with the
phase kickback trick allows us to compute the inverse quantum Fourier transform of x over (ZM)k.
Similarly to the Bernstein-Vazirani algorithm, we can then learn x by applying the quantum Fourier
transform.

More precisely, we will work with two quantum registers. In the first register we are computing
over the group (ZM)k, and in the second register over ZM . We will use in the second register the
auxiliary state

|ξM〉 =
1√
M

M−1∑
j=0

ωjM |j〉,
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where ωM is a primitive M th root of the unity. In the first register we create the uniform superpo-
sition, therefore we start with the state

1√
Mk

∑
t∈[M ]k

|t〉|ξM〉.

With m queries to the oracle we compute t · x mod M that we add to the second register, creating

1√
Mk

∑
t∈[M ]k

ω−t·xM |t〉|ξM〉.

Applying the quantum Fourier transform over (ZM)k, we can find in the first register x. Overall
the quantum algorithm uses m queries.

3 Learning a matrix
Let n be a positive integer, and V an ordered set of size n. For a subset S of V , we denote by
χS ∈ {0, 1}n is the characteristic vector of S.

Definition 10 (Matrix cut oracle). Given a matrix A ∈ Nk×`, the matrix cut oracle for A is the
function mA : {0, 1}k × {0, 1}` → N satisfying mA(x, y) = xTAy.

Lemma 11. Let α,M ∈ N and A ∈ [α]k×` be a matrix. There is a quantum algorithm making
dlog(M)e many matrix cut queries to A that perfectly computes (Ay) mod M for any y ∈ {0, 1}`.

Proof. Let S ⊆ {1, . . . , k}. For any y ∈ {0, 1}` we have
∑

i∈S(Ay)i mod M = χTSAy mod M ,
thus we can compute

∑
i∈S(Ay)i mod M with one matrix cut query. The result then follows from

Lemma 9.

Corollary 12. Let A ∈ [M ]k×`. There is a quantum algorithm that perfectly learns A after
min{k, `} · dlog(M)e many matrix cut queries.

Proof. If ` ≤ k define B = A, otherwise let B = AT . Let m = min{k, `} be the number of
columns in B. For each standard basis vector e1, . . . , em, we can learn Bei = Bei mod M with
dlog(M)e matrix cut queries by Lemma 11. This tells us the ith column of B. Thus we can learn
B entirely with m dlog(M)e many matrix cut queries.

Lemma 13. Let A ∈ [M ]k×` be a matrix with d-sparse rows. There is a quantum algorithm that
learns A with probability at least 1 − δ after making (4d dlog(M`/d)e + dlog(1/δ)e) dlog(M)e
many matrix cut queries.

Proof. If d ≥ `/2 then we use Corollary 12 to learnA perfectly with ` dlog(M)e ≤ 4d dlog(M`/d)e
many matrix cut queries.

Now assume d < `/2. By Lemma 1, taking q = 4d dlog(M`/d)e+ dlog(1/δ)e and computing
AZ mod M for a random `-by-q Boolean matrix Z allows us to learn A with probability at least
1 − δ. By Lemma 11 we can compute AZi mod M with dlog(M)e matrix cut queries, where Zi
the ith column of Z. Thus we can learn A after q dlog(M)e many matrix cut queries.
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Definition 14 (degree sequence). Let A ∈ [M ]k×` be a matrix. The degree sequence of A is the
vector x ∈ Nk such that xi is the number of nonzero entries in the ith row of A, for all i = 1, . . . , k.

Lemma 15 (Approximate degree sequence). Let M,k, ` be positive integers and A ∈ [M ]k×` be
a matrix. There is a quantum algorithm, making O(log(`M)(log(`) + 1) log(k(log(`)+1)

δ
)) many

matrix cut queries, that with probability at least 1 − δ outputs ~g ∈ Rk that is a good estimate of
the degree sequence of A. If M = 2 then there is a quantum algorithm that outputs the degree
sequence of A perfectly after dlog(`+ 1)e many matrix cut queries.

Proof. Define x(1), . . . , x(k) ∈ {0, 1}` by x(i)(j) = 1 if A(i, j) > 0 and x(i)(j) = 0 other-
wise. The degree sequence of A is then (|x(1)|, . . . , |x(k)|). We apply Lemma 7 to approximate
(|x(1)|, . . . , |x(k)|) and therefore the degree sequence of A. To do this, for a subset S ⊆ {1, . . . , `},
we need to serve the k-OR query (OR(x(1), S), . . . ,OR(x(k), S)). Let χS be the characteristic
vector of S. As the entries of A are at most M − 1 in magnitude, the entries of AχS are at
most `(M − 1). Therefore AχS = AχS mod (`(M − 1) + 1). We can thus compute AχS with
dlog((`(M − 1) + 1)e many queries by Lemma 11. Computing AχS suffices to serve the k-OR
query since (OR(x(1), S), . . . ,OR(x(k), S)) = (min{(AχS)1, 1}, . . . ,min{(AχS)k, 1}). Thus by
Lemma 7 we can output a good estimate of the degree sequence of A with probability at least 1−δ
after O

(
log(`M)(log(`) + 1) log

(
k(log(`)+1)

δ

))
many matrix cut queries.

For the case M = 2, note that the degree sequence of A is the vector A~1, where ~1 is the vector
of all ones. As the entries of A~1 are at most ` by Lemma 11 we can compute the degree sequence
with dlog(`+ 1)e many matrix cut queries.

Theorem 16. Let A ∈ [M ]k×` be a matrix with m many nonzero entries. There is a quantum
algorithm to learn A with probability at least 1− δ after making

O

(√
m log(M`) log(M) + log(`M)(log(`) + 1) log

(
k(log(`) + 1)

δ

))
many matrix cut queries. When M = 2, a better bound of O(

√
m log(`) + log(`+ 1) + log(1/δ))

many matrix cut queries holds.

Proof. First we use Lemma 15 to compute g ∈ Rk which is a good approximation of the degree
sequence of A except with probability δ/2. This takes

O

(
log(`M)(log(`) + 1) log

(
k(log(`) + 1)

δ

))
many queries. If M = 2 then we can exactly compute the degree sequence of A with dlog(`+ 1)e
many matrix cut queries. We now assume that g is a good approximation and add δ/2 to our total
error bound.

Let d ∈ N be a degree threshold that will be chosen later, and define L = {i : g(i) ≤ d} and
H = {i : g(i) > d}. As g is a good approximation of the degree sequence, rows whose indices are
in L have at most 2d nonzero entries. We use Lemma 13 to learn the submatrix A(L, 1: `) with
probability at least 1− δ/2 with O((d log(M`/d) + log(1/δ)) log(M)) many matrix cut queries.
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For each i ∈ H , the ith row of A must have at least d/4 many nonzero entries, as g is a good
approximation of the degree sequence of A. Thus |H| ≤ 4m/d. By Corollary 12 we can learn the
submatrix A(H, 1: `) with 4m dlog(M)e /d many matrix cut queries.

Setting d =
√

m
log(M`)

the total number of queries becomes

O

(√
m log(M`) log(M) + log(`M)(log(`) + 1) log

(
k(log(`) + 1)

δ

))
.

In the caseM = 2, the number of queries becomesO(
√
m log(`)+log(`+1)+log(1/δ)).

4 Learning graphs
A weighted graph is a couple G = (V,w), where V is the set of vertices, V (2) is the set of subsets
of V with cardinality 2, and w : V (2) → N is the weight function. We assume that we have
a total ordering v1 < v2 < · · · < v|V | on the elements of V . The set of edges is defined as
E = {e ∈ V (2) : w(e) > 0}, therefore weighted graphs are undirected and without self-loops.
We can also think of them as multi-graphs, where the number of edges between vertices u and v is
w({u, v}). When the range of w is {0, 1} we will call a weighted graph a simple graph, or just a
graph and denote it by G = (V,E). If G is a weighted graph on n vertices, the adjacency matrix
of G is an n-by-n matrix AG with zeros on the diagonal and AG(i, j) = w({vi, vj}), for i 6= j.
Observe that AG is a symmetric matrix.

For an edge e = {u, v}, we say that u and v are the endpoints of e. The degree deg(v) of a
vertex v is the number of edges for which v is an endpoint. For S, T ⊆ V sets of vertices, we
denote by E(S, T ) the set of edges with one endpoint in S and the other endpoint in T . (More
precisely, E(S, T ) = {e ∈ E : |e∩ (S ∪T )| = 2, |e∩S| ≥ 1, |e∩T | ≥ 1}.) We extend the weight
function w to sets of vertices S, T ⊆ V by w(S, T ) =

∑
e∈E(S,T ) w(e).

A bipartite weighted graph is a triple G = (V1, V2, w), where V1 = {v1, . . . , vk} and V2 =
{vk+1, . . . , vk+`} are the disjoint sets of respectively left and right vertices, and w : V1 × V2 → N
is the bipartite weight function. A bipartite graph G = (V1, V2, w) can of course also be viewed
as a graph G′ = (V ′, w′) with vertex set V = V1 ∪ V2, where V1 and V2 are independent sets, and
weight function w′ over V (2), where

w′({vi, vj}) =

{
0, if 1 ≤ i, j ≤ k or k + 1 ≤ i, j ≤ k + `,

w(vmin{i,j}, vmax{i,j}), otherwise .

Consistently with the general case, for V ′1 ⊆ V1 and V ′2 ⊆ V2, we extend w as w(V ′1 , V
′

2) =∑
u∈V ′1 ,v∈V ′2

w(u, v). The set of edges is defined as E = {e ∈ V1 × V2 : w(e) > 0}.
The biadjacency matrix of G is a k × ` matrix BG where BG(i, j − k) = w({vi, vj}) for

1 ≤ i ≤ k, k + 1 ≤ j ≤ k + `. Similarly to the bipartite weight function, the biadjacency
matrix BG is a condensed description of the (k + `) × (k + `) adjacency matrix AG of G, where
AG(i, j) = w′({vi, vj}), for i 6= j.
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We will look at four different oracles for accessing a graph, the matrix cut oracle, the disjoint
matrix cut oracle, the additive oracle, and the cut oracle. The comparison of their definitions and
relative power is illustrated in Fig. 1.

Definition 17 (Matrix cut oracle and disjoint matrix cut oracle for a graph). Let G = (V,w) be a
weighted graph. The matrix cut oracle for G is the matrix cut oracle for the adjacency matrix AG
of G. The disjoint matrix cut oracle for G is the matrix cut oracle for G with the restriction that it
can only be queried on strings x, y ∈ {0, 1}|V |, where xiyi = 0, for all 1 ≤ i ≤ n.

If we consider the strings x, y ∈ {0, 1}|V | as characteristic vectors of the sets X, Y ⊆ V , the
restriction on the domain of the disjoint matrix cut oracle is that it is only defined if X ∩ Y = ∅,
which explains its name.

Beside the matrix oracles we will look at two more oracle models for accessing a graph, the
additive oracle and the cut oracle.

Definition 18 (Additive oracle). Let G = (V,w) be a weighted graph. The additive oracle a :
[2]V → N returns a(S) =

∑
{u,v}∈S(2) w({u, v}) for any subset S ⊆ V .

Definition 19 (Cut oracle). Let G = (V,w) be a weighted graph. The cut oracle c : [2]V → N
returns c(S) = w(S, V \ S) for any subset S ⊆ V .

Learning graphs with an additive oracle have been extensively studied in the classical case
[GK98, GK00, ABK+04, Maz10, BM10, BM11]. For their proofs many of these papers actually
work with matrix cut queries, and we find it useful to explicitly define these here. The cut oracle
has also been studied in the classical case in the context of computing the minimum cut of a graph
[RSW18, MN20]. We see in the next section that the cut oracle is the weakest of all these models,
and our main algorithmic results will be for the cut oracle model.

general(S, T ) additive(S, S)

disjoint(S, T ) cut(S, S̄)

1

1 3

5

1

Θ(n) Θ(n)

3

Figure 1: Illustration of oracles for comparison. The arrows indicate reductions, and A
s−→ B

means that a query to oracle B can be simulated by s queries to oracle A.

4.1 Relationships between oracles
In this section we examine the power of the four oracles we have defined for graphs. In essence
we show that if we consider the relative power of these oracles up to a constant overhead, then the
disjoint matrix cut oracle for graphs and the cut oracle have the same power, the matrix cut oracle
for graphs and the additive oracle have the same power, and the power of the latter group is greater
than the power of the former.
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Definition 20 (Constant-reduction between oracles). Let O1 and O2 be graph oracles. We say that
O1 is constant-reducible to O2 if there exist a positive integer k such that for every weighted graph
G = (V,w), every query of O1 to G can be computed with k queries of O2 to G. If O1 and O2 are
mutually constant-reducible to each other, then they are called constant-equivalent.

The first lemma shows the constant-equivalence of the disjoint matrix cut oracle for graphs and
the cut oracle.

Lemma 21. The disjoint matrix cut oracle for graphs and the cut oracle are constant-equivalent.
In particular, the cut oracle can simulate with 3 queries a query of the disjoint matrix cut oracle
for graphs.

Proof. The cut oracle is obviously 1-reducible to the disjoint matrix cut oracle. For the reverse
direction, let G = (V,w) be a weighted graph with |V | = n and let AG be its adjacency matrix.
Let x, y ∈ {0, 1}n be the characteristic vectors of X, Y ⊆ V where X and Y are disjoint. Then

xTAGy = w(X, Y )

=
1

2
(c(X) + c(Y )− c(X ∪ Y )) .

Lemma 22. Let G be a bipartite graph. A matrix cut query to the biadjacency matrix of G can be
simulated by 3 cut queries.

Proof. Let BG be the biadjacency matrix of G with k left and ` right vertices, and let x ∈
{0, 1}k, y ∈ {0, 1}`. We define the vectors x̄, ȳ ∈ {0, 1}k+` as x̄ = [x; 0`] and ȳ = [0k; y].
Then xTBGy = x̄TAGȳ, where AG is the adjacency matrix of G. Since x and y are the character-
istic vectors of disjoint sets in V1∪V2, by Lemma 21 we can compute xTBGy with 3 queries to the
cut oracle for G.

The constant-equivalence of the matrix cut oracle for graphs and the additive oracle was essen-
tially shown by Grebinski and Kucherov in Theorem 4 of [GK00]. For completeness we reproduce
here the proof.

Lemma 23. The matrix cut oracle for graphs and the additive oracle are constant-equivalent. In
particular, the latter oracle can simulate with 5 queries a query of the former.

Proof. Let G = (V,w) be a weighted graph on n-vertices, and let AG be its adjacency matrix. The
additive oracle is 1-reducible to the matrix cut oracle for AG because for every set X ⊆ V with
characteristic vector x ∈ {0, 1}n, we have a(X) = 1

2
xTAGx.

For the reverse direction we show that the matrix cut oracle to AG can be simulated with 5
queries to the additive oracle for G. For this let X, Y ⊆ V be arbitrary sets. We consider the
characteristic vectors x−, y− and z of respectively X \ Y, Y \X and X ∩ Y . Then

xTAGy = (x− + z)TAG(y− + z)

= xT−AGy− + xT−AGz + zTAGy− + zTAGz

=
1

2

(
(x− + y−)TAG(x− + y−) + xTAGx+ yTAGy

)
− xT−AGx− − yT−AGy− .
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To go from the second line to the last line we used that AG is symmetric, that the sets X \Y, Y \X
and X ∩ Y are pairwise disjoint, and finally the fact that if u1 and u2 are the characteristic vectors
of the disjoint sets U1, U2 ⊆ V then uT1AGu2 = a(U1 ∪ U2)− a(U1)− a(U2).

Since the matrix cut oracle for graphs is by definition at least as strong as the disjoint matrix cut
oracle for graphs, Lemma 21 and Lemma 23 imply that the cut oracle is constant reducible to the
additive oracle. The following lemma shows that the simulation in fact can be done by 3 queries.

Lemma 24. LetG = (V,w) be a weighted graph. The cut oracle toG is 3-reducible to the additive
oracle for G.

Proof. For any S ⊆ V
c(S) = a(V )− a(S)− a(V \ S) .

We now turn to the question of simulating an additive oracle with a cut oracle. In an n-vertex
weighted graph G = (V,w), we can simulate an additive oracle with at most 3n applications of a
cut oracle. This is because for any S ⊆ V ,

a(S) =
1

2

∑
v∈S

w(v, S \ {v})

and each w(v, S \{v}) can be computed with 3 cut queries by Lemma 21. Note that this algorithm
works no matter how large the weights are. We next show that for weighted graphs with sufficiently
large weights this trivial algorithm is nearly tight, and in the worst case Ω(n) cut queries are needed
to simulate an additive query.

To do this, we first need a specific form of the Fredholm alternative.

Lemma 25 (Fredholm Alternative). Let A ∈ {0, 1}N×k have independent columns, and let b ∈
{0, 1}N . Suppose that Ax = b has no solution x ∈ Rk. Then the integer vector ŷ = det(ATA)(I−
A(ATA)−1AT )b ∈ ZN satisfies

1. ŷTA = ~0 ,

2. ŷT b 6= 0 , and

3. ‖ŷ‖∞ ≤ Nk+1/2kk/2.

Proof. As A has independent columns, ATA is invertible. Let bc = A(ATA)−1AT b be the orthog-
onal projection of b onto the column space of A and y = (I − A(ATA)−1AT )b be the orthogonal
projection onto the left nullspace. Then b = bc + y and, as Ax = b has no solution, y 6= ~0. As y is
in the left nullspace, we have yTA = ~0. Also yT b = yT (bc + y) = ‖y‖2 6= 0 as yT bc = 0.

Now ‖y‖ ≤ ‖b‖ ≤
√
N , thus also ‖y‖∞ ≤

√
N . For an invertible matrix B, by Cramer’s rule

B−1 = adj(B)/ det(B), where adj(B) is the adjugate matrix of B. Thus det(ATA) · (ATA)−1 =
adj(ATA) is an integer matrix and ŷ = det(ATA)y is an integer vector. As ŷ is just a nonzero
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scalar factor of y, we have ŷTA = 0 and ŷT b 6= 0. Finally, ‖ŷ‖∞ ≤
√
N ·det(ATA) ≤ Nk+1/2kk/2,

as the entries of ATA are at most N and Hadamard’s inequality gives that det(B) ≤ Nkkk/2 for a
k-by-k matrix B whose entries are bounded by N .

Theorem 26. Any deterministic cut query algorithm on weighted graphs with vertex set V must
make at least |V |/2 queries to compute a(V ).

Proof. Let G be a weighted graph with vertex set V where |V | = n. We will show that at least
n/2 cut queries are needed to compute the total edge weight a(V ) in G.

Let Sym0
n be the vector space of symmetric n-by-n matrices with zeros along the diagonal. Let

the map symvec : Sym0
n → R(n

2) be defined by symvec(C) = [C(2:n, 1);C(3:n, 2); · · · ;C(n, n−
1)], which is an isomorphism between the two vector spaces.

Let B = J − I where J is the n-by-n all ones matrix and I is the n-by-n identity matrix.
Let b = symvec(B). Then a(V ) = symvec(AG)T b where AG is the adjacency matrix of G.
For a subset X ⊆ V of the vertices, let x ∈ {0, 1}n be the characteristic vector of X , and let
x̄ ∈ {0, 1}n be the characteristic vector of V \ X . Then for the cut value of X we have c(X) =
symvec(AG)T symvec(xx̄T + x̄xT ). Observe that the rank of the matrix xx̄T + x̄xT is 2.

Consider a deterministic cut query algorithm making k < n/2 many queries. Let m =
n2k+1kk/2, and let G1 be the graph whose adjacency matrix is AG1 = m · B. We set a1 =
symvec(AG1). Suppose that the algorithm makes queries X1, . . . , Xk ⊆ V in G1, with respective
characteristic sequences x1, . . . , xk ∈ {0, 1}n. Let di = symvec(xix̄

T
i + x̄ix

T
i ) for i = 1, . . . , k,

and let D be the
(
n
2

)
-by-k matrix whose ith column is di.

As the rank of B is n and k < n/2, there is no solution x to the equation Dx = b, since
otherwise we could express B as a linear combination of k matrices of rank 2. Let ŷ ∈ Z(n

2) be
the vector given by Lemma 25 satisfying ŷTD = ~0 and ŷT b 6= 0. Then by the choice of m and
by Lemma 25, a1 + ŷ will be a non-negative integer vector. Let G2 be the weighted graph whose
adjacency matrix satisfies symvec(AG2) = a1 + ŷ.

Now aT1D = (a1+ŷ)TD means that the graphsG1 andG2 give the same answers on all queries.
Yet aT1 b 6= (a1 + ŷ)T b, meaning that the total sum of weights in G1 and in G2 are different.

4.2 Learning graphs with an additive oracle
Lemma 23 immediately lets us apply Lemma 13 and Theorem 16 to learning graphs with additive
queries.

Corollary 27. Let G = (V,w) be a weighted graph on n > 1 vertices.

1. If every vertex has degree at most d then there is is a quantum algorithm that learns A with
probability at least 1− δ after making O((d log(Mn/d) + log(1/δ)) log(M)) many additive
oracle queries to G.

2. If G has m edges then there is a quantum algorithm that learns G with probability at least
1− δ after making

O

(√
m log(Mn) log(M) + log(Mn) log(n) log

(
n log(n)

δ

))
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many additive oracle queries toG. WhenM = 2, a better bound ofO(
√
m log(n)+log(n)+

log(1/δ)) many additive queries holds.

Note that this result implies that one can learn a matching or Hamiltonian cycle using O(log n)
quantum additive queries, in contrast to the Θ(n) additive queries needed deterministically [GK00].

4.3 Learning graphs with a cut oracle
Since by Theorem 26 a cut oracle cannot efficiently simulate an additive oracle (or a matrix cut
oracle), we must do more work to adapt the results from Section 3 to the case of a cut oracle. We
first show how to learn a general weighted graph with weights bounded by M with O(n log(M))
many cut queries.

Theorem 28. Let G = (V,w) be a weighted graph with n vertices and edge weights in [M ].
There is a quantum algorithm that learns G perfectly after making 3n dlog(M)e cut queries. In
particular, a simple graph can be learned perfectly by a quantum algorithm making 3n cut queries.

Proof. LetAG be the adjacency matrix ofG, and let v1, . . . , vn be the order of the vertices labelling
the rows and columns. Let Bi = AG(i, {1, . . . , i − 1} ∪ {i + 1, . . . , n}) be the ith row of AG
with the ith entry (which must be 0) removed. Then xTBiy can be computed with 3 cut queries
by Lemma 22 for any x ∈ {0, 1}, y ∈ {0, 1}n−1. Thus by Corollary 12 we can learn Bi with
3 dlogMe many cut queries. Doing this in turn for each vi gives the result.

The “in particular” statement follows by taking M = 2.

Next we show how to learn low-degree and sparse graphs more efficiently. We start out in the
bipartite case.

Lemma 29. Let G = (V1, V2, w) be a weighted bipartite graph with |V1| = k, |V2| = `, and edge
weights in [M ].

1. If deg(u) ≤ d for every u ∈ L then there is a quantum algorithm that learns G with proba-
bility at least 1− δ after making O((d log(M`/d) + log(1/δ)) logM) many cut queries.

2. If G has m edges then there is a quantum algorithm that learns G with probability at least
1− δ after making

O

(√
m log(M`) log(M) + log(`M)(log(`) + 1) log

(
k(log(`) + 1)

δ

))
many cut queries. When M = 2, a better bound of O(

√
m log(`) + log(` + 1) + log(1/δ))

many cut queries holds.

Proof. By Lemma 22 any matrix cut query to the biadjacency matrix of G can be computed by 3
queries to the cut oracle for G. Item (1) therefore follows from Lemma 13 and item (2) follows
from Theorem 16.

Now we extend the bipartite algorithms to the general case.
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Theorem 30. Let G = (V,w) be a weighted n-vertex graph, n > 1, with edge weights in [M ].

1. If deg(v) ≤ d for every v ∈ V then there is a quantum algorithm that learns G with prob-
ability at least 1− δ after making O((d log(Mn/d) + log(log(n)/δ)) log(M) log(n)) many
cut queries.

2. If G has m edges then there is a quantum algorithm that learns G with probability at least
1− δ after making

O

((√
m log(Mn) log(M) + log(Mn)(log(n)) log

(
n log(n)

δ

))
log(n)

)
many cut oracle queries to G. When M = 2, a better bound of O((

√
m log(n) + log(n) +

log(log(n)/δ)) log(n)) many cut queries holds.

Proof. Let r = dlog(n)e. We suppose that the vertices are labeled with r-bit binary strings. We
define r many weighted bipartite graphs Gi = (Li, Ri, wi), for i = 1, . . . , r, derived from G as
follows. Li consists of the vertices of V whose ith bit is 0, whereas Ri consists of the vertices
whose ith bit is 1. The weight function wi in Gi is defined as

wi(u, v) =

{
w(u, v) if (u, v) ∈ Li ×Ri

0 otherwise .

Let BGi
be the biadjacency matrix of Gi. Let x ∈ {0, 1}|Li|, y ∈ {0, 1}|Ri| and X = {v ∈

V : xi(v) = 1}, Y = {v ∈ V : yi(v) = 1}, and let χX and χY be the characteristic sequence of
respectively X and Y in V . Then xTBGi

y = χTXAGi
χY , and since X and Y are disjoint sets in V

we can compute it with 3 cut queries to G by Lemma 21.
We first prove item (1). As G has degree at most d, each Bi will also have degree at most

d. Therefore by applying the first item of Lemma 29 with error bound δ/r we can learn Bi with
O((d log(Mn/d) + log(log(n)/δ)) log(M)) many cut queries. Doing this for each Bi in turn gives
item (1).

Similarly for item (2), as G has at most m edges so will each Bi. Learning each Bi in turn by
the second item of Lemma 29 with error bound δ/r gives the bound in item (2).

4.4 Lower bounds
In the classical case, an Ω(n) lower bound is known on the number of cut queries needed by a de-
terministic algorithm to determine if a graph is connected. As observed by Harvey (Theorem 5.9 in
[Har08]), an Ω(n) cut query lower bound for connectivity follows from the deterministic commu-
nication complexity lower bound of Ω(n log n) for connectivity by [HMT88], and the fact that the
answers to cut queries can be communicated withO(log n) bits. Clearly this lower bound applies to
all 4 of the graph oracles we have discussed, as all of them have answers that can be communicated
with O(log(n)) bits. For randomized communication protocols a Ω(n) lower bound is known for
connectivity [BFS86], giving an Ω(n/ log(n)) lower bound on the number of cut queries needed
to solve connectivity.
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The quantum case behaves differently. There is an analogous communication complexity re-
sult: [IKL+12] show that the bounded-error quantum communication complexity of connectivity
is Ω(n). However, the standard way to turn a query algorithm into a communication protocol,
developed by Buhrman, Cleve, and Wigderson (BCW) [BCW98], involves Alice and Bob send-
ing back and forth the query and answer state. In the case of cut queries, this is a state of the
form

∑
S⊆{0,1}n αS|S〉|bS〉 that is n + log(n)-qubits. Thus a k-cut query quantum algorithm for

connectivity gives a kn qubit communication protocol for connectivity via the BCW simulation.
Our polylogarithmic cut query algorithm for connectivity shows an example of a (partial) function
where this blow-up from the BCW simulation is nearly optimal. We note that Chakraborty et al.
[CCMP19] recently gave the first example of a total function showing that the BCW blow-up can
be necessary.

We now show that our quantum algorithms for learning a general graph with O(n) cut queries
Theorem 28, a graph of maximum degree d with Õ(d) cut queries, and an m-edge graph with
Õ(
√
m) cut queries Theorem 30 are all tight, even if the algorithms are equipped with the stronger

additive oracle.
Recall that the inner product function IPN : {0, 1}N × {0, 1}N → {0, 1} on strings of length

N is defined as IPN(x, y) = PARITY(x ∧ y). The bounded-error quantum communication com-
plexity of IPN is Ω(N) [Kre95].

Lemma 31. Suppose there is a bounded-error quantum query algorithm that learns a graph on
n vertices with k many additive queries. Then there is a bounded-error quantum communication
protocol for IP(n

2)
with O(kn) qubits of communication.

Proof. We consider [n](2), the set of possible edges in a graph with vertex set [n]. Alice and Bob
first agree on a bijective mapping f : [

(
n
2

)
] → [n](2). Now say that Alice receives x ∈ {0, 1}(

n
2)

and Bob receives y ∈ {0, 1}(
n
2), and they wish to compute IP(n

2)
(x, y). Bob first creates a graph

Gy with vertex set [n] and edge set E = {f(e) : ye = 1}. Alice now runs the quantum query
algorithm to learn Gy by sending the query states to Bob, who serves each query and sends the
state back to Alice. As the query state is n+ log(n) qubits, this will take communication O(kn) if
there are k queries.

Theorem 32. Any quantum algorithm to learn an n-vertex graph with bounded-error must make
Ω(n) many additive queries.

Proof. The theorem is immediate from Lemma 31 and Kremer’s Ω(n2) lower bound on the quan-
tum communication complexity of the inner product on

(
n
2

)
bits.

Corollary 33. For any n and m ≤
(
n
2

)
there is a family of n-vertex graphs Gn,m with at most m

edges such that any quantum algorithm requires Ω(
√
m) many additive queries to learn a graph

from Gn,m with bounded-error.

Proof. Let Gn,m be the family of graphs that are arbitrary among the first k vertices, where k is the
smallest integer such that

(
k
2

)
≥ m, and all remaining n− k vertices are isolated. By Theorem 32

Ω(k) = Ω(
√
m) many additive queries are needed to learn a graph from this family.

19



Corollary 34. For any n and d ≤ n there is a family of n-vertex graphs Gn,d with each vertex
having degree at most d such that any quantum algorithm requires Ω(d log(n/d)) many additive
queries to learn a graph from Gn,d with bounded-error.

Proof. Let Gn,d be the set of all d regular graphs on n-vertices. It is known that |Gn,d| ≥
(
n

2ed

)nd/2
(see the argument above Theorem 4 in [GK00], or the very general results in [LW19]). Letting
` = bnd

2
log
(
n

2ed

)
c, Alice and Bob can therefore agree on a bijection between {0, 1}` and a subset

of Gn,d. As in the proof of Lemma 31, they then can use an algorithm to learn graphs in Gn,d
with k additive queries to solve IP` with quantum communication complexity O(kn). Thus k =
Ω(`/n) = Ω(d log(n/d)).

5 A quantum algorithm for computing connected components
with cut queries

In this section, we give a quantum algorithm that outputs the connected components of an n-vertex
graph after makingO(log(n)6) cut queries. By Lemma 24, this implies the same result with respect
to additive queries.

We first give a high level overview of the algorithm. Let G be an n-vertex graph with vertex set
V and AG its adjacency matrix. For this high level overview, we will assume that we have matrix
cut query access toAG. This case contains all of the conceptual ideas needed and eliminates several
technical issues that arise in the cut query case.

The algorithm proceeds in rounds. In every round, we maintain a partition of V . In a general
round, we represent the partition as {S1, . . . , Sk, C1, . . . , Ct} and let S = {S1, . . . , Sk} and C =
{C1, . . . , Ct}. We refer to sets of vertices as supervertices. The algorithm maintains the invariants
that each Cj is a connected component, i.e. the induced subgraph onCj is connected and |E(Cj, V \
Cj)| = 0, and that for each Si the induced subgraph on Si is connected. As the sets Cj are
connected components, they require no further processing and thus in a round we focus only on
the sets in S. We initially set S = Ṽ = {{v} : v ∈ V } and C = ∅.

An important concept for the algorithm will be the adjacency matrix of the weighted graph
among the sets of S. For S = {S1, . . . , Sk} define a k-by-k matrix AS where AS(i, j) =
|E(Si, Sj)|. A key fact is that matrix cut query access to AG allows us to implement matrix cut
queries on AS . For x, y ∈ {0, 1}k define u, v ∈ {0, 1}n to be the characteristic vectors of the sets
∪i:xi=1Si and ∪i:yi=1Si respectively. Then we have xTASy = uTAGv.

A general round proceeds as follows. We take a degree threshold d = Θ(log(n)2). The su-
perdegree of a supervertex Si is the number of j 6= i such that |E(Si, Sj)| > 0. Supervertices with
superdegree at most d we call low superdegree, and supervertices with superdegree greater than d
we call high superdegree.

1. Estimate the superdegree of all supervertices by Lemma 15 (O(log(n)3) queries).

2. For low superegree supervertices learn all their neighbors Sj by Lemma 13 (O(log(n)4)
queries taking d = Θ(log(n)2)).
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3. Randomly sample R ⊆ S satisfying |R| ≤ |S|/2. With high probability for every high
degree supervertex Si there is an R ∈ R with |E(Si, R)| > 0, and we again use Lemma 13
to find such an R for every high degree Si with O(log(n)4) queries.

4. Merge all supervertices Si, Sj for which we know |E(Si, Sj)| > 0 and update S and C
accordingly.

We show that with high probability after this merging step the number of supervertices in S is at
most half of what it was at the beginning of the round. This follows because with high probability
every high degree supervertex will be merged with an element ofR. For low degree supervertices,
we learn all of their neighbors. Therefore if the connected component of a low degree supervertex
Si only contains low degree supervertices, this step will learn its entire connected component
and we can add this component to C. Otherwise there is some low degree supervertex Sj in the
connected component of Si that is connected to a high degree supervertex S`. We will learn this
connection in Step (2), and learn a neighbor of S` in R in step (3). This means that in Step (4) Si
will be merged into a supervertex that also contains some element of R. Thus every supervertex
for which we have not already learned its connected component will be merged with a supervertex
in R with high probability and at the end of the round the total number of supervertices in S
is reduced by at least half. The algorithm thus terminates after O(log n) rounds and the total
complexity becomes O(log(n)5) many matrix cut queries.

We have seen that cut queries cannot efficiently simulate matrix cut queries in general. How-
ever, by Lemma 22, cut queries can simulate matrix cut queries on bipartite weighted graphs. The
trick we use to adapt the above algorithm to the cut query case is to always work with bipartite
graphs. For a graph G we associate dlog ne many bipartite graphs (Li, Ri, Ei) for i ∈ dlog ne,
where Li = {v : vi = 0}, Ri = {v : vi = 1} and Ei = {(u, v) ∈ V × V : {u, v} ∈ E, u ∈ Li, v ∈
Ri}. Note that every edge of G appears as an edge in some (Li, Ri, Ei). We essentially run steps
(1)–(3) above on each (Li, Ri, Ei) separately, then incorporate all the information learned in the
merge step in (4). Having to iterate over these O(log(n)) many bipartite graphs results in an extra
multiplicative logarithmic factor in the complexity, resulting in the claimed bound of O(log(n)6)
cut queries.

5.1 Auxiliary subroutines
In this subsection we go over some auxiliary subroutines that will be used in the cut query algorithm
for connectivity. We will make use of the following definition.

Definition 35 (Supervertex, Superdegree). A supervertex is a subset of S ⊆ V of vertices. We say
that a supervertex S is connected if the subgraph induced on S is connected.

We say that a set of supervertices S = {S1, . . . , Sk} is valid if Si ∩ Sj = ∅ for all i 6= j. We
say that two valid sets of supervertices S = {S1, . . . , Sk} and T = {T1, . . . , T`} are disjoint if
Si ∩ Tj = ∅ for all i ∈ {1, . . . , k}, j ∈ {1, . . . , `}.

We say that there is a superedge between supervertices S1, S2 if |E(S1, S2)| > 0. Given two
disjoint valid sets of supervertices S = {S1, . . . , Sk} and T = {T1, . . . , T`}, the superdegree of Si
into T , denoted degT (Si), is the number of j ∈ [`] such that |E(Si, Tj)| > 0.
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Definition 36. Let S = {S1, . . . , Sk} and T = {T1, . . . , T`} be disjoint valid sets of supervertices
of an n-vertex graph G. Define the weighted biadjacency matrix between S and T as the matrix
B ∈ [n2]k×` where B(i, j) = |E(Si, Tj)|.

Lemma 37. Let S = {S1, . . . , Sk} and T = {T1, . . . , T`} be disjoint valid sets of supervertices of
an n-vertex graph G. Let B be the weighted biadjacency matrix between S and T . A matrix cut
query to B can be answered with 3 cut queries to G.

Proof. For x ∈ {0, 1}k, y ∈ {0, 1}` we have xTBy = |E(∪i:x(i)=1Si,∪j:y(j)=1Tj)| and thus can be
computed with 3 cut queries by Lemma 21.

Corollary 38 (Approximate Degree Sequence). There is a quantum algorithm Approximate De-
gree Sequence(S, T , δ) that takes as input disjoint valid sets of supervertices S = {S1, . . . , Sk}
and T = {T1, . . . , T`} of an n-vertex graph G and an error parameter δ, and with probability at
least 1 − δ outputs ~g ∈ Rk that is a good estimate of (degT (S1), . . . , degT (Sk)). The number of
cut queries made is O(log(`n)(log(`) + 1) log(k(log(`) + 1)/δ)).

Proof. Let B be the weighted biadjacency matrix between S and T . By Lemma 37 a matrix cut
query to B can be answered by 3 cut queries to G. The result then follows from Lemma 15.

Algorithm 2 Approximate Degree Sequence(S, T , δ)
Input: Disjoint valid sets of supervertices S = {S1, . . . , Sk}, T = {T1, . . . , T`} and an error

parameter δ
Output: Vector ~g ∈ Rk that is a good estimate of (degT (S1), . . . , degT (Sk)).

Algorithm 3 Learn Low(S, T , h, δ)
Input: Disjoint valid sets of supervertices S = {S1, . . . , Sk}, T = {T1, . . . , T`}, a degree

parameter h such that degT (Si) ≤ h for all Si ∈ S, and an error parameter δ.
Output: A k-by-` matrix B where B(i, j) = |E(Si, Tj)|.

Corollary 39 (Learn Low). There is a quantum algorithm Learn Low(S, T , h, δ) that takes as
input disjoint valid sets of supervertices S = {S1, . . . , Sk} and T = {T1, . . . , T`} of an n-vertex
graph G, a degree parameter h such that degT (Si) ≤ h for all Si ∈ S , and an error parameter
δ. With probability at least 1 − δ Learn Low(S, T , h, δ) outputs the weighted biadjacency matrix
between S and T . The number of cut queries made is O((h log(n/h) + log(1/δ)) log(n)).

Proof. Let B be the weighted biadjacency matrix between S and T . The rows of B have at most
h nonzero entries by assumption and all entries are O(n2). By Lemma 37 we can answer a matrix
cut query to B by 3 cut queries to G. The result then follows from Lemma 13.

We accomplish Step (3) in the high level description of the algorithm by a routine called Reduce
High. We first need a sampling lemma.
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Lemma 40. Let S = {S1, . . . , Sk} and T = {T1, . . . , T`} be disjoint valid sets of supervertices
of an n-vertex graph G, and suppose t/8 ≤ degT (Si) ≤ 2t. Randomly sample with replacement
16` ln(kn)

t
many supervertices in T , and call the resulting set R. Then, except with probability

O(n−2), the superdegree of each Si intoR will be at least 1 and at most 192 ln(n).

Proof. Define x(i) ∈ {0, 1}` for i ∈ {1, . . . , k} by x(i)(j) = 1 iff |E(Si, Tj)| > 0. Then the lemma
follows by applying Lemma 8 to x(1), . . . , x(k) with δ = 1/n2 and using the fact that k ≤ n.

Lemma 41 (Reduce High). The quantum algorithm Reduce High(S, T , d, ~g) (Algorithm 4) takes
as input disjoint valid sets of supervertices S = {S1, . . . , Sk} and T = {T1, . . . , T`} of an n-vertex
graph G, a degree parameter d such that degT (Si) ≥ d for all Si ∈ S, and a vector ~g ∈ Rk that is
a good estimate of (degT (S1), . . . , degT (Sk)). Reduce High (S, T , d, ~g) makes O(log(n)4) many
cut queries and with probability at least 1−O(log(n)/n2) outputs a k-by-` Boolean matrixB such
that

1. Every row of B has at least one nonzero entry.

2. If B(i, j) 6= 0 then B(i, j) = |E(Si, Tj)|.

3. B has at most 256` ln(n)
d

many nonzero columns.

Proof. The algorithm is given in Algorithm 4. First we bound the number of queries made. We do
O(log n) iterations of the for loop, and within each iteration queries only occur in Line 5, which
is a call Learn Low with an O(log n) degree parameter. Each such call to Learn Low requires
O(log(n)3) many cut queries by Corollary 39 Thus overall the number of queries is O(log(n)4).

Now we show the correctness. As ~g ∈ Rk provides good estimates and degT (Si) ≥ d for all
Si ∈ S , we have g(i) ≥ d/2 for all i ∈ {1, . . . , k}. Also g(i) ≤ 4`, thus each Si will be put into
Hq for some value of q in the loop.

Let us now consider a particular iteration of the for loop when q = j. Let Hj = {Si ∈ S :
2j−1 < g(i) ≤ 2j}. As ~g contains good estimates, this means 2j−3 < degT (Si) ≤ 2j+1 for all
Si ∈ Hj . We are thus in the setting of Lemma 8 with t = 2j . AsRj is a 16` ln(|Hj |n)

2j
-sample from T

the conclusion of Lemma 8 gives that the superdegree of every vertex in Hj into Rj is between 1
and 192 ln(n), except with probability O(n−2). We now assume we are in this good case. Then the
upper bound on the degree passed to Learn Low is valid, and Learn Low will return the weighted
biadjacency matrix betweenHj andRj with probability 1−O(n−2) by Corollary 39

As every Si is in Hq for one call of the for loop, each row of B will have at least one nonzero
entry. Further, as each call to Learn Low returns a correct weighted biadjacency matrix between
Hq and Rq except with probability 1/n2, B will satisfy item (2) except with probability at most
O(log(n)/n2).

Finally, the only columns of B that can be nonzero are those indexed by sets that appeared in
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Rq at some point of the algorithm. As

| ∪q Rq| ≤ 32` ln(n) ·

 dlog `e+2∑
q=blog dc−1

1

2q


≤ 32` ln(n) · 4

d

∞∑
j=0

1

2j

≤ 256` ln(n)

d
,

the total number of nonzero columns of B is at most 256` ln(n)
d

.

Algorithm 4 Reduce High(S, T , d, ~g)

Input: Disjoint valid sets of supervertices S = {S1, . . . , Sk}, T = {T1, . . . , T`} of an n-vertex
graph G, a degree parameter d such that degT (Si) ≥ d for all Si ∈ S , and a vector ~g ∈ Rk such
that ~g(i)/4 ≤ degT (Si) ≤ 2~g(i) for all i ∈ {1, . . . , k}.

Output: A k-by-` matrix B satisfying the conditions of Lemma 41.
1: B ← zeros(k, `)
2: for q = blog dc − 1 to dlog `e+ 2 do
3: Hq = {Si ∈ S : 2q−1 < ~g(i) ≤ 2q}
4: Rq ← Randomly choose 16` ln(|Hq |n)

2q
supervertices in T , with replacement

5: B(ind(Hq), ind(Rq))← Learn Low(Hq,Rq, 192 ln(n), 1/n2)
6: end for
7: return B

Lemma 42. Let S = {S1, . . . , Sk} be a valid set of supervertices, A a list of k-by-k weighted
adjacency matrices, and low ∈ {0, 1}k a Boolean vector with the following properties:

1. Every supervertex in S is connected.

2. For every A ∈ A if A(i, j) > 0 there is a superedge between Si and Sj .

3. For every (i, j) such that low(i) = 1 and there is a superedge between Si and Sj , there is an
A ∈ A with A(i, j) > 0.

Then the algorithm Contract(S,A, low) given in Algorithm 5 outputs sets of supervertices S ′, C
such that every U ∈ S ′ is connected, every W ∈ C is a connected component, and S ′ ∪ C is a
partition of ∪S∈SS. Moreover, for every U ∈ S ′ there is an Si ⊆ U with low(i) = 0.

Proof. We first show that all supervertices in S ′, C are connected. This follows because each Si ∈
S is connected and we only merge two supervertices U and W when there is an Si ⊆ U, Sj ⊆ W
and anA ∈ AwithA(i, j) > 0. As by hypothesisA(i, j) > 0 implies there is a superedge between
Si and Sj this means that U and W are in fact connected.
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Algorithm 5 Contract(S,A, low)

Input: Valid set of connected supervertices S = {S1, . . . , Sk}, a list of k-by-k weighted ad-
jacency matrices A = (A1, . . . , Am) with rows and columns labeled by elements of S, a vector
low ∈ {0, 1}k indicating if each set Si is low.

Output: Sets of supervertices S ′, C, where each supervertex in S ′, C is connected, and more-
over the supervertices in C are connected components.

1: L← [(Si, low(i)) : Si ∈ S]
2: for A ∈ A do
3: for (i, j) ∈ [k](2) do
4: if A(i, j) > 0 then
5: Pop (U,flag1) ∈ L such that Si ⊆ U
6: Pop (W,flag2) ∈ L such that Sj ⊆ W
7: U ← U ∪W
8: lowFlag = flag1 ∧ flag2
9: Append (U, lowFlag) to L

10: end if
11: end for
12: end for
13: S ′ ← ∅
14: C ← ∅
15: for (U, lowFlag) ∈ L do
16: if lowFlag = 0 then
17: S ′ ← S ′ ∪ {U}
18: else
19: C ← C ∪ {U}
20: end if
21: end for
22: return S ′, C
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Algorithm 6 Shrink(S, d)

Input: A valid set of connected supervertices S = {S1, . . . , Sk}, and a degree parameter d.
Output: A set of connected supervertices S ′, and a set C of connected components.

1: low← ones(k, 1)
2: A ← [ ]
3: for j = 1 to dlog(k)e do
4: for b ∈ {0, 1} do
5: Lj,b = {St ∈ S : tj = b}
6: Rj,b = {St ∈ S : tj = 1− b}
7: ~g ← Approximate Degree Sequence(Lj,b,Rj,b, 1/n)
8: H ← {St ∈ Lj,b : ~g(t) ≥ d}
9: low(ind(H)) = 0

10: Bj,b ← zeros(k, k)
11: Bj,b(ind(H), ind(Rj,b))← Reduce High(H,Rj,b, d/4, ~g(ind(H)))
12: L ← {St ∈ Lj,b : ~g(t) < d}
13: Cj,b ← zeros(k, k)
14: Cj,b(ind(L), ind(Rj,b))← Learn Low(L,Rj,b, 2d, 1/n)
15: Append Bj,b, Cj,b to A
16: end for
17: end for
18: (S ′, C)← Contract(S,A, low)
19: return (S ′, C)

Algorithm 7 Connectivity algorithm with cut queries
Input: Cut oracle for a graph G on n vertices
Output: Connected components of G

1: S ← Ṽ
2: ConComp← ∅
3: repeat
4: (S, C)← Shrink(S, 1024 dlog ne2)
5: ConComp← ConComp ∪ C
6: until S = ∅
7: return ConComp
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Next we show that every W ∈ C is a connected component. Suppose for a contradiction that
this is not the case and therefore there is a w ∈ Si ⊆ W and u ∈ Sj ⊆ (∪kt=1St) \W such that
{u,w} is an edge of G. It must be the case that Si is low, as otherwise the lowFlag for W would
have been set to 0 and W would have been placed in S ′. Thus Si must be low and therefore by
hypothesis for some A ∈ A it is the case that A(i, j) > 0. This means that at some point in
Contract a set containing Si would have been merged with a set containing Sj , a contradiction to
the fact that Sj ⊆ (∪kt=1St) \W .

The fact that S ∪ C is a partition of ∪S∈SS follows because at all times ∪(U,flag)∈LU is equal to
∪S∈SS. This is true when L is first defined, and is preserved when sets are popped from L, merged,
and put back into L.

Finally, the “moreover” statement holds as if low(i) = 1 for all Si ∈ U then the lowFlag
variable for U will be set to 1 and therefore U will be placed into C on Line 21.

5.2 The shrink subroutine
We now package Approximate Degree Sequence, Learn Low, Reduce High, and Contract together
into our algorithm for finding the connected components of a graph.

Lemma 43. Let S be a valid set of connected supervertices and d ∈ N be a degree parameter given
as input to Algorithm 6. Then except with probability O(log(n)/n) the following two statements
hold.

1. Algorithm 6 outputs sets of supervertices S ′, C such that

(a) |S ′| ≤ 512 dlog(|S|)e ln(n)|S|/d.

(b) All supervertices in S ′ are connected.

(c) All supervertices in C are connected components.

(d) S ′ ∪ C is a partition of ∪S∈SS.

2. The total number of cut queries made is O(log(n)5 + d log(n)3).

Proof. All of Approximate Degree Sequence, Reduce High, and Learn Low have error probability
at mostO(1/n). As they are called at mostO(log n) times, with probability at least 1−O(log n/n)
they will all return as promised. We now argue correctness assuming this is the case.

Let us establish that the hypotheses of Lemma 42 hold when Contract is called on Line 18. By
assumption all supervertices in S are connected, thus Item (1) holds. Also, as we are in the case
where Reduce High and Learn Low perform correctly, Item (2) holds. If low(i) = 1 in the call to
Contract then for all j, b for which Si ∈ Lj,b it holds that ~g(i) < d, and thus the corresponding call
to Learn Low learns all neighbors of Si in Rj,b. As this is true for all j, b, we learn all neighbors
of Si, meaning that Item (3) also holds. As the hypotheses to Lemma 42 hold, this means all
supervertices in S ′ are connected, C contains connected components, and S ′ ∪ C is a partition of
∪S∈SS, establishing Items 1(b),(c),(d).
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We now turn to establish Item 1(a) of the lemma. Let

R = {Si ∈ S : ∃j ∈ {1, . . . , dlog |S|e}, b ∈ {0, 1} such that Bj,b(:, i) 6= ~0} .

In words, R is the set of all Si for which the ith column of some Bj,b matrix is nonzero. By
Lemma 41, |R| ≤ 512 dlog(|S|)e ln(n)|S|/d. We show that for every U ∈ S ′ there is an R ∈ R
with R ⊆ U . This will establish Item 1(a) since S ′ is a valid set of supervertices.

By the “moreover” statement of Lemma 42, for every U ∈ S ′ there is an Si ⊆ U with low(i) =
0. Thus for some j, b it holds that Si ∈ Lj,b and the degree of Si into Rj,b is at least d/4. By
Lemma 41 the corresponding call to Reduce High on Line 11 will find a neighbor R ∈ R of Si.
Therefore, in the call to Contract a set containing Si will be merged with a set containing R and
therefore R ⊆ U .

Finally, the total number of iterations from the two for loops is O(log n). Let us now look at
the complexity of each iteration of the inner for loop. Approximate Degree Sequence with error
probability at most 1/n takes O(log(n)3) many queries by Corollary 38. Each call to Reduce
High takes O(log(n)4) many queries by Lemma 41. Each call to Learn Low with error probability
1/n takes O(d log(n)2) many queries by Corollary 39. This gives the complexity O(log(n)5 +
d log(n)3) as claimed in item (2).

Theorem 44. Let G be a graph with vertex set V where |V | = n. There is a quantum algorithm
that outputs the connected components of G with error probability at most O(log(n)2/n) after
making O(log(n)6) many cut queries. In particular, the algorithm determines if G is connected or
not with the same number of cut queries.

Proof. The algorithm is given by Algorithm 7. Shrink is called with a degree parameter d of
1024 dlog(n)e2, thus by item 1(a) of Lemma 43 the size of the set S will decrease by a fac-
tor of at least 2 in each iteration. Therefore the number of iterations of the repeat loop will be
O(log n). This, together with item (3) of Lemma 43 gives a bound on the total number of queries
of O(log(n)6).

Now we argue correctness. By Lemma 43, at each stage of the algorithm we maintain the
invariant that S contains connected supervertices, ConComp contains connected components, and
S ∪ ConComp is a partition of V . The repeat-until loop will terminate as |S| is halved with every
iteration. When it does terminate S = ∅, thus at this stage ConComp is a partition of V by sets
that are connected components.

6 Spanning forest
In this section we show that Algorithm 7 to find connected components can be extended to give an
algorithm that finds a spanning forest and still only makes polylogarithmically many cut queries.
The key idea for this is to find witnesses for superedges found in Algorithm 7.

Definition 45 (Witness). Let G = (V,E) be a graph and Si, Sj two supervertices of G connected
by a superedge. We say that {u, v} is a witness for this superedge if u ∈ Si, v ∈ Sj and {u, v} ∈ E.
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Let T1, T2 be spanning trees for connected supervertices S1, S2, and let {u, v} be a witness for
a superedge between S1 and S2. Then T1 ∪ T2 ∪ {{u, v}} is a spanning tree for S1 ∪ S2. The
spanning forest algorithm proceeds in the same framework as Algorithm 7, but now we maintain
a spanning tree for each supervertex in S = {S1, . . . , Sk} and only merge supervertices when we
have a witness for a superedge between them. In this way, we are able to maintain spanning trees
for every supervertex in S as the algorithm proceeds. The main new difficulty is to find witnesses
for the superedges discovered in Algorithm 7, as there we only discovered the existence of an edge
between supervertices. However, we show that one can still manage to find enough witnesses to
guarantee the size of S shrinks by a factor of 1/2 in each round.

First we show how to find a witness for each superedge in a bipartite graph if both sides of
supervertices have low superdegree.

Algorithm 8 Witness Low-Low(S, T , h, δ)
Input: Disjoint valid sets of supervertices S = {S1, . . . , Sk}, T = {T1, . . . , T`}, a degree

parameter h such that degT (Si) ≤ h for all Si ∈ S and degS(Tj) ≤ h for all Tj ∈ T , and an error
parameter δ.

Output: A |∪ki=1Si|-by-|∪`i=1Ti| Boolean matrix C such that C(u, v) = 1 implies {u, v} ∈ E
and for every superedge (Si, Tj) there is a witness {u, v} with C(u, v) = 1.

1: U ← ∪ki=1Si, U = {u1, . . . , u|U |}
2: Y ← ∪`i=1Ti
3: C ← zeros(|U |, |Y |)
4: B ← Learn Low(Ũ , T , h, δ/2) . Recall Ũ = {{u} : u ∈ U}
5: X ← {ua ∈ U : (∃j (B(a, j) > 0) AND (ua ∈ Si, ub ∈ Si, b < a)⇒ B(b, j) = 0)}
6: D ← Learn Low(Ỹ , X̃, h2, δ/2)
7: C(ind(X), :) = DT

8: return C

Lemma 46 (Witness Low-Low). Let S = {S1, . . . , Sk}, T = {T1, . . . , T`} be disjoint valid sets
of supervertices in an n-vertex graph G = (V,E). Suppose that degT (Si) ≤ h for all Si ∈ S
and degS(Tj) ≤ h for all Tj ∈ T . Algorithm Witness Low-Low(S, T , h, δ) (Algorithm 8) makes
O((h2 log(n/h) + log(1/δ)) log(n)) many cut queries and finds a witness for every superedge
between S and T , except with probability δ.

Proof. Let U = ∪ki=1Si, and Y = ∪`i=1Ti. Let u1 < · · · < u|U | be an ordering of the elements of
U . Let B be a |U |-by-` matrix where B(a, j) = |E(ua, Tj)| for a ∈ {1, . . . , |U |}, j ∈ {1, . . . , `}.
Note that every row ofB has at most h nonzero entries. By Corollary 39, Learn Low(Ũ , T , h, δ/2)
will return B except with probability at most δ/2, and makes O((h log(n/h) + log(1/δ)) log(n))
many cut queries. Now let X = {ua ∈ U : ∃j (B(a, j) > 0 AND (ua ∈ Si, ub ∈ Si, b < a) ⇒
B(b, j) = 0)}. In other words, for every i, j for which there exists ua ∈ Si with B(a, j) > 0 we
choose the least such ua to put in the set X . Note that |X ∩ Si| ≤ h for every Si ∈ S.

Let D be the |Y |-by-|X| biadjacency matrix of the graph between Y and X . Every row will
have at most h2 ones, since degS(Tj) ≤ h and |X ∩ Si| ≤ h. Learn Low(Ỹ , X̃, h2, δ/2) learns D
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with O((h2 log(n/h) + log(1/δ)) log(n)) many cut queries with error probability δ/2. By learning
D, for every superedge (Si, Tj) we find a u ∈ Si, v ∈ Tj with {u, v} ∈ E. The total error
probability is at most δ.

Next we show that we can find witnesses for supervertices on the left hand side of a bipartite
graph between supervertices where all supervertices on the left hand side have low superdegree.

Algorithm 9 Witness Low-High(S, T , h)

Input: Disjoint valid sets of supervertices S = {S1, . . . , Sk}, T = {T1, . . . , T`}, a degree
parameter h such that degT (Si) ≤ h for all Si ∈ S.

Output: A | ∪i Si|-by-| ∪j Tj| matrix C such that C(a, b) = 1 implies (ua, vb) ∈ E and for
every Si with degT (Si) > 0 there is a ua ∈ Si, vb ∈ ∪jTj such that C(a, b) = 1.

1: U ← ∪ki=1Si
2: Y ← ∪`i=1Ti
3: C ← zeros(|U |, |Y |)
4: B ← Learn Low(Ũ , T , h, 1/n) . Ũ = {{u} : u ∈ U}
5: X ← {ua ∈ U : (∃j B(a, j) > 0) AND (ua ∈ Si, ub ∈ Si, b < a)⇒ ∀c B(b, c) = 0)}
6: for u ∈ X do
7: j∗(ua) = arg maxj∈{1,...,`}B(a, j)
8: end for
9: for q = 0, . . . , dlog |Y |e do

10: Xq ← {u ∈ X : 2q−1 < B(u, j∗(u)) ≤ 2q}
11: Rq ← Randomly sample d16|Y | ln(|Xq|n)/2qe many elements from Y with replacement
12: C(ind(Xq), ind(Rq))← Learn Low(Xq, Rq, 192h ln(n), 1/n)
13: end for
14: return C

Lemma 47 (Witness Low-High). Let S = {S1, . . . , Sk} and T = {T1, . . . , T`} be disjoint valid
sets of supervertices in an n-vertex graph G = (V,E), and suppose that degT (Si) ≤ h for all Si ∈
S. Algorithm Witness Low-High(S, T , h) (Algorithm 9) makes O(h log(n)4) many cut queries and
except with probability O(log(n)/n) outputs a | ∪i Si|-by-| ∪j Tj| matrix C such that

1. C(a, b) = 1 implies {ua, vb} ∈ E

2. For every Si with degT (Si) > 0 there is a ua ∈ Si, vb ∈ ∪jTj such that C(a, b) = 1.

Proof. Let U = ∪ki=1Si and let u1 < · · · < u|U | be an ordering of the elements of U . The algorithm
first performsB ← Learn Low(Ũ , T , h, 1/n). By the correctness of Learn Low from Corollary 39,
except with probability 1/n, it will hold that B(a, j) = |E(ua, Tj)| for all a ∈ {1, . . . , |U |}, j ∈
{1, . . . , `}. This step takes O(h log(n/h) log(n)) cut queries. We henceforth assume that this step
was performed correctly. Define X = {ua ∈ U : (∃j B(a, j) > 0) AND ((ua ∈ Si, ub ∈ Si, b <
a) ⇒ ∀c B(b, c) = 0)}. In other words, for every Si we take the first ua ∈ Si for which there is
a j ∈ {1, . . . , `} such that B(a, `) > 0, if such a ua exists. Let j∗(ua) = arg maxj∈{1,...,`}B(a, j)
for each ua ∈ X . For each u ∈ X , we are going to learn a v ∈ Tj∗(u) such that {u, v} ∈ E.
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Fix a value of q in the for loop starting on line 9. For every ua ∈ Xq and j ∈ {1, . . . , `}we have
B(a, j) ≤ B(a, j∗(ua)) ≤ 2q. For δ = 1/n2,Rq is formed by randomly sampling with replacement
d8|Y | ln(|Xq|/δ)/2qe elements of Y . Thus by Lemma 8 and a union bound over j ∈ {1, . . . , `},
except with probability 1/n, we have

|E(u,Rq ∩ Tj)| ≤ 192 ln(n) for all j ∈ {1, . . . , `} and u ∈ Xq . (1)

Similarly, except with probability 1/n, we also have

|E(u,Rq ∩ Tj)| > 0 for all j ∈ {1, . . . , `} and u ∈ Xq with 2q−1 < B(u, j) .

In particular, except with probability 1/n

|E(u,Rq ∩ T ∗j (u))| > 0 for all u ∈ Xq . (2)

We now add O(1/n) to the error probability and assume for the rest of the proof that Eq. (1) and
Eq. (2) hold. Next the algorithm performs

C(ind(Xq), ind(Rq))← Learn Low(Xq, Rq, 192h ln(n), 1/n) .

By Eq. (1), the upper bound on the degree passed to Learn Low is valid, thus by Corollary 39 Learn
Low returns the biadjacency matrix betweenXq andRq, except with probability 1/n. In particular,
except with probability 1/n, if C(a, b) = 1 for a ∈ ind(Xq), b ∈ ind(Rq) then {ua, vb} ∈ E
and by Eq. (2) for every ua ∈ Xq there is vb ∈ Rq such that C(a, b) = 1. This step requires
O(h log(n)2 log(n/h)) many cut queries.

Finally, by a union bound over q = 0, . . . , dlog |Y |e, the probability of an error in any iteration
of the for loop is at most O(log(n)/n). As every u ∈ X will be in Xq for some value of q, for
every Si with degT (Si) > 0 we will find a u ∈ Si and v ∈ Y with {u, v} ∈ E. The total error
probability is O(log(n)/n), and total number of queries is O(h log(n)4).

Next we show how to find witnesses for supervertices of high superdegree.

Lemma 48 (Witness Reduce High). Let S = {S1, . . . , Sk}, T = {T1, . . . , T`} be disjoint valid
sets of supervertices of an n-vertex graph G. Let d ∈ N be a degree parameter and ~g ∈ Rk be a
good estimate of (degT (S1), . . . , degT (Sk)). Further suppose that degT (Si) ≥ d for all Si ∈ S.
On input S, T , d, ~g, Witness Reduce High (Algorithm 10) makes O(log(n)5) many cut queries and
with probability at least 1 − O(log(n)2/n) outputs a | ∪i Si|-by-| ∪j Tj| Boolean matrix C such
that

1. For every Si ∈ S, there exists u ∈ Si and v ∈ ∪jTj such that C(u, v) = 1.

2. If C(u, v) = 1 then {u, v} ∈ E.

3. |{Tj : ∃u ∈ ∪iSi,∃v ∈ Tj : C(u, v) = 1}| ≤ 256` log(n)
d

.
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Algorithm 10 Witness Reduce High(S, T , d, ~g)

Input: Disjoint valid sets of supervertices S = {S1, . . . , Sk}, T = {T1, . . . , T`} of an n-vertex
graph G, a degree parameter d such that degT (Si) ≥ d for all Si ∈ S, and a vector ~g ∈ Zk such
that ~g(i)i/4 ≤ degT (Si) ≤ 2~g(i) for all i ∈ {1, . . . , k}.

Output: A |∪ki=1Si|-by-|∪`i=1Ti| Boolean matrix C such that C(u, v) = 1 implies {u, v} ∈ E
and for every Si there is a u ∈ Si, v ∈ ∪jTj such that C(u, v) = 1.

1: C ← zeros(| ∪ki=1 Si|, | ∪`i=1 Ti|)
2: for q = blog dc − 1 to dlog `e+ 2 do
3: Hq = {Si ∈ S : 2q−1 < ~g(i) ≤ 2q}
4: Rq ← Randomly choose 16` ln(|Hq |n)

2q
supervertices in T , with replacement

5: C(ind(Hq), ind(Rq))←Witness Low-High(Hq,Rq, 192 ln(n))
6: end for
7: return B

Proof. We first show item (2). By Lemma 47, except with probability O(log(n)/n), the call to
Witness Low-High on Line 5 will only return valid edges in G. As there are O(log n) iterations of
the for loop, item (2) will therefore hold except with probability O(log(n)2/n).

We now show items (1) and (3), assuming that all calls to Witness Low-High return correctly.
The only difference between Reduce High and Witness Reduce High is that in Line 5 of Witness
Reduce-High we call Witness Low-High instead of Learn Low. As Witness Low-High returns
correctly, by Lemma 47 this means we find a witness for every superedge found by Learn Low,
and therefore a witness for every superedge found by Reduce High. By Item (1) of Lemma 41 for
every Si ∈ S Reduce High finds a Tj ∈ T such that (Si, Tj) is a superedge. Finding a witness for
each of these superedges gives Item (1) here.

Furthermore, we do not find witnesses for any superedges not found in Reduce High. Thus
Item (3) of Lemma 41 implies Item (3) here.

Finally, we bound the number of queries made. There are O(log n) iterations of the for loop,
and in each iteration queries are only made in the call to Witness Low-High. Each of these calls
take O(log(n)4) cut queries, thus the total number of cut queries is O(log(n)5).

Next we show how to contract supervertices by using the edges found so far.

Lemma 49. Let S = {S1, . . . , Sk} be a valid set of supervertices with N = | ∪ki=1 Si|, P =
{P1, . . . , Pk} a set of spanning trees, A a list of N -by-N weighted adjacency matrices, and low ∈
{0, 1}k a Boolean vector with the following properties:

1. Every supervertex in S is connected, and a spanning tree for Si ∈ S is given by Pi ∈ P .

2. For every A ∈ A if A(u, v) = 1 then {u, v} ∈ E.

3. For every i ∈ {1, . . . , k} with low(i) = 1, it holds that for every j ∈ {1, . . . , k} such
that there is a superedge between Si and Sj , there is a u ∈ Si, v ∈ Sj and A ∈ A with
A(u, v) = 1.
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The algorithm Witness Contract(S,P ,A, low) given in Algorithm 11 makes no queries and outputs
sets of supervertices S ′ = {S ′1, . . . , S ′`}, C = {C1, . . . , Ct} and sets of spanning trees PS′ =
{P ′1, . . . , P ′`},PC = {Q1, . . . , Qt} such that

• Each S ′i ∈ S ′ is connected and a spanning tree for it is given by P ′i ∈ PS′ .

• Each Ci ∈ C is a connected component and a spanning tree for it is given by Qi ∈ PC .

• S ′ ∪ C is a partition of ∪S∈SS.

• For every U ∈ S ′ there is an Si ⊆ U with low(i) = 0.

Proof. We first show that each S ′i ∈ S ′ is connected and a spanning tree for it is given by P ′i ∈ PS .
By assumption each Si ∈ S is connected with a spanning tree given by Pi ∈ P . We maintain this
invariant because we only merge two supervertices U,W when there is a u ∈ U,w ∈ W and a
A ∈ A with A(u,w) = 1. By assumption if A(u,w) = 1 then {u,w} ∈ E and thus U ∪W is
connected when U,W are. Furthermore, if T1 is a spanning tree for U and T2 is a spanning tree for
W then T1 ∪ T2 ∪ {{u,w}} is a spanning tree for U ∪W .

The same argument shows that eachCi ∈ C is connected with a spanning tree given by Pi ∈ PC .
Next we show that every W ∈ C is a connected component. Suppose for a contradiction that

this is not the case and therefore there is a w ∈ Si ⊆ W and u ∈ Sj ⊆ (∪kt=1St) \W such that
{u,w} is an edge of G. It must be the case that Si is low, as otherwise the lowFlag for W would
have been set to 0 and W would have been placed in S ′. Thus Si must be low and therefore by
hypothesis for some w′ ∈ Si, u

′ ∈ Sj and A ∈ A it is the case that A(w′, u′) = 1. This means
that at some point in Witness Contract a set containing Si would have been merged with a set
containing Sj , a contradiction to the fact that Sj ⊆ (∪kt=1St) \W .

The fact that S ∪ C is a partition of ∪S∈SS follows because at all times ∪(U,T,flag)∈LU is equal
to ∪S∈SS. This is true when L is first defined, and is preserved when sets are popped from L,
merged, and put back into L.

Finally, the “moreover” statement holds as if low(i) = 1 for all Si ∈ U then the lowFlag
variable for U will be set to 1 and therefore U will be placed into C on Line 21.

The last lemma guarantees the shrinkage of the number of supervertices.

Lemma 50. Let S = {S1, . . . , Sk} be a valid set of connected supervertices, P = {P1, . . . , Pk}
be a set of spanning trees where Pi is a spanning tree for Si, and d ∈ N be a degree parameter.
Witness Shrink(S,P , d) given by Algorithm 12 has the following properties:

1. Except with probability O(log(n)3/n), it outputs sets of supervertices S ′, C and sets of span-
ning trees PS′ ,PC such that

(a) |S ′| ≤ 512 dlog(|S|)e ln(n)|S|/d.

(b) For every supervertex in S ′ there is a spanning tree for it in PS′ .
(c) Every supervertex in C is a connected component and has a spanning tree for it in PC .
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Algorithm 11 Witness Contract(S,P ,A, low)

Input: Valid set of connected supervertices S = {S1, . . . , Sk}, a set of spanning trees P =
{P1, . . . , Pk}, a list of N -by-N weighted adjacency matrices A = (A1, . . . , Am) with rows and
columns labeled by elements of [N ], a vector low ∈ {0, 1}k indicating if each set Si is low.

Output: Sets of supervertices S ′, C and sets of spanning trees for them PS′ ,PC , where each
supervertex in S ′, C is connected, and moreover the supervertices in C are connected components.

1: L← [(Si, Pi, low(i)) : i ∈ {1, . . . , k}]
2: for A ∈ A do
3: for {u, v} ∈ [N ](2) do
4: if A(u, v) = 1 then
5: Pop (U, T1, f lag1) ∈ L such that u ∈ Si ⊆ U
6: Pop (W,T2, f lag2) ∈ L such that v ∈ Sj ⊆ W
7: U ← U ∪W
8: T = T1 ∪ T2 ∪ {{u, v}}
9: lowF lag = flag1 ∧ flag2

10: Append (U, T, lowF lag) to L
11: end if
12: end for
13: end for
14: S ′ ← ∅,PS′ ← ∅
15: C ← ∅,PC ← ∅
16: for (U, T, lowF lag) ∈ L do
17: if lowFlag = 0 then
18: S ′ ← S ′ ∪ {U}
19: PS′ ← PS′ ∪ {T}
20: else
21: C ← C ∪ {U}
22: PC ← PC ∪ {T}
23: end if
24: end for
25: return S ′,PS′ , C,PC

34



Algorithm 12 Witness Shrink(S,P , d)

Input: A valid set of connected supervertices S = {S1, . . . , Sk}, a set of spanning trees
P = {P1, . . . , Pk} where Pi is a spanning tree for Si, and a degree parameter d.

Output: Sets of supervertices S, C and corresponding sets of spanning trees PS ,PC .
1: low ← ones(k, 1)
2: A ← [ ]
3: N ← | ∪ki=1 Si|
4: for j = 1 to dlog(k)e do
5: for b ∈ {0, 1} do
6: Lj,b = {St ∈ S : tj = b}
7: Rj,b = {St ∈ S : tj = 1− b}
8: ~g ← Approximate Degree Sequence(Lj,b,Rj,b, 1/n

2)
9: H ← {St ∈ Lj,b : ~g(t) ≥ d}

10: low(ind(H)) = 0
11: Bj,b ← zeros(N,N)
12: Bj,b(∪St∈HSt,∪St∈Rj,b

St)←Witness Reduce High (H,Rj,b, d/4, ~g(ind(H)))
13: L ← {St ∈ Lj,b : ~g(t) < d}
14: ~f ← Approximate Degree Sequence(Rj,b,L, 1/n2)

15: R+
j,b ← {St ∈ Rj,b : ~f(t) ≥ 16d}

16: R−j,b ← {St ∈ Rj,b : ~f(t) < 16d}
17: C+

j,b(∪St∈LSt,∪St∈R+
j,b
St)←Witness Low-High(L,R+

j,b, 2d)

18: HasHighNeighbor ← {i : ∃u ∈ Si ∈ L, ∃v : C+
j,b(u, v) = 1}

19: low(HasHighNeighbor) = 0
20: C−j,b(∪St∈LSt,∪St∈R−j,b

St)←Witness Low-Low(L,R−j,b, 32d, 1/n)

21: Append Bj,b, C
+
j,b, and C−j,b to A.

22: end for
23: end for
24: S,P , C,PC ←Witness Contract(S,P ,A)
25: return S,P , C,PC
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(d) S ′ ∪ C is a partition of ∪S∈SS.

2. The total number of cut queries made is O(d log(n)5 + d2 log(n)3).

Proof. We first prove item (2). Queries are only made in the calls to Approximate Degree Se-
quence, Witness Reduce High, Witness Low-High, and Witness Low-Low. Each of these routines
is called 2 dlog |S|e = O(log n) many times. The query cost is dominated by Witness Low-High,
which takes O(d log(n)4) many queries, and Witness Low-Low which requires O(d2 log(n)2)
queries, resulting in a total of O(d log(n)5 + d2 log(n)3) cut queries.

The error probability of the call to Approximate Degree Sequence is 1/n2, Witness Reduce
High is O(log(n)2/n), Witness Low-High is O(log(n)/n), and Witness Low-Low is 1/n. Thus
the probability that an error occurs in any of these routines over the course of Witness Shrink is
O(log(n)3/n). We now argue the points in item (1) hold assuming all of these routines always
return correctly.

We first establish that the hypotheses of Lemma 49 hold when Witness Contract is called on
Line 24. By assumption the supervertices in S are connected and spanning trees for them are given
in P . The matrices in A are produced in calls to Witness Reduce High, Witness Low-High, and
Witness Low-Low. As we are in the case that all of these algorithms return correctly it follows
by Lemma 46,Lemma 47, and Lemma 48 that for every A ∈ A if A(u, v) = 1 then {u, v} ∈ E.
Finally, we need to establish that if low(i) = 1 then A contains a witness for every superedge of
Si. Suppose that low(i) = 1 and Si has a superedge with St. For some value of j, b in the for loop
we will have Si ∈ Lj,b, St ∈ Rj,b. As low(i) = 1 and Witness Low-High returns correctly, Si has
no neighbors in R+

j,b. Thus it must be the case that St ∈ R−j,b. As ~f,~g are good estimates because
Approximate Degree Sequence returns correctly, the degree bound in the call to Witness Low-Low
is valid and therefore by Lemma 46 a witness for the (Si, St) superedge will be found in the call to
Witness Low-Low.

We have now established the hypotheses to Lemma 49 and thus can invoke the conclusion of
Lemma 49 which implies Items 1(b),(c),(d) of the current lemma.

It remains to show Item 1(a). Let

R = {St ∈ S : ∃j ∈ {1, . . . , dlog ke}, b ∈ {0, 1}, v ∈ St such that Bj,b(:, v) 6= ~0} .

By Lemma 48, and the fact that the number of iterations of the for loop is 2 dlog |S|e, we have
|R| ≤ 512 dlog |S|e log(n)|S|/d. In Witness Contract, a supervertex W will be put into S ′ iff for
some Si ∈ W we have low(i) = 0. In the next paragraph we show that in that case Witness Shrink
finds witnesses to certify that an element of R is in the connected component of Si. This means
that Witness Contract will merge Si into a set W containing an element of R and therefore the
number of supervertices in S ′ can be upper bounded by |R| and will give Item 1(a).

Take an Si with low(i) = 0 and consider the iteration j, b of the for loop where low(i) is set
to zero. There are two ways this can happen. The first is if ~g(Si) ≥ d. In this case Si will be
placed into H and a witness for a neighbor in R will be found in the call to Witness Reduce High
by Lemma 48. The second case is that a witness is found for a superedge between Si and an
element S` ∈ R+

j,b. In the j, 1 − b iteration of the for loop, S` ∈ Lj,1−b and moreover ~g(`) ≥ d,
as ~f(`) ≥ 16d for S` to be placed in R+

j,b and both are good estimates. Therefore by the previous
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argument a witness for a neighbor of S` with an element of R will be found in the call to Witness
Reduce High. Thus we have witnesses that Si is connected to S` and that S` is connected to an
element ofR.

Finally we can give the algorithm of finding a spanning forest with polylogarithmic many cut
queries.

Algorithm 13 Spanning Forest with cut queries
Input: Cut oracle for a graph G on n vertices.
Output: A set P = {P1, . . . , Pt} containing a spanning tree for every connected component

of G.
1: S ← Ṽ ,PS ← Ṽ
2: P ← ∅,ConComp← ∅
3: repeat
4: (S,PS , C,PC)← WitnessShrink(S,PS , 1024 dlog ne2)
5: ConComp← ConComp ∪ C
6: P ← P ∪ PC
7: until S = ∅
8: return P

Theorem 51. Given cut query access to an n-vertex graph G, there is quantum algorithm (Al-
gorithm 13) making O(log(n)8) queries that outputs a spanning forest for G with probability
1−O(log(n)4/n).

Proof. We first argue by induction that the ith time Witness Shrink is called the hypothesis to
Lemma 50 is satisfied with probability at least 1− (i− 1) log(n)3/n.

The first time Witness Shrink is called, S = Ṽ and PS = Ṽ . Thus PS provides valid spanning
trees for each supervertex in S and the hypothesis to Lemma 50 is satisfied. Now suppose the
inductive assumption holds the ith time Witness Shrink is called. Then after the call to Witness
Shrink we know that except with probability log(n)3/n the output S,P satisfy that each superver-
tex in S is connected and has a valid spanning tree for it given in P . Thus in the (i + 1)th call to
Witness Shrink the hypothesis to Lemma 50 holds with probability at least 1− i log(n)3/n.

If the hypothesis to Lemma 50 holds in the call to Witness Shrink, then by the choice of the
degree parameter d = 1024 dlog ne2 the size of S will reduce by a factor of 1/2 with every iteration
of the repeat until loop. Thus with probability at least 1− log(n)4/n every call to Witness Shrink
will return correctly and the number of iterations will be at most O(log(n)). In this case the total
number of queries made will be O(log(n)8).

If every call to Witness Shrink returns correctly, then the algorithm mantains the invariant that
S ∪ ConComp is a partition of V , every supervertex in ConComp is a connected component and
has a valid spanning tree in PC . At the end of the algorithm S = ∅ thus ConComp is contains all
connected components of G and PC is a spanning forest.
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6.1 Applications
With the ability to compute a spanning forest we can also easily solve some other graph problems
in the cut query model.

Theorem 52. There is a quantum algorithm to determine if an n-vertex graph G is bipartite that
makes O(log(n)8) many cut queries and succeeds with probability at least 1−O(log(n)4/n).

Proof. We first invoke Theorem 51 to find a spanning forest for G with O(log(n)8) many cut
queries and success probability 1−O(log(n)4/n). We then color each root of a spanning tree red,
and proceed to color all the remaining vertices blue and red such that no two vertices connected in
a spanning tree have the same color. The graph is then bipartite if and only if there is no edge of G
between two vertices of the same color.

We can check if there is an edge between two red vertices with O(log(n)) cut queries. Let S
be the set of red vertices. We consider O(log n) bipartite graphs (Li, Ri, Ei) where Li = {v ∈ S :
vi = 0}, Ri = {v ∈ S : vi = 1} and Ei = {(u, v) : u ∈ Li, v ∈ Ri, {u, v} ∈ E}. Then with 3 cut
queries we can check if |E(Li, Ri)| > 0. An edge between two red vertices will be present in at
least one of these bipartite graphs, thus this process will determine if there is an edge between two
red vertices. We then do the same procedure for the blue vertices.

Similarly we can check if a graph is acyclic.

Theorem 53. There is a quantum algorithm to determine if an n-vertex graph G is acyclic that
makes O(log(n)8) many cut queries and succeeds with probability at least 1−O(log(n)4/n).

Proof. We first check that the graph is bipartite, i.e. that it has no odd cycles, using Theorem 52.
If it is bipartite, then it remains to check that it also has no even cycles.

To check for even cycles we do the same procedure as in the proof of Theorem 52: we find
a spanning forest and color the vertices of the spanning trees red and blue. Then the graph will
have no even cycles if and only if there are no additional edges between red and blue vertices than
those present in the spanning trees. Let the set of red vertices be R and the set of blue vertices be
B. With three cut queries we determine |E(B,R)|. We then compare this to the number of edges
between blue and red vertices that in the spanning forest. There is no even cycle if and only if these
numbers are the same.

Remark In both applications, after finding a spanning forest, the problem essentially becomes
testing graph emptiness: In bipartite testing we need to check the vertices of the same color form
an empty graph, and in acyclic graph testing we need to check that there is no edge other than those
in the found spanning forest. If a small constant error is tolerated (as opposed to the Õ(1/n) one
obtained in the above two proofs), then testing graph emptiness can be done in a constant number
of queries. Indeed, a query E(S, V \ S) for a random subset S ⊆ V returns a positive integer as
long as one edge exists, and repeating this dlog(1/ε)e times gives an error probability of at most ε.
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7 Concluding remarks
In this paper we investigate the power of additive and cut queries on graphs, and demonstrate that
quantum algorithms using these oracles that can solve certain graph problems with surprisingly
low query cost. Some open questions are left for future investigation, and we list a few of them
here.

1. The most pressing problem left open by this work is the quantum complexity of minimum
cut with a cut oracle. Can this be solved with a polylogarithmic number of queries?

2. Classically, the best known lower bounds on the query complexity of minimizing a submod-
ular function with an evaluation oracle can be shown via the connectivity problem. We have
ruled connectivity out as a candidate for a good quantum lower bound, and in fact we do
not know of any nontrivial lower bound on the quantum query complexity of minimizing
a submodular function. As a modest challenge, can one give an example of a submodular
function whose minimization problem requires Ω(n) many evaluation queries by a quantum
algorithm?

3. Another interesting problem is the maximization of a submodular function. This problem
is NP-hard in general and classically exponentially large query lower bounds are known.
For example, [FMV11] show that exp(ε2n/8) many evaluation oracle queries can be needed
by a randomized algorithm even to find a (1

2
+ ε)-approximation to the maximum value

of a submodular function. What is the quantum query complexity of submodular function
maximization?
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editors, Mathematical Foundations of Computer Science 2010, 35th International
Symposium, MFCS 2010, Brno, Czech Republic, August 23-27, 2010. Proceedings,
volume 6281 of Lecture Notes in Computer Science, pages 221–232. Springer, 2010.

[BM11] Nader H. Bshouty and Hanna Mazzawi. Reconstructing weighted graphs with mini-
mal query complexity. Theor. Comput. Sci., 412(19):1782–1790, 2011.

[BV97] Ethan Bernstein and Umesh V. Vazirani. Quantum complexity theory. SIAM J. Com-
put., 26(5):1411–1473, 1997.

[CCMP19] Sourav Chakraborty, Arkadev Chattopadhyay, Nikhil S. Mande, and Manaswi
Paraashar. Quantum query-to-communication simulation needs a logarithmic over-
head. CoRR, abs/1909.10428, 2019.

[CK10] Sung-Soon Choi and Jeong Han Kim. Optimal query complexity bounds for finding
graphs. Artif. Intell., 174(9-10):551–569, 2010.

[CK12] Andrew M. Childs and Robin Kothari. Quantum query complexity of minor-closed
graph properties. SIAM Journal on Computing, 41(6):1426–1450, 2012.

40



[CLSW17] Deeparnab Chakrabarty, Yin Tat Lee, Aaron Sidford, and Sam Chiu-wai Wong. Sub-
quadratic submodular function minimization. In Proceedings of the 49th Annual ACM
SIGACT Symposium on Theory of Computing, STOC 2017, Montreal, QC, Canada,
June 19-23, 2017, pages 1220–1231, 2017.
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