
ST-Norm: Spatial and Temporal Normalization for Multi-variate
Time Series Forecasting

Jinliang Deng
∗

Australian Artificial Intelligence

Institute, University of Technology

Sydney

Sydney, Australia

jinliang.deng@student.uts.edu.au

Xiusi Chen

University of California, Los Angeles

Los Angeles, USA

xchen@cs.ucla.edu

Renhe Jiang

Center for Spatial Information

Science, University of Tokyo

Tokyo, Japan

jiangrh@csis.u-tokyo.ac.jp

Xuan Song
†

SUSTech-UTokyo Joint Research

Center on Super Smart City,

Department of Computer Science and

Engineering, Southern University of

Science and Technology (SUSTech)

Shenzhen, China

songx@sustech.edu.cn

Ivor W. Tsang
†

Australian Artificial Intelligence

Institute, University of Technology

Sydney

Sydney, Australia

Ivor.Tsang@uts.edu.au

ABSTRACT
Multi-variate time series (MTS) data is a ubiquitous class of data ab-

straction in the real world. Any instance of MTS is generated from

a hybrid dynamical system with their specific dynamics normally

unknown. The hybrid nature of such a dynamical system is a result

of complex external impacts, which can be summarized as high-

frequency and low-frequency from the temporal view, or global

and local if we take the spatial view. These impacts also determine

the forthcoming development of MTS making them paramount to

capture in a time series forecasting task. However, conventional

methods face intrinsic difficulties in disentangling the components

yielded by each kind of impact from the raw data. To this end,

we propose two kinds of normalization modules – temporal and

spatial normalization – which separately refine the high-frequency

component and the local component underlying the raw data. More-

over, both modules can be readily integrated into canonical deep

learning architectures such as Wavenet and Transformer. Extensive

experiments
1
on three datasets are conducted to illustrate that, with

additional normalization modules, the performance of the canonical

architectures can be enhanced by a large margin in the application

of MTS and achieves state-of-the-art results compared with existing

MTS models.

CCS CONCEPTS
• Information systems → Spatial-temporal systems; • Com-
puting methodologies→ Neural networks.

KEYWORDS
Time Series Forecasting, Deep Learning, Normalization

∗
Also with Department of Computer Science and Engineering, Southern University

of Science and Technology.

†
Corresponding author

1
Code available at: https://github.com/JLDeng/ST-Norm.git

1 INTRODUCTION
Time series forecasting is an imperative problem in many industrial

and business applications. For instance, a public transport operator

can allocate sufficient capacity to mitigate the queuing time in a

region in advance, if they have the means to foresee that a particular

region will suffer from a supply shortage in the next couple of hours

[7]. Taking another example, an investor can avoid economic loss

with the assistance of a robo-advisor which is able to predict a

potential market crash [5]. Due to the complex and continuously

fluctuation in impacting factors, real-world time series tends to be

extraordinarily non-stationary, that is, exhibiting diverse dynamics.

For instance, the traffic volume over a road is largely affected by

the road’s condition, location, and the current time and weather

condition. In the case of retailing, the current season, price and

brand serve as determinants for the sales of a merchandise. The

diverse dynamics impose an enormous challenge on time series

forecasting. In this work, we will study multi-variate time series

forecasting, where multiple variables evolve with time.

Traditional time series forecasting algorithms, such as ARIMA

and state space models (SSMs), provide a principled framework

for modeling and learning time series patterns. However, these

algorithms have a rigorous requirement for the stationarity of a time

series, which encounters severe limitation in practical use if most

of the impacting factors are unavailable. With the recent advance

on deep learning techniques, we are now capable of handling the

complex dynamics as a single unit, even without any additional

supplement of impacting factors. Common neural architectures

applied on time series data include recurrent neural network (RNN),

long-short term memory (LSTM) [8], Transformer [12], Wavenet

[23] and temporal convolution networks (TCN) [2].

1.1 Preliminary Analysis
There is a rich quantity of existing works that deals with MTS

forecasting. Nonetheless, little work has identified precisely the

key bottleneck in this kind of problem. Herein, before formally

proposing our solution, we start by systematically analyzing the

problem to obtain greater insight. In real-world circumstances, we

roughly classify an impact imposed on MTS into four classes in

accordance with its activated ranges on the spatial and temporal

dimensions. The four classes are composed of low-frequency local

impact, low-frequency global impact, high-frequency local impact

and high-frequency global impact. Here, "low-frequency" / "high-

frequency" describes the activated range of the impact from the

temporal view, and "global" / "local" describes the activated range

from the spatial view. In particular, "low-frequency" means that

the impact varies smoothly or, in other words, it tends to stay

stable for a relatively long time; "high-frequency" means that the

impact varies drastically; "global" means that the impact imposes

a similar effect on all time series; "local" means that the impact

only affects individual time series, or imposes different effects on

different time series. Although the activated range on either the

temporal or spatial dimension lies in a continuous spectrum, we

consider only these four extreme cases as sufficient to reveal the

essence of MTS. Any measurement of a time series is a mixture of

four components respectively associated with the four classes of

impacts, which can be formulated as follows:

X𝑖,𝑡 = Xlh

𝑖,𝑡X
ll

𝑖,𝑡X
gh

𝑡 Xgl

𝑡 + 𝑐𝑜𝑛𝑠𝑡, (1)

where X𝑖,𝑡 ∈ R is the measurement of the 𝑖th time series on time

𝑡 , Xlh

𝑖,𝑡
∈ R denotes the local high-frequency component, Xll

𝑖,𝑡
∈ R

denotes the local low-frequency component, Xgh

𝑡 ∈ R denotes the

global high-frequency component and Xgl

𝑡 ∈ R denotes the global

low-frequency component. To understand this form of factoriza-

tion more thoroughly, the following real-world example is used as

the showcase. The time series data we present is the evolution of

demand for a shared bike over three selected regions in New York

City, as manifested in Fig. 1. In this example, the time of day serves

as a global high-frequency impact; region identity, including re-

gional population and functionality, serves as a local low-frequency

impact; the day of week serves as a global low-frequency impact.

Local high-frequency impacts are indistinguishable from the raw

data, such as traffic accidents or congestion.

2014-04-01 2014-04-02 2014-04-03 2014-04-04 2014-04-05 2014-04-06
0

25

50

75

100

125

150

175
Region A
Region B
Region C

Figure 1: NYC shared bike demand.

Time series forecasting is based mainly on its recent dynamics

which is composed of contiguous measurements. Formally, the dy-

namics is expressed as a vector

[
X𝑖,𝑡 ,X𝑖,𝑡−1, · · · ,X𝑖,𝑡−𝛿+1

]⊤
, where

𝛿 is the spanning time. However, canonical deep learning archi-

tectures employed in general time series forecasting tasks, such

as LSTM [8], Transformer [12, 24] and Wavenet [23], only cap-

ture the directional information of this vector, which is a special

type of temporal relationship, that results in discarding some in-

formative components. To obtain the specific form of temporal

relationship actually modeled, we presume two postulations which

hold in the majority of real-world problems: (1) the low-frequency

components (including both the global low-frequency and local

low-frequency components) are stable over a given period; (2) the

global high-frequency component well-dominate the local high-

frequency component. Based on the factorization in Eq. (1) along

with these two postulations, it is natural to derive the direction of

the vector from the basis of its constant origin, the entry associated

with historical time 𝑡0 of which is calculated as follows:

X𝑖,𝑡0√∑𝛿−1
𝑡 ′=0 (X𝑖,𝑡−𝑡 ′)2

=
Xlh

𝑖,𝑡0
Xll

𝑖,𝑡0
Xgh

𝑡0
Xgl

𝑡0√∑𝛿−1
𝑡 ′=0 (X

lh

𝑖,𝑡−𝑡 ′)2 (X
ll

𝑖,𝑡−𝑡 ′)2 (X
gh

𝑡−𝑡 ′)2 (X
gl

𝑡−𝑡 ′)2

≈
Xgh

𝑖,𝑡0√∑𝛿−1
𝑡 ′=0 (X

gh

𝑖,𝑡−𝑡 ′)2
, (2)

where the sign of each quantity is omitted for conciseness, as they

do not influence our asserted conclusion. We note that the obtained

directional vector merely accounts for the global high-frequency

component, totally discarding the global low-frequency component,

and its local-low frequency and local high-frequency counterparts.

Discarding the other three components incurs spatial indistin-
guishability and temporal indistinguishability. Spatial indis-
tinguishability means that dynamics yielded by different variables

are not adequately discernible. And temporal indistinguishability

means that dynamics measured at specific times are not substan-

tially discrete. For instance, looking at the three regions in Fig.

1, we consider their dynamics measured between 8pm and 9pm

on different days, so they share the same global high-frequency

element. In Fig. 2a, we plot the measurement at 8pm versus the

measurement at 9pm over the three regions, where the data points

are colored in accordance with their regional identities. Hence, a

cluster of dynamics with the same color shares the identical local

low-frequency component. In Fig. 2b, we only plot measurement

pairs of region A, and separate them based on weekday or weekend.

Here, a cluster of dynamics with the same color share the identical

global low-frequency component. Different clusters of dynamics

are supposed to be distinguishable, as their underlying local low-

frequency components or global low-frequency components are

disparate. However, the cluster-wise relationships (indicated by

the direction of a straight line fitting the intra-cluster data points)

are highly correlated, which signifies either the spatial or the tem-

poral indistinguishability. Such indistinguishability hinders deep

neural networks from perceiving the spatial and temporal differ-

ence. It should be noted that, once the model tunes the fraction

of parameters uniquely responsible for a cluster of dynamics, the

forecast of other clusters will inversely degenerate in reaction to

this action. This makes the current update prone to be counter-

acted by any subsequent updates, as the temporary status is not

even locally optimal. Hence, the ultimate model mainly captures

an average property of these clusters, emanating from the common

global high-frequency component. This outcome also conforms

completely to our deduction in Eq. (2).

0 25 50 75 100 125 150 175
x(t)

0

50

100

150

200

x(
t-1

)

Region A
Region B
Region C

(a)

20 40 60 80 100
x(t)

0

20

40

60

80

100

x(
t-1

)

weekday
weekend

(b)

Figure 2: (a) Spatial indistinguishability; (b) Temporal indis-
tinguishability.

1.2 Contributions
To address the above issues, the key is to refine more types of com-

ponents from the original measurement. Thereby relationships that

distinguish dynamics from the spatial view or the temporal view can

be captured. In our work, we propose two kinds of normalization

modules – temporal normalization (TN) and spatial normalization

(SN) – which separately refine the high-frequency and local com-

ponents. Specifically, the high-frequency component assists with

distinguishing dynamics from the spatial view, and the local com-

ponent facilitates differentiating the dynamics from the temporal

view. With distinguishability on space and time, the model is able to

exclusively fit each clusters of samples, especially some long-tailed

samples. Moreover, we show the connection between our method

and other state-of-the-art (SOTA) methods which rely on mutual re-

lationship establishment to distinguish dynamics. We now have two

prominent advantages, apart from the higher prediction accuracy:

(1) the computational cost remains in O(𝑁𝑇), rather than scaling

up to O(𝑁 2𝑇); (2) the converging speed is faster, as demonstrated

by the experiments conducted.

2 RELATEDWORK
2.1 Time Series Forecasting
Time series forecasting has been studied for decades. Traditional

methods, such as ARIMA, can only learn linear relationship among

different timesteps, which has an inherent deficiency in fitting

many real-world time series data that are highly nonlinear. With

the power of deep learning models, there is recently a large volume

of work in this area that has achieved impressive performance. For

instance, Qin et al. [15] adopt LSTM to capture the nonlinear dy-

namics and long-term dependencies in time series data. However,

the memorizing capacity of LSTM is still restricted, as pointed out

by Zhao et al. [32]. To resolve this issue, Tang et al. [21] create an

external memory to explicitly store some representative patterns

that can be frequently observed in the history, which is able to

effectively guide the forecasting when similar patterns occur. Lai

et al. [11] make use of skip connection to enable the information

transmitting from distant history. Attention mechanism is another

option to deal with the vanishing memory problem [6, 20]. Of

these methods, Transformer is a representative architecture which

consists of only attention operations [24]. To overcome the compu-

tation bottleneck of canonical Transformer, Li et al. [12] propose

a novel mechanism that periodically skips some timesteps when

performing attention. As far as we know, Wavenet [23] and TCN

[2] are currently the most superior choices for modeling long-term

time series data [19, 27, 28].

To tackle MTS, several studies [19, 30] assume that the multi-

variate time series data has a low-rank structure. Another thread of

works [14, 15] leverage the attentionmechanism to learn the correla-

tions among individual time series. Recently, Wu et al. [27] inferred

the inherent structure over the variables derived from self-learned

encodings associated with each variable. The aforementioned meth-

ods make point estimation. Rangapuram et al. [16], Salinas et al.

[17], Wang et al. [25] propose to deliver a confidence interval that

is likely to contain the forthcoming observation.

2.2 Normalization
Normalization has been firstly adopted in deep image processing,

and has fabulously promoted the performance of deep learning

models in nearly all the tasks. There are multiple normalization

methods, such as batch normalization [9], instance normalization

[22] and group normalization [26], each of which is proposed to

address a particular group of computer vision tasks. Of these, in-

stance normalization has the greatest potential to be applied for our

study, which was originally designed for image synthesis owing to

its power to remove style information from the images. Researchers

have found that feature statistics can capture the style of an image,

and the remaining features upon normalizing the statistics are re-

sponsible for the content. Such a separable property enables the

content of an image to be rendered in the style of another image,

which also known as style transfer. The style information in the

image is similar to the scale information in time series. Moreover,

there is another line of work which explores the reason of why

normalization trick facilitates the learning of deep neural networks

[3, 4, 13, 18]. One major discovery of them is that normalization

can increase the rankness of the feature space, or in other words, it

enable the model to extract more diverse features.

3 PRELIMINARIES
In this section, we introduce the definitions and the assumption.

All frequently used notations are reported in Table 1.

Table 1: Notations

Notation Description

𝑁,𝑇𝑖𝑛,𝑇𝑜𝑢𝑡 Number of variables / input steps / output steps.

X ∈ R𝑁×𝑇𝑖𝑛 Input data.

Y ∈ R𝑁×𝑇𝑜𝑢𝑡
Output data.

Z ∈ R𝑁×𝑇𝑖𝑛×𝑑𝑧 Latent data.

Zlh ∈ R𝑁×𝑇𝑖𝑛×𝑑𝑧 Local high-frequency component.

Zll ∈ R𝑁×𝑇𝑖𝑛×𝑑𝑧 Local low-frequency component.

Zgh ∈ R𝑇𝑖𝑛×𝑑𝑧 Global high-frequency component.

Zgl ∈ R𝑇𝑖𝑛×𝑑𝑧 Global low-frequency component.

x, y, z Vector or matrix that represents certain variable.

+, ·, / Element-wise addition / multiplication / division.

i.i.d.

= Two variables are i.i.d..

* Placeholder.

Definition 1 (Time series forecasting). Time series forecasting is

formulated as the following conditional distribution:

𝑃 (Y|X) =
𝑇𝑜𝑢𝑡∏
𝑡=1

𝑃 (Y:,𝑡 |X),

Definition 2 (Time series factorization). Time series factorization

generalizes Eq. (1) into the latent space, which takes the following

form:

Z𝑖,𝑡 = Zlh𝑖,𝑡Z
ll

𝑖,𝑡Z
gh

𝑡 Zgl𝑡 , (3)

where:

Zlh𝑖,𝑡
i.i.d.

= Zlh𝑖,𝑡−1, Z
ll

𝑖,𝑡 ≈ Zll𝑖,𝑡−1, Z
gh

𝑡

i.i.d.

= Zgh
𝑡−1, Z

gl

𝑡 ≈ Zgl
𝑡−1, Z

l*

𝑖,𝑡

i.i.d.

= Zl*𝑗,𝑡 .

Assumption 1. The set of elements of Zlh
𝑖,𝑡
, Zll

𝑖,𝑡
, Zgh𝑡 and Zgl𝑡 are

mutually independent, which is formally written as:

𝑃 (Zll𝑖,𝑡 ,Z
lh
𝑖,𝑡 ,Z

gh
𝑡 ,Zgl𝑡) =

𝑑𝑧∏
𝑘=1

𝑃 (Zll
𝑖,𝑡,𝑘

)𝑃 (Zlh
𝑖,𝑡,𝑘

)𝑃 (Zgh
𝑡,𝑘

)𝑃 (Zgl
𝑡,𝑘

) . (4)

4 METHODOLOGY

Skip Connection

Residual Block

Casual Conv

Overall Architecture

t

x

t

x

Historical time series
 ()

Output

Input

1 1 Conv

Residual Block

Residual Block

Spatial
Normalization

Temporal
Normalization

ST-Norm

DIlated Causal
Conv

tanh

1 1 Conv

Residual

ReLU

||

Temporal Pool

Figure 3: Overall architecture, where we just draw two
residual blocks for illustration, but multiple blocks can
be stacked layer by layer. +, × and | | respectively denote
element-wise addition, element-wise multiplication and
concatenation

We display the overview of the architecture being leveraged in

our work in Fig. 3. Some key variables with their shapes are labeled

at their corresponding positions along the computation path. Gen-

erally, our framework follows a structure similar to Wavenet[2],

except that we add both spatial normalization and temporal nor-

malization modules which together are abbreviated as ST-Norm or

STN.

Figure 4: Dilated Causal Convolution.

4.1 Dilated Causal Convolution
In this section, we briefly introduce dilated causal convolution

where the filter is applied with skipping values. For a 1-D signal

z ∈ R𝑇 and a filter 𝑓 : {0, . . . , 𝑘 − 1} → R, the causal convolution
on element 𝑡 is defined as follows:

𝐹 (𝑡) = (z ∗ 𝑓) (𝑡) =
𝑘−1∑
𝑖=0

𝑓 (𝑖) · z𝑡−𝑖 . (5)

This formula can be easily generalized for multi-dimension signal

but we omit its general form here for brevity. Moreover, padding

(zero or replicate) with size of 𝑘 − 1 is appended to the left tail

of the signal to ensure length consistency. We can stack multiple

causal convolution layers to obtain a larger receptive field for each

element.

One shortcoming of using causal convolution is that either the

kernel size or the number of layers increases in a linear manner

with the range of the receptive field, and the linear relationship

causes an explosion of parameters when modeling long history.

Pooling is a natural choice to address this issue, but it sacrifices the

order information presented in the signal. To this end, dilated causal

convolution is leveraged, a form which supports the exponential

expansion of the receptive field. The formal computing process is

written as:

𝐹 (𝑡) = (z ∗𝑑 𝑓) (𝑡) =
𝑘−1∑
𝑖=0

𝑓 (𝑖) · z𝑡−𝑑 ·𝑖 , (6)

where 𝑑 is the dilation factor. Normally, 𝑑 increases exponentially

w.r.t. the depth of the network (i.e., 2
𝑙
at level 𝑙 of the network). If

𝑑 is 1 (2
0
), then the dilated convolution operator ∗𝑑 reduces to a

regular convolution operator ∗.

4.2 Temporal Normalization
Temporal normalization (TN) aims to refine the high-frequency

components – both global and local – from the hybrid signal. Here,

for conciseness, we introduce two notations to individually summa-

rize high-frequency components and low-frequency components,

which are expressed as:

Zhigh
𝑖,𝑡

= Zlh𝑖,𝑡Z
gh

𝑡 , Zlow𝑖,𝑡 = Zll𝑖,𝑡Z
gl

𝑡 .

The applicability of TN is based on a reasonable assumption that

the changing rates of low-frequency components are much slower

than those of the high-frequency components. Or more technically,

each low-frequency component approximately equals a constant

over a period. Under this assumption, we are can apply TN on time

series without the additional supplement of features characterizing

the frequency. Such characteristic is well-suitable for an ample

number of real-world problems, where the specific frequency is not

available.

We start with expanding Zhigh
𝑖,𝑡

to obtain a desirable form whose

distinct quantities can be derived from data:

Zhigh
𝑖,𝑡

=

Zhigh
𝑖,𝑡

− 𝐸

(
Zhigh
𝑖,𝑡

���𝑖)
𝜎

(
Zhigh
𝑖,𝑡

���𝑖) + 𝜖

𝜎

(
Zhigh
𝑖,𝑡

���𝑖) + 𝐸

(
Zhigh
𝑖,𝑡

���𝑖)

=

Zhigh
𝑖,𝑡

Zlow
𝑖,𝑡

− Zlow
𝑖,𝑡

𝐸

(
Zhigh
𝑖,𝑡

���𝑖)
Zlow
𝑖,𝑡

𝜎

(
Zhigh
𝑖,𝑡

���𝑖) + 𝜖

𝜎

(
Zhigh
𝑖,𝑡

���𝑖) + 𝐸

(
Zhigh
𝑖,𝑡

���𝑖)

=

Z𝑖,𝑡 − 𝐸

(
Z𝑖,𝑡

���Zlow𝑖,𝑡
, 𝑖

)
(±)𝜎

(
Z𝑖,𝑡

���Zlow𝑖,𝑡
, 𝑖

)
+ 𝜖

𝜎

(
Zhigh
𝑖,𝑡

���𝑖) + 𝐸

(
Zhigh
𝑖,𝑡

���𝑖)

=

Z𝑖,𝑡 − 𝐸

(
Z𝑖,𝑡

���Zlow𝑖,𝑡
, 𝑖

)
𝜎

(
Z𝑖,𝑡

���Zlow𝑖,𝑡
, 𝑖

)
+ 𝜖

(
(±)𝜎

(
Zhigh
𝑖,𝑡

���𝑖)) + 𝐸

(
Zhigh
𝑖,𝑡

���𝑖) , (7)
where 𝜖 is a small constant to preserve numerical stability; Z𝑖,𝑡
is observable; 𝐸

(
Zhigh
𝑖,𝑡

���𝑖) and (±)𝜎
(
Zhigh
𝑖,𝑡

���𝑖) are mean and stan-

dard deviation (plus or minus) of the high-frequency impact on the

𝑖th time series over time, which can be approximated by a pair of

learnable vectors 𝛾
high

𝑖
and 𝛽

high

𝑖
with the size of 𝑑𝑧 . To estimate

𝐸

(
Z𝑖,𝑡

���Zlow𝑖,𝑡
, 𝑖

)
and 𝜎

(
Z𝑖,𝑡

���Zlow𝑖,𝑡
, 𝑖

)
can be estimated as follows un-

der Def. 2 and Assumption 1:

𝐸

(
Z𝑖,𝑡

���Zlow𝑖,𝑡 , 𝑖

)
≈ 1

𝛿

𝛿∑
𝑡 ′=1

Zhigh
𝑖,𝑡−𝑡 ′+1Z

low

𝑖,𝑡

≈ 1

𝛿

𝛿∑
𝑡 ′=1

Zhigh
𝑖,𝑡−𝑡 ′+1Z

low

𝑖,𝑡−𝑡 ′+1

=
1

𝛿

𝛿∑
𝑡 ′=1

Z𝑖,𝑡−𝑡 ′+1 (8)

𝜎2
(
Z𝑖,𝑡

���Zlow𝑖,𝑡 , 𝑖

)
= 𝐸

[(
Z𝑖,𝑡 − 𝐸

(
Z𝑖,𝑡

���Zlow𝑖,𝑡 , 𝑖

))
2

����Zlow𝑖,𝑡 , 𝑖

]
≈ 1

𝛿

𝛿∑
𝑡 ′=1

(
Zhigh
𝑖,𝑡−𝑡 ′+1Z

low

𝑖,𝑡 − 𝐸

(
Z𝑖,𝑡

���Zlow𝑖,𝑡 , 𝑖

))
2

≈ 1

𝛿

𝛿∑
𝑡 ′=1

(
Zhigh
𝑖,𝑡−𝑡 ′+1Z

low

𝑖,𝑡−𝑡 ′+1 − 𝐸

(
Z𝑖,𝑡

���Zlow𝑖,𝑡 , 𝑖

))
2

=
1

𝛿

𝛿∑
𝑡 ′=1

(
Z𝑖,𝑡−𝑡 ′+1 − 𝐸

(
Z𝑖,𝑡

���Zlow𝑖,𝑡 , 𝑖

))
2

, (9)

where 𝛿 is a period during which the low-frequency component

approximately remains to be a constant. In our work, for simplicity,

we let 𝛿 equal to the number of input time steps. By substituting the

estimations of the four unobservable variables into Eq. (7), we are

able to obtain the representation of the high-frequency component:

Zhigh
𝑖,𝑡

=

Z𝑖,𝑡 − 𝐸

(
Z𝑖,𝑡

���Zlow𝑖,𝑡
, 𝑖

)
𝜎

(
Z𝑖,𝑡

���Zlow𝑖,𝑡
, 𝑖

)
+ 𝜖

𝛾
high

𝑖
+ 𝛽

high

𝑖
(10)

Noticeably, TN has a close relationship with instance normal-

ization (IN) for image data [22], where style plays the role of a

low-frequency component and content serves as a high-frequency

component. The novelty of our work is that we trace the origin of

TN under the context of MTS, and deduce TN step-by-step from its

origin.

4.3 Spatial Normalization
The objective of spatial normalization (SN) is to refine local com-

ponents, composed of the local high-frequency component and

the local low-frequency component. To achieve this objective, the

primary task is first to eliminate global components, resulted from

global impacts such as time of day, day of week and weather condi-

tion, etc. We also introduce two notations to summarize local and

global components:

Zglobal𝑡 = Zgh𝑡 Zgl𝑡 , Z
local

𝑖,𝑡 = Zlh𝑖,𝑡Z
ll

𝑖,𝑡 .

Likewise, the applicability of SN is based on the assumption that

the global impacts impose similar effects on all time series. For

instance, in Fig. 1, there are common upward trends over the three

regions with similar increasing rates when moving from 8am to

9am. Here, we need to clarify that we do not require the global

impacts to strictly exert the same influence on each time series.

Those effects that are not evenly observed on each time series could

be complemented by the defined local component.

We firstly expand Zlocal
𝑖,𝑡

to an expression where each term can be

approximated from data or be assigned with learnable parameters:

Zlocal𝑖,𝑡 =

Zlocal
𝑖,𝑡

− 𝐸

(
Zlocal
𝑖,𝑡

���𝑡)
𝜎

(
Zlocal
𝑖,𝑡

���𝑡) + 𝜖

𝜎

(
Zlocal𝑖,𝑡

���𝑡) + 𝐸

(
Zlocal𝑖,𝑡

���𝑡)

=

Zlocal
𝑖,𝑡

Zglobal𝑡 − Zglobal𝑡 𝐸

(
Zlocal
𝑖,𝑡

���𝑡)
Zglobal𝑡 𝜎

(
Zlocal
𝑖,𝑡

���𝑡) + 𝜖

𝜎

(
Zlocal𝑖,𝑡

���𝑡) + 𝐸

(
Zlocal𝑖,𝑡

���𝑡)

=

Z𝑖,𝑡 − 𝐸

(
Z𝑖,𝑡

���Zglobal𝑡 , 𝑡

)
(±)𝜎

(
Z𝑖,𝑡

���Zglobal𝑡 , 𝑡

)
+ 𝜖

𝜎

(
Zlocal𝑖,𝑡

���𝑡) + 𝐸

(
Zlocal𝑖,𝑡

���𝑡)

=

Z𝑖,𝑡 − 𝐸

(
Z𝑖,𝑡

���Zglobal𝑡 , 𝑡

)
𝜎

(
Z𝑖,𝑡

���Zglobal𝑡 , 𝑡

)
+ 𝜖

(
(±)𝜎

(
Zlocal𝑖,𝑡

���𝑡)) + 𝐸

(
Zlocal𝑖,𝑡

���𝑡)
(11)

where Z𝑖,𝑡 is directly observable; (±)𝜎
(
Zlocal
𝑖,𝑡

���𝑡) and 𝐸

(
Zlocal
𝑖,𝑡

���𝑡)
are approximated by two learnable vectors

2 𝛾 local and 𝛽 local; the

estimation of 𝐸

(
Z𝑖,𝑡

���Zglobal𝑡 , 𝑡

)
and 𝜎

(
Z𝑖,𝑡

���Zglobal𝑡 , 𝑡

)
can be derived

2
Each time would possess the identical prior distribution if dynamic laws, such as

periodicity, is unknown.

from data in the following ways under Def. 2 and Assumption 1:

𝐸

(
Z𝑖,𝑡

���Zglobal𝑡 , 𝑡

)
≈ 1

𝑁

𝑁∑
𝑗=1

Zlocal𝑗,𝑡 Zglobal𝑡

=
1

𝑁

𝑁∑
𝑗=1

Z𝑗,𝑡 (12)

𝜎2
(
Z𝑖,𝑡

���Zglobal𝑡 , 𝑡

)
= 𝐸

[(
Z𝑖,𝑡 − 𝐸

(
Z𝑖,𝑡

���Zglobal𝑡 , 𝑡

))
2

����Zglobal𝑡 , 𝑡

]
≈ 1

𝑁

𝑁∑
𝑗=1

(
Zlocal𝑗,𝑡 Zglobal𝑡 − 𝐸

(
Z𝑖,𝑡

���Zglobal𝑡 , 𝑡

))
2

=
1

𝑁

𝑁∑
𝑗=1

(
Z𝑗,𝑡 − 𝐸

(
Z𝑖,𝑡

���Zglobal𝑡 , 𝑡

))
2

(13)

By substituting the approximations of the four unobservable vari-

ables into Eq. (11), we are able to obtain the composite representa-

tion of the local components:

Zlocal𝑖,𝑡 =

Z𝑖,𝑡 − 𝐸

(
Z𝑖,𝑡

���Zglobal𝑡 , 𝑡

)
𝜎

(
Z𝑖,𝑡

���Zglobal𝑡 , 𝑡

)
+ 𝜖

𝛾 local + 𝛽 local (14)

SN is a counterpart of TN in the spatial domain, where high-

frequency components act as local components, and low-frequency

components correspond to global components. By distilling the

local or high-frequency components from the original signal, the

model can capture fine-grained variation, which is extraordinarily

instrumental in time series forecasting.

4.4 Forecasting and Learning
We let Z(𝐿) ∈ R𝑁𝑙×𝑇𝑖𝑛×𝑑𝑧

denote the output from the last resid-

ual block, where each row z(𝐿) ∈ R𝑇𝑖𝑛×𝑑𝑧 represents a variable.

Then, we employ a temporal pooling block to perform temporal

aggregation for each variable. Several types of pooling operations

can be applied, such as max pooling and mean pooling, depending

on the problem being studied. In our case, we select the vector in

the most recent time slot as the pooling result, which is treated as

the representation of the entire signal. Finally, we make a separate

prediction for each variable, based on the obtained representation

by a shared fully connected layer.

In the learning phase, our objective is to minimize the mean

squared error between the predicted values and ground truth values.

In addition, we use the Adam optimizer [10] to optimize this target.

4.5 Discussion
To illustrate how TN and SN reframe the feature space, we apply

them over the raw input data, and examine whether they mitigate

the issues we raise in Fig. 2. We plot the original quantity versus the

temporally normalized quantity in Fig. 5a, and the original quantity

versus the spatially normalized quantity in Fig. 5b. It is apparent

that the pairwise relationship between the original quantity and

the temporally normalized quantity separates different regions, and

the pairwise relationship between the original quantity and the

spatially normalized quantity separates different days.

0 25 50 75 100 125 150 175
x(t)

1

0

1

2

3

x_
hi

gh
(t)

Region A
Region B
Region C

(a) TN

20 40 60 80 100
x(t)

0

1

2

3

4

x_
lo

ca
l(t

)

weekday
weekend

(b) SN

0 25 50 75 100 125 150 175
x(t)

0

20

40

60

80

100

An
ch

or
(t)

Region A
Region B
Region C

(c) Graph-based

Figure 5: Relationships produced by the three operations.

A few SOTA approaches [1, 27, 28] propose to establish a mutual

relationship between different time series in order to refine the local

component. In essence, they contrast a pair of time series which

share the same global components over time, thereby allowing the

local component of individual time series to be highlighted. For

instance, we contrast the three time series in Fig. 1 with a single

time series (regarded as an anchor), which results in a pairwise

relationship reflecting the identity of each time series as shown

in Fig. 5c. However, the eligible anchors are often unknown, and

different time series may need to be paired with different anchors.

To automatically identify the anchor for each time series, these

methods employ a graph-learning module to explore every possible

pair of time series. Their computational complexity is O(𝑇𝑁 2).
Unlike other approaches proposed in this area, the normalization

modules involved in our method only require O(𝑇𝑁) operations.

5 EVALUATION
In this section, we conduct extensive experiments on three common

datasets to validate the effectiveness of ST-Norm from different

aspects.

5.1 Experimental Setting
5.1.1 Datasets. We validate ourmodel on three real-world datasets,

including BikeNYC, PeMSD7 and Electricity. The statistics regard-

ing each dataset as well as the corresponding settings of the de-

signed task are reported in Table 6. More details can be found in

Appendix A.1. We standardize the values in each dataset to facilitate

training and transform them back to the original scale in the testing

phase.

5.1.2 Network Setting. We add an instance normalization (IN) mod-

ule [22] in parallel with SN and TN as another complement
3
. The

batch size is 4, and the input length of the batch sample is 16. For

the Wavenet backbone, the layer number is set to 4, the kernel size

of each DCC component is 2, and the associated dilation rate is 2
𝑖
,

where 𝑖 is the index of the layer (counting from 0). Such settings

collectively enable the output from Wavenet to perceive 16 input

steps. The number of hidden channels 𝑑𝑧 in each DCC is 16. We

apply zero-padding on the left tail of the input to enable the length

of the output from DCC to equal to 16 as well. The learning rate of

the Adam optimizer is 0.0001.

3
The implementation can be found in our code.

5.1.3 Evaluation Metrics. We validate our model by root mean

squared error (RMSE), mean absolute error (MAE) and mean abso-

lute percentage error (MAPE). We repeat the experiment ten times

for each model on each dataset and report the mean of the results.

5.2 Baseline Models
• MTGNN [27]. MTGNN constructs inter-variate relation-

ships by introducing a graph-learning module. Specifically,

the graph learning module connects each hub node with its

top k nearest neighbors in a defined metric space. MTGNN’s

backbone architecture for temporal modeling is Wavenet.

• GraphWavenet [28]. The architecture of GraphWavenet is

like MTGNN. The major difference is that the former derives

a soft graph where each pair of nodes has a continuous

probability of being connected.

• AGCRN [1]. AGCRN also equips with a graph-learningmod-

ule to establish inter-variate relationship. Furthermore, it

uses a personalized RNN to model the temporal relationship

for each time series.

• Transformer [12]. This model captures the long-term de-

pendencies in time series data through using an attention

mechanism, where the keys and queries are yielded by causal

convolution over local context to model segment-level cor-

relation.

• LSTNet [11]. There are two components in LSTNet: one is

a conventional autoregressive model, and the other is an

LSTM with an additional skip connection over the temporal

dimension.

• TCN. [2] The architecture of TCN is like Wavenet, except

that the nonlinear transformation in each residual block is

made up of two rectified linear units (ReLU).

We also test the performance of TCN and Transformer incor-

porating STN, where STN is similarly applied before the causal

convolution operation in each layer.

5.3 Experiment Results

Table 2: Performance on the BikeNYC dataset

Models

1 hour 2 hour 3 hour

MAPE MAE RMSE MAPE MAE RMSE MAPE MAE RMSE

LSTNet 19.6% 2.55 5.35 21.1% 2.77 6.04 22.6% 2.99 6.63

AGCRN 17.3% 2.34 4.76 18.7% 2.56 5.51 20.3% 2.77 6.07

Graph Wavenet 18.0% 2.39 4.78 19.4% 2.65 5.53 20.8% 2.86 6.05

MTGNN 19.0% 2.55 5.05 21.1% 2.88 6.00 22.9% 3.13 6.61

Transformer 22.8% 2.98 6.16 27.1% 3.66 7.88 29.7% 4.12 8.95

Transformer + STN 17.7% 2.36 4.75 19.1% 2.57 5.51 20.7% 2.78 6.09

TCN 22.4% 2.90 5.98 26.4% 3.57 7.66 29.1% 4.07 8.76

TCN + STN 16.8% 2.30 4.51 18.6% 2.55 5.34 20.4% 2.77 5.92

Wavenet 22.1% 2.86 5.92 26.3% 3.52 7.58 29.0% 3.97 8.68

Wavenet + STN 16.9% 2.23 4.48 18.3% 2.47 5.28 20.1% 2.68 5.88
Improvements +2.8% +4.7% +5.8% +2.1% +3.5% +4.1% +0.9% +3.2% +2.8%

The experimental results on the BikeNYC, PeMSD7 and Electric-

ity datasets are separately reported in Table 2, Table 3 and Table

4. The improvements achieved by Wavenet + STN over the best

benchmarks are recorded in the last row of each table.

It is obvious that Wavenet + STN achieves SOTA results over

almost all horizons on BikeNYC, PeMSD7 and Electricity data. The

reason is that we refine the high-frequency components from both

the temporal view and the spatial view, which are generally over-

looked by baseline models. Next, we reveal the cause of Wavenet +

Table 3: Performance on the PeMSD7 dataset.

Models

30 min 60 min 90 min

MAPE MAE RMSE MAPE MAE RMSE MAPE MAE RMSE

LSTNet 8.10% 3.88 6.52 8.43% 4.01 6.71 9.06% 4.30 7.12

AGCRN 4.87% 2.34 4.24 6.48% 3.07 5.58 7.27% 3.43 6.19

Graph Wavenet 4.90% 2.33 4.25 6.77% 3.19 5.69 7.57% 3.57 6.25

MTGNN 5.18% 2.46 4.48 7.61% 3.57 6.31 9.03% 4.25 7.26

Transformer 5.82% 2.75 5.03 9.31% 4.34 7.51 11.8% 5.49 9.02

Transformer + STN 4.86% 2.33 4.26 6.50% 3.08 5.65 7.33% 3.48 6.31

TCN 5.80% 2.75 4.97 9.44% 4.43 7.53 12.0% 5.61 9.06

TCN + STN 4.91% 2.34 4.22 6.42% 3.04 5.51 7.12% 3.38 6.05

Wavenet 5.50% 2.61 4.80 8.75% 4.10 7.20 11.0% 5.16 8.61

Wavenet + STN 4.71% 2.25 4.12 6.23% 2.95 5.48 6.97% 3.29 6.01
Improvements +3.2% +3.4% +3.0% +3.8% +3.9% +1.7% +4.1% +4.0% +2.9%

Table 4: Performance on the Electricity dataset.

Models

1 hour 2 hour 3 hour

MAPE MAE RMSE MAPE MAE RMSE MAPE MAE RMSE

LSTNet 22.4% 31.1 61.2 23.0% 31.8 62.6 24.8% 33.8 66.8

AGCRN 12.2% 17.1 36.3 16.1% 22.3 49.1 19.1% 26.0 56.6

Graph Wavenet 10.9% 15.9 34.9 15.8% 22.4 49.9 19.1% 26.5 57.7

MTGNN 11.1% 15.8 32.5 16.0% 22.2 46.3 19.6% 26.5 54.6

Transformer 11.2% 16.6 36.3 17.6% 25.4 53.7 22.2% 31.8 65.0

Transformer + STN 13.2% 17.4 35.9 17.7% 23.5 48.8 21.2% 27.9 58.0

TCN 11.1% 16.3 35.5 17.3% 25.0 52.4 21.5% 30.7 62.0

TCN + STN 13.2% 16.7 31.7 16.5% 21.5 42.8 20.1% 25.4 50.9

Wavenet 10.8% 15.8 33.3 16.8% 23.8 49.5 21.1% 29.5 60.3

Wavenet + STN 12.0% 15.6 30.9 15.1% 20.1 42.2 17.1% 23.0 49.2
Improvements -11.0% +1.2% +4.9% +4.4% +9.4% +8.8% +10.4% +11.5% +9.8%

STN’s under-performance on the electricity dataset over the first

horizon with respect to MAPE. As shown in Fig. 9b, electricity data

follows a long-tailed distribution – there is a certain portion of

quantities exceeding a relatively high level. Recall that the opti-

mization targets minimizing mean squared error, which means that

more weights are placed on large errors. Moreover, every sample

is treated equivalently in the estimation of global statistics. There-

fore, the model can fit long-tailed samples better, but at the cost of

degrading the fitness on normal samples.

We also display the process of loss convergence in Appendix

A.2. It shows that with the additional STN module, the converging

speeds of the models are accelerated by a large margin, faster than

that of nearly all baseline models.

5.4 Ablation Study

Table 5: Ablation Study

GSTN STN Graph TN SN Vanilla

B

RMSE 5.18 5.21 5,46 5.63 6.37 7.40

MAE 2.45 2.47 2.63 2.64 2.99 3.44

MAPE 18.4% 18.7% 19.4% 19.8% 22.6% 25.8%

P

RMSE 5.16 5.22 5.40 5.35 6.12 6.87

MAE 2.77 2.83 3.03 2.90 3.47 3.96

MAPE 5.86% 5.97% 6.41% 6.08% 7.41% 8.43%

E

RMSE 38.9 40.8 47.5 44.1 45.9 47.9

MAE 18.9 19.6 21.6 21.4 22.6 23.1

MAPE 14.4% 14.7% 15.3% 16.2% 16.7% 15.9%

To validate the effectiveness of SN and TN, we design several

variants as follows. We also investigate whether a graph-learning

module complements STN by testing a variant containing them

both. As all the variants contain the standard Wavenet backbone,

we omit Wavenet in the name for brevity.

• GSTN. STN with an adaptive graph learning module as in

Graph Wavenet.

• Graph. Graph Wavenet.

• SN. Wavenet with SN module.

• TN. Wavenet with TN module.

We evaluate these variants on all the three datasets and report

the overall results in Table 5. It is evident that both of SN and

TN contribute to the enhancement. Moreover, with an adaptive

graph-learning module, the performance of STN rises marginally.

We can conclude that STN largely substitutes and surpasses the

graph-learning module.

5.5 Hyper-parameter Analysis

4 8 16 32 64

Dimension of hidden channels

4

5

6

7

8

9

R
M

S
E

Model
Wavenet+STN
Wavenet

(a)

4 8 16 32 64

Number of historical steps

4

5

6

7

8

9

10

11

R
M

S
E

Model
Wavenet+STN
Wavenet

(b)

2 3 4

Kernel size

4.0

4.5

5.0

5.5

6.0

6.5

7.0

7.5

8.0

R
M

S
E

Model
Wavenet+STN
Wavenet

(c)

4 8 16 32

Batch size

4.0

4.5

5.0

5.5

6.0

6.5

7.0

7.5

8.0

R
M

S
E

Model
Wavenet+STN
Wavenet

(d)

Figure 6: Hyper-parameter analysis.

We further study the effect of different settings of the hyper-

parameters in the proposedmodules. There are four hyper-parameters

to be manually set by practitioners, consisting of the dimension

of hidden channels 𝑑𝑧 , the number of historical steps input to the

model, the kernel size of DCC and the batch size. The study results

are reported in Fig. 6, from which we are able to draw a major con-

clusion: STN not only boosts the performance, but also increases

the stability of the performance under different hyper-parameter

settings.

5.6 Case Study
The time series data we leveraged for the case study is BikeNYC.

For each of SN and TN, we examine three representative regions at

specified times to reflect what the module extracts from data. We

collect the intermediate representations output from the two nor-

malization modules installed in the top residual block and compress

them via t-SNE for the sake of visualization. For comparison, we

also examine their associated input representations, each of which

is a concatenation of raw measurements. Next, we will discuss

separately the outcomes of the two modules in details.

5.6.1 Spatial Normalization. SN removes the global component

Zglobal𝑡 from the original measurement, while retaining the local

component Zlocal
𝑖,𝑡

. In Fig. 7a, we display the demand evolution dur-

ing a given period over the three investigated regions. We can

observe that the three regions have similar evolution patterns, espe-

cially regions B and C. The representations concatenated by original

measurements are plotted in Fig. 7b, and the intermediate repre-

sentations output from SN are plotted in Fig. 7c. We can observe

2014-04-01 2014-04-02 2014-04-03 2014-04-04 2014-04-05 2014-04-06
0

25

50

75

100

125

150

175
Region A
Region B
Region D

(a)

30 20 10 0 10 20 30

30

20

10

0

10

20

30
Region A
Region B
Region C

(b)

30 20 10 0 10 20 30 40

30

20

10

0

10

20

30
Region A
Region B
Region C

(c)

Figure 7: Case study on SN.

2014-04-01 2014-04-02 2014-04-03 2014-04-04 2014-04-05 2014-04-06
0

25

50

75

100

125

150

175
Region A
Region B
Region D

(a)

8 6 4 2 0 2 4
6

4

2

0

2

4 1 am
8 am
12 am
Region A
Region B
Region D

(b)

2 0 2 4 6 8

4

2

0

2

4

6 1 am
8 am
12 am
Region A
Region B
Region D

(c)

Figure 8: Case study on TN.

that SN completely rearranges the representations in accordance

with its regional identity. This observation demonstrates that the

low-frequency parts in the local components are roughly invari-

ant within the group belonging to the same region. This coincides

with our understanding that some regional attributes, such as the

population and the functionality, are stable over time.

5.6.2 Temporal Normalization. TN attempts to eliminate the low-

frequency component Zlow
𝑖,𝑡

, while highlighting the high-frequency

component Zhigh
𝑖,𝑡

. To reflect the characteristics of the representa-

tions output from TN, we take another D into consideration, as

shown in Fig. 8a. Noticeably, the magnitude of the demand over

region D is substantially smaller than those over regions A or B.

Here, we account for three different times in a day, consisting of

1am, 8am and 12pm. Likewise, the input representations are plotted

in Fig. 8b, and the intermediate representations in Fig. 8c. As shown

in Fig. 8b, instances belonging to region D are mixed up without

separation between different times, which signifies that the model

will struggle to differentiate the times those instances occurred. By

contrast, TN mitigates this issue as it forms clusters of the instances

with the same occurrence time.

6 CONCLUSION
In this work, we introduce a novel way to factorize MTS data.

Following factorization, we propose temporal normalization and

spatial normalization, which respectively refine the high-frequency

component and the local component from the MTS data. The ex-

perimental results show the effectiveness and efficiency of these

two modules.

7 ACKNOWLEDGMENTS
This work was supported in part by ARC under Grant DP180100106

and DP200101328.

REFERENCES
[1] LEI BAI, Lina Yao, Can Li, Xianzhi Wang, and Can Wang. 2020. Adaptive Graph

Convolutional Recurrent Network for Traffic Forecasting. Advances in Neural
Information Processing Systems 33 (2020).

[2] Shaojie Bai, J Zico Kolter, and Vladlen Koltun. 2018. An empirical evaluation

of generic convolutional and recurrent networks for sequence modeling. arXiv
preprint arXiv:1803.01271 (2018).

[3] Nils Bjorck, Carla P Gomes, Bart Selman, and Kilian Q Weinberger. 2018. Un-

derstanding batch normalization. In Advances in Neural Information Processing
Systems. 7694–7705.

[4] Hadi Daneshmand, Jonas Kohler, Francis Bach, Thomas Hofmann, and Aurelien

Lucchi. 2020. Batch normalization provably avoids ranks collapse for randomly

initialised deep networks. In Advances in Neural Information Processing Systems,
Vol. 33. 18387–18398.

[5] Daizong Ding, Mi Zhang, Xudong Pan, Min Yang, and Xiangnan He. 2019. Mod-

eling extreme events in time series prediction. In Proceedings of the 25th ACM
SIGKDD International Conference on Knowledge Discovery & Data Mining. 1114–
1122.

[6] Chenyou Fan, Yuze Zhang, Yi Pan, Xiaoyue Li, Chi Zhang, Rong Yuan, Di Wu,

Wensheng Wang, Jian Pei, and Heng Huang. 2019. Multi-horizon time series

forecasting with temporal attention learning. In Proceedings of the 25th ACM
SIGKDD International Conference on Knowledge Discovery & Data Mining. 2527–
2535.

[7] Xu Geng, Yaguang Li, Leye Wang, Lingyu Zhang, Qiang Yang, Jieping Ye, and Yan

Liu. 2019. Spatiotemporal multi-graph convolution network for ride-hailing de-

mand forecasting. In Proceedings of the AAAI Conference on Artificial Intelligence,
Vol. 33. 3656–3663.

[8] Sepp Hochreiter and Jürgen Schmidhuber. 1997. Long short-termmemory. Neural
computation 9, 8 (1997), 1735–1780.

[9] Sergey Ioffe and Christian Szegedy. 2015. Batch normalization: Accelerating deep

network training by reducing internal covariate shift. In International conference
on machine learning. PMLR, 448–456.

[10] Diederik P Kingma and Jimmy Ba. 2014. Adam: A method for stochastic opti-

mization. arXiv preprint arXiv:1412.6980 (2014).
[11] Guokun Lai, Wei-Cheng Chang, Yiming Yang, and Hanxiao Liu. 2018. Modeling

long-and short-term temporal patterns with deep neural networks. In The 41st
International ACM SIGIR Conference on Research & Development in Information
Retrieval. 95–104.

[12] Shiyang Li, Xiaoyong Jin, Yao Xuan, Xiyou Zhou, Wenhu Chen, Yu-Xiang Wang,

and Xifeng Yan. 2019. Enhancing the locality and breaking thememory bottleneck

of transformer on time series forecasting. In Advances in Neural Information
Processing Systems. 5243–5253.

[13] Xiangru Lian and Ji Liu. 2019. Revisit Batch Normalization: New Understand-

ing and Refinement via Composition Optimization. In The 22nd International
Conference on Artificial Intelligence and Statistics. 3254–3263.

[14] Yuxuan Liang, Songyu Ke, Junbo Zhang, Xiuwen Yi, and Yu Zheng. 2018. Geoman:

Multi-level attention networks for geo-sensory time series prediction.. In IJCAI.
3428–3434.

[15] Yao Qin, Dongjin Song, Haifeng Cheng, Wei Cheng, Guofei Jiang, and GarrisonW

Cottrell. 2017. A dual-stage attention-based recurrent neural network for time

series prediction. In Proceedings of the 26th International Joint Conference on
Artificial Intelligence. 2627–2633.

[16] Syama Sundar Rangapuram, Matthias W Seeger, Jan Gasthaus, Lorenzo Stella,

Yuyang Wang, and Tim Januschowski. 2018. Deep state space models for time

series forecasting. In Advances in neural information processing systems. 7785–
7794.

[17] David Salinas, Valentin Flunkert, Jan Gasthaus, and Tim Januschowski. 2019.

DeepAR: Probabilistic forecasting with autoregressive recurrent networks. Inter-
national Journal of Forecasting (2019).

[18] Shibani Santurkar, Dimitris Tsipras, Andrew Ilyas, and Aleksander Madry. 2018.

How does batch normalization help optimization?. In Advances in Neural Infor-
mation Processing Systems. 2483–2493.

[19] Rajat Sen, Hsiang-Fu Yu, and Inderjit S Dhillon. 2019. Think globally, act locally:

A deep neural network approach to high-dimensional time series forecasting. In

Advances in Neural Information Processing Systems. 4837–4846.
[20] Qingxiong Tan, Mang Ye, Baoyao Yang, Siqi Liu, Andy Jinhua Ma, Terry Cheuk-

Fung Yip, Grace Lai-Hung Wong, and PongChi Yuen. 2020. DATA-GRU: Dual-

Attention Time-Aware Gated Recurrent Unit for Irregular Multivariate Time

Series. In Proceedings of the AAAI Conference on Artificial Intelligence, Vol. 34.
930–937.

[21] Xianfeng Tang, Huaxiu Yao, Yiwei Sun, Charu C Aggarwal, Prasenjit Mitra, and

Suhang Wang. 2020. Joint Modeling of Local and Global Temporal Dynamics for

Multivariate Time Series Forecasting with Missing Values.. In AAAI. 5956–5963.
[22] Dmitry Ulyanov, Andrea Vedaldi, and Victor S. Lempitsky. 2016. Instance Nor-

malization: The Missing Ingredient for Fast Stylization. CoRR abs/1607.08022

(2016). arXiv:1607.08022 http://arxiv.org/abs/1607.08022

[23] Aäron van den Oord, Sander Dieleman, Heiga Zen, Karen Simonyan, Oriol

Vinyals, Alex Graves, Nal Kalchbrenner, Andrew Senior, and Koray Kavukcuoglu.

[n.d.]. WaveNet: A Generative Model for Raw Audio. In 9th ISCA Speech Synthesis
Workshop. 125–125.

[24] Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones,

Aidan N Gomez, Łukasz Kaiser, and Illia Polosukhin. 2017. Attention is all

you need. In Advances in neural information processing systems. 5998–6008.
[25] Yuyang Wang, Alex Smola, Danielle Maddix, Jan Gasthaus, Dean Foster, and Tim

Januschowski. 2019. Deep factors for forecasting. In International Conference on
Machine Learning. PMLR, 6607–6617.

[26] Yuxin Wu and Kaiming He. 2018. Group normalization. In Proceedings of the
European conference on computer vision (ECCV). 3–19.

[27] ZonghanWu, Shirui Pan, Guodong Long, Jing Jiang, Xiaojun Chang, and Chengqi

Zhang. 2020. Connecting the dots: Multivariate time series forecasting with graph

neural networks. In Proceedings of the 26th ACM SIGKDD International Conference
on Knowledge Discovery & Data Mining. 753–763.

[28] Zonghan Wu, Shirui Pan, Guodong Long, Jing Jiang, and Chengqi Zhang. 2019.

Graph wavenet for deep spatial-temporal graph modeling. In Proceedings of the
28th International Joint Conference on Artificial Intelligence. AAAI Press, 1907–
1913.

[29] Bing Yu, Haoteng Yin, and Zhanxing Zhu. 2018. Spatio-temporal Graph Con-

volutional Networks: A Deep Learning Framework for Traffic Forecasting. In

Proceedings of the 27th International Joint Conference on Artificial Intelligence
(IJCAI).

[30] Hsiang-Fu Yu, Nikhil Rao, and Inderjit S Dhillon. 2016. Temporal regularized

matrix factorization for high-dimensional time series prediction. In Advances in
neural information processing systems. 847–855.

[31] Junbo Zhang, Yu Zheng, and Dekang Qi. 2017. Deep spatio-temporal residual

networks for citywide crowd flows prediction. In Proceedings of the Thirty-First
AAAI Conference on Artificial Intelligence. 1655–1661.

[32] Jingyu Zhao, Feiqing Huang, Jia Lv, Yanjie Duan, Zhen Qin, Guodong Li, and

Guangjian Tian. 2020. Do rnn and lstm have long memory?. In International
Conference on Machine Learning. PMLR, 11365–11375.

https://arxiv.org/abs/1607.08022
http://arxiv.org/abs/1607.08022

A APPENDIX
A.1 Data

Table 6: Dataset statistics.

Tasks Electricity PeMSD7 BikeNYC
Start time 10/1/2014 5/1/2012 4/1/2014

End time 12/31/2014 6/30/2012 9/30/2014

Sample rate 1 hour 30 minutes 1 hour

Timesteps 2184 2112 4392

Variate 336 228 128

Training size 1848 1632 3912

Validation size 168 240 240

Testing size 168 240 240

Output length 3 3 3

In Table 6, statistics of the datasets are reported. More details

regarding the datasets are introduced below.

• PeMSD7 [29]. The data is collected from Caltrans Perfor-

manceMeasurement System (PeMS) by sensor stations, which

are deployed to monitor traffic speed across the major met-

ropolitan areas of the California state highway system. We

further aggregate the data to 30-minute interval by average

pooling.

• Electricity
4
. The original dataset contains the electricity con-

sumption of 370 points/clients, from which 34 outlier points

that contain extreme values are removed. Moreover, we cal-

culate the hourly average consumption for each point, and

take it as the time series being modeled.

• BikeNYC [31]. Each time series in this dataset denotes the

aggregate demand for shared bikes over a region in New York

City. We do not consider the spatial relationship presented

in the PeMSD7 and BikeNYC data, since our objective is to

study the temporal patterns.

Furthermore, we display the data distribution and several exem-

plar time series in Fig. 9 to gain more insights from each dataset.

We can observe that each of the three types of data lays in a wide

range of scale, and exhibits periodicity to some extent. However,

their evolving patterns are entirely different where the electricity

time series shows the greatest diversity.

A.2 Loss Convergence

4
https://archive.ics.uci.edu/ml/datasets/ElectricityLoadDiagrams20112014

(a) PeMSD7.

(b) Electricity.

(c) BikeNYC.

Figure 9: For each (a), (b) and (c), the left figure shows the
probability density function of observed values aggregated
from all variables at all time steps, and the right figure dis-
plays some sample time series.

0 50 100 150 200 250 300 350 400
Epoch

4.0

4.5

5.0

5.5

6.0

6.5

7.0

7.5

8.0

R
M

S
E

Model
LSTNet
AGCRN
Graph Wavenet
MTGNN
Transformer
Transformer+STN
TCN
TCN+STN
Wavenet
Wavenet+STN
STN
0
1

(a) BikeNYC

0 50 100 150 200 250 300 350 400
Epoch

4.0

4.5

5.0

5.5

6.0

6.5

7.0

7.5

8.0

R
M

S
E

Model
LSTNet
AGCRN
Graph Wavenet
MTGNN
Transformer
Transformer+STN
TCN
TCN+STN
Wavenet
Wavenet+STN
STN
0
1

(b) PeMSD7

0 100 200 300 400 500 600 700
Epoch

25

30

35

40

45

50

55

60

65

70

R
M

S
E

Model
LSTNet
AGCRN
Graph Wavenet
MTGNN
Transformer
Transformer+STN
TCN
TCN+STN
Wavenet
Wavenet+STN
STN
0
1

(c) Electricity

Figure 10: Loss convergence.

	Abstract
	1 Introduction
	1.1 Preliminary Analysis
	1.2 Contributions

	2 Related Work
	2.1 Time Series Forecasting
	2.2 Normalization

	3 Preliminaries
	4 Methodology
	4.1 Dilated Causal Convolution
	4.2 Temporal Normalization
	4.3 Spatial Normalization
	4.4 Forecasting and Learning
	4.5 Discussion

	5 Evaluation
	5.1 Experimental Setting
	5.2 Baseline Models
	5.3 Experiment Results
	5.4 Ablation Study
	5.5 Hyper-parameter Analysis
	5.6 Case Study

	6 Conclusion
	7 Acknowledgments
	References
	A Appendix
	A.1 Data
	A.2 Loss Convergence

