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Abstract: 

In this study, the influences of the installation position of inerter-based dampers (IBDs) on each 
modal response, IBDs stroke, inerter stroke, and control force produced by IBDs are derived 
analytically. A new installation scheme to implement the two ends of the IBDs across multiple storeys, 
i.e., span-storey installation, is proposed to enhance the control performance of IBDs. The paper 
starts with a single degrees of freedom (SDOF) system with IBD and optimal parameters formulas 
of IBD based on 𝐻2 criterion are obtained. Then the multiple degrees of freedom (MDOF) system 

with the span-storey installed IBD is analyzed and an optimization design method is proposed for 
the new installation method. The proposed design method of span-storey installed IBDs can reuse 
the design formulas in SDOF case and can reduce response of target modal. A 3-storey benchmark 
building model is selected as case study and the results reveal that IBDs with new installation 
method outperform tuned mass damper (TMD) and the span-storey installation of IBDs is beneficial 
for control of first modal. Also, the proposed method is validated by the sensitivity analysis and 
impulse response analysis in case study. Besides, through the comparison of span-storey mounting 
strategy and increasing inertance strategy, one finds that the span-storey installation of IBDs can 
substantially improve the efficiency of inerter and damper and reduce the control force by amplifying 
the drift. Through the simulation on a 9-storey nonlinear benchmark building, the span-storey 
installed IBDs are found to possess high efficiency in seismic control and can significant reduce the 
building damage during earthquake. 

Author keywords: Inerter-based damper; structural control; span-storey installation; MDOF 

structures; optimal design; 

1. Introduction 

In recent years, inerter has been introduced into structural control as an effective passive control 
device. Inerter, invented by Smith [1], is a two-terminal mechanical element, and the force of two 
terminals of inerter is = intF by , where inty  is the relative acceleration between the two terminals of 

inerter. The proportional coefficient b is called inertance or apparent mass with the same unit as 
mass. The distinguished advantage of inerter is that the inertance can be hundreds of times higher 
than the actual mass through the rack or ball-screw mechanisms. Therefore, inerter can achieve 
excellent vibration control performance with low mass cost and this make it an attractive device for 
structural control. 
Up to date, considerable efforts have been devoted to study the ability of IBDs in mitigation of 
seismic and wind responses in civil engineering structures. Ikago et al. [2] proposed a tuned viscous 
mass damper (TVMD) containing inerter for seismic control of buildings. Then a small-scale TVMD 
with inerter realized by ball-screw mechanism was manufactured and the control effect was verified 
by shaking table tests [3]. Tuned mass damper inerter (TMDI), proposed by Marian et al. in 2014 [4], 
is another promising structural control device and the optimal design problem of TMDI was explored 
by Pietrosanti et al. [5]. In addition, there are many studies using TMDI to enhance the base isolation 
systems [6][7][8][9] and reduce the vibration of bridge [10]. Tuned inerter damper (TID) is another 
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inerter-based passive control device proposed by Lazar et al. [11] for seismic control of MDOF 
structure as a potential alternative to TMD. The configuration of TID is similar to that of TMD, i.e. an 
inerter in-series connected to a parallel configured spring and dashpot. However, the main difference 
is that TID operates on the relative motion at the two terminals while TMD operates on the absolute 
motion. TID has been attracting considerable interest because it has great vibration control 
performance with small mass and compact configuration. A number of literatures [12][13][14][15] 
have investigated the efficiency of TID for vibration control of cables. Hu et al. [16][17] investigated 
the optimal design and evaluated the performances of various inerter-based dynamic vibration 
absorbers and isolators including the TID and TVMD. Wen et al. [18] studied the parameters and 
location optimizations of multiple TIDs and TVMDs for seismic control of MDOF structures and the 
numerical simulation verified the validity in suppressing responses of multiple modes. From recent 
researches of TID, they mainly focus on novel optimization design [19] [20] [21], reliability under 
various loads [22][23], and the role of damping in TID [24][25]. 
 
As conventional two terminals passive control devices, damping mechanism can improve the ability 
of energy dissipation by installing the damper between two points where a significant displacement 
difference is expected. Aly [26] applied outer bracing and lever mechanism to connect magneto-
rheological dampers between ground and a specific storey for better energy dissipation in high-rise 
buildings subjected to wind loads. Utilizing toggle-brace mechanisms, Constantinou et al. [27] 
developed three drift magnification mechanisms to magnify the displacements and effect of damping 
devices. In this respect, as new two terminals devices, inerter and various IBDs devices can also 
utilize above displacement magnification concept to achieve an excellent vibration control 
performance. However, only limited studies have focused on the promising method. Hwang et al. 
[28] utilized a toggle brace mechanism to improve the performance of inerter, especially in structures 
with small drift. The span-storey installation scheme, i.e., IBD spans more than one storey between 
the two terminals, is first employed by Giaralis and Petrini in 2017 [29] to improve the performance 
of TMDI in wind-induced vibration control. In [30], Giaralis and Taflanidis used the span-storey TMDI 
to mitigate the seismic responses of buildings. The numerical results show that span-storey 
installation can enhance the performance and robustness of TMDI. In above research [29-30], the 
idea of span storey installation is used as an example but not fully investigated. Recently, Xue et al. 
[31] proposed a cable-bracing inerter system (CBIS) in which a TVMD is span-storey installed on 
MDOF structure by a cable-bracing device. Meanwhile, a numerical design procedure of CBIS is 
developed and the seismic control effect is explored. To sum up, there are few studies considered 
TMDI and TVMD devices to be implemented using span-storey installation. However, the 
fundamental mechanism and analytical design method of the storey installation are not addressed. 
For example, the fundamental understandings on the effect of installation strategy on structural or 
control device responses and the choice of optima installation location for span-storey installed IBDs 
is to be explored. The vibration control performance of the span-storey installed IBDs is yet to be 
evaluated through response analysis or comparing with TMD or non-span-storey installed IBDs. In 
practical design, a simple analytical design method is effective for vibration control and is of interest 
and significance for applications. However, to the best of the authors’ knowledge, the analytical 
design or closed-form solutions for span-storey installed IBDs have not been reported in literatures. 
This paper presents a theoretical study on the span-storey installation of IBDs. The analytical optimal 
design of two typical IBDs are examined and the evaluation of their performances are conducted on 
benchmark building. A theoretical model is introduced for MDOF structure controlled by span-storey 
installed IBD or TMD device. The influences of installation location on the modal response, the IBDs 
stroke, the inerter stroke, and the control force produced by IBDs are investigated. In addition, a 
simple design method is proposed for both IBDs and TMD. A 3-storey benchmark building model is 
used to illustrate the proposed method and then sensitivity analysis and impulse response analysis 
are carried out to verify the method. A comparison between increasing inertance and span-storey 
installation is designed to evaluate the enhance effect of span-storey scheme. Finally, a seismically 



 

 

excited 9-storey nonlinear benchmark building is used to investigate the effectiveness of seismic 
control for span-storey installed IBDs.  

2. Single DOF Structure Installed IBDs 

Figure 1 (a) shows a SDOF ground excited structure with a two-node IBDs installed between ground 
and structure or a tuned mass damper (TMD) attached to structure. Here the control performance 
is represented generically by a transfer function ( )D s , where s is the Laplace variable, regardless the 

control device used. In this paper two types of IBDs named IBD-I and IBD-II, as shown in Figure 1 
(b) and (c), are discussed. IBD-I is actually the TID since the configuration is an inerter in-series 
connected to a parallel connection of spring and dashpot. While in IBD-II, an inerter, a spring and a 
dashpot is configured in series. In addition, a TMD as shown in Figure 1 (d) is also investigated for 
comparison. In Figure 1, sm  , sc  , and sk   are mass, damping, and stiffness of primary structure, 

respectively. b is the inertance of inerter in IBDs and dm  is the secondary mass of TMD. The dc  

and dk  are the damping and stiffness coefficients of IBDs or TMD, respectively. ( )g gA aL denotes 

the Laplace transform of ground acceleration and the operator ( )L  denotes Laplace transform.

( )s sY yL denotes the displacement of primary mass relative to ground. = ( )int intY yL denotes the relative 

displacement between the two terminals of inerter and IBD IBD(Y y ）L denotes the relative displacement 

between the two terminals of IBDs. Note in this case there has IBD= sY Y . pF  denotes the control force 

produced by the control devices acting at the storey below (here is the ground) and pF  denotes the 

control force generated by the control devices acting at the upper storey. 

 

Figure 1 The sketch of the (a) SDOF controlled structure; (b) type-I of IBD; (c) type-II of IBD; (d) 
TMD. 

Considering zero initial conditions, the equation of motions for IBD-I controlled system can be written 
in Laplace domain as 
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and for IBD-II controlled system yield 
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The control forces generated at both terminals of IBDs are equal in magnitude with opposite 
directions. The control forces for IBD-I are 

(b) IBD-I(TID)

(c) IBD-II

(d) TMD

(a) SDOF system

Control devices



 

 

 
2

IBD( )( )
p int

q d d int

F bs Y

F c s k Y Y

 


  
 (3) 

and for IBD-II the equations are 
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In fact, all control forces can be represented generically as 
IBD( )p qF F D s Y  . While for TMD, there 

is only one control force qF  formulated by 

 ( )( )q s gF D s Y A   (5) 

( )D s  represents the transfer function of each device and is given by  
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For IBDs controlled system, the equation of motion can be rewritten as 
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The transfer function from gA  to IBDY  is 
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For passive control device, selection of system parameters is one of the most important aspects. To 
this end, several dimensionless parameters are introduced as 
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Where   denotes inertance-to-mass ratio (for IBDs) or mass ratio (for TMD); d   is natural 

frequency of TID /d dk b   or TMD ( /d d dk m  )and /s s sk m   is natural frequency of primary 

structure;   denotes tuning ratio and d  denotes damping ratio. One of the most important aspect 

in passive control device design is the choice of optimization parameters. In this case the target of 
optimization design is to find optimal   and d  to minimize the performance index with given  . 

Here the 2H  optimization is used and the ground motion excitation is considered as ideal white 

noise. The performance index is the area of frequency response curve which is defined as follows 
[32] 
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where 2
sE y    is the mean square value of the displacement of the primary structure and 0S  is the 

uniform power spectrum density function. 2
sE y    is calculated as 
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Substituting Eq. (11) into (10), one obtains 
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According to Eq. (12), the performance index is the non-dimensional mean square response of the 
system subjected to ideal white noise excitation.  
The explicit analytical solutions of the design parameters can be obtained when primary structure is 
undamped. Considering 0sc  , the optimal parameters of IBDs are derived in Appendix A according 

to Eq. (8). While for TMD, the optimal parameters can be found in [33]. All the optimal parameters 
are listed in Table 1. 

Table 1 The optimal parameters of control devices 

Type of control 
devices 

Tuning ratio   Damping ratio d  
Performance 
index J  

IBD-I 
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IBD-II 1 
1

2 
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
 

TMD 
1 2

1






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(1 4)

4(1 )(1 2)

 

 



 
 

3(1 ) (1 4) 



 
 

 
The variation of all three performance indices against   is plotted in Figure 2. Overall, it can be 

seen that the IBD-I has the best performance and the TMD has the worst performance. The 
performances of IBD-I and IBD-II are rather close. There is a point (   00.1) below which three 

systems have similar performance. When   is greater than 0.1, the performance of TMD gradually 

diverges from the other two and gets worse after   is greater than 0.5. This indicate that for control 

of relative displacement of SDOF structures, IBDs outperform TMD particularly when   is larger. 

 

Figure 2 The performance indices of three control devices 

 

 

 

 



 

 

3. Multiple DOF Structure installed IBDs 

3.1 Equations of motion 

A n-DOF building model with a IBD system installed between storey p  and q  is shown in Figure 

3. A simple and effective method to realize the span-story installation of IBDs is proposed and 
illustrated in Figure 3. This method use chevron brace configuration to transmit the relative motion 
between storey p  and q  to the two terminals of IBD. For convenience, ,p qL  is defined as position 

indicator to identify the installation location of IBDs. The  0: 1p n   and  1:q n  represents the 

installation storeys of lower and upper terminals of IBD, respectively. Note q  must be greater than 

p  and when p 0 0 it represents the lower terminal of IBD is connected to the ground. Where im  

and ik  are the lumped mass, and lateral stiffness of thi  storey respectively; iy  is the displacement 

of the thi  storey relative to the ground and ga  is the ground acceleration excitation. 

 

Figure 3. The MDOF structure controlled by a span-storey installed IBD; 

Considering zero initial conditions, the equation of motion of the controlled system shown in Figure 
3 can be written in Laplace domain as follows 
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where IBDF  is the equation of motion of IBDs subsystem. Note that in the MDOF system case there 

has IBD q pY Y Y  . For IBD-I, the control forces and IBDF  are  
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While for IBD-II, the control forces are 
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The first n equations of Eq. (13) can be rewritten as matrix form, that is 
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In this application, the structural damping are considered as Rayleigh damping with the form 

0 1[C] [M] [K]   , where 0  and 1  are the damping coefficients. 

Besides, the transfer function form gA  to iY  is denoted as ( )iH s  and can be obtained from Eq. (13). 

3.2 The equivalent SDOF system 
The core concept of the design approach is to express Eq. (13) in a form similar to the SDOF case 
by transforming the original matrix equation to scalar modal equations. Based on the fact that the 
control forces produced by IBDs are equal and opposite, here the magnitude of qF  is substituted 

with pF , i.e., 2
intbs Y , regardless the IBD-I or IBD-II is considered. Considering structural damping 

 C , the Eq. (16) can be rewritten as 
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To explore the influence of span-storey installation on different modal responses, modal analysis is 
carried out here. The modal matrix    and coordinates  Q  are defined as,  
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Since  C   is an orthogonal damping matrix, the modal mass, damping, and stiffness terms are 

defined as 
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where superscript T denotes matrix transpose and i   denotes the thi   natural frequency of 

undamped primary structure. The responses of primary structure {Y} can be represented in terms 

of modal vectors and coordinates 
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Using this transformation and pre-multiplying both side by  T , the Eq. (18) can be reduced to a 

set of equations for  1 2, , nq q q  and each has the form as 
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where [1,2, , ]i n . In general,  Y  is obtained by superposing all the generalized coordinates, i.e. 

       1 1 2 2Y = n nq q q     . Assuming that only the thi  modal response is dominated and there is 

no significant modal interaction, which leads to    j iY q . The responses of storey with the IBDs 

mounted can also be expressed approximately as 
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Furthermore, the coordinate iq  can be solved from Eq. (23), that is 

 IBD

, , , ,

q p

i

q i p i q i p i

Y Y Y
q

   


 

 
 (24) 

After substituting Eq. (24) into Eq. (22) and rearranging the result, one obtains 
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These parameters combine the thi  modal and the storey where the IBD is installed. Recalling the 

fact that the control forces produced by IBDs are equal and opposite, the control force 2
intbs Y  in Eq. 

(25)can be substituted with qF  again. Replacing the first n equations of Eq. (13) by the Eq. (25), 

the Eq. (13) can be rewritten for IBD-I as  
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and for IBD-II as 
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Eq. (27) and (28) are similar in form to Eq. (1) and (2), respectively. This indicates that the MDOF 
structure-IBD system in Figure 3 is equivalent to the SDOF structure-IBD system in Figure 1. 
Consequently, , , and ie ie iem m k    are equivalent structural parameters.  

Built on the equivalent SDOF system derived above, when an IBD is installed between storeys p 

and q of a MDOF structure, the equivalent inertance-to-mass ratio for thi  mode is defined in terms 

of the equivalent mass iem  as 
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where ieb m   represents the ratio of inertance to thi   modal mass, here denote as i  . The term 
2

, ,( )p i q i   is subsequently regarded as the amplification factor (AF) of i , here denote as ( )
,
i

p q , and 

its value depends on the difference between two entries corresponding to the installation placement 
of IBD in modal shape vector. 
Setting 0p   and following the same procedure, one can get similar conclusion for TMD. When a 

TMD is attached on storey q , the thi  modal AF for TMD is ( ) 2
0, ,
i
q q i  . This can be confirmed in [34]. 

Hence, ( )
,
i

p q  and ,p qL  can also be used for TMD as long as setting 0p  , where  1:q n .Here the 

IBD-I is considered as example in following investigation. 
 
 
3.3 The effect of installation scheme 

Note that in the equivalent equations Eq. (27) and (28), the key parameters ,  ,  ie ie iem c k     and   

depends mainly on installation placement ,p qL  . The effects of installation scheme on interesting 

responses, including the IBDs stroke IBDY , the inerter stroke intY , the modal response iq , and the 

control force produced by IBDs, are investigated by substitute Eq. (26) into Eq. (27) with key 
parameters as following: 

 
(i)  the transfer function between IBDY  and gA ; 
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(ii)  the transfer function between intY  and gA ; 
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(iii)  the transfer function between iq  and gA  can be derived by substitute Eq. (24) into (30); 
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(iv)  the transfer function between control force of IBDs and gA  can be derived by 2
p intF bs Y  
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Except for optimization of parameters dc   and dk  , the control performance of IBD-I is mainly 

determined by the value of inertance b  and the choice of installation placement ,p qL . This can be 

validated in Eq. (32), i.e., a larger value of ( )
,
i

p q   or b  will both reduce the modal response iq

 and vice versa. However, the effects of b  or ,p qL  on other responses are difficult to determine. 

For example in Eq. (30), the influence of installation placement represented by , ,( )q i p i   on the IBDY  



 

 

and the influence of inertance b  on the control force F  in Eq. (33). In fact, this can be addressed 

by focusing on the resonance response and ignoring the modal damping. Substituting is j  and 

letting 0ic
   in above equations, where 1j    is the imaginary unit, the magnitude of resonance 

responses transfer function can be obtained as 
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From Eq. (34) it can be seen that the larger the 
, ,q i p i   or inertance b , the better the mitigation 

in the maximum resonance response of IBDY , intY , and iq , and vice versa. In particular, the maximum 

control force will decreases as 
, ,q i p i   increases but the variation of inertance b  has no influence 

on maximum control force. Following the same procedure, similar conclusions can be obtained for 
IBD-II.  
 
3.4 Optimization design 

According to section 3.3, the optimal installation placement of IBDs for reducing the modal response 

iq can be determined as the  which can maximize the ( )
,
i

p q . Form section 3.2, it can be inferred 

that the optimal parameters dc   and dk   of span-storey installed IBDs can be obtained by the 

optimization method presented in section 2. However, it should be noted that Eq. (27) and (1) or 
Eq. (28) and (2) are not exactly the same due to the terms   is not 1. Therefore, the influence of 
the presence of   on parameters optimization needs to be investigated.  

Firstly, one can obtain the transfer functions between IBDY  and gA  from Eq. (27) 

 IBD
2 ( )

ie

g ie ie ie

mY

A m s c s k D s




  




  
 (35) 

Here, the right side of Eq. (35) is not exactly identical to that of the Eq. (8) due to the presence of 
 . In addition, the modal response iq  is more suitable as an optimization target instead of the 

stroke response IBDY . Based on this, replacing the IBDY  and   in Eq. (35) according to Eq. (24) 

and (26), one obtains  
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where 
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is a constant. Then, according to Eq. (36), the performance index of 2H   optimization can be 

calculated as 

 
2 2

21 1
d ( ) d

2 2iq i g CJ q A H   
 

 

 
   ， (38) 

Comparing to the Eq. (12), it can be seen that C  only scales the performance index and does not 

affect the derivation of optimization parameters of IBDs according to the Appendix A. Therefore, the 
outcomes of optimization design for SDOF system can be used directly here. As a result, the optimal 
parameters of span-storey installed IBD or TMD can be determined by reusing the formulations in 
Table 1 after substituting   by ie . 



 

 

Conclusively, when an IBD or TMD is installed on MDOF structure to suppress the response of a 
specific mode of vibration, the steps of design procedure are summarized as follows: 

STEP 1  For the thi  mode of vibration, the optimum installation location is ,p qL  which have 

maximum of  
2( )

, , ,
i

p q p i q i    . 

STEP 2  For given inertance b or dm , one can calculate ie  from Eq. (29). 

STEP 3  obtain the optimal tuning ratio opt , damping ratio opt
d  and performance index optJ  

from Table 1 by substituting   with ie . 

STEP 4  The optimal stiffness and damping parameters can be obtained by 
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 (39) 

 

3.5 Case study and comparison with TMD 

To comprehensively evaluate the control effect of the span-storey installation scheme, some of the 
benchmark structures presented in [35] are used as the primary structure hereinafter. These 
benchmark structures are 3-storey, 9-storey, and 20-storey steel moment-resisting frame structures 
designed for the SAC Phase II Steel Project and are excited by four typical actual earthquake 
records. The damping parameters are obtained by an assumption of Rayleigh damping. A bilinear 
hysteresis model is used to characterize the nonlinear behavior of these buildings when subjected 
to strong earthquakes. More details about these structures can be found in [35]. 
For parametric study and validation of the theory presented in previous sections, the simplified 3-
storey benchmark structure without considering inherent damping and nonlinear behavior is used 
here. To evaluate the seismic control performance of span-storey installed IBDs, the complete 
nonlinear 9-storey benchmark structure will be used in section of earthquake response analysis.  
The perimeter moment-resisting frame of the original 3-storey benchmark structure has 3-storey, 4-
bay, and 20-node. Each node has three DOFs which are horizontal, vertical, and rotational. Thus 
the 3-storey building has 60 DOFs prior to application of boundary constraints (the detailed 
information can be found in MATLAB code provide by Ohtori et al. 
http://sstl.cee.illinois.edu/benchmarks/). The dimensions of the original mass and stiffness matrices 
are  . However, in this case, only the three DOFs which present the lateral translational 

response of each storey are need. The static condensation method [36] is used to condense the 
original mass and stiffness matrices into a  matrix which only includes the three DOFs we need. 

The results are 

 7

478350 0 0 43.645 23.73 4.1527

[M]= 0 478350 0 kg,  [K]= 23.73 31.342 12.888 10 N/m

0 0 517790 4.1527 12.888 9.3407

   
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 (40) 

The design and performance of span-storey installed IBDs and TMD are discussed. For a 3-DOF 
structure, there are six possible IBD installation cases, i.e., three adjacent-storey installation position 

0,1L , 1,2L , 2,3L  and three span-storey installation position 0,2L , 1,3L , 0,3L . For TMD, there are only three 

installation cases: 0,1 0,2 L L，  and 0,3L .  

The natural modes of vibration and natural frequency of the 3-storey benchmark structure are shown 
in  
Figure 4. Note that these agree with the results in [35]. 



 

 

 

 

Figure 4. Lateral translational mode shapes and natural frequencies of the 3-storey benchmark 
structure. Red lines denote the maximal drift of modes of vibration for IBD and green lines denote 
that for TMD.  

According to the proposed design method, the optimal ,p qL  can be determined directly by the red 

and green lines in  

Figure 4. For example, the optimal ,p qL  for mode 2 is 1,3L  and 0,1L  for IBDs and TMD, respectively. 

For qualitative analysis, all AF against six position indicators are calculated. 

 

 

Figure 5. Comparison of AF of all position indicators for (a) mode 1; (b) mode 2; (c) mode 3. 

Figure 5 shows the relative magnitude of each AF after normalized by the ( )
0,1
i . For the first modal of 

interest, Figure 5 (a) shows that (1)
0,2  and (1)

1,3  are greater than all adjacent installed IBDs but less 

than (1)
0,3 . This indicates that the control effect of IBD on the first modal can always be improved by 

across more consecutive storeys. This result is obvious because the first modal is shear modal as 
shown in  
Figure 4. For second mode, as shown in Figure 5 (b), the optimal installation position is 1,3L , followed 

by the adjacent installation 2,3L . Figure 5 (c) shows that the optimal installation position for the third 

modal control is 1,2L , which is the adjacent installation in the middle of the structure, while the span-

storey installation schemes have the worst effect ( 0,3 1,3 and L L ). 

For TMD, it can be seen that the best position for the mode 1, 2, and 3 are 0,3L , 0,1L , and 0,1L , 

respectively. Obviously, the IBDs outperform TMD because there are more good choices of position 
for IBDs. The AF ratio of IBDs and TMD when each in their best position are (1) (1)

0,3 0,3 1   , (2) (2)
1,3 0,1/ 3.35  

and (3) (3)
1,2 0,1/ 3.31   for mode 1, 2 and 3, respectively. 

 



 

 

The previous works discuss the effect of installation position on the AF. Now the discussion is 
extended to the performance index. Defining the performance index as ,

IBD I
p qJ  and 0,

TMD
qJ  for IBD-I and 

TMD, respectively. They are obtained by substituting the Eq. (29) into the expression in Table 1 and 
as following  
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Assuming i  is the same for both IBDs and TMD, then the ratio of ,
IBD I
p qJ   to 0,

TMD
qJ  are plotted in 

Figure 6, where the ,
IBD I
p qJ   considers all six positions while the 0,

TMD
qJ  only considers the best position. 

Figure 6 shows that all curves decreases against i . This leads to IBDs mounted on inferior position 

can achieve the same performance with TMD mounted on superior position. For example, the 1,3L  

and 0,3L can be considered as a pair of inferior and superior positions for mode 1, and there are  

1,3 0,3
IBD I TMDJ J   when 1 0.4   as shown in Figure 6 (a). 

 

Figure 6 The comparison of performance indices of IBD-I and TMD considering  0:1i  . (a) mode 

1 and the best position of TMD is 0,3L ; (b) mode 2 and the best position of TMD is 0,1L ; (c) mode 3 

and the best position of TMD is 0,1L . 

In conclusion, span-storey installation is suitable for control of low-order mode while adjacent 
installation is suitable for control of high-order mode. The TMD performs worse than IBDs because 
the fewer options for installation position and the performance decay when iu  is larger.  

 

4. Method Validation and Parametric study 

Considering all two IBDs, three modes of vibration, and six installation schemes, then there are 36 
groups of optimal parameters in total to be calculated by the proposed method. Assuming the 
inertance  is 10% of the total mass of frame and so 147449 kgb , the optimal parameters of 0,3L  as 

example are calculated and listed in Table 2. 

Table 2 The optimal parameters of IBDs for 0,3L  when targeting various modes. 

 mode ie  opt   kN/mopt
dk  opt

d  (kNs/m)opt
dc  

iqJ (-) 

IBD-I 1 0.19389 0.87726 4396.6 0.2059 331.45 2.2244 
 2 0.08022 0.94412 48463 0.13756 735.45 3.4978 
 3 0.01066 0.99209 194550 0.05141 550.67 9.6748 
        
IBD-II 1 0.19389 1 5709.1 1.1355 2083.6 2.271 
 2 0.08022 1 54369 1.7654 9996.8 3.5307 
 3 0.01066 1 197660 4.8438 52300 9.6876 



 

 

 
From Table 2 it can be seen that IBD-I has better performance and smaller value of stiffness and 
damping in comparison to IBD-II. Then the transfer functions ( ) /i gq j A   with optimal IBDs 

parameters are plotted for validation. 
 

 
 

 
 

Figure 7. Frequency response curves (FRCs) of each modal coordinate response for various 
installation schemes: (a) IBD-I; (b) IBD-II. 

The FRCs of modal response iq  of structure equipped with optimal IBD-I and IBD-II are shown in 

Figure 7 (a) and (b), respectively. The magnitude reduction of FRC on the natural frequency (i.e. 
when 1 2 3, , or     ) for each installation scheme follows the same order in Figure 5, which proves 

the effectiveness of the ( )
,
i

p q . The following sections will mainly focus on the IBD-I (TID) and response 

mitigation for the first modal. 
 
4.1 Sensitivity Analysis 

The optimal design of IBDs may no longer be in optimal state if structural parameters change due 
to damage. Therefore, it is necessary to carry out parameter sensitivity analysis. Herein, dk  and dc  

is divided by its optimal value, and the ratio is restricted in limited range  / 0.1,2opt
d dk k   ; 

 / 0.2,5opt
d dc c  .  



 

 

 

 

 

Figure 8.  Sensitive analysis when IBD-I is detuned. (a) the normalized 
iqJ   against / opt

d dk k   for 

mode 1; (b) the normalized 
iqJ  against / opt

d dc c  for mode 1; (c) the normalized 
iqJ  against / opt

d dk k  

for mode 2; (d) the normalized 
iqJ   against / opt

d dc c   for mode 2; (e) the normalized 
iqJ   against 

/ opt
d dk k  for mode 3; (f) the normalized 

iqJ  against / opt
d dc c  for mode 3. 

Figure 8 shows the normalized performance indices of three modes in different installation schemes 
when IBD-I is detuned. The sensitivity of the system performance to dk  is consistent with Figure 5 

for different installation schemes, i.e., the greater the ( )
,
i

p q  is, the better its robustness will be. Notably, 

when dc  deviates from its optimal value, the normalized performance indices of different installation 

schemes are almost the same, regardless what mode is considered. In conclusion, the installation 
placement ,p qL  which is optimal for reduction of modal response iq  also has optimal robustness 

when IBD is detuned. 
 



 

 

4.2 Impulse response analysis 

Impulsive load is a kind of broadband excitation and can be used to excite all modes of system to 
well reflect the system properties. The control effect of IBD-I due to impulse excitation will be 
discussed in time domain and time-frequency domain, respectively. 

 

 

Figure 9. Displacement responses of top storey of structure due to unit impulse for IBD-I. (a) in time 
domain; (b)-(d) in time-frequency domain. 

The impulse responses of top storey for four installation schemes are shown in  
Figure 9 (a). Again, the dynamic response reduction follows the same order as in Figure 5 (a), i.e., 

0,3L  has the smallest peak response and the fastest attenuation rate. This is because the first modal 

response is primary for the 3-storey benchmark building. However, the peak time of the four curves 
is almost the same, which means that span-storey installation does not produce the phase change.  
Figure 9 (b-d) shows the time-frequency spectrum of displacements on top storey for cases 1,2L , 1,3L , 

and 0,3L . The attenuation rates of different modal responses vary drastically for different installation 

schemes. 1,2L  can basically eliminate the response of the third mode, but the attenuations of the 

second and first mode are somewhat invalid and inefficient, respectively. On the contrary, although 

0,3L  performs worst in the case of high order mode, 0,3L  has a good attenuation rate for low order 

modal responses, especially has a fastest attenuation on the first modal response. 1,3L  performs 

excellently on attenuation of the second mode response. In general,  has a smaller amplitude 

and the fastest primary modal response decay rate for civil building of which low order mode are 



 

 

dominant. In conclusion, the installation placement ,p qL   which is optimal for reduction of modal 

response iq  also has optimal performance of attenuation for each mode response. 

5. Increasing Inertance versus Span-Storey Mounting 

5.1 The enhancement effect of span-storey mounting 

Many studies have confirmed that increasing the inertance of IBDs system can improve the control 
performance. Besides, recalling the conclusion based on Eq. (32) that a larger value of ( )

,
i

p q  or b  

will both reduce the modal response iq , thus for first mode, adjacent-storey installed IBDs with 

increasing inertance (denoted as AIBDs) may have the same control performance with span-storey 
installed IBDs without increasing inertance (denoted as SIBDs). Here SIBDs are defined as the IBD-
I installed in various span-storey positions  and have the same inertance SIBD 147449 kgb  . While 

AIBDs are considered as IBD-I installed in 0,1L  and have different inertance AIBD SIBDb b  , where  

is the inertance amplification coefficient.  
According to the proposed method, AIBD and SIBD must have the same 1e  if they want to have 

the same 
i

opt
qJ .  Then  can be derived from Eq. (29) and it is 
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As a result, the amplification coefficient   can be found in Figure 5 (a). Note AIBD and SIBD also 

have the same opt  and opt
d  if 1e  of the both are the same, but the opt

dk  and opt
dc  are not the same 

according to Eq. (39). The opt
dk  and opt

dc  ratio of AIBD to SIBD is 
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Thus if AIBD want to have identical control performance with SIBD, one needs to magnify the 
inertance, damping and stiffness coefficient of AIBD according to  . In other words,   denotes the 

enhancement effect of SIBDs relative to AIBDs. For convenience, the AIBD which has the same 
performance with SIBDs installed on ,p qL  is denoted as ,

e
p qL .  

 

Figure 10. FRCs of top storey with (a) AIBDs with equivalent positions ,
e
p qL ; (b) SIBDs installed on 

each ,p qL . 

Figure 10 shows the optimal FRCs of AIBDs and SIBSs. From Figure 10 (a), the overall FRC keeps 
decreasing as the increase of  , which means that increasing   of AIBD can reduce the response 

of all modes at the same time. While for SBIDs as shown in Figure 10 (b), Only the magnitude of 
FRCs of mode 1 has the same trend as AIBDs, however the other modes are not always decrease 

(a) (b)



 

 

but depend on the ( )
,
i

p q . This provides more interest options, e.g. SIBD with 
2,3L  and AIBD with 2,3

eL  

have the same response on mode1 but the former have smaller response on mode 2 and larger 
response on mode 3. 
5.2 Response analysis for harmonic excitation 

This part focuses on the harmonic response analysis of AIBDs and SIBDs. Considering a sweep-
frequency sine ground acceleration excitations with amplitude is 21 m/s  and frequency from 0.9 Hz 

to 1.1 Hz which covering the first natural frequency 1 0.99 Hz  , the displacement and acceleration 

responses of top storey are plotted in Figure 11. 

 

Figure 11 Harmonic responses of top storey of 0,2L   and 0,2
eL  . (a) displacement response; (b) 

acceleration response. 

From Figure 11 it can be seen that the AIBD with equivalent ,
e
p qL   has quite similar control 

performance with that of the corresponding SIBD on displacement and acceleration responses. 
Then a response analysis of IBD itself is carried out below.  

 

Figure 12 The hysteretic curves of (a) SIBDs installed on 0,1L , 0,2L  and 0,3L ; (b) AIBDs equivalent 

to 0,1L , 0,2
eL  and 0,3

eL . 

Figure 12 shows the hysteretic curves of SIBDs and AIBDs, in which x-axis IBDy   is the relative 

displacement between the two terminals of the IBDs and y-axis is control force qF  generated at 

terminals of IBDs. From Figure 12 (a), the maximum control force decreases but the maximum IBDy  

almost unchanged when SIBDs shift from 0,1L  to 0,3L . While if AIBDs switches from 0,1L  to 0,3
eL , the 

maximum control force almost remains unchanged and the maximum IBDy  decrease as shown in 

Figure 12 (b). These results validate the conclusion in section 3.3 and indicate that the SIBDs can 
achieve the same performance as the AIBDs in a small peak control force through remain the 
maximum IBDy . 
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6. Earthquake response analysis 

6.1 Seismic control performance of the span-storey installed TID  

The 9-storey nonlinear benchmark building presented in [35] and IBD-I are used for seismic 
response simulation. The building is 43.73m (150ft) tall and is rectangular in plan with 5 bays in both 
the NS and EW directions. This building model accounts for inherent damping via the Rayleigh 
damping formulation and material nonlinear behavior via the bilinear hysteresis model. The first 
three natural frequencies of the 9-storey benchmark model are 0.44Hz, 1.18Hz, and 2.05Hz, 
respectively. 

 

Figure 13 Conceptual illustration of the 9-storey benchmark building with a IBD (here is TID) 
installed between ground and top storey of building and the first mode shape of the uncontrolled 

building. 

In seismic analysis, structural dynamic response is usually dominated by low-order modes. Previous 
analysis shows span-storey installation of IBDs is the best for low order modal response control. As 
a result, span-storey installed IBD is very suitable for structural seismic control. Herein, a span-
storey and an adjacent-storey installed IBDs are considered as control device. The first mode shape 
of the 9-storey benchmark building is [0.0828, 0.1398, 0.1965, 0.2549, 0.3106, 0.3622, 0.4147, 
0.4652, 0.5039] and is shown in Figure 13. It can be seen that the optimal installation placement are 

0,1L  and 0,9L  for adjacent-storey and span-storey installed IBDs, respectively. A potential method to 

realize the installation of IBDs between ground and an arbitrary storey of primary structure is the 
outer bracing system which is also used for the MR damper [26].  
The seismic mass of entire benchmark structure is about 9000 tons. The inertance of IBDs is 
considered as 10% of the mass. Besides, the first modal mass is determined as 504.8 tons. Then 
the optimal damping and stiffness parameters of IBDs can be calculated for mode 1 and the results 
are presented below. 

Table 3 The optimal parameters of TID installed on 0,1L  and 0,9L  for first mode control of 9-storey 

benchmark structure 

Placement b  (ton) 1e  opt   kN/mopt
dk  opt

d  (kNs/m)opt
dc  

 900 0.0122 0.99093 6839.3 0.05505 273.18 
 900 0.4527 0.76231 4047.5 0.29171 1113.5 

 
The seismic motion data of two far-field earthquakes, (i) El Centro and (ii) Hachinohe, and two near-
field earthquakes, (iii) Northridge and (iv) Kobe, are selected. In addition, various levels of each 
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earthquake are considered. The scale factors 0.5, 1.0, and 1.5 are applied to the El Centro and 
Hachinohe earthquakes and 0.5 and 1.0 are applied to the Northridge and Kobe earthquakes. Thus 
there have ten earthquake records are considered in the simulation. The time history of acceleration 
records of four earthquakes are shown in the Figure 14 (a)-(d), respectively.  

 

 
Figure 14. The earthquake acceleration data of (a) El Centro; (b) Hachinohe; (c) Northridge; (d) 
Kobe. 
 
The nonlinear seismic simulator of the system show in Figure 13 base on the SIMULINK program 
provided by by Ohtori et al [35]. The detailed SIMULINK block diagram which simulate the nonlinear 
response of the span-storey installed IBD controlled benchmark structure is illustrated in Figure 15. 

 

Figure 15 SIMULINK block diagram for benchmark building-IBD system simulator 

The control effect of IBD is represented as the transfer function block in Figure 15. Recall that in 

section 2, both the control forces of IBDs can be represented in form of ( )p q IBDF F D s Y  . But ( )D s  

cannot be used directly in computation of control force since the transfer function ( )D s  is not proper 

(i.e., degree of denominator < degree of numerator). This can be addressed by replacing the relative 
displacement IBDY   by relative velocity IBDY   and ( )D s   need to be modified accordingly as ( ) /D s s  . 

Then the control forces can be calculated by the new proper transfer function ( ) /D s s  , i.e., 

( ( ) / )p q IBDF F D s s Y  . The output response IBDY  can be obtained by define “in_output_9.m” file. 



 

 

The building responses adopt peak and normed based evaluation criteria. The normed evaluation 
criterion is to calculate the responses by the following equation 

  2
0

1
ft

ft dt   

where ft  is the time at which response of the building is completely attenuated. The peak and norm 

drift ratio and absolute acceleration responses of each storey of the benchmark building subjected 
to 100% of El Centro earthquake record are shown in Figure 16. From Figure 16 it can be seen that 
the IBD with 0,9L   installation performs well in reducing all the four responses of building. The 

maximum response of the building with 0,9L  installation over all 9 storeys can be reduced by about 

23%, 16%, 37%, and 33% in comparison to the uncontrolled building. This indicate the span-storey 
installation of IBDs can significantly mitigate the seismic response. While the seismic response 
control performance of the   is rather insufficient. The reduction rates for 0,1L   are only 1.2%, 

1.2%, 5.6%, and 4.6%, which shows no difference with uncontrolled case. Besides, both the 0,9L  

and 0,1L  perform better in terms of reducing the norm and drift ratio response in comparison to the 

peak and acceleration response. 

 

Figure 16 Responses of the IBD controlled benchmark building subjected to 100% of El Centro 
earthquake: (a) peak drift ratio of each storey; (b) peak acceleration of each storey; (c) norm drift 
ratio of each storey; (d) norm acceleration of each storey. 

 

Figure 17 Building damage indexes of the IBD controlled benchmark building subjected to 100% of 
El Centro earthquake: (a) plastic connection number of each storey; (b) component energy 

consumption of each storey. 

Number of plastic connection and energy consumption at the ends of the component (including 
beam and column) during the earthquake are the important evaluation indexes account for building 



 

 

damage. Figure 17 shows the two indexes of each storey of the building subjected to 100% of El 
Centro earthquake. Figure 17 (a) shows that the number of plastic connection are significantly 
reduced from 49 to 11 when the benchmark building with 

0,9L  installation. On the contrary, for the 

benchmark building with 0,1L   installation, the number of plastic connection remain unchanged. 

Figure 17 (b) shows the dissipated energy of all component ends for each storey. It can be seen 
that there is almost no component energy consumption when the benchmark building with 0,9L  

installation relative to the uncontrolled case. For 0,1L  case, the component energy consumption at 

7th storey even slight increases relative to the uncontrolled case. Figure 16 and Figure 17 indicate 
that the span-storey installation scheme of IBDs can effectively reduce the seismic response and 
significantly reduce the building damage of the 9-storey benchmark building when the El Centro 
earthquake is applied. 
 

 

 



 

 

 

Figure 18 Responses of the IBD controlled benchmark building subjected to (a-d) 100% of 
Hachinohe earthquake; (e-h) 50% of Northridge earthquake; (i-l) 50% of Kobe earthquake. 

The seismic responses of the benchmark building under excitations of the other three earthquake 
records are shown in Figure 18. The results in terms of another far-field earthquake, the Hachinohe 
record, are similar with previous that. However, in the case of two near-field earthquake, the control 
performance of 0,9L  installation is recede for peak responses, particularly for the peak acceleration 

response, the 0,9L  installation is almost invalid. Besides, the control performance of 0,1L  installation 

on norm response has improved. To comprehensively evaluate the span-storey installed IBDs 
system, the first ten evaluation criteria defined in the benchmark control problem [35] are adopted 
and the values of the evaluation criteria are provided in Table 4 of Appendix B. Please note small 
values of the evaluation criteria are generally more desirable. 
 
 
6.2 Optimization design for the structural absolute acceleration response 

From above it can be seen that the IBD perform acceptably for control of structural absolute 
acceleration response. This is because the design formulations in Table 1 is to minimize the 
performance index Eq. (10) which is the mean square value of the structural relative displacement 
response. In order to improve the control performance of span-storey installed IBDs for absolute 
acceleration response, the design formulations in [19] which aim to minimize the absolute 
acceleration response are used to design the IBD installed on 0,9L . The optimal parameters are 

1829.1KNs/mdc     and 5388.5KN/mdk   . Then the comparison of control performance between both 

design methods is conducted as following 
 

 

 



 

 

Figure 19 Structural responses of the benchmark building-IBD system subjected to 100% of El 
Centro earthquake, the IBD installed on 

0,9L  is design respectively to reduce relative displacement 

and absolute acceleration response: (a) peak drift ratio of each storey; (b) peak acceleration of each 
storey; (c) norm drift ratio of each storey; (d) norm acceleration of each storey. 

 
Figure 19 shows the responses of the benchmark building when the IBD is design to reduce relative 
displacement and absolute acceleration response according to the design formulations in Table 1 
and in [19], respectively. It can be seen that the IBD optimized for acceleration performs better than 
the IBD optimized for displacement on control of peak and norm acceleration response of building, 
but performs less desirable for the control of peak and norm drift ratio relative to the other one. In 
practice, the design method can be chosen according to the need. 

 
 

7. Conclusion 

This paper provides a simplified analytical design method which can be used for two representative 
IBDs with span-storey mounting. A theoretical model which integrates both IBDs and TMD system 
is established. The influence of installation position on modal response, IBDs stroke, inerter stroke, 
and control force produced by IBDs are analytically investigated. A 3-storey benchmark building 
model is introduced for case study and the comparative study on the span-storey installed IBDs and 
the TMD is carried out. The sensitivity analysis and impulse response analysis are proposed for 
parametric study and validating the analytical design method. A comparison of the span-storey 
mounting with increasing inertance is examined. In the end the seismic control performance of span-
storey installed IBDs on 9-storey nonlinear benchmark building is evaluated. 
The principal outcomes of this research are summarized as follows: (i) an analytical design method 
of span-storey installed IBDs is developed and it is convenient and effective through reusing the 
design formulas in SDOF case. Besides, the influence of the installation position of IBDs on each 
modal response, IBDs stroke, inerter stroke, and control force produced by IBDs is derived and this 
can be used to determine the installation position of IBDs; (ii) the span-storey installation and the 
adjacent-storey installation of IBDs have excellent performance of control and robustness for lower 
order and higher order mode, respectively. The span-storey installation have excellent attenuation 
rate for first mode and does not produce the phase change; (iii) the span-storey installed IBDs 
outperform the TMD while dealing with dynamic loadings since the former have more options for 
installation positions and the performance of IBDs will not decay like that of TMD when   is larger.; 

and (iv) Through comparing SIBDs and AIBDs, the span-storey installation can substantially improve 
the efficiency of inerter and damper and reduce the control force by amplifying the drift has been 
confirmed since the SIBDs with small inertance, damping coefficient and control force can achieve 
the same performance with AIBDs; (v)Finally, a 9-storey seismically excited nonlinear benchmark 
building is used to evaluate the control performance of the IBDs. The results show that the span-
storey installed IBDs has a high efficiency in seismic control and can significant reduce the building 
damage. 
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Appendix A 

According to Asami [37], the optimal parameters can be found by the solution of partial differential 
equations: 
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d

J

J
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 (A.1) 

According to Hu [16], the ( )H s  of IBD-I is identical to that of a SDOF structure-TMD system when 

excitation is external force. Thus the optimal parameters of IBD-I can be found by the previous 
studies of TMD derived by Warburton [33]. 
For IBD-II, when 0s   the performance index J  is 
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Then the Eq. (A.1) can be given by 
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The solutions of Eq. (A.3), i.e. the optimal parameters of IBD-II, are 
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Finally, the optimal performance index can be obtained by substituting Eq. (A.4) into (A.2): 

 
1optJ

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Appendix B 

Table 4 Earthquake evaluation criteria for the IBD-I installed at  

Earthquake 
(intensity) 

El Centro 
(0.5/1.0/1.5) 

Hachinohe 
(0.5/1.0/1.5) 

Northridge 
(0.5/1.0) 

Kobe 
(0.5/1.0) 

Peak Drift Ratio 
0.67625 
0.76853 
0.76501 

0.67646 
0.70985 
0.75551 

0.84211 
0.94721 

0.80674 
0.88505 

Peak Level Accel. 
0.69040 
0.83746 
0.95868 

0.83561 
0.83931 
0.98159 

1.03145 
1.09689 

1.06565 
0.98603 

Peak Base Shear 
0.65146 
0.86991 
0.96609 

0.57493 
0.68659 
0.92535 

0.94715 
1.09114 

0.96125 
0.93214 

Norm Drift Ratio 
0.51754 
0.62788 
0.87059 

0.60747 
0.62830 
0.59418 

0.54827 
0.65960 

0.57698 
0.64749 

Norm Level Accel. 
0.56653 
0.66758 
0.71850 

0.65178 
0.71064 
0.80034 

0.61389 
0.76498 

0.75743 
0.88672 

Norm Base Shear 0.48772 0.63535 0.50615 0.66240 



 

 

0.62696 
0.73701 

0.67718 
0.74598 

0.67990 0.87461 

Ductility 
0.63992 
0.55714 
0.64765 

0.58785 
0.47189 
0.70999 

0.77854 
0.99923 

0.77467 
0.90758 

Dissipated Energy 
-- 

0.06169 
0.43162 

-- 
0.00000 
0.21622 

0.21212 
0.51267 

0.41133 
0.76680 

Plastic Connections 
-- 

0.22449 
0.79710 

-- 
0.00000 
0.47887 

0.88889 
1.05333 

0.92308 
0.94737 

Norm Ductility 
0.51188 
0.51798 
0.97126 

0.60585 
0.51187 
0.44327 

1.03735 
0.76127 

0.70639 
0.54605 
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