
The VLDB Journal (2022) 31:629–647
https://doi.org/10.1007/s00778-021-00715-z

REGULAR PAPER

Span-reachability querying in large temporal graphs

Dong Wen1 · Bohua Yang2 · Ying Zhang2 · Lu Qin2 · Dawei Cheng3 ·Wenjie Zhang1

Received: 25 February 2021 / Revised: 22 August 2021 / Accepted: 27 October 2021 / Published online: 23 November 2021
© The Author(s), under exclusive licence to Springer-Verlag GmbH Germany, part of Springer Nature 2021

Abstract
Reachability is a fundamental problem in graph analysis. In applications such as social networks and collaboration networks,
edges are always associated with timestamps. Most existing works on reachability queries in temporal graphs assume that
two vertices are related if they are connected by a path with non-decreasing timestamps (time-respecting) of edges. This
assumption fails to capture the relationship between entities involved in the same group or activity with no time-respecting
path connecting them. In this paper, we define a new reachability model, called span-reachability, designed to relax the time
order dependency and identify the relationship between entities in a given time period. We adopt the idea of two-hop cover
and propose an index-based method to answer span-reachability queries. Several optimizations are also given to improve the
efficiency of index construction and query processing. We conduct extensive experiments on eighteen real-world datasets to
show the efficiency of our proposed solution.

Keywords Temporal graph · Reachability · Dynamic graph

1 Introduction

Computing the reachability between vertices is a fundamen-
tal problem in network analysis. A true result is returned
if there exists a path connecting two query vertices. Exten-
sive studies have been done to answer the reachability
queries in graphs [2,9,11,13,19,24,27,29,31,35,36], a prob-
lem which has applications across a wide range of domains
such as road networks, social networks, collaboration net-

B Dawei Cheng
dcheng@tongji.edu.cn

Dong Wen
dong.wen@unsw.edu.au

Bohua Yang
bohua.yang@student.uts.edu.au

Ying Zhang
ying.zhang@uts.edu.au

Lu Qin
lu.qin@uts.edu.au

Wenjie Zhang
zhangw@cse.unsw.edu.au

1 The University of New South Wales, Kensington, Australia

2 AAII, University of Technology Sydney, Ultimo, Australia

3 Department of Computer Science and Technology, Tongji
University, Shanghai, China

works, PPI (protein-protein-interaction) networks, XML and
RDF databases.

In real-world applications, edges in graphs are often
associated with temporal information. For example, in col-
laboration networks, each vertex is a researcher, and an edge
represents the co-authorship of two researchers at a time.
In social networks, an edge with a timestamp t represents a
communication (sending a message or leaving a comment)
between two users at t . Due to the widely spread tempo-
ral information in entity relationships, research problems in
temporal graphs have recently drawn a lot of attention.
Motivation. In this paper, we study the vertex reachability
problem in temporal graphs. An existing method to model
the temporal reachability is based on the concept of time-
respecting paths [17,18,21]. Specifically, a vertex u reaches
v if there exists a path connecting u and v such that the
times on the path follow a non-decreasing order. For exam-
ple, in the temporal graph G of Fig. 1, v6 reaches v10 since
there exists a path {〈v6, v2, 5〉, 〈v2, v1, 6〉, 〈v1, v10, 8〉} con-
necting them and the times 5, 6, 8 are in a non-decreasing
order. Semertzidis et al. [25] also model the temporal reach-
ability that two vertices u, v are reachable if there exists path
connecting them and the times of all edges in the path are
consistent, i.e., u, v are reachable in a snapshot of the tem-
poral graph at a given time.

123

http://crossmark.crossref.org/dialog/?doi=10.1007/s00778-021-00715-z&domain=pdf
http://orcid.org/0000-0002-5877-7387

630 D. Wen et al.

Fig. 1 Atemporal graphGwhere eachnumber represents the timestamp
of the edge below

In many scenarios of temporal graph mining, we may
only focus on the relationship between vertices in the pro-
jected graph of a small time interval without addressing
any order limitation in the edge sequence. Here, the pro-
jected graph is the static graph containing all edges at times
falling in the interval. For example, Gurukar el al. [16] com-
pute the communication motifs in temporal graphs and show
that two edges sharing a common vertex are related if the
difference of their timestamps is very small. Authors in
[22,28] compute the community structures called Δ-clique
and (θ, k)-persistent-core, respectively, in temporal graphs.
Their models require that the resulting subgraph satisfies
some structural properties (e.g., vertex degree threshold) in
the projected graph of a time interval. The aforementioned
two reachability models are too strict and might fail to cap-
ture entity relationship in these scenarios.
Span-reachability. In this paper, we define a span-
reachability model. Given a temporal graph and a time inter-
val I, we say a vertex u span-reaches v if u reaches v in
the projected graph of I. We investigate the problem of effi-
ciently answering span-reachability queries for an arbitrary
pair of vertices and a time interval.

Example 1 In the temporal graph G of Fig. 1, we have v1
span-reaches v8 in the time interval [3, 5], since there exists
a path {〈v1, v5, 5〉, 〈v5, v8, 4〉} from v1 to v8 in the projected
graph of [3, 5].
Applications. Using this model, we can effectively analyze
the potential relationship between entities by focusing on
the item interactions in a specific period. Several real-world
applications can benefit from this study. We provide several
examples as follows.
- Biology analysis. In PPI networks, it is important to iden-
tify whether two proteins participate in a common biological
process or molecular function. According to [20], proteins
or RNA can be described as vocabulary terms. The relation-
ships between vocabulary terms can be modeled as a gene
ontology (GO) directed acyclic graph (DAG) in which each
vertex is a concept or vocabulary term. In monitoring the

protein activities, our model can be used to identify the rela-
tionship between proteins based on GO DAG.
- Security assessment and recommendation. In the context
of assessing security, we need to understand whether certain
person are related to a known terrorist [5]. In organizing a
terrorist activity, there may exist several phone calls among
the suspects with a short period. We may be not able to find
a time-respecting path from the known terrorist to others,
especially when not all people in the organization take orders
from this terrorist. Our model can be used to capture the
related suspects of a targeted terrorist. Similarly, in social
networks, our model can be used to detect whether two users
are involved in a group in the period of big social events, such
as FIFA World Cup and Olympic Games.
- Money transaction monitor. In e-commerce platforms and
bank systems, we have a graph in which each vertex rep-
resents a user account and each edge with a timestamp
represents a money transaction between two user accounts.
In monitoring money transactions, or some other illegal
financial activities, such as money laundering and fake trans-
actions, it is crucial to detect whether there exists a path
between two user accounts. Normally, a series of money
transactions should follow an increasing order of timestamps.
However, some skilled users may borrow some untraceable
money to finish the transfer and try to dodge any monitoring.
For example, an account in the transaction path may trans-
fer the money to the next account in advance and receive
the money from the prior account later. The existing order-
dependent reachability model cannot capture this activity,
but our model can be used here by setting a specified time
interval.

Based on the concept of span-reachability, we also study
a θ -reachability problem, which is a generalized version of
the span-reachability. Given a time interval I and a length
threshold θ , two vertices are θ -reachable in I if they are
span-reachable in a θ -length subinterval of I. Taking the
above application of monitoring money transactions, a more
general task is to identify whether there exists a transaction
chain between two accounts finished in a short period over a
long monitoring period. Note that when the length of query
interval equals to θ , θ -reachability is equivalent to span-
reachability. When θ is 1, it is equivalent to the disjunctive
historical reachability model studied in [25].
Online solution. Given a time interval I, a straightforward
method to answer span-reachability queries is to perform a
bidirectional modified breath-first search between two query
vertices. We only scan the edges in the query interval and
return true if a common vertex is found in the searches of
two query vertices. This method works but incurs high com-
putational cost especially when the graph is very large.
Index-based solution.To efficiently and scalable process the
span-reachability query, we propose an index-based solution
based on the concept of two-hop cover (sometimes called hop

123

Span-reachability querying in large temporal graphs 631

labeling) [1,3]. The index is called Time Interval Labeling
(TILL-Index). Specifically, for each vertex u in the tem-
poral graph, we maintain an out-label set Lout (u) and an
in-label set Lin(u). Each item in Lout (u) (resp. Lin(u)) is a
triplet 〈w, ts, te〉 which means that u span-reaches (resp. is
span-reachable from) w in the interval [ts, te]. Given a query
interval [t1, t2], we answer the span-reachability from a ver-
tex u to a vertex v by checking Lout (u) and Lin(v). We have
u span-reaches v if there exists a common vertexw such that
u span-reaches w in a subinterval of [t1, t2] and v is also
span-reachable from w in a subinterval of [t1, t2].

Efficiently computing a small-size TILL-Index is not a
trivial task. We construct the index in n iterations where n is
the number of vertices in the temporal graph. In each itera-
tion, we pick a vertex u to compute all its reachable vertices
with corresponding time interval and add u to the in-label or
out-label set of other vertices if necessary. This index con-
struction algorithm incorporates several optimizations. First,
we use a priority queue to explore the reachable vertices
of the picked vertex u in each iteration. Based on the pri-
ority queue, our first step is always to process the vertex
with the shortest time interval that is reachable from u. This
guarantees that each found vertex reachable from u with a
corresponding interval is never dominated by others and sig-
nificantly reduces unnecessary visits. In addition, by studying
the dominance relationship between different intervals, we
stop exploring neighbors of a visited reachable vertex if a
specific condition is satisfied. This pruning rule significantly
reduces the search space for each vertex. Real-world tempo-
ral graphs are highly dynamic. We also propose algorithms
to maintain our TILL-Index when inserting new edges and
deleting old edges.

Note that even though the concept of the two-hop cover has
been studied or used in several existingworks [1,3,13,30], our
method is not a naive extension of existing techniques.Unlike
the previous studies, our method exploits the characteristics
of temporal graphs. The proposed optimizations for index
construction center mainly on the relationships between dif-
ferent time intervals, such as containment and intersection.
We also propose several optimization techniques to improve
the efficiency of query processing.
Contributions.We summarize themain contributions in this
paper as follows.

– Anovel reachabilitymodel in temporal graphs.Wedefine
a span-reachability model to capture the interactions
between entities in a specific period of a temporal graph.
In addition, we further study the θ -reachability problem
which is a generalized version of the span-reachability.

– A two-hop index-based solution. We exploit the charac-
teristics of the span-reachabilitymodel and adopt the idea
of two-hop cover to propose an index-based method to
answer both research problems.

– Several optimizations to improve the efficiency of index
construction and query processing.Wepropose two opti-
mizations to improve the efficiency of index construction.
We also use a sliding window-like method to improve the
efficiency of θ -reachability query processing.

– Efficient index maintenance in dynamic temporal graphs.
We propose algorithms to maintain the index when
inserting new edges and removing out-of-date edges,
respectively.

– Extensive performance studies on more than ten real-
world datasets. We conduct experiments on eighteen
real-world datasets from different categories. The results
demonstrate the effectiveness of our optimizations and
the efficiency of our proposed solutions.

Organization. The rest of this paper is organized as fol-
lows. Section 2 introduces some background knowledge
and defines the problem. Section 3 gives an overview of
our index-based solution. Section 4 studies the index con-
struction algorithms. Section 5 studies the query processing
algorithms. Section 6 introduces algorithms for the index
maintenance. Section 7 reports the experimental results. Sec-
tion 8 introduces related works, and Sect. 9 concludes the
paper. The paper is extended from a conference version [32].
We additionally propose algorithms to maintain the index for
dynamic temporal graphs and conduct corresponding exper-
iments. We omit the detailed proofs for several lemmas and
theorems when they are straightforward.

2 Preliminary

Let G(V, E) be a directed temporal graph, where V and E
denote the set of vertices and the set of temporal edges,
respectively. Each temporal edge e ∈ E is a triplet 〈u, v, t〉,
where u, v are the vertices in V and t is the connection time
from u to v. Without loss of generality, we assume t is an
integer since the timestamp in real-world applications is nor-
mally an integer. Note that there may exist multiple edges
connecting the same pair of vertices at different times. We
use n = |V| and m = |E | to denote the number of ver-
tices and the number of temporal edges, respectively. Given
a vertex u ∈ V , the out-neighbor set of u is defined as
Nout (u) = {〈v, t〉|(u, v, t) ∈ E}, and the in-neighbor set
is defined similarly. The out-degree (resp. in-degree) of u
is denoted as degrout (u) = |Nout (u)| (resp. degrin(u) =
|Nin(u)|). Given a time interval [ts, te], the projected graph
of G in [ts, te], denoted by G[ts ,te], where V (G[ts ,te]) = V and
E(G[ts ,te]) = {(u, v)|(u, v, t) ∈ E, t ∈ [ts, te]}. The length
or width of an interval [ts, te] is the number of timestamps
in the interval, i.e., te − ts + 1. Given the temporal graph G
in Fig. 1, its projected graph in the interval [2, 4] is given in
Fig. 2.

123

632 D. Wen et al.

v1 v2 v3v5

v7

v4

v8

v11

v9

Fig. 2 The projected static graph of G in the time interval [2, 4]

Based on the concept of the projected graph, we define
the span-reachability as follows.

Definition 1 (Span- Reachability)Given a temporal graph
G, two vertices u, v and a time interval [ts, te], u span-reaches
v in [ts, te], denoted as u �[ts ,te] v, if u reaches v in the
projected graph G[ts ,te].

Considering the temporal graph G in Fig. 1, we have
v1 �[2,4] v3 since v1 reaches v3 in the projected graph of
[2, 4] in Fig. 2. We define the first problem studied in this
paper based on Definition 1 as follows.

Problem 1 Given a temporal graph G, two vertices u, v and
a time interval I, we aim to efficiently answer whether u
span-reaches v in the interval I.

In addition to identifying the span-reachability, we further
define a generalized reachability model in a temporal graph
G. Given two intervals [t ′s, t ′e] and [ts, te], we have [t ′s, t ′e] ⊆
[ts, te] iff t ′s ≥ ts and t ′e ≤ te.

Definition 2 (θ -Reachability) Given a temporal graph G,
two vertices u, v, a parameter θ and a time interval [ts, te]
s.t. te − ts + 1 ≥ θ , u θ -reaches v if there exists an interval
[t ′s, t ′e] ⊆ [ts, te] such that t ′e − t ′s + 1 = θ and u reaches v in
G[t ′s ,t ′e].

Example 2 Given the temporal graph G in Fig. 1, let θ = 3.
We have v1 3-reaches v8 in the interval [1, 5] since there
exists an interval [3, 5] ⊆ [1, 5] such that the length of [3, 5]
is 3 and v1 reaches v8 in the projected graph G[3,5].

Relationshipof tworeachabilitymodels.Given an arbitrary
pair of vertices u, v, a threshold θ and a time interval I, we
also study the issue of computing θ -reachability from u to
v in I, denoted by Problem 2. Definition 1 is a special case
of Definition 2 when θ is equal to the length of the input
interval. We also see a growing strictness from Definition 1
to Definition 2, which is shown in the following lemma.

Lemma 1 Given two vertices u, v and an interval I, u span-
reaches v in I if u θ -reaches v in I.

For ease of presentation, we assume the input temporal
graph is a directed graph, and our proposed techniques can
easily handle undirected graphs. We omit the proofs of sev-
eral lemmas and theorems when they are straightforward due
to space limitation.

3 Solution overview

We give an overview of our solution in this section. We
start by presenting a straightforward online algorithm for our
research problems and then introduce several basic ideas of
our index-based method.

3.1 A straightforward online approach

Given a time interval [ts, te], the span-reachability of two
vertices u and v in [ts, te] can be answered by a modified
bidirectional breath-first search. Specifically, we begin by
alternatively picking one of u and v in each round and explor-
ing the unvisited vertices that are reachable from u or can
reach v. We have u reaches v once the search scopes of two
vertices intersect. The detailed pseudocode of this approach
is given in Algorithm 1. Note that we assume u 	= v in all
proposed algorithms to answer the reachability queries in
this paper. Alternatively, we directly return true without the
algorithm invocation.

In line 1, Ru and Rv are used to collect all vertices that u
can reach and all vertices that can reach v, respectively. In line
5, Qu ∪ Qv = ∅ means there does not exist any unexplored
vertex for both u and v. The variable toggle initialized in
line 4 represents the processed vertex in the last iteration,
and we process u in lines 7–15 if toggle = v. We explore
the out-neighbors of all vertices in the queue in lines 9–15. In
line 11, we only access edges whose time falls into the input
interval. We return true if a common vertex of Ru and Rv is
found in line 12, or push the new found vertex into the queue
in line 14. The algorithm essentially performs a bidirectional
BFS in the projected graph G[t1,t2]. The time complexity of
Algorithm 1 is given as follows.

Lemma 2 The running time of Algorithm 1 is bounded by
O(m + n).

Problem 2 can be answered by invoking Algorithm 1 as a
subroutine.We can sequentially check each possible θ -length
subinterval in the given query interval [t1, t2] and return true
immediately if u reaches v in any one of them. In the worst
case, the time complexity of this algorithm is bounded by
O((t2 − t1 − θ) · (n + m)).

Even though the bidirectional search method can suc-
cessfully answer span-reachability queries and θ -reachability
queries, the algorithms suffer from a poor scalability since
the whole graph may be visited during query processing. To
improve query efficiency, we propose an index-basedmethod
in the following section.

3.2 The time interval labeling index

We introduce our index structure called Time Interval Label-
ing (TILL-Index) in this section. TILL-Index adopts the idea

123

Span-reachability querying in large temporal graphs 633

Algorithm 1: Online-Reach()

Input: a temporal graph G, two vertices u and v and an interval
[t1, t2]

Output: the span-reachability of u and v in [t1, t2]
1 Ru ← {u}, Rv ← {v};
2 Qu ← a queue containing u;
3 Qv ← a queue containing v;
4 toggle ← v;
5 while Qu ∪ Qv 	= ∅ do
6 if toggle = v ∧ Qu 	= ∅ then
7 toggle ← u;
8 l ← |Qu |;
9 for 1 ≤ i ≤ l do

10 w ← Qu .pop();
11 foreach 〈w′, t〉 ∈ Nout (w) : t ∈ [t1, t2] do
12 if w′ ∈ Rv then return true;
13 if w′ /∈ Ru then
14 Qu .push(w′);
15 Ru ← Ru ∪ {w′};

16 else
17 repeat lines 7–15 to search the vertices that reach v by

toggling between u and v, and replacing the subscript out
with in

18 return false;

of two-hop cover (or two-hop labeling) [1,3]. In a nutshell, for
each vertex u, we maintain an in-label set Lin(u) and an out-
label set Lout (u). Each item in Lin(u) is a triplet 〈w, ts, te〉
which means that w reaches u in the projected graph G[ts ,te].
Each item in Lout (u) is a triplet 〈w, ts, te〉 which means that
u reachesw in G[ts ,te]. A triplet is called aw-triplet if the first
item of the triplet is w. We call 〈u, v, ts, te〉 a reachability
tuple if u �[ts ,te] v, and we say a vertex w covers a reach-
ability tuple 〈u, v, ts, te〉 if u �[ts ,te] w and w �[ts ,te] v.
For ease of presentation, we focus mainly on Problem 1 now.
Problem 2 can also be solved based on the TILL-Index, and
Sect. 5 will discuss its solution in detail by extending the
techniques in answering Problem 1. Given two vertices u
and v, u span-reaches v in an interval [t1, t2] if any one of
the following equations holds:

1. ∃〈v, ts, te〉 ∈ Lout (u): [ts, te] ⊆ [t1, t2];
2. ∃〈u, ts, te〉 ∈ Lin(v): [ts, te] ⊆ [t1, t2];
3. ∃〈w, ts, te〉 ∈ Lout (u), 〈w′, t ′s, t ′e〉 ∈ Lin(v): w = w′ ∧

[ts, te] ⊆ [t1, t2] ∧ [t ′s, t ′e] ⊆ [t1, t2].

Based on the above equations, a TILL-Index is a minimal
index that can be used to answer correctly all possible span-
reachability queries in G. Here, by minimal, we mean that
removing any item in the index cannot correctly determine
all possible span-reachability in the graph. An example of
a TILL-Index of the temporal graph G in Fig. 1 is given in
Table 1.

Table 1 A Time Interval Labeling of G

Lin(v2) 〈v1, 2, 2〉 〈v1, 7, 7〉 Lout(v2) 〈v1, 6, 6〉
Lin(v3) 〈v1, 2, 4〉 〈v1, 4, 5〉 〈v2, 3, 4〉 Lin(v4)

〈v1, 1, 4〉 〈v1, 4, 5〉 〈v2, 3, 5〉 〈v2, 1, 4〉 〈v3, 1, 1〉
〈v3, 5, 5〉 〈v3, 6, 8〉 Lout(v4) 〈v3, 4, 4〉 Lin(v5)

〈v1, 2, 3〉 〈v1, 5, 5〉 〈v2, 3, 3〉 Lout(v5) 〈v3, 4, 4〉
Lout(v6) 〈v1, 5, 6〉 〈v2, 5, 5〉 〈v4, 6, 9〉 Lin(v7)

〈v1, 7, 7〉 Lout(v7) 〈v3, 3, 6〉 Lin(v8) 〈v1, 1, 3〉
〈v1, 2, 4〉 〈v1, 4, 5〉 〈v2, 1, 3〉 〈v2, 3, 4〉 〈v3, 8, 8〉
〈v5, 1, 1〉 〈v5, 4, 4〉 〈v6, 9, 9〉 Lout(v8) 〈v3, 4, 6〉
〈v4, 6, 6〉 Lin(v9) 〈v1, 1, 1〉 〈v1, 3, 7〉 〈v2, 1, 4〉
〈v3, 1, 1〉 〈v7, 3, 3〉 Lout(v9) 〈v3, 6, 6〉 Lin(v10)

〈v1, 8, 8〉 Lout(v10) 〈v1, 9, 9〉 Lout(v11) 〈v1, 3, 3〉
Lout(v12) 〈v1, 6, 9〉 〈v10, 6, 6〉

Example 3 Assume that we aim to answer the span-
reachability from v6 to v3 in the time interval [4, 8]. We
first locate the out-label set of v6 in Table 1, which are
Lout (v6) = {〈v1, 5, 6〉, 〈v2, 5, 5〉, 〈v4, 6, 9〉}. The in-label set
of v3 are Lin(v3) = {〈v1, 2, 4〉, 〈v1, 4, 5〉, 〈v2, 3, 4〉}. We
can see that there is a common vertex v1 such that both
〈v1, 5, 6〉 ∈ Lout (v6) and 〈v1, 4, 5〉 ∈ Lin(v3) fall in the
query interval [4, 8]. Therefore, the answer of this query is
true.

Even though the idea of two hop cover is simple, it is
non-trivial to efficiently compute a small TILL-Index and
answer the reachability queries based on the index. We give
the details about index construction and query processing in
Sect. 4 and Sect. 5, respectively.

Remark 1 One may consider using some existing techniques
(e.g., transitive closure) of reachability in static graphs to
construct the index for span-reachability. However, the idea
is hard towork sincewemay have an extremely large number
of possible query time spans and each time span corresponds
a static graph. It is not acceptable to index all possible static
graphs.

4 Index construction

4.1 The labeling framework

We begin by presenting several basic concepts before intro-
ducing the details of the index construction.

Definition 3 (Dominance and Skyline Reachability
Tuple) Given two vertices u and v, a reachability tuple
〈u, v, t ′s, t ′e〉 dominates 〈u, v, ts, te〉 if [t ′s, t ′e] ⊂ [ts, te]. A
reachability tuple 〈u, v, ts, te〉 is a skyline (or non-dominated)
reachability tuple (SRT) if it is not dominated by other tuples.

123

634 D. Wen et al.

Given a vertex u, we also use the term skyline in Def-
inition 3 for the triplets in Lout (u) (resp. Lin(u)) since a
triplet 〈w, ts, te〉 ∈ Lout (u) represents a reachability tuple
〈u, w, ts, te〉. In constructing TILL-Index, we only need to
compute labels that can cover all SRTs since a vertex cover-
ing an SRT also covers all its dominating tuples. Therefore,
our research task in the index construction is to cover all SRTs
in the graph with the total index size as small as possible.
The minimum two-hop cover. [13] studies the two-hop
cover for the shortest distance and reachability queries
in general graphs. They proved that computing the min-
imum two-hop cover is NP-hard and can be transformed
to a minimum cost set cover problem [12]. They use a
greedy algorithm to compute a two-hop cover and achieve
an O(log n) approximation factor. The proposed algorithm
is inefficient since a procedure of densest subgraph computa-
tion is invoked every time they select a vertex to cover several
reachability (or shortest distance) vertex pairs.
Hierarchical two-hop cover. The aforementioned theoreti-
cal results also hold in our scenario, and we omit the detailed
proof. Due to the difficulty of the optimal cover computa-
tion, we adopt a hierarchical labeling approach [1,3] which
follows a strict total order on the vertices in G, and we will
prove the minimality of our TILL-Index under the total order
constraint. We use O to denote the vertex order. We say
the rank of a vertex u is higher than that of a vertex v if
O(u) < O(v). By the total order, we mean to sequentially
process each vertex in O. Once we process a vertex w, we
addw and corresponding intervals to the labels of u and v for
all uncovered reachability tuples containing u, v covered by
w. Intuitively, a vertex playing an important role in G should
be put at the front of the order. Next, we adopt the order-
ing method in [19]. Given each vertex u, we use the formula
(degrin(u) + 1) × (degrout (u) + 1) as the importance of
u. We sort the vertices in a decreasing order of their impor-
tance and break the tie by selecting a vertex with smaller
ID. Given the total vertex order, we immediately have the
following lemmas for our TILL-Index.

Lemma 3 Given an arbitrary vertex u, for every triplet
〈w, ∗, ∗〉 in Lout (u) ∪ Lin(u), O(w) < O(u).

Lemma 4 Given an SRT 〈u, v, ts, te〉 in G, let w be the first
vertex (the highest rank) in O that can cover 〈u, v, ts, te〉.
w 	= u 	= v. There exists a triplet 〈w, t ′s, t ′e〉 ∈ Lout (u) such
that [t ′s, t ′e] ⊆ [ts, te] and a triplet 〈w, t ′′s , t ′′e 〉 ∈ Lin(v) such
that [t ′′s , t ′′e] ⊆ [ts, te].

Without loss of generality, we maintain only skyline
triplets in labels of TILL-Index since a dominated triplet can
be always replaced by a corresponding skyline triplet without
influencing calculation’s accuracy. We define an important
concept in computing TILL-Index as follows.

Definition 4 (Canonical Reachability Tuple)A reach-
ability tuple 〈u, v, ts, te〉 is a canonical reachability tuple
(CRT) if (i) 〈u, v, ts, te〉 is a skyline reachability tuple, and
(ii) there does not exist a vertex w such that u �[ts ,te] w,
w �[ts ,te] v, O(w) < O(u) and O(w) < O(v).

Given a vertex order O and a vertex u, we say a tuple is
an SRT (resp. CRT) of u if the tuple is an SRT (resp. CRT)
containing u and the rank of u is higher in the tuple. We have
following lemmas based on Definition 4.

Lemma 5 Given an arbitrary vertex u and any (skyline)
triplet 〈w, ts, te〉 in Lout (u) (resp. Lin(u)), 〈u, w, ts, te〉
(resp. 〈w, u, ts, te〉) is a CRT.
Lemma 6 For each CRT 〈u, v, ts, te〉 in G, there is a triplet
〈u, ts, te〉 in Lin(v) if O(u) < O(v). If this is not the case,
there is a triplet 〈v, ts, te〉 in Lout (u).

Example 4 The labels in Table 1 are computed following the
total alphabetical order of the vertices in G of Fig. 1. For
the in-labels of v8, we can find that the rank of all vertices
v1, v2, v3, v5 and v6 appearing in Lin(v8) have ranks higher
than v8. For an arbitrary triplet 〈v2, 3, 4〉 in Lin(v8), there
does not exist any vertex with a higher rank than v8 and v2
that can cover the reachability tuple 〈v2, v8, 3, 4〉.

Based on Lemmas 5 and 6, there is a one-to-one corre-
spondence between CRTs and triplets in TILL-Index. It now
follows that we can construct TILL-Index by computing all
CRTs. A framework to construct TILL-Index is presented in
Algorithm 2.

Algorithm 2: A Framework of Index Construction
1 for 1 ≤ i ≤ n do
2 ui ← the i-th vertex in the order O;
3 compute all SRTs of ui ;
4 compute all CRTs by refining the computed SRTs;
5 add corresponding triplet of each CRT to in-labels or

out-labels of other vertices;

In the framework, we process each vertex sequentially in
the vertex order. In line 3, the SRTs of ui can be computed
in two phases. One computes all vertices and correspond-
ing time intervals that are reachable from u, while the other
computes those that can reach u. Taking the first one as an
example, a basic implementation uses a queue tomaintain the
discovered reachable triplets of ui . To be specific, the queue
is initialized as a special triplet containing ui . We iteratively
pop a triplet 〈v, ts, te〉, which means u can reach v in [ts, te].
For each out-neighbor 〈v′, t〉 of v, we expand 〈v, ts, te〉 to
〈v′,min(ts, t),max(te, t)〉, which means ui reaches v′ in the
interval [min(ts, t),max(te, t)]. We mark this new triplet
〈v′,min(ts, t),max(te, t)〉 as discovered and push it into the

123

Span-reachability querying in large temporal graphs 635

queue if it is not dominated by other discovered triplet, and
remove all its dominating discovered triplets. In line 4, for
every SRT computed in line 3, we check whether there exists
a vertex with a higher rank that can cover the SRT based on
Definition 4. This can be done byperforming a query process-
ing procedure based on the labels computed by higher-rank
vertices. The details of query processing will be given in
Sect. 5. If yes, we omit such SRT, and derive all CRTs when
all SRTs are checked.

4.2 Theoretical analysis

We prove the correctness and the minimality of TILL-Index
computed by Algorithm 2.

Theorem 1 (Correctness) The span-reachability query of
any pair of vertices can be correctly answered (any one of
three conditions presented in Sect. 3.2 holds) based on the
index computed by Algorithm 2.

Proof The theorem can be easily derived according to Defi-
nition 4, Lemma 5 and Lemma 6. ��

Theorem 2 (Minimality) For any vertex u and any triplet
〈w, ts, te〉 in Lin(u) or Lout (u) of the index computed by
Algorithm 2, there exists a pair of vertices u′, v′ and a corre-
sponding interval [t ′s, t ′e] such that the span-reachability of u′
and v′ in [t ′s, t ′e] cannot be correctly answered after removing
〈w, ts, te〉.

Proof Given a triplet 〈w, ts, te〉 ∈ Lout (u), we prove that
after removing 〈w, ts, te〉, the span-reachability from u to w

in [ts, te] cannot be correctly answered. If this query can
be correctly answered, then at least one of the following
two conditions holds: (i) there exists a triplet 〈u, t ′s, t ′e〉 in
Lin(w) such that [t ′s, t ′e] ⊆ [ts, te]; (i i) there exists a triplet
〈v, t ′s, t ′e〉 ∈ Lout (u) and a triplet 〈v, t ′′s , t ′′e 〉 ∈ Lin(w) such
that [t ′s, t ′e] ⊆ [ts, te] and [t ′′s , t ′′e] ⊆ [ts, te].

Given that 〈w, ts, te〉 ∈ Lout (u), we have O(w) < O(u)

according to Lemma 3, and a triplet containing u cannot
appear in Lin(w) or Lout (w). Therefore, condition i cannot
hold. Condition i i holds if v covers the reachability tuple
〈u, w, ts, te〉 and the rank of v is higher than those of u and
w. This contradicts Lemma 5 that 〈u, w, ts, te〉 is a CRT. This
completes the proof of the theorem. ��

As we shown earlier, computing the minimum two-hop
cover for both shortest distance and reachability is NP-hard
according to [13]. The property still holds for computing the
two-hop cover for span-reachability. The proof is similar to
that in [13] and is done by transforming the problem into the
minimum cost set cover problem [12].

4.3 Implementation

The basic implementation incurs high computational cost.
We discuss several techniques to efficiently compute SRTs
and CRTs as follows.

4.3.1 Efficient SRT computation

Wepropose a priority queue basedmethod to efficiently com-
pute all SRTs of a given vertex. A key idea of this method is
given in the following lemma.

Lemma 7 Given a vertex u and a set of known SRTs S con-
taining u, a reachability tuple 〈u, v, ts, te〉 is an SRT if (i)
〈u, v, ts, te〉 is not dominated by any other SRT in S, and (ii)
the length of [ts, te] is the smallest among those of all tuples
that are not in S.

Example 5 We consider the temporal graph G in Fig. 1.
Assume that we aim to compute SRTs of v5. For ease of
presentation, we only consider the SRTs starting from v5. Ini-
tially, S = ∅ and we have several reachability tuples with the
smallest interval length. They are 〈v5, v3, 4, 4〉, 〈v5, v8, 1, 1〉
and 〈v5, v8, 4, 4〉, and all of themareSRTs.Nowwehave S =
{〈v5, v3, 4, 4〉, 〈v5, v8, 1, 1〉, 〈v5, v8, 4, 4〉}. 〈v5, v8, 4, 8〉 is
not an SRT since it is dominated by 〈v5, v8, 4, 4〉 in S, and
〈v5, v4, 4, 5〉 is an SRT since its interval length is smallest
among all possible reachability tuples except the SRTs in S.

Based on Lemma 7, to compute all non-dominated reach-
ability triplets (a target and the corresponding time interval)
from a vertex u, we preserve all discovered reachability
triplets in a priority queue and always pop the triplets with the
smallest time interval length in the priority queue. According
to Lemma 7, a popped triplet 〈v, ts, te〉 must be an SRT if it
is not dominated by any previously found SRT. We compute
the new interval of each neighbor of v that can be reached
from 〈v, ts, te〉 and push the corresponding new triplet into
the priority queue if necessary. Following this, we compute
all SRTs when the priority queue is empty. A detailed pseu-
docode of our final algorithm will be given in the following
section.

4.3.2 Efficient CRT computation

We reduce the CRT checks by making use of the transi-
tive property of the dominance relationship. The following
lemma provides an early termination condition in the search
of SRT computation.

Lemma 8 Given a reachability tuple 〈u, v, ts, te〉 and a ver-
tex w, for any reachability tuple 〈u, v′, t ′s, t ′e〉, we have w

covers 〈u, v′, t ′s, t ′e〉 if (i) w covers 〈u, v, ts, te〉, (ii) [ts, te] ⊆
[t ′s, t ′e], and (iii) v span-reaches v′ in [t ′s, t ′e].

123

636 D. Wen et al.

Given the i-th vertex ui inO, assume thatwe have detected
a vertex v that ui can reach in an interval [ts, te], and the cor-
responding tuple 〈ui , v, ts, te〉 has been covered. Based on
Lemma 8, we immediately terminate any further exploration
of v since all other vertices that are reachable from 〈v, ts, te〉
must have been covered too. By adopting this pruning tech-
nique, we not only avoid a large number of CRT checks but
also reduce the search scope in SRTcomputation.Wegive the
pseudocode of the final algorithm for the index construction
by combining two optimization techniques in Algorithm 3.

In Algorithm 3, we use a parameter ϑ to achieve a trade-
off between the index size and the index coverage practically.
ϑ represents the largest interval length of span-reachability
query that TILL-Index can support. In most applications,
users may be only interested in the span-reachability queries
in a small-length interval. We will show the index size and
its construction time under different ϑ selections in Sect. 7.

Lines 4–16 of Algorithm 3 compute all reachable vertices
and corresponding intervals from ui . As discussed in Sec-
tion 4.3.1, we always pop a triplet 〈v, ts, te〉with the smallest
value of te − ts in line 8. Based on Lemma 8, we check if the
reachability tuple 〈ui , v, ts, te〉 has been covered in line 10.
Here, ui �L[ts ,te] v means the answer of the span-reachability
query from ui to v in [ts, te] is true according to the current
TILL-IndexL (L includes the in-labelLin and out-labelLout

of every vertex). Note that L dynamically increases during
the execution process of the algorithm. We omit this tuple
and stop further exploration of it if it is covered by the previ-
ously computed index (line 10). Lemmas 7 and 8 guarantee
that 〈ui , v, ts, te〉 must be an CRT, and we safely add ui with
corresponding interval to the in-labels of v in line 11. Lines
12–16 explore the out-neighbors of v. We omit the neighbor
with higher rank in line 13 since their reachability tuples have
been covered in previous iterations. We compute the updated
reachability interval for each neighbor v′ in line 14. We push
the triplet into the priority queue in line 16 if the interval gap
is not larger than the threshold ϑ .

Example 6 We give a running example of Algorithm 3. The
default value of the parameter ϑ is +∞. Given a graph G
in Fig. 1 and an alphabetical order, assume that we have
processed the first 4 vertices. We have i = 5 in line 3 and
ui = v5 in line 4. The priority queue is initialized with one
special element 〈v5,+∞,−∞〉. We pop 〈v5,+∞,−∞〉 in
line 8 and scan out-neighbors of v5 including 〈v3, 4〉, 〈v8, 1〉
and 〈v8, 4〉. We omit the out-neighbor 〈v3, 4〉 sinceO(v3) <

O(v5) in line 13, and push 〈v8, 1, 1〉 and 〈v8, 4, 4〉 into Q.
Assume the next popped triplet in line 8 is 〈v8, 1, 1〉. v8 has
only one out-neighbor 〈v4, 6〉 and we have t ′s = 1, t ′e = 6 in
line 14. We push 〈v4, 1, 6〉 intoQ. In the next round, we pop
〈v8, 4, 4〉 and push 〈v4, 4, 6〉 into Q. Now, Q contains two
triplets, 〈v4, 4, 6〉 and 〈v4, 1, 6〉. We do not push any new
triplet into Q in the following rounds since both 〈v4, 4, 6〉

Algorithm 3: TILL-Construct∗()
Input: a temporal graph G(V, E), a vertex order O and a

parameter ϑ

Output: the TILL-Index of G
1 foreach u ∈ V do
2 Lin(u),Lout (u) ← ∅;
3 for 1 ≤ i < n do
4 ui ← the i-th vertex in O;
5 Q ← an empty priority queue;
6 Q.push(〈ui ,+∞,−∞〉);
7 while Q is not empty do
8 〈v, ts , te〉 ← Q.pop();
9 if ui 	= v then

10 if ui �L[ts ,te] v then continue;
11 else Lin(v) ← Lin(v) ∪ {〈ui , ts , te〉};
12 foreach 〈v′, t〉 ∈ Nout (v) do
13 if O(v′) ≤ O(ui) then continue;
14 t ′s ← min(ts , t), t ′e ← max(te, t);
15 if t ′e − t ′s + 1 > ϑ then continue;
16 else Q.push(〈v′, t ′s , t ′e〉);
17 repeat lines 6–16 to construct Lout of each vertex by toggling

between the subscripts in and out ;

and 〈v4, 1, 6〉 are covered by v3, and the condition in line 10
holds. Till now, we have computed all CRTs of v5 which start
from v5.

Let l be the number of all CRTs. Based on Lemmas 5
and 6, it is straightforward to see that l is also the num-
ber of all labels, and the index size is bounded by l. Let
lq = maxu∈V max(|Lin(u)|, |Lout (u)|) and d be the largest
out-degree or in-degree of vertices in the graph, i.e., d =
maxu∈V max(degrout (u), degrin(u)). The time complexity
of Algorithm 3 is given as follows.

Theorem 3 The running time of Algorithm 3 is bounded by
O(ld(log ld + lq)).

Proof We first focus on one iteration of line 3. Based on
Lemmas 5 and 6, line 11 is performed O(l) times. We scan
the out-neighbors of v′ if line 11 holds. Therefore, lines 13–
16 are performed O(l · d) times, and the total number of
items appended to the priority queue is bounded by O(l ·
d). In line 10, we check whether 〈ui , v, ts, te〉 is covered by
prior vertices. This can be done by sequentially scanning the
existing out-label of ui and in-label of v and returning true if
there is a common vertex in the interval [ts, te]. The running
time can be bounded by O(|Lout (ui)| + |Lin(v)|) or O(lq).
In line 8 and 16, it requires O(log l · d) to push a new item
or pop the top item in the priority queue. By combining the
results, we have the total time complexity O(ld(log ld+lq)).
��
Undirected graphs. In undirected graphs, we only need to
maintain one label set for each vertex. Therefore, we omit

123

Span-reachability querying in large temporal graphs 637

line 17 of Algorithm 3 when constructing the index of an
undirected graph.

5 Query processing

We study the index-based query processing strategies in
this section. We discuss the algorithm to answer the span-
reachability query followed by a full discourse of the
algorithm for the θ -reachability query.

5.1 Span-reachability query processing

Our first step is to present several basic pruning strategies to
check span-reachability. Given a vertex u, let tmin(Nout (u))

(resp. tmax (Nout (u))) be the smallest (resp. largest) times-
tamp in out-neighbors of u. tmin(Nin(u)) and tmax (Nin(u))

are defined similarly. We have the following lemmas.

Lemma 9 A vertex u span-reaches a vertex v in [t1, t2] only if
there exist a neighbor 〈w, t〉 ∈ Nout (u)and 〈w′, t ′〉 ∈ Nin(v)

such that t ∈ [t1, t2] and t ′ ∈ [t1, t2].
Lemma 10 A vertex u span-reaches a vertex v in [t1, t2]
only if t2 ≥ max(tmin(Nout (u)), tmin(Nin(v))) and t1 ≤
min(tmax (Nout (u)), tmax (Nin(v))).

We can check the conditions in above two lemmas simply
by scanning the neighbors of each query vertex. If the con-
ditions do not hold, we immediately return false and do not
invoke any query processing procedure.

Given a pair of query vertices u, v and an interval [ts, te],
a straightforward method to answer the span-reachability of
u and v is to scanLout (u) andLin(v). LetLout (u)[ts ,te] (resp.
Lin(u)[ts ,te]) be the set of all triplets inLout (u) (resp.Lin(u))
falling in the interval [ts, te]. We answer true if there exists a
common vertex in Lout (u)[ts ,te] ∪ {u} and Lin(v)[ts ,te] ∪ {v}.
Otherwise, we return false. This can be done by using a hash
table to preserve the vertices.

To improve the query efficiency, we group the triplets in
the out-label or in-label of each vertex by their target vertices
(the first item in the triplet). Let V(Lout (u)) be the set of ver-
tices in the reachability triplet of Lout (u), i.e., V(Lout (u)) =
{v ∈ V|〈v, ts, te〉 ∈ Lout (u)}. Given a vertex w in
V(Lout (u)), we use Lout (u)w to denote the intervals that u
can reachw inLout (u), i.e.,Lout (u)w = {[ts, te]|〈w, ts, te〉 ∈
Lout (u)}. We check the span-reachability in two phases. In
the first one, we check if there exists a common vertex in
{u} ∪ V(Lout (u)) and {v} ∪ V(Lin(v)). This can be done in
a merge sort like strategy by arranging the vertices in the
label of each vertex by their ranks. Once finding a common
vertex w, we further check if there exist intervals falling in
the query interval in Lout (u)w and Lin(v)w, respectively. If
yes, we immediately return true. Otherwise, we resume the

Fig. 3 The data structure of Lin(v4) and Lout (v6)

search and look for the next common vertex. Recall that in
Algorithm 3, the triplets appended to the out-label or in-label
of each vertex follow the order of the vertex rank. Therefore,
the group operation can be done naturally in the index con-
struction without incurring extra cost.

To check whether there exists an interval falling in the
query interval, we sort the intervals of each vertex in chrono-
logical order. So, given two intervals [ts, te] and [t ′s, t ′e],
[ts, te] is prior to [t ′s, t ′e] if (i) ts < t ′s , or (ii) ts = t ′s ∧ te < t ′e.
Therefore, given a query interval [t1, t2] and an arbitrary
interval [ts, te], if an interval [t∗s , t∗e] ⊆ [t1, t2] exists, [t∗s , t∗e]
must appear after [ts, te] if ts < t1 or appear before [ts, te]
if te > t2. This sorting task can be done at the end of Algo-
rithm3after all labels are completely computed,whichwould
not increase the total time complexity of Theorem 3.

Example 7 Fig. 3 shows the data structure used to store the
labels of each vertex.We takeLin(v4) andLout (v6) as exam-
ples.All triplets in these two label sets canbe found inTable 1.
Two arrays are used to store the triplets in the label of each
vertex. One interval array stores the intervals for each vertex
in the label, and the other vertex array stores all vertices in
the label and the start position of their intervals in the inter-
val array. For Lin(v4) in Fig. 3, the intervals of v1, v2 and v3
are marked by white, light gray and dark gray, respectively.
The intervals of v2 in Lin(v4) in the interval array start from
the position of v2 (i.e., 2) and end at the position of the next
vertex v3 in the vertex array (i.e., 4).

A complete pseudocode to process the span-reachability
query is presented in Algorithm 4 which is self-explanatory.
In lines 5, 6 and 9, we use the binary searchmethod described
above to find a subinterval of [t1, t2]. We provide a running
example as follows.

Example 8 Assume that we aim to answer the span-
reachability from v6 to v4 in [3, 5]. We scan the vertex array
of Lout (v6) and Lin(v4) to look for a common vertex. We
first find a common vertex v1. However, there does not exist
a subinterval of [3, 5] of v1 in the interval array of Lout (v6).
We continue to search the next common vertex and find v2.
We find there exists a subinterval [5, 5] of v2 in Lout (v6) and
a subinterval [3, 5] of v2 in Lin(v4). Therefore, we return
true for this query.

123

638 D. Wen et al.

Algorithm 4: Span-Reach()

Input: TILL-Index of G, two vertices u and v, and an interval
[t1, t2]

Output: the span-reachability of u and v in [t1, t2]
1 i, i ′ ← 1;
2 while i ≤ |V(Lout (u))| ∧ i ′ ≤ |V(Lin(v))| do
3 w ← the i-th vertex in V(Lout (u));
4 w′ ← the i ′-th vertex in V(Lin(v));
5 if w = v ∧ ∃[ts , te] ∈ Lout (u)w : [ts , te] ⊆ [t1, t2] then

return true;
6 else if w′ = u ∧ ∃[t ′s , t ′e] ∈ Lin(v)w′ : [t ′s , t ′e] ⊆ [t1, t2] then

return true;
7 else if O(w) < O(w′) then i ← i + 1;
8 else if O(w) > O(w′) then i ′ ← i ′ + 1;
9 else if ∃[ts , te] ∈ Lout (u)w : [ts , te] ⊆ [t1, t2] ∧

∃[t ′s , t ′e] ∈ Lin(v)w′ : [t ′s , t ′e] ⊆ [t1, t2] then
10 return true;

11 else i ← i + 1, i ′ ← i ′ + 1;

12 return false;

Theorem 4 Given two query vertices u and v, the running
time of Algorithm 4 is bounded by O(|Lout (u)| + |Lin(v)|).

5.2 �-Reachability

Based on the idea for the span-reachability query processing,
we study the θ -reachability query in this subsection. Given
two vertices u, v, a threshold θ and an interval [t1, t2], a
straightforward idea to answer the θ -reachability query is to
invoke Algorithm 4 for every possible interval (from [t1, t1+
θ−1] to [t2−θ+1, t2]). The time complexity of thismethod is
O((t2−t1−θ)·(|Lout (u)|+|Lin(v)|)). We improve the time
complexity to O(|Lout (u)| + |Lin(v)|) by taking a sliding
window based approach. Before discussing the details of the
algorithm, we show that u θ -reaches v in [t1, t2] if one of the
following equations holds:

1. ∃〈v, ts, te〉 ∈ Lout (u): [ts, te] ⊆ [t1, t2]∧ te − ts +1 ≤ θ ;
2. ∃〈u, ts, te〉 ∈ Lin(v): [ts, te] ⊆ [t1, t2] ∧ te − ts + 1 ≤ θ ;
3. ∃〈w, ts, te〉 ∈ Lout (u), 〈w′, t ′s, t ′e〉 ∈ Lin(v): w = w′ ∧

[ts, te] ⊆ [t1, t2] ∧ [t ′s, t ′e] ⊆ [t1, t2] ∧ max(te, t ′e) −
min(ts, t ′s) + 1 ≤ θ .

Based on the conditions above, we can follow the same
framework ofAlgorithm4.We add the limitation te−ts+1 ≤
θ in line 5 and line 6 ofAlgorithm4, respectively, to check the
first two conditions. To check the third condition of finding
a common vertex w in V(Lout (u)) and V(Lin(v)), we first
filter out all intervals in Lout (u)w and Lin(v)w not found in
[t1, t2]. With the concept of sliding window, the window is
always θ . Recall that the intervals in each label are sorted in
chronological order. The initial start time of thewindow is the
smallest start time of the remaining intervals in the labels. If
both the first intervals of two labels fall in the slidingwindow,

Algorithm 5: ES-Reach∗()
Input: TILL-Index of G, a parameter θ , two vertices u and v and

an interval [t1, t2]
Output: the θ-reachability of u and v in [t1, t2]

1 i, i ′ ← 1;
2 while i ≤ |V(Lout (u))| ∧ i ′ ≤ |V(Lin(v))| do
3 w ← the i-th vertex in V(Lout (u));
4 w′ ← the i ′-th vertex in V(Lin(v));
5 if

w = v∧∃[ts , te] ∈ Lout (u)w : [ts , te] ⊆ [t1, t2], te−ts+1 ≤ θ

then return true;
6 else if w′ = u ∧ ∃〈w′, t ′s , t ′e〉 ∈ Lin(v) : [t ′s , t ′e] ⊆

[t1, t2], t ′e − t ′s + 1 ≤ θ then return true;
7 else if O(w) < O(w′) then i ← i + 1;
8 else if O(w) > O(w′) then i ′ ← i ′ + 1;
9 else if ∃[ts , te] ∈ Lout (u)w : [ts , te] ⊆ [t1, t2] ∧

∃[t ′s , t ′e] ∈ Lin(v)w′ : [t ′s , t ′e] ⊆ [t1, t2] then
10 k ← the position of the first interval [ts , te] ∈ Lout (u)w

s.t. [ts , te] ⊆ [t1, t2];
11 k′ ← the position of the first interval [t ′s , t ′e] ∈ Lin(v)w′

s.t. [t ′s , t ′e] ⊆ [t1, t2];
12 while k ≤ |Lout (u)w| ∧ k′ ≤ |Lin(v)w′ | do
13 [ts , te] the k-th interval in Lout (u)w;
14 [t ′s , t ′e] the k′-th interval in Lin(v)w′ ;
15 if [ts , te] � [t1, t2] ∨ [t ′s , t ′e] � [t1, t2] then
16 break;

17 else if max(te, t ′e) − min(ts , t ′s) + 1 ≤ θ then
18 return true;

19 else if te − ts + 1 > θ ∨ ts < t ′s then
20 k ← k + 1;

21 else k′ ← k′ + 1;

22 i ← i + 1, i ′ ← i ′ + 1;

23 else i ← i + 1, i ′ ← i ′ + 1;

24 return false;

we return true. Alternatively, we filter out the interval with
the smallest start time and move the sliding window forward
to the next smallest start time of the intervals. This step is
repeated until no interval remains.

The pseudocode to answer the θ -reachability query is
given in Algorithm 5. Lines 5 and 6 correspond to the θ -
reachability conditions 1 and 2, respectively. Lines 9–22
correspond to condition 3. In lines 10 and 11, we use a binary
search to locate the first interval falling in [t1, t2]. The condi-
tion of line 15 holds if all intervals of Lout (u)w (or Lin(v)w)
in [t1, t2] are scanned, and we break the loop. Line 17 holds if
we find a pair of intervals falling in the same sliding window.
In lines 19 and 21, we move the sliding window with a new
start time of min(ts, t ′s).

Theorem 5 Given a pair of vertices u and v, the running time
of Algorithm 5 is bounded by O(|Lout (u)| + |Lin(v)|).
Example 9 Given a query interval [1, 8] and θ = 3, assume
that we aim to answer 3-reachability from v6 to v4. The out-
label and in-label of v6 and v4 are given in Fig. 3, respectively.
In line 9 of Algorithm 5, we find a common vertex v1 in

123

Span-reachability querying in large temporal graphs 639

V(Lout (v6)) and V(Lin(v4)). We have [ts, te] = [5, 6] in
line 13 and [t ′s, t ′e] = [1, 4] in line 14. The conditions in lines
15, 17 and 19 do not hold. As a result, line 21 is executed. In
the next iteration, we have [t ′s, t ′e] = [4, 5] and [ts, te] is kept
constant. The condition in line 17 holds, and true is returned.

6 TILL-Indexmaintenance

Many real-world temporal graphs incrementally and contin-
uously update as edge streams. In this section, we extend the
priority queue-based search technique in Sect. 4.3.1 to main-
tain TILL-Index in dynamic temporal streams. Section 6.1
investigates the problem of incremental TILL-Index mainte-
nance given a set of new edges. Section 6.2 provides amethod
to prune TILL-Index for expiring edges.

The problem of maintaining hop-labeling-based index for
shortest distance queries in unlabeled simple graphs has been
studied in an existing work [4]. Unlike [4], our techniques for
TILL-Index maintenance are around relationships between
time intervals in the index and are extended from the priority-
queue-based search proposed in Sect. 4.3.1. In addition, [4]
gives up the support of deleting outdated label entries due
to the poor efficiency. However, in the context of temporal
graphs, we will show in Sect. 6.2 that the outdated labels can
be pruned efficiently and the updated index is guaranteed to
be minimal. Following [4], we assume the vertex order is
fixed when edges update. Note that we only consider edge
updates in the paper. This is because insertions or deletions
of vertices can be expressed using a set of edge updates.

6.1 Incremental indexmaintenance

Let tmax be the latest time in the current temporal graph G.
Given a set of new edges with incurring times later than tmax

inserted to G, we aim to update the TILL-Index to support
the queries for the latest time. The main technical challenges
in designing algorithms for maintaining TILL-Index are to
guarantee its completeness and minimality. For ease of pre-
sentation, we first assume that the time of each edge is unique
unless otherwise stated. The assumption is crucial to guaran-
tee theminimality.Wewill lift the restriction later and discuss
the case that multiple new edges come associated with the
same time.

Assume that an edge 〈ut , vt , t〉 is inserted with t > tmax .
Due to the equivalence of CRTs and TILL-Index, the basic
idea of TILL-Index maintenance is to monitor the changes
of CRTs after inserting 〈ut , vt , t〉.
Lemma 11 Let T and T + be the set of all CRTs before and
after the insertion of 〈ut , vt , t〉, respectively. We have T ⊂
T +.

Proof Given that the times of all edges are earlier than t , the
insertion of 〈ut , vt , t〉 must generate at least one new CRT
ending at t . Therefore, we have T 	= T +. Next, we prove
T ⊆ T +. Assume that there exists a CRT 〈u, v, ts, te〉 in T
and not in T +. 〈u, v, ts, te〉must be dominated by a newCRT
in T + \ T . This contradicts that any new CRT must end at t
with t > te. ��

Based on Lemma 11, all existing CRTs are still in the
updated index, and we only need to find all new CRTs pro-
duced by the insertion of 〈ut , vt , t〉. Then, we update the
index accordingly. Recall that given a new CRT 〈u, v, ts, te〉,
〈u, ts, te〉 is added to the in-label of v ifO(u) < O(v). Other-
wise, 〈v, ts, te〉 is added to the out-label of u. For simplicity,
wemainly discuss computing all newCRTs 〈u, v, ts, te〉with
O(u) < O(v) and completing in-labels of each vertex. The
idea for updating out-labels is similar.

Let 〈u, v, ts, te〉 be an arbitrary new CRT generated by the
insertion of 〈ut , vt , t〉. We immediately have te = t , which
can be easily proved based on the definition of CRT. It is also
straightforward to derive that u �[ts ,te] ut and vt �[ts ,te] v.
Intuitively, the search space to find all new CRTs can be very
large since there may exist many vertices reaching ut and
reached from vt . We refine it by making use the existing
TILL-Index, which is shown in the following lemma.

Lemma 12 Given a new edge 〈ut , vt , t〉 and an arbitrary new
CRT 〈u, v, ts, te〉withO(u) < O(v), we haveO(u) < O(vt)

and u ∈ {ut } ∪ Lin(ut).

Proof Given the new CRT 〈u, v, ts, te〉, there exists a path
from u to v over the interval [ts, te]. The path is via 〈ut , vt , t〉,
and te = t . Given O(u) < O(v), the rank of u is the highest
in the path. The path from u to ut corresponds to a CRT.
Given the equivalence of CRTs and the labeling index, we
have u ∈ {ut } ∪ Lin(ut). ��

Based on Lemma 12, we compute all new CRTs start-
ing from every vertex in {ut } ∪ Lin(ut). Recall that in
Algorithm 3, we compute CRTs by performing a priority
queue-based search from each root vertex. Given a root ver-
tex u ∈ {ut }∪Lin(ut), instead of searching from scratch, we
can reuse the intermediate searching result from u to ut and
resume the search from ut to all new vertices reached by u.
This is because any valid path of the new CRT 〈u, v, ts, te〉
must pass (ut , vt). We show the following two lemmas to
support our detailed algorithms.

Lemma 13 Let Tu,∗ and T∗,u be the sets of CRTs reached
from u and reaching u, respectively. T +

u,∗ and T +∗,u be their
counterparts after inserting 〈ut , vt , t〉. We have T∗,ut = T +∗,ut
and Tvt ,∗ = T +

vt ,∗.

Lemma 14 Given a new edge 〈ut , vt , t〉 and an arbitrary new
CRT 〈u, v, ts, te〉 with O(u) < O(v) and u 	= ut , let [t ′s, t ′e]

123

640 D. Wen et al.

be the last (latest) interval in Lin(ut)u. We have [t ′s, t ′e] ⊆
[ts, te].

Based on Lemma 13, we can safely use the existing CRTs
froma root vertex u tout . Based onLemma14,we resume the
search of u from only one tuple, which is 〈ut , t ′s, t ′e〉. Search-
ing from other tuples from u to ut maintained in Lin(ut)u
would produce results dominated by those from 〈ut , t ′s, t ′e〉.

Algorithm 6: TILL-Insert()
Input: TILL-Index of G, a parameter θ , a vertex order O and a

new edge 〈ut , vt , t〉
Output: the updated index

1 Tin, Tout ← ∅;
2 foreach u ∈ V(Lin(ut)) do
3 if O(u) ≥ O(vt) then break;
4 [ts , te] ← the last interval in Lin(ut)u ;
5 if t − ts + 1 > ϑ then continue;
6 Tin ← Tin ∪ {〈u, vt , ts , t〉};
7 foreach v ∈ V(Lout (vt)) do
8 if O(v) ≥ O(ut) then break;
9 [ts , te] ← the last interval in Lout (vt)v ;

10 if t − ts + 1 > ϑ then continue;
11 Tout ← Tout ∪ {〈ut , v, ts , t〉};
12 T ← perform a binary merge sort on Tin and Tout ;
13 add 〈ut , vt , t, t〉 to the end of T ;
14 foreach 〈u, v, ts , te〉 ∈ T do
15 Q ← an empty priority queue;
16 if O(u) < O(v) then

// search following edge directions
and complete in-labels

17 Q.push(〈v, ts , te〉);
18 perform lines 7–16 in Algorithm 3 by replacing ui with u;

19 else
// search following reverse edge

directions and add out-labels
20 Q.push(〈u, ts , te〉);
21 perform line 17 in Algorithm 3 by replacing ui with v;

The Algorithm. We now present the algorithm to incre-
mentally maintain TILL-Index in Algorithm 6. Lines 1–13
prepare all CRTs as initial states of the priority-queue based
search (lines 14–21). Lines 2–6 prepare CRTs to complete
in-labels of the index. Based on Lemma 12, we only consider
the vertices that can reach ut and have lower ranking values
(line 2). Note that vertices in V(Lin(ut)) have been arranged
following the total order. As a result, we terminate the iter-
ation once finding a vertex ranking lower than vt in line 3.
Based on Lemma 14, we derive the last time interval from
u to ut . We explore the interval via the edge 〈ut , vt , t〉 and
generate the CRT 〈u, vt , ts, t〉 since t > te. Similarly, lines
7–11 prepare CRTs for out-labels.

Lines 12–13 organize all reachability tuples in non-
decreasing order of their smallest vertex ranking values,
which is crucial to guarantee the index minimality and

Fig. 4 An example of single edge insertion

improve the updating efficiency. We simply perform a merge
sort in line 12 since tuples in Tin and Tout are sorted, respec-
tively, during the construction. In addition, ranks of u in line
6 and v in line 11 are higher than that any of ut and vt , which
supports us to simply add 〈ut , vt , t, t〉 to the end of T in
line 13. Lines 14–21 resume the priority queue-based search
from each given starting reachability tuple, which is self-
explanatory. The completeness and minimality of the index
can be easily derived based on the lemmas in Sect. 6.1, and
we omit the detailed proofs.

We analyze the running time of Algorithm 6 below where
lnew is the number of all new labels. The definitions of lq and
d are the same as those in Theorem 3.

Theorem 6 The running time of Algorithm 6 is bounded by
O(lnewd(log lnewd + lq)).

Proof The proof is similar to that of Theorem 3, and we omit
the details. ��

Note that Algorithm 6 can be extended to handle out-of-
order edge insertions (i.e., the time of the new edge is not the
largest). Let t be the time of the new edge. Instead of picking
the last interval in line 4, we derive the union of [t, t] and
each interval in Lin(ut)u and add them to Tin (line 6). We
revise lines 9–11 similarly. The revised algorithm computes
the complete index to answer any possible query, but the
index may not be minimal for out-of-order insertions.
Handling simultaneous edges. When multiple edges come
and are assigned by the same new time, iteratively processing
each edge by invoking Algorithm 6 still works but proba-
bly cannot guarantee the index minimality. We consider an
example shown in Fig. 4. The ranks of three vertices are
O(w) < O(u) < O(v). Before the insertion of 〈u, w, 9〉,
we have 〈w, 6, 7〉 ∈ Lin(v), 〈u, 6, 9〉 ∈ Lin(v), and u can-
not reach w. Note that 〈u, 6, 9〉 is added to the in-label of
v due to the insertion of another edge at the time 9. When
〈u, w, 9〉 is inserted, we add 〈w, 9, 9〉 to the out-label of u
by Algorithm 6. As a result, w covers the reachability tuple
〈u, v, 6, 9〉, and 〈u, 6, 9〉 in Lin(v) is redundant.

Even though such a case is not common in most datasets
according to our performance studies, we extendAlgorithm6
to guarantee the index minimality theoretically. Wemake the
following observation based on the example above.

123

Span-reachability querying in large temporal graphs 641

Lemma 15 Given a new CRT 〈u, v, ts, te〉 by the insertion
of an edge 〈ut , vt , t〉, 〈u, v, ts, te〉 becomes redundant when
inserting an edge 〈u′

t , v
′
t , t

′〉 with t ′ ≥ t only if t ′ = t .

Lemma 15 reveals that the index redundancy only hap-
pens for the new edges coming at the same time. Therefore,
instead of processing each single edge, we process all new
edges coming at the same time together. Specifically, we first
perform lines 1–13 of Algorithm 6 for every edge and merge
reachability tuples of all edges as one sorted list T . Assume
that u is the vertex with the highest rank in all tuples of T .
Unlike single edge insertion, there may exist several tuples
starting (or reaching) from u in T . Accordingly, we mod-
ify the phase of priority-queue based search (lines 14–21).
Instead of only pushing one tuple to the priority queue Q
(line 17 and line 20), we push all tuples starting from u toQ
and perform line 18. We push all tuples ending to v toQ and
perform line 21. In this way, each derived CRT can never be
dominated in future iterations.

6.2 Edge deletion

In certain applications, the index may never need to sup-
port the query intervals starting earlier than a given time. We
propose an algorithm to dynamically prune the index in this
subsection. Let tmin be the earliest time of all edges in the
temporal graph.We start by considering a case that removing
all edges at tmin . The updating method is simple and efficient
based on the following lemma.

Lemma 16 Let T − be the set of all CRTs not starting from
tmin. T − is exactly the set of all CRTs in the graph after
deleting all edges at tmin.

Proof Let G− be the temporal graph after deleting all edges
at tmin . Based on Definition 4, deleting an edge at tmin would
not break any CRT starting after tmin . Therefore, every CRT
in T − is still valid in G−. Next we show the completeness
of T −. Assume that there exists a CRT c of G− not in T −.
Given that T − is the set of all CRTs not starting from tmin ,
c must be dominated by a tuple starting from tmin , which
contradicts that c starts after tmin . The proof is finished. ��

Based on Lemma 16, we only need to remove all labels
containing tmin and finish updating the index. We give the
pseudocode for the edge deletion in Algorithm 7. The param-
eter t represents the earliest supported time of the updated
index. For the case of removing all edges at tmin , we set
t = tmin +1 in Algorithm 7. Note that in lines 3 and 7, inter-
vals have been sorted chronologically. It is clear to see that
the index returned by Algorithm 7 is still minimal. The time
complexities for deleting edges are given as follows.

Lemma 17 The running time to delete all edges at the
earliest time tmin is bounded by O(

∑
u∈V |V(Lin(u))| +

|V(Lout (u))|).

Algorithm 7: TILL-Delete()
Input: TILL-Index of G and the earliest supported time t of the

index
Output: the updated index

1 foreach u ∈ V do
2 foreach v ∈ V(Lin(u)) do
3 foreach [ts , te] ∈ Lin(u)v do
4 if ts ≥ t then break;
5 remove [ts , te];
6 foreach v ∈ V(Lout (u)) do
7 foreach [ts , te] ∈ Lout (u)v do
8 if ts ≥ t then break;
9 remove [ts , te];

Table 2 Network statistics

Dataset M |V| |E| ϑG

CollegeMsg D 1899 59,835 16,736,181

Chess D 7301 65,053 99

Slashdot D 51,083 140,778 1,157,361,660

MathOverflow D 24,818 506,500 203,068,736

Facebook_f U 63,731 817,035 1,232,231,923

Epinions D 131,828 841,372 944

Facebook_wp D 46,952 876,993 134,873,285

AskUbuntu D 159,316 964,437 225,834,442

Enron D 87,273 1,148,072 1,401,187,797

SuperUser D 194,085 1,443,339 239,614,928

Digg D 279,630 1,731,653 1,247,032,805

Wiki U 118,100 2,917,785 239,001,193

Prosper D 89,269 3,394,979 2142

Arxiv U 28,093 4,596,803 3649

Youtube U 3,223,589 9,375,374 225

DBLP U 1,314,050 18,986,618 76

Flickr D 2,302,925 33,140,017 197

DBLP_p U 2,828,689 156,773,140 10

Lemma 18 The running time of Algorithm 7 for an arbitrary
parameter t is bounded by O(l), where l is the number of all
labels.

7 Experiments

We conducted extensive experiments to evaluate the
performance of our proposed algorithms, summarized as fol-
lows:

– Online-Reach: Algorithm 1.
– Span-Reach: Algorithm 4.

123

642 D. Wen et al.

– ES-Reach: a naive method to answer θ -reachability by
invoking several runs of Span-Reach(). More details can
be found in Sect. 5.2.

– ES-Reach∗: Algorithm 5.
– TILL-Construct: A basic implementation of Algorithm 2.
We use a queue to compute all SRTs and get CRTs by
checking whether every SRT can be covered by existing
labels. More details can be found in Sect. 4.1.

– TILL-Construct∗: Algorithm 3.
– TILL-Insert: The algorithm for edge insertion.
– TILL-Delete: The algorithm for edge deletion.

All algorithms were implemented in C++ and compiled
using a g++ compiler at a -O3 optimization level. All the
experiments were conducted on a Linux Server with an Intel
Xeon 2.7GHz CPU and 180GB RAM.
Datasets.We conducted experiments on eighteen real-world
graphs. The detailed statistics of these datasets are summa-
rized in Table 2.M demonstrates the types of datasets, where
D represents the directed graph and U represents the undi-
rected graph. ϑG demonstrates the number of atomic units
between the smallest timestamp and the largest timestamp.
DBLP_p is a graph generated from the data of DBLP from
2011 to 2020. Each vertex is a publication. Two vertexes are
connected by an edge if they have a common author. The
time of the edge is the later publication year of two vertices.
All other networks and corresponding detailed descriptions
can be found in SNAP1 and KONECT2.

The rest of this section is organized as follows. Section 7.1
provides the performance of answering span-reachability
queries. Section 7.2 evaluates the index construction algo-
rithms. Section 7.3 reports the performance of answering
θ -reachability queries. Section 7.4 reports the performance
of index maintenance. Section 7.5 reports the performance
for continuous query processing.

7.1 Span-reachability query processing

We evaluate the performance of span-reachability query pro-
cessing. To generate input queries, we randomly pick 100
vertex pairs in each graph G. For each vertex pair, we
randomly generate subintervals of [1, ϑG] and only keep
intervals if the conditions in Lemmas 9 and 10 are satis-
fied. We repeat this step until 10 intervals are found. This
strategy works because the query algorithm is only invoked
if the conditions in Lemmas 9 and 10 hold. As a result,
we fully prepare 1000 span-reachability queries. We report
the running time of Span-Reach for such 1000 queries with
Online-Reach as a comparison in Fig. 5. In addition to the
overall query time, we report the average time of all cases

1 http://snap.stanford.edu/data/index.html.
2 http://konect.cc/.

101
103
105
107
109

CollegeMsg

Chess
Slashdot

MathOverflow

Facebook_f

Epinions

Facebook_wp

AskUbuntu

Enron
SuperUser

Digg
W

iki
Propser

Arxiv
Youtube

DBLP
Flickr

DBLP_p

R
un

ni
ng

 T
im

e
(µ

s) Online-Reach Span-Reach

Fig. 5 Time of span-reachability query processing

10-2
1

102
104

CollegeMsg

Chess
Slashdot

MathOverflow

Facebook_f

Epinions

Facebook_wp

AskUbuntu

Enron
SuperUser

Digg
W

iki
Propser

Arxiv
Youtube

DBLP
Flickr

DBLP_p

R
un

ni
ng

 T
im

e
(µ

s) Online-Reach Span-Reach

Fig. 6 Average time of span-reachability query processing (true cases)

10-2
1

102
104
106

CollegeMsg

Chess
Slashdot

MathOverflow

Facebook_f

Epinions

Facebook_wp

AskUbuntu

Enron
SuperUser

Digg
W

iki
Propser

Arxiv
Youtube

DBLP
Flickr

DBLP_p

R
un

ni
ng

 T
im

e
(µ

s) Online-Reach Span-Reach

Fig. 7 Average time of span-reachability query processing (false cases)

0%
20%
40%
60%
80%

100%

CollegeMsg

Chess
Slashdot

MathOverflow

Facebook_f

Epinions

Facebook_wp

AskUbuntu

Enron
SuperUser

Digg
W

iki
Propser

Arxiv
Youtube

DBLP
Flickr

DBLP_p

Pe
rc

en
ta

ge

Fig. 8 Percentage of true cases in 1000 queries

that the result is true in Fig. 6 and report the average time for
all false cases in Fig. 7. The percentage of true cases in 1000
queries for each dataset is reported in Fig. 8.

We can see that the running time of Span-Reach is at least
two orders of magnitude smaller than that of Online-Reach
in all datasets in the experiment. For example, in the largest
dataset Flickr, Online-Reach takes over 30 seconds, while
our Span-Reach algorithm takes only about 1.4 ms (1s =
103ms = 106μs). For each dataset, the average running time
of true cases is smaller than that of false cases since we need
to scan all labels if the result is false.

7.2 Index Construction

This section is devoted to evaluating the performanceof index
construction algorithms.

123

http://snap.stanford.edu/data/index.html
http://konect.cc/

Span-reachability querying in large temporal graphs 643

102
103
104
105
106
107

CollegeMsg

Chess
Slashdot

MathOverflow

Facebook_f

Epinions

Facebook_wp

AskUbuntu

Enron
SuperUser

Digg
W

iki
Propser

Arxiv
Youtube

DBLP
Flickr

DBLP_p

In
de

x
Si

ze
 (K

B
) Graph Size Index Size

Fig. 9 Index size

100
101
102
103
104
105

CollegeMsg

Chess
Slashdot

MathOverflow

Facebook_f

Epinions

Facebook_wp

AskUbuntu

Enron
SuperUser

Digg
W

iki
Propser

Arxiv
Youtube

DBLP
Flickr

DBLP_p

R
un

ni
ng

 T
im

e
(s

) TILL-Construct TILL-Construct*

Fig. 10 Indexing Time

7.2.1 Index size

We report the index size of all datasets in Fig. 9 and also
add the size of datasets as a comparison. We can find that in
several large datasets, the index size is smaller than the graph
size. For example, in Flickr, the dataset takes about 400 MB
while the index takes only about 350 MB.

7.2.2 Indexing Time

The running time of TILL-Construct∗ for all datasets is
reported with TILL-Construct as a comparison in Fig. 10.

Note that the running time of TILL-Construct on sev-
eral datasets are not given as the algorithm cannot finish
in twenty-four hours. It is clear that in comparing all
reported times of TILL-Construct, TILL-Construct∗ is at least
two orders of magnitude faster. For example in Flickr,
TILL-Construct∗ takes about 1.5 hours to compute TILL-
Index. TILL-Construct∗ takes about 1 second onChess,which
is the shortest on all reported times. By contrast, the running
time of TILL-Construct on Chess is about 20 minutes.

7.2.3 Varying#

The running times and index sizes of TILL-Construct∗ are
presented in Fig. 11 by varying the input parameter ϑ from
20% to 100% of ϑG for each dataset G. Note that ϑ = ϑG
is equivalent to the default setting ϑ as +∞. Due to limited
space here, Fig. 11 shows only the results of four datasets
— Enron, Youtube, DBLP and Flickr. The results for other
datasets display similar trends.

We can see from the figures(a)–(d) that the increasing
speed of running time becomes small when both vertex and
edge sampling ratio increases. For example, the running time
of TILL-Construct∗ on Flickr is about 14 minutes when the

 600
 610
 620
 630
 640
 650

20% 40% 60% 80% 100%

R
un

ni
ng

 T
im

e
(s

)

(a) Enron

 500

 600

 700

 800

20% 40% 60% 80% 100%

R
un

ni
ng

 T
im

e
(s

)

(b) Youtube

 160
 170
 180
 190
 200
 210

20% 40% 60% 80% 100%

R
un

ni
ng

 T
im

e
(s

)

(c) DBLP

 1000
 2000
 3000
 4000
 5000
 6000

20% 40% 60% 80% 100%

R
un

ni
ng

 T
im

e
(s

)

(d) Flickr

 40
 42
 44
 46
 48
 50

20% 40% 60% 80% 100%

In
de

x
Si

ze
 (M

B
)

(e) Enron

 160
 170
 180
 190
 200

20% 40% 60% 80% 100%

In
de

x
Si

ze
 (M

B
)

(f) Youtube

 70
 71
 72
 73
 74
 75

20% 40% 60% 80% 100%

In
de

x
Si

ze
 (M

B
)

(g) DBLP

 330
 340
 350
 360
 370

20% 40% 60% 80% 100%

In
de

x
Si

ze
 (M

B
)

(h) Flickr

Fig. 11 Varying ϑ of TILL-Construct∗

edge sampling ratio is 20%. It reaches to 22 minutes, 35 min-
utes and 73 minutes when the edge sampling ratio is 40%,
60% and 80%, respectively. Finally, on the ratio of 100%, the
time reaches about 90 minutes. The increasing trends for the
index size in figures(e)–(h) are similar and even more gentle.

Fig. 11(a)–(d) reports the running times. We can see that
the increases on both Enron and DBLP are not obvious (does
not exceed 20 seconds) from 20% to 100%. The lines are
almost linear in Youtube and Flickr, which start from about
500 seconds and 25 minutes, ending at about 750 seconds
and 1.5 hours, respectively. Fig. 11(e)–(h) reports the index
size. The change on all reported datasets is very small. The
group of figures shows that the index size and indexing time
are confined even though we do not set any interval length
limitation (ϑ = +∞) in TILL-Construct∗.

7.2.4 Scalability

This experiment tests the scalability of our index construction
algorithm, which is shown in Fig. 12. We only report results
for four real-world graph datasets as representatives—Enron,

123

644 D. Wen et al.

(a) Enron (b) Youtube

(c) DBLP (d) Flickr

(e) Enron (f) Youtube

(g) DBLP (h) Flickr

Vertex Sampling Edge Sampling

100

101

102

103

20% 40% 60% 80% 100%

R
un

ni
ng

 T
im

e
(s

)

101

102

103

20% 40% 60% 80% 100%

R
un

ni
ng

 T
im

e
(s

)

100

101

102

103

20% 40% 60% 80% 100%

R
un

ni
ng

 T
im

e
(s

)

101

102

103

104

20% 40% 60% 80% 100%

R
un

ni
ng

 T
im

e
(s

)

100

101

102

20% 40% 60% 80% 100%

In
de

x
Si

ze
 (M

B
)

101

102

103

20% 40% 60% 80% 100%

In
de

x
Si

ze
 (M

B
)

100

101

102

20% 40% 60% 80% 100%

In
de

x
Si

ze
 (M

B
)

101

102

103

20% 40% 60% 80% 100%

In
de

x
Si

ze
 (M

B
)

Fig. 12 Scalability of index construction

Youtube, DBLP and Flickr. The results on other datasets
show similar trends. For each dataset, we vary the graph size
and graph density by randomly sampling vertices and edges
from 20% to 100%. When sampling vertices, we derive the
induced subgraph of the sampled vertices, and when sam-
pling edges, we select the incident vertices of the edges as
the vertex set.

7.3 �-Reachability query processing

We evaluate the performance of θ -reachability query pro-
cessing in this subsection. To prepare the input queries, we
adopt the same strategy described in Sect. 7.1 and randomly
pick 100 vertex pairs and 10 intervals for each vertex pair.
For each interval, we set θ as a fraction of its length and
adjust the fraction from 10% to 90%. The running time of
ES-Reach∗ on four representative datasets is given in Fig. 13,
with ES-Reach as a comparison.

We can see from Fig. 13 that ES-Reach∗ is faster than
ES-Reach on all parameter settings. Their times trend towards

ES−Reach Span−Reach

101
103
105
107
109
1011

10%
20%

30%
40%

50%
60%

70%
80%

90%

R
un

ni
ng

 T
im

e
(µ

s)

(a) Enron

101
102
103
104

10%
20%

30%
40%

50%
60%

70%
80%

90%

R
un

ni
ng

 T
im

e
(µ

s)

(b) Youtube

101

102

103

10%
20%

30%
40%

50%
60%

70%
80%

90%

R
un

ni
ng

 T
im

e
(µ

s)

(c) DBLP

101
102
103
104

10%
20%

30%
40%

50%
60%

70%
80%

90%

R
un

ni
ng

 T
im

e
(µ

s)

(d) Flickr

Fig. 13 Performance of θ-reachability query processing

Table 3 Performance of index maintenance (μs)

Dataset Insertion Deletion Qonline Qindex

CollegeMsg 126 0.14 6 0.12

Chess 10 0.08 8 0.09

Slashdot 67 0.58 80 0.12

MathOverflow 577 0.24 27 0.13

Facebook_f 6511 0.61 93 0.25

Epinions 604 0.02 715 1.42

Facebook_wp 288 0.41 505 1.33

AskUbuntu 306 0.32 675 1.60

Enron 384 0.16 374 1.94

SuperUser 417 0.39 1027 2.13

Digg 1701 0.70 1525 2.12

Wiki 3394 1.37 268 0.51

Prosper 9 0.10 3140 1.81

Arxiv 159 0.27 588 1.04

Youtube 2345 0.99 2849 4.54

DBLP 12 0.05 2613 4.81

Flickr 302 0.01 38,879 1.48

DBLP_p 10 0.01 150,414 2.59

equal when θ increases, since two algorithms are equivalent
when θ is the length of the query interval. For the perfor-
mance of ES-Reach∗, it is clear that all lines present roughly
downward trends.

7.4 Indexmaintenance

We report the practical performance of index maintenance
algorithms. For the edge insertion, we pick the latest ten per-
cent of all edges and insert them into the temporal graph of
the front ninety percent. We record the average processing
time for each edge. For the edge deletion, we pick the earliest

123

Span-reachability querying in large temporal graphs 645

Online-Reach Span-Reach Span-Reach(update)

102
103
104
105
106

0%-50%

10%-60%

20%-70%

30%-80%

40%-90%

50%-100%

R
un

ni
ng

 T
im

e
(µ

s)

(a) Enron

102
103
104
105
106
107

0%-50%

10%-60%

20%-70%

30%-80%

40%-90%

50%-100%

R
un

ni
ng

 T
im

e
(µ

s)

(b) DBLP

Fig. 14 Query time by sliding time window

ten percent of edges and delete them from the original tempo-
ral graph. Similarly, we record the average processing time.
The results are shown in Table 3. As for comparisons, we
also report the average times of an online span-reachability
query and an index-based span-reachability query, respec-
tively. We can see that the edge deletion is extremely fast
due to its lightweight processing strategy. In most datasets,
the processing time of an edge insertion is smaller than that
of an online query. Given that the index-based query time is
almost negligible compared with the online query time, the
results support that our index-based solution still works well
for dynamic temporal graphs.

7.5 Continuous query processing

We simulate a real scenario by continuously maintaining
a time window for two representative datasets Enron and
DBLP. For each dataset, we initially pick the first 50% edges
and construct a temporal graph. Then, we slide the time win-
dow by adding 10% new edges and removing the oldest 10%
edges each time.

Figure 14 reports the performance of query processing
in different time windows. Span-Reach represents the query
algorithm where the index is constructed from scratch for
the current time window. Span-Reach (update) represents
the query algorithmwhere the index is updated fromprevious
windows.Note that vertices always follow the degree order of
the initial window (0% – 50%) when updating the index. We
can see that the query times of Span-Reach and Span-Reach
(update) are almost the same in all windows.

Figures 15 and 16 report the indexing time and the index
size, respectively, when sliding the time window. The index
size is almost the same even though we use the same degree
order of the original temporal graph. Note that the indexing
time for the initial window (0% – 50%) is relatively large
since more times are included in the first 50% edges.

Compute from Scratch Dynamic Update

1

10
102
103

0%-50%

10%-60%

20%-70%

30%-80%

40%-90%

50%-100%

R
un

ni
ng

 T
im

e
(s

)

(a) Enron

1

10
102
103

0%-50%

10%-60%

20%-70%

30%-80%

40%-90%

50%-100%

R
un

ni
ng

 T
im

e
(s

)

(b) DBLP

Fig. 15 Indexing time by sliding time window

Compute from Scratch Dynamic Update

15
20
25
30
35

0%-50%

10%-60%

20%-70%

30%-80%

40%-90%

50%-100%

In
de

x
Si

ze
 (M

B
)

(a) Enron

30
40
50
60
70
80

0%-50%

10%-60%

20%-70%

30%-80%

40%-90%

50%-100%

In
de

x
Si

ze
 (M

B
)

(b) DBLP

Fig. 16 Index size by sliding time window

8 Related works

Reachability in temporal graphs. The time-respecting path
is defined in [21] to model the reachability problem in tem-
poral graphs. The similar concept is also studied using the
terms journey [14,34] or non-decreasing path [10]. Based on
the time-respecting path, an index-based algorithm to effi-
ciently answer the reachability problem in temporal graphs
is studied in [33] and is improved in [39] for the distributed
environment. The time-respecting model only requires a
non-decreasing order of edge times in each valid path.
Accordingly, each temporal graph can be transformed to a
unlabeled directed graph without breaking the correctness of
any time-respecting reachability query. However, the defini-
tion of the span-reachability model is totally different, and
existing indexing techniques cannot be applied. The histori-
cal reachability problem is studied in [25]. Given an interval
[t1, t2] and a pair of vertices u, v, the conjunctive historical
reachability of u, v is true if for each possible t ∈ [t1, t2],
there exists a path connecting u, v and all timestamps in the
path are t . The disjunctive historical reachability of u, v is
true if there exists a timestamp t ∈ [t1, t2] and a path con-
necting u, v in which all timestamps in the path are t [25].
Other mining problems in temporal graphs can be found in
surveys [8,18,23].
Reachability in static graphs and dynamic graphs. A large
number of works have been done to design an index for
answering the reachability query in static graphs [2,9,11,
13,15,19,24,27,29,31,35,36]. These works only focus on the
topological structure of graphs and ignore the temporal infor-
mation. Distributed algorithms for reachability testing are
also studied in [40]. Interested readers canfindmore details in

123

646 D. Wen et al.

surveys [6,38]. Several works study the indexmaintenance in
dynamic graphs [7,24,37,41]. Estimating reachability based
on random walks is studied in [26].

9 Conclusion

In this paper, we define a span-reachability model to cap-
ture entity relationships in a specific period of temporal
graphs. We propose an index-based method based on the
concept of two-hop cover to answer the span-reachability
query for any pair of vertices and time intervals. Several
optimizations are given to improve the efficiency of index
construction. We also study the problem of θ -reachability,
which is a generalized version of span-reachability. Index
maintenance algorithms are proposed for dynamic tempo-
ral graphs. We conduct extensive experiments on eighteen
real-world datasets to show the efficiency of our proposed
algorithms.

Acknowledgements Ying Zhang is supported by ARC FT170100128
and ARC DP210101393. Lu Qin is supported by ARC FT200100787
and DP210101347. Dawei Cheng is supported by the National Science
Foundation of China under grant no 62102287. Wenjie Zhang is sup-
ported by ARC DP180103096 and ARC DP200101116.

References

1. Abraham, I., Delling, D., Goldberg, A.V., Werneck, R.F.: Hier-
archical hub labelings for shortest paths. In: ESA, pages 24–35,
(2012)

2. Agrawal, R., Borgida, A., Jagadish, H.V.: Efficient management
of transitive relationships in large data and knowledge bases. SIG-
MOD 18, 253–262 (1989)

3. Akiba, T., Iwata, Y., Yoshida, Y.: Fast exact shortest-path distance
queries on large networks by pruned landmark labeling. In: SIG-
MOD, pages 349–360, (2013)

4. Akiba, T., Iwata, Y., Yoshida, Y.: Dynamic and historical shortest-
path distance queries on large evolving networks by pruned
landmark labeling. In: Chung, C., Broder, A.Z., Shim, K., Suel,
T. (eds.) WWW, pp. 237–248. ACM (2014)

5. Anyanwu, K., Sheth, A.: ρ-queries: enabling querying for seman-
tic associations on the semantic web. In: WWW, pages 690–699,
(2003)

6. Bonifati, A., Fletcher,G.,Voigt, H.,Yakovets,N.:Querying graphs.
Synth. Lect. Data Manag. 10(3), 1–184 (2018)

7. Bramandia, R., Choi, B., Ng, W.K.: On incremental maintenance
of 2-hop labeling of graphs. In: WWW, pages 845–854, (2008)

8. Casteigts, A., Flocchini, P., Quattrociocchi, W., Santoro, N.: Time-
varying graphs and dynamic networks. Int. J. Parallel Emerg.
Distrib. Syst. 27(5), 387–408 (2012)

9. Chen, Y., Chen, Y.: An efficient algorithm for answering graph
reachability queries. In: ICDE, pages 893–902, (2008)

10. Cheng, E., Grossman, J.W., Lipman, M.J.: Time-stamped graphs
and their associated influence digraphs. Discrete Appl. Math.
128(2–3), 317–335 (2003)

11. Cheng, J., Huang, S., Wu, H., Fu, A.W.-C.: Tf-label: a topological-
folding labeling scheme for reachability querying in a large graph.
In: SIGMOD, pages 193–204, (2013)

12. Chvatal, V.: A greedy heuristic for the set-covering problem.Math.
Operations Res. 4(3), 233–235 (1979)

13. Cohen, E., Halperin, E., Kaplan, H., Zwick, U.: Reachability and
distance queries via 2-hop labels. SIAM J. Comput. 32(5), 1338–
1355 (2003)

14. Ferreira, A.: On models and algorithms for dynamic commu-
nication networks: The case for evolving graphs. In: In Proc.
ALGOTEL, (2002)

15. Gao, Y., Zhang, T., Qiu, L., Linghu, Q., Chen, G.: Time-respecting
flow graph pattern matching on temporal graphs. IEEE Trans.
Knowl. Data Eng. 33, 3453–3467 (2020)

16. Gurukar, S., Ranu, S., Ravindran, B.: Commit: A scalable approach
to mining communication motifs from dynamic networks. In: SIG-
MOD, pages 475–489, (2015)

17. Holme, P., Edling, C.R., Liljeros, F.: Structure and time evolution
of an internet dating community. Soc. Netw. 26(2), 155–174 (2004)

18. Holme, P., Saramäki, J.: Temporal networks. Phys. Rep. 519(3),
97–125 (2012)

19. Jin, R., Xiang, Y., Ruan, N., Fuhry, D.: 3-hop: a high-compression
indexing scheme for reachability query. In: SIGMOD, pages 813–
826, (2009)

20. Jin, R., Xiang, Y., Ruan, N.,Wang, H.: Efficiently answering reach-
ability queries on very large directed graphs. In: SIGMOD, pages
595–608, (2008)

21. Kempe, D., Kleinberg, J., Kumar, A.: Connectivity and inference
problems for temporal networks. J. Comput. Syst. Sci. 64(4), 820–
842 (2002)

22. Li, R.-H., Su, J., Qin, L., Yu, J.X., Dai, Q.: Persistent community
search in temporal networks. In: ICDE, pages 797–808 (2018)

23. Michail, O.: An introduction to temporal graphs: an algorithmic
perspective. Internet Math. 12(4), 239–280 (2016)

24. Schenkel, R., Theobald, A., Weikum, G.: Efficient creation and
incremental maintenance of the hopi index for complex xml docu-
ment collections. In: ICDE, pages 360–371, (2005)

25. Semertzidis, K., Pitoura, E., Lillis, K.: Timereach:Historical reach-
ability queries on evolving graphs. In: EDBT, pages 121–132,
(2015)

26. Sengupta, N., Bagchi, A., Ramanath, M., Bedathur, S.: Arrow:
Approximating reachability using random walks over web-scale
graphs. In: ICDE, pages 470–481, (2019)

27. Su, J., Zhu, Q., Wei, H., Yu, J.X.: Reachability querying: can it be
even faster? TKDE 29(3), 683–697 (2016)

28. Viard, T., Latapy, M., Magnien, C.: Computing maximal cliques in
link streams. Theor. Comput. Sci. 609, 245–252 (2016)

29. Wang, H., He, H., Yang, J., Yu, P.S., Yu, J.X.: Dual labeling:
Answering graph reachability queries in constant time. In: ICDE,
page 75 (2006)

30. Wang, S., Lin, W., Yang, Y., Xiao, X., Zhou, S.: Efficient route
planning on public transportation networks: A labelling approach.
In: SIGMOD, pages 967–982, (2015)

31. Wei, H., Yu, J.X., Lu, C., Jin, R.: Reachability querying: An inde-
pendent permutation labeling approach. PVLDB 7(12), 1191–1202
(2014)

32. Wen, D., Huang, Y., Zhang, Y., Qin, L., Zhang, W., Lin, X.:
Efficiently answering span-reachability queries in large temporal
graphs. In: ICDE, pages 1153–1164. IEEE, (2020)

33. Wu, H., Huang, Y., Cheng, J., Li, J., Ke, Y.: Reachability and time-
based path queries in temporal graphs. In: ICDE, pages 145–156,
(2016)

34. Xuan, B.B., Ferreira, A., Jarry, A.: Computing shortest, fastest, and
foremost journeys in dynamic networks. Int. J. Found.Comput. Sci.
14(02), 267–285 (2003)

35. Yano, Y., Akiba, T., Iwata, Y., Yoshida, Y.: Fast and scalable reach-
ability queries on graphs by pruned labeling with landmarks and
paths. In: CIKM, pages 1601–1606, (2013)

123

Span-reachability querying in large temporal graphs 647

36. Yıldırım, H., Chaoji, V., Zaki, M.J.: Grail: a scalable index for
reachability queries in very large graphs. VLDBJ 21(4), 509–534
(2012)

37. Yildirim, H., Chaoji, V., Zaki, M.J.: Dagger: A scalable index
for reachability queries in large dynamic graphs. arXiv preprint
arXiv:1301.0977, (2013)

38. Yu, J.X., Cheng, J.: Graph reachability queries: a survey. In: Man-
aging and Mining Graph Data, pages 181–215. (2010)

39. Zhang, T., Gao, Y., Chen, L., Guo, W., Pu, S., Zheng, B., Jensen,
C.S.: Efficient distributed reachability querying of massive tempo-
ral graphs. VLDBJ, pages 1–26, (2019)

40. Zhang, T., Gao, Y., Li, C., Ge, C., Guo, W., Zhou, Q.: Distributed
reachability queries on massive graphs. DASFAA 11448, 406–410
(2019)

41. Zhu, A.D., Lin, W., Wang, S., Xiao, X.: Reachability queries on
large dynamic graphs: a total order approach. In: SIGMOD, pages
1323–1334, (2014)

Publisher’s Note Springer Nature remains neutral with regard to juris-
dictional claims in published maps and institutional affiliations.

123

http://arxiv.org/abs/1301.0977

	Span-reachability querying in large temporal graphs
	Abstract
	1 Introduction
	2 Preliminary
	3 Solution overview
	3.1 A straightforward online approach
	3.2 The time interval labeling index

	4 Index construction
	4.1 The labeling framework
	4.2 Theoretical analysis
	4.3 Implementation
	4.3.1 Efficient SRT computation
	4.3.2 Efficient CRT computation

	5 Query processing
	5.1 Span-reachability query processing
	5.2 θ-Reachability

	6 TILL-Index maintenance
	6.1 Incremental index maintenance
	6.2 Edge deletion

	7 Experiments
	7.1 Span-reachability query processing
	7.2 Index Construction
	7.2.1 Index size
	7.2.2 Indexing Time
	7.2.3 Varying
	7.2.4 Scalability

	7.3 θ-Reachability query processing
	7.4 Index maintenance
	7.5 Continuous query processing

	8 Related works
	9 Conclusion
	Acknowledgements
	References

