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Highlights: 

1. A novel CTSGAN deep learning framework is first proposed and applied to model day-

ahead electricity price scenarios.  

2. The CTSGAN point forecasting model can eventually be transformed into a probabilistic 

forecasting model by enhancing the diversity of random input. 

3. The CTSGAN probabilistic forecasting model can directly yield high-quality forecasting 

intervals with different coverage probabilities as a multi-objective forecasting model. 

4. PSO-based optimal conditions selection method can increase the forecasting accuracy. 

 

Abstract: Electricity prices in spot markets are volatile and can be affected by various factors, 

such as generation and demand, system contingencies, local weather patterns, bidding strategies 

of market participants, and uncertain renewable energy outputs. Because of these factors, 

electricity price forecasting is challenging. This paper proposes a scenario modeling approach 

to improve forecasting accuracy, conditioning time series generative adversarial networks on 

external factors. After data pre-processing and condition selection, a conditional TSGAN or 

CTSGAN is designed to forecast electricity prices. Wasserstein Distance, weights limitation, 

and RMSProp optimizer are used to ensure that the CTGAN training process is stable. By 

changing the dimensionality of random noise input, the point forecasting model can be 

transformed into a probabilistic forecasting model. For electricity price point forecasting, the 

proposed CTSGAN model has better accuracy and has better generalization ability than the 

TSGAN and other deep learning methods. For probabilistic forecasting, the proposed CTSGAN 

model can significantly improve the continuously ranked probability score and Winkler score. 

The effectiveness and superiority of the proposed CTSGAN forecasting model are verified by 

case studies. 

 

Keywords: Generative adversarial networks; Point forecasting; Probabilistic forecasting; 

Electricity Price; Conditions  

 

1. Introduction 

Since the liberalization of electricity markets, the electricity price forecasting plays an essential 

role to guide the behaviors of participants for profit optimization, risk control, and stable operation 

[1-4], and the dynamics of electricity prices have become a complex phenomenon, which has 

brought significant challenges to price prediction [5]. In particular, day-ahead price forecasting has 



 

attracted considerable attention [6-8]. For example, in virtual power plants, day-ahead price 

forecasting has been long advocated for improving the efficiency of arranging bidding strategies. 

However, electricity prices are highly volatile because of their strong dependence on multiple 

factors [9], such as electricity demand, business activities, temperature, and holidays. Moreover, the 

increasing integration of renewable energy sources, such as intermittent photovoltaic and wind 

power generation, has led to uncertain electricity generation and more significant fluctuations in the 

electricity prices. The electricity prices may also be affected by various potential factors, such as 

the large-scale application of artificial intelligence algorithms in electricity trading market [10] or 

even the personal bidding strategies of electricity traders. These factors are difficult to analyze 

quantitatively and have made electricity price forecasting significantly more challenging in recent 

years. 

Nomenclature  

GAN Generative Adversarial Networks x  Real scenarios 

TSGAN Time Series GAN XP  
Real historical scenario distribution 

CTSGAN Conditional TSGAN ( )G  Weights of generator 

ML Machine Learning ( )D  Weights of discriminator 

ARIMA Autoregressive Integrated Moving Average GL  
Loss function of generator  

ANN Artificial Neural Network DL  
Loss function of discriminator  

ABC Artificial Bee Colony  ( )e   Embedding neural network  

WNN Wavelet Neural Network  ( )e  Weights of embedding neural network 

ELM Extreme Learning Machine ( )R   
Recovery neural network 

SVM Support Vector Machine  ( )R  Weights of recovery neural network 

PSO Particle Swarm Optimization tx  Real scenarios at time t 

DE Differential Evolution th  output of the embedding network 

NSGA-II Non-dominated Sorting Genetic Algorithm II RL  
Loss function of reconstruction 

DL Deep Learning UL  
Loss function of unsupervised 

RNN Recurrent Neural Network SL  Loss function of supervised 

CNN Convolutional Neural Network 2

 
Euclidean norm 

LSTM Long Short Term Memory  ,  Balanced hyperparameters  

GRU Gated Recurrent Unit C  Price-related conditions 

DNN Deep Neural Network i
Y  Actual prices at the time i 

RMSE Root Mean Square Error  iy  
Forecasting prices at the time i 

MAE Mean Absolute Error  n  Number of the prices in a day 

LUBE Lower Upper Bound Estimate  ( )F  
Cumulative distribution function 

NEM National Electricity Market ( )I  
Indicator function 

NSW New South Wales i
U  Upper bound of forecasting interval 

VIC Victoria  i
L

 
Low bound of forecasting interval 

QLD Queensland  i
  

Width of forecasting interval 

SA South Australia   ,   Confidence level 

TAS Tasmania  pC
 

Potential conditions 

BOM Bureau of Meteorology d t−p  Daily historical electricity price of d-t day 

ABS Australian Bureau of Statistics p̂coal

d
 Daily coal spot price (Newcastle) 

AEMO Australian Energy Market Operator p̂gas

d

 
Daily gas spot price (AEMO) 

PCA Principal Component Analysis  d t−L  
Daily historical load profiles of d-t day 

t-SNE t-distributed Stochastic Neighborhood Embedding ˆ
dL

 
Estimated load of the predicted day 

MAPE Mean Absolute Percentage Error  ˆ temp

dT
 

Estimated temperatures of the predicted day 

U2 U Statistics 2 Τ̂hdd

d

 
Estimated heating degree day 

CRPS Continuously Ranked Probability Score T̂cdd

d

 
Estimated cooling degree day 

WS Winkler Score ˆ cloud

dT
 

Estimated duration of cloud 

BPNN Back Propagation Neural Network 

 

 

ˆ sunshine

dT
 

Estimated duration of sunshine 

LASSO Last Absolute Shrinkage and Selection Operator ˆ shortwave

dT
 

Estimated short wave radiation level 

DM Diebold Mariano ˆ windspeed

dT
 

Estimated wind speed 

KDE Kernel Density Estimate ˆ winddirection

dT
 

Estimated wind direction 

QR Quantile Regression D ,D , Dweek month holiday

d d d

 
Day types 

QRRF Quantile Regression Random Forest M , M , Mpopu gdp cpi

d d d

 
Population, GDP and CPI of the NSW 

( )G   
Generator M , M , MNECC NERC NEICi

d d d

 
Commercial, residential, and industrial electricity consumption 

( )D   
Discriminator M , MAEG AREG

d d

 
Total and renewable electricity generation in Australia 



 

z  Random noise inputs M , MNEG NREG

d d

 
Total and renewable electricity generation in NSW 

ZP
 

Gaussian or uniform distribution   

 

1.1 Literature review 

Extensive research has been done in the literature to improve the accuracy of price forecasting. 

Electricity price forecast models can be roughly classified into linear models and nonlinear models. 

Conventional linear models include autoregressive-based time series models, such as autoregressive 

moving average, autoregressive integrated moving average, fractionally integrated moving average, 

and autoregressive integrated moving average exogenous, and generalized autoregressive 

conditional heteroskedasticity. Dong et al. [11] proposed an ARIMA-based price forecasting model, 

combining empirical mode decomposition and seasonal adjustment, for electricity prices in 

Australia. Uniejewski et al. [12] introduced the seasonal component autoregressive model and 

quantile regression averaging model to forecast day-ahead spot price and gain further accuracy. 

However, the above methods are often criticized for their limited ability to capture the nonlinear 

behavior of electricity prices as electricity price changes are diverse. Recently, nonlinear methods 

represented by ML have been widely employed in price forecasting due to their outstanding 

performance in handling nonlinear problems. The ANN is the most utilized ML method, Shen et al. 

[13, 14] carried out an ABC combined WNN to achieve good forecasting performance. The ELM is 

another common type of ML method. Wan et al. [15] and Xiao et al. [16] modified the ELM with 

NSGA-II and DE-like algorithm to construct a forecasting model, respectively. The SVM is also 

often employed for prediction. Shrivastava et al. [17] carried out a novel forecasting model with 

PSO-tuned SVM and applied this model to Pennsylvania-New Jersey-Maryland interconnection 

day-ahead and real-time markets for validation. Because of the large number of factors involved in 

electricity prices, the conventional ML methods still cannot learn the characteristics of electricity 

prices well and have limited forecasting accuracy [18]. 

With the increasing computing capacity in recent years, DL has attracted worldwide research 

attention and has been applied to various fields, such as natural language processing [10, 19], 

process prediction [20], disease diagnosis [21], and autopilot [22, 23]. DL can analyze the deep and 

complex nonlinear relationship and then structure algorithms in layers to create an ANN that can 

learn and make intelligent decisions, such as RNN and CNN. RNN has been applied to forecast time 

series problems in many electricity-related fields [24, 25] and has shown good prediction 

performance due to the ability of the hidden neurons of the RNN to capture the short temporal 

dependency of the time series and then pass them to a previous layer. However, the previous research 

has also proven that RNN cannot capture the long temporal dependence during training because of 

the vanishing gradient problem [26]. For enabling RNNs to capture both long-term and short-term 

dependencies, LSTM was proposed by Hochreiter and Schmidhuber in 1997 [27]. There are three 

gates in LSTM, which can help control the information flow in or out of the memory block. GRU 

[28] is another form of RNN, in which the two gates, update gate and reset gate, work together to 

make the model converge rapidly. LSTM and GRU can address the vanishing gradient problem 

effectively for better forecasting performance. Simon et al. [29] developed several approaches of 

dynamic DL to predict the Spanish power market and found the seasonality periods and power 

demand as exogenous can help improve the accuracy. Peng et al. [30] used DE–LSTM to forecast 

electricity prices. The forecasting performance of the investigated method was verified in Australia, 

Germany/Austria, and France. Afrasiabi et al. [31] proposed a forecasting procedure consisting of 

CNN, GRU, and adaptive kernel density estimator to capture the probabilistic characterization of 



 

real-time and day-ahead prices. Four different DL models, including DNN, LSTM-DNN, GRU-

DNN, and CNN, were applied to forecast the spot electricity price, and it was found that DL could 

provide better forecasting than statistical models [32]. Though DL shows excellent fitting ability, it 

cannot still learn the whole temporal dynamics and may over-capture some useless features, leading 

to a poor generalization ability in electricity prices.  

GAN is a new type of DL model that generally consists of a generator and a discriminator, both 

based on DL models. The discriminator in GAN identifies the difference between the generated and 

original scenarios to guarantee the predictive generalization ability and ensure that the generated 

scenarios are more realistic [33, 34]. In [35], a GAN model was introduced to model the financial 

time series in a data-driven manner. Chen et al. [36] developed a GAN-based wind forecasting 

model. The simulation results show that the unsupervised GAN model can generate a large number 

of scenarios, but the accuracy is not sufficiently high. While the wind power output is mainly 

influenced by physical factors such as wind speed and direction, electricity prices are related not 

only to the generation costs but also the supply and demand [37]. Wind and solar power output and 

load affect the electricity supply and demand and are a part of the electricity price forecast, making 

the spot electricity price forecast more complex. For example, in Jan. 2017, the volume-weighted 

weekly electricity price was A$508/MWh in QLD because of low solar generation. In Dec. 2019, 

low wind output drove the weekly electricity price to A$270/MWh in SA. Therefore, the GAN 

proposed in [35] cannot be used to predict electricity prices accurately. A good GAN model for time-

series data should preserve the temporal dynamics, and the generated scenarios should respect the 

original distribution and relationship between variables across the whole period. Yoon [38, 39] 

introduced the latent space to GAN and proposed a TSGAN framework for synthesizing realistic 

scenarios, which integrates the versatility of unsupervised training with the control of supervised 

training and has a good predictive ability. Since electricity prices are related to multiple factors, 

relying on historical scenarios alone is insufficient. The TSGAN should be combined with a wide 

range of conditions to model the electricity prices. 

In terms of forecasting objectives, electricity price forecasting can be divided into point 

forecasting and probabilistic forecasting. Point forecasting is generally deterministic forecasting 

that directly gives the exact outcome. For example, the deterministic outcome of day-ahead 

electricity price forecasting is to provide each half-hourly price of the next 24 hours, a total of 48 

electricity price points. Most of the previous studies [11, 30, 32, 40] are about point forecasting of 

electricity prices and are concerned about the RMSE and MAE between the forecasted and actual 

data [41, 42]. However, some uncertainties are inevitable [43], usually due to incomplete data or 

some unanticipated events. In recognition of the inherent limitations of traditional point forecasting 

models, probabilistic forecasting of electricity prices is being used to compensate for the low 

accuracy of point forecasting and describe the uncertainties of electricity prices. Probabilistic 

forecasting can be presented in the form of quantile, interval, or density. A Pareto optimal price 

interval forecasting model was established in [15], combining NSGA-II and ELM to give 

confidence intervals directly by LUBE. Another form of probabilistic forecasting, quantile 

forecasting, was introduced in [8] to forecast distribution using quantile regression average. 

However, the above quantile and interval forecasting can only capture the probability distribution 

of the price individually in each period, and hard to integrate dependencies in the whole period [44]. 

A new scenario generation method for forecasting was proposed to model the variations effectively 

across periods in recent years. In [45], Karami et al. applied ARIMA to generate a massive number 



 

of wind power output scenarios. The GAN model can directly give a massive number of scenarios 

and has been adopted to effectively forecast interval variations of wind power across different 

periods [46]. A new conditional GAN was proposed by Wang et al. [44] to model the probabilistic 

residuals of load forecasting. Due to the diversity of scenarios generated by the GAN model, it can 

be applied not only for point prediction but also for probabilistic prediction. 

Many previous studies have focused on the electricity prices of the Australian NEM. The NEM 

operates one of the world’s most extensive interconnected power systems and encompasses publicly 

and privately owned generators, transmission and distribution network providers, and traders [47, 

48], and currently comprises five regions, namely NSW, VIC, QLD, SA, and TAS. As pointed out 

by Ignatieva [49], the regional electricity market may vary over time, and regional electricity prices 

interact through inter-regional transmission lines. The strongest dependence was exhibited between 

the NSW and QLD markets because they were well connected via inter-regional lines. In contrast, 

small dependence was found between markets without direct line connection, meaning that the 

electricity prices of QLD affect those of NSW more than those of TAS. Australia has four distinct 

seasons, with electricity prices showing different characteristics in different seasons. Uniejewski et 

al. [40] developed a seasonal component autoregressive forecasting model, consisting of a seasonal 

trend component and a stochastic component, for significant accuracy gains. Meanwhile, Australia 

is a world leader in the development of renewable energy generation, including wind and 

photovoltaic power. Large-scale grid integration of intermittent renewable energy generation has 

led to imbalances in electricity supply and demand, resulting in volatile electricity prices. By 

evaluating the merit order effect of five different levels of wind power generation penetration on 

electricity prices in NEM, Bell et al. [50] concluded that the increasing wind generation penetration 

decreased wholesale spot price in Australia. Forrest et al. [51] came to the same conclusion that 

wind power had a considerable impact on electricity spot prices and reduced the dispatch of 

emissions-intensive gas and brown coal generation. As a result of some policies, such as the 

introduction and abolition of carbon pricing, Australian electricity prices have gone through a 

process of rising and then falling. In [52], Nazifi et al. pointed out that carbon pricing would indeed 

be fully passed on to wholesale electricity spot prices resulting in higher electricity prices for 

consumers. Not only the external factors but also autogenous price fluctuations can cause changes 

in price trends. Higgs et al. [53] introduced three models to capture the high price volatility, strong 

mean-reversion, and frequent extreme price spikes in NEM, and concluded that the spot price 

exhibited stronger mean-reversion after a price spike than in the normal period, and the volatility 

was more than 14 times higher in spike periods than in normal periods. These factors lead to a large 

distribution of electricity prices in Australia and a high degree of difficulty in forecasting. 

 

1.2 The knowledge gap and main contributions 

The electricity prices forecasting is valuable for the participants to take part in the electricity 

market trading. The price of electricity is the result of a game between electricity suppliers and 

consumers, which presents a non-linear and difficult to forecast, and there are still some knowledge 

gaps as follows: 

1) The conventional ML and DL models have successfully improved the forecasting accuracy, but 

hard to preserve temporal dynamics [54]. The forecasted electricity prices cannot respect the 

original distribution and relationship between variables across the whole period. On the other 

hand, GAN is difficult to use in industrial applications because the training process is difficult 



 

to guarantee convergence. 

2) Deterministic and indeterministic forecasting are usually separately performed using different 

methods, and there is a lack of a method that can be applied to both point and probabilistic 

forecasting with accurate performance. 

3) Conventional point forecasting, constructed by the ML method, often leads to underfitting, 

while overfitting is always brought by the DL method. Whereas statistical-based probabilistic 

forecasting requires the assumption that the residuals satisfy some distribution, LUBE methods 

based on heuristic algorithms often fall into local optima. 

In this paper, inspired by the conditional load model in [44] and TSGAN model, we propose a 

CTSGAN-based electricity price forecasting model and use NSW, Australia, as a forecasting 

example to verify the effectiveness of the proposed model under complex electricity price 

fluctuations. The major novel contributions of this work are as the following: 

1) A novel CTSGAN deep learning framework is first proposed to capture the distribution of each 

period and preserve temporal variations, and a CTSGAN-based approach is designed to model 

electricity prices, effectively compensating for the gaps in conventional ML and DL models. In 

addition, Wasserstein Distance, weights limitation, and RMSProp optimizer are used to ensure 

the stability of the CTGAN training process. 

2) An optimal condition selection method is proposed to extract more reasonable inputs of the 

CTSGAN model and make the forecasting results more accurate. 

3) High realistic generated scenarios can be combined as the forecasting interval. When the noise 

dimensionality becomes large, the generated scenarios are diversified richly, and the point 

forecasting model is eventually transformed into a probabilistic forecasting model. 

4) The CTSGAN-based deterministic electricity price point forecasting retains more original data 

features and shows better generalizations than other DL methods. Moreover, probabilistic 

forecasting can preserve the diversity and consistency of actual electricity prices and provides 

accurate intervals. 

The rest of this paper is organized as follows: Section 2 introduces the methodology of the 

proposed CTSGAN model. Section 3 describes the forecasting steps and implementation details. 

Section 4 conducts the case studies in NSW for point forecasting and probabilistic forecasting, 

followed by the conclusion and discussions on the future research directions. 

 

2. Methodologies 

A good generative model should be able to capture not only the distribution of features at each 

time but also the complex dynamics of these variables across time. However, the existing generative 

methods that bring GAN into the sequential setting cannot adequately address the temporal 

correlations unique to time-series data. A new framework for generating realistic time-series that 

integrates the versatility of unsupervised training with the control of supervised training is proposed 

to simultaneously learn to encode features, generate representations, and iterate across time. The 

embedding network provides the latent space, and the adversarial network operates within this space. 

The latent dynamics of both real and synthetic data are synchronized through a supervised loss. 

Since electricity price forecasting involves various exogenous conditions, CTSGAN is proposed by 

using relevant conditions to modify TSGAN. In addition, the Wasserstein Distance is introduced to 

accelerate the training process and keep the training process stable. Moreover, two methods are 

applied to ensure the CTSGAN stability by (a) limiting the weights of the discriminator network 



 

and (b) introducing RMSProp optimizer to replace Adam optimizer. This section introduces the 

proposed CTSGAN model and the steps of using it to forecast the day-ahead spot price scenarios. 

 

2.1 The GAN model 

The GAN model is mainly composed of two neural networks, i.e., the generator ( )G   and the 

discriminator ( )D   . The generator's responsibility is to generate a massive amount of realistic 

scenarios with different random noise inputs, z , under a well-defined noise distribution, 
Z

Z P  

(e.g., Gaussian distribution or uniform distribution) until the discriminator cannot distinguish them 

from the real scenarios, x . The responsibility of the discriminator, which is essentially a classifier, 

is to distinguish the generated scenarios and the real historical scenarios. Denote the generator neural 

network and discriminator neural network as 
( )

( ; )
G

G z   and 
( )

( ; )
D

D x  , and the weights of neural 

networks in the generator and discriminator as 
( )G

  and 
( )D

 , respectively. The ideal output of 
( )

( ; )
G

G z   should follow the real historical data distribution, 
X

X P , after being well trained. The 

discriminator is trained to identify 
X

P   from 
Z

P  , and thus to maximize the difference between 
( )

( ; )
D

D x   and 
( ) ( )

( ( ; ); )
G D

D G z   . According to the objectives of the generator and the discriminator, 

loss functions 
G

L  and 
D

L  are formulated to train and optimize the weights of the neural networks 

of the generator and the discriminator, respectively. A small 
G

L  indicates that the generator can 

synthesize realistic scenarios, which as if comes from the real historical scenarios. A small 
D

L  

reflects that the discriminator cannot identify whether the generated scenarios are from the historical 

scenarios. Define the 
G

L  and 
D

L  as: 

( ) ( )
log(1 ( ( ; ); ))

G D

G Z
L D G z  = − −  E          (1) 

( ) ( ) ( )
log( ( ; ))] [log(1 ( ( ; ); ))

D G D

D X Z
L D x D G z  = − − −  E E      (2) 

where 
X

E  and 
Z

E  denote the expected value over all real scenarios and the expected value over 

all random noise input to the generator, respectively. Thus, these two neural networks should be 

combined to construct the min-max optimization model: 

( ) ( ) ( )

( ) ( )
log( ( ; ))] [log(1 ( ( ; ); ))min max D G D

ZG D X D x D G z
 

  + −  E E      (3) 

During the training process, the two neural networks in the generator and discriminator are 

optimized simultaneously, while both neural networks achieve the Nash equilibrium. When 

receiving random noise inputs, the generator can generate rather realistic scenarios that the 

discriminator cannot distinguish from the real scenarios. Moreover, by changing the random noise 

input, different scenarios can be generated. 

 

2.2 The TSGAN model 

A good GAN model for time-series data should preserve the temporal dynamics, and the 

generated scenarios can respect the original distribution and relationship between variables across 

the whole period. Yoon [38] proposed a TSGAN framework for synthesizing realistic scenarios, 

which integrates the versatility of unsupervised training with the control of supervised training. 

Unlike the basic GAN model, the TSGAN model consists of four neural network components: an 

embedding function, a recovery function, a generator, and a discriminator. A structure of the TSGAN 

model is shown in Fig.1.  



 

 

Fig. 1. Structure of the TSGAN model 

Compared to the basic GAN, this model has two additional sections, the embedding section and 

the recovery section. These two sections provide the mapping between the feature and latent space, 

helping GAN learn the underlying temporal dynamics of the training scenarios via low dimensional 

representations. Denote the embedding neural network and the recovery neural network as ( )e   

and ( )R  , respectively. The real date input, tx , and the output of the embedding network, 
t

h , at 

time t  can be obtained respectively as the following: 

( )

1
( , ; )

e

t t t
h e h x 

−
=              (4) 

( ) ( ) ( )

1
( ; ) ( ( , ; ); )

R e R

t t t t
x R h R e h x  

−
= =         (5) 

where 
( )e

   and 
( )R

   are the weights of two neural networks in the embedding and recovery 

networks, respectively. The embedding network and recovery network should enable accurate 

reconstruction of the original data from latent space, and therefore, the first objective is the 

reconstruction loss expressed as 

( )( ) ( )

1 2
( ( , ; ); )

e R

R X t t tt
L R e h x x 

−
= −  E         (6) 

where 
2
 denotes the Euclidean norm. In TSGAN, the training period can be divided into two 

modes: the open-loop and closed-loop modes. In the open-loop mode, the generator and the 

discriminator work in the same way as the basic GAN. The second objective is the unsupervised 

loss, which is essentially the same as DL  in the basic GAN, as the following 

( ) 

( ) 

( ) ( )

1

( ) ( ) ( )

1

log( ( ( , ; ); ))

log(1 ( ( ( , ; ); ); ))

e D

U X t tt

e G D

Z t tt

L D e h x

D G e h z

 

  

−

−

=

+ −





E

E

      (7) 

To achieve the distribution of generated scenarios more efficiently, in the closed-loop mode, the 

generator receives the embedding network output to generate the next latent vector. The third 

objective is the supervised loss expressed as the following 

( )( ) ( ) ( )

, 1 1 2
( , ; ) ( ( , ; ); )

e e G

S X Z t t t tt
L e h x G e h z  

− −
= −  E      (8) 

In the optimization period, the reconstruction loss and the supervised loss are trained first, and 

then the generator loss and discriminator loss will be trained. Combining the above three objectives, 

we can obtain the final optimization target as follows 



 

( )
( ) ( )

,

min
e R S R

L L
 

 +              (9) 

( )( ) ( )

min max
G DS U

L L
 

 +             (10) 

where 0    and 0    are hyperparameters that help balance both losses in each objective. 

Since TSGAN is not sensitive to these two hyperparameters [38], we set =1   and =10  . 

Compared with the objectives of basic GAN, 
S

L  is a new optimization objective, which indicates 

that the embedding function not only serves to reduce the dimensions of the adversarial space but 

also facilitates the generator in learning underlying temporal dynamics. 

 

2.3 The proposed CTSGAN model 

The conventional electricity price forecasting using only historical electricity price data is 

generally challenging as the electricity prices are related to multiple factors. Therefore, modern 

electricity price forecasting methods consider a wide range of conditions. In this paper, the 

conditions related to electricity prices are added to the inputs of the generator and embedding 

networks. Combining the TSGAN and conditions, we can obtain a new model, known as CTSGAN. 

Fig.2 illustrates the structure of CTSGAN. 

 

Fig. 2. Structure of the CTSGAN model 

As shown, the inputs of generator networks contain not only random noise but also price-related 

conditions C . On the other hand, the embedding network maps the real scenarios and conditions 

to the latent space. Denote the embedding neural network and recovery neural network as ( )e   and 

( )R  , respectively. The real date input, 
t

x , and the output of the embedding network, 
t

h , at time 

t  can be obtained respectively as the following: 

( )

1
( , | ; )

e

t t t
h e h x 

−
= C             (11) 

( ) ( )

1
( ( , | ; ); )

e R

t t t
x R e h x  

−
= C           (12) 

The loss functions of reconstruction, including the embedding and recovery neural networks, 

can be presented as the following: 

( )( ) ( )

1 2
( ( , | ; ); ) |

e R

R X t t tt
L R e h x x 

−
= − 

  C CE       (13) 

The supervised and unsupervised losses in CTSGAN are: 



 

( )( ) ( ) ( )

, 1 1 2
( , | ; ) ( ( , | ; ); )

e e G

S X Z t t t tt
L e h x G e h z  

− −
= − 

  C CE    (14) 

( )

( )

( ) ( )

1

( ) ( ) ( )

1

log( ( ( , | ; ); ))

log(1 ( ( ( , | ; ); ); ))

e D

U X t tt

e G D

Z t tt

L D e h x

D G e h z

 

  

−

−

=

+ −

  

  





C

C

E

E
    (15) 

Since the gradient of the logarithmic function in unsupervised loss (15) is very small in the early 

training stage, inspired by the Wasserstein GAN [55], the unsupervised loss function in the 

discriminator introduces the linear function instead of the logarithmic function to accelerate the 

training process and ensure training process stable. Thus, the unsupervised loss can be simplified as 

follows: 

( ) ( )( ) ( ) ( ) ( ) ( )

1 1
( ( , | ; ); ) - ( ( ( , | ; ); ); )

e D e G D

U X t t Z t tt t
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                 (16) 

The unsupervised function can be interpreted as the dual of the Wasserstein distance (the Earth-

Mover’s distance). This distance between the generated and real scenarios measures the cost needed 

to transport 
( )

1
( , | ; )

e

t t
e h x 

−
C  to 

( )

1
( ( , | ; )

e

t t
G e h z 

−
C . Another two methods are used to make the 

GAN stable: (a) after each iteration of discriminator training, all the weights of the neural network 
( )D

   in the discriminator are limited to a specific range c   as a clipping parameter, and (b) 

introducing the RMSProp optimizer to replace the Adam optimizer. 

 



 

Compared with TSGAN, the proposed CTSGAN model can learn the underlying relationship 

between electricity prices and price-related conditions, making the generated scenarios relatively 

realistic. The pseudocode of the training algorithm of CTSGAN for electricity price forecasting is 

summarized in Algorithm 1. 

 

3. The process for electricity price forecasting 

Fig. 3 illustrates a flowchart to forecast electricity prices based on the proposed CTSGAN 

model. The forecasting steps and implementation details are discussed as follows. 

Fig. 3. Flowchart of the price forecasting based on CTSGAN model 

 

3.1 The forecasting steps 

The steps of forecasting the day-ahead electricity price based on CTSGAN are shown as 

follows: 

Step 1. Data collection 

The dataset of half-hourly electricity spot prices in NSW from 1 January 2000 is downloaded 

from the publicly available AEMO website https://aemo.com.au. The electricity price data for each 

month of the four calendar years, 2012, 2014, 2016, and 2018, and five days in each of the four 

seasons of winter (28 July to 1 August), spring (27 October to 31 October), summer (28 January to 

1 February) and autumn (28 April to 2 May) in two financial years of 2018-2019 and 2019-2020 are 

selected as the test sets. The remaining data is set as the training data. 

In addition to electricity prices, the remaining electricity market-related conditions, like half-



 

hourly electricity demand, are also obtained from the AEMO dataset. Electricity consumptions of 

different industrial components are from the annual report of AEMO. Besides, other conditions 

(such as weather, temperature, and economic index) are collected from the open-access websites of 

the BOM and ABS. The selection method of optimal conditions is described in 3.2.2. 

 

Step 2. Data pre-processing 

Removal of positive and negative spikes: The total historical electricity price dataset contains 

332448 half-hourly electricity prices of 6926 days from 15 September 2001 to 31 August 2020. 

Since power failures, transmission line maintenance, and extreme weather can result in electricity 

price spikes and affect the accuracy of forecasting models; it is necessary to limit the electricity 

prices within a certain range [51]. In this paper, we set this range as [0,450] and the electricity price 

as A$450/MWh (symbol A$ represents the Australian Dollar) when it exceeds A$450/MWh and 

A$0/MWh when it is below A$0/MWh (negative electricity price is allowed in Australian Electricity 

Market). Counting through the dataset, we found 580 times of electricity prices over A$450/MWh 

and 61 times of electricity prices below A$0/MWh during this period, representing only 0.19% of 

the total data and thus having a limited impact on the forecasting model [56]. 

Removal of carbon pricing: Australia's carbon pricing scheme came into effect on 1 July 2012 

and was repealed on 1 July 2014. Though this policy factor is not an input in the forecasting model, 

it impacts directly on the power generation from fossil fuels and renewable energy resources and 

thus significantly affects the electricity prices. To guarantee that the prediction model is not 

influenced by carbon pricing, the carbon tax should be removed from the dataset. The carbon pricing 

was A$23/t in the financial year of 2012-2013, and A$24/t in the financial year of 2013-2014. 

Considering that the carbon emissions factor in NSW is 0.9 t/MWh [57], one obtains that the carbon 

pricing included in the electricity prices in NSW is A$20.7/MWh in 2012-2013 and A$21.6/MWh 

in 2013-2014. This part should be removed during the training process and inserted back into the 

forecasts for the year of carbon price impact. 

Data normalization: To fit the dataset to the forecasting model better, the data should be 

normalized to the range of [0,1]   with a min-max normalization method after removing the 

positive and negative spike prices and carbon pricing. The min-max normalization method is the 

linear transformation defined as the following: 

min

max min

'
p p

p
p p

−
=

−
             (17) 

where 
min

p  and 
max

p  are the maximum and minimum prices in the whole dataset of historical 

electricity prices, and p  and 'p  the original and normalized prices, respectively. 

 

Step 3. Optimizing CTSGAN weights 

Before using CTSGAN to forecast the electricity day-ahead price, the weights of the embedding 

and recovery networks in CTSGAN should be optimized. The inputs of the CTSGAN are the pre-

processing data of actual electricity prices, random noise, and conditions. The dimensionality of the 

random noise varies according to the forecasting objectives, with a smaller value chosen for point 

forecasting and a large value for probabilistic forecasting. The training processes for the point and 

probabilistic forecastings are independent of each other. 

https://en.wikipedia.org/wiki/Australian_dollar
https://en.wikipedia.org/wiki/Australian_dollar


 

As shown in Algorithm 1, the training process can be divided into three stages. In the first stage, 

the optimization objectives are the weights of the embedding and recovery networks, which enable 

accurate reconstructions of the original electricity prices. In the second stage, the optimization 

objective is the weights of the generator. The generator receives the mapped data of actual electricity 

price computed by the embedding network and generates the next latent vector. The final stage is 

the joint training stage, in which the optimization objectives are the weights of the generator and 

discriminator. The generator is trained twice as many times as the discriminator is trained [39] to 

ensure the convergence of CTSGAN. When the maximum number of iterations is reached, the 

weights of the embedding and recovery networks, generator and discriminator have been optimized. 

 

Step 4. Price forecasting and model evaluation 

After the proposed CTSGAN forecasting model is well trained, the model can be used to roll 

over to forecast the day-ahead electricity price for the next day. For point forecasting, the 

dimensionality of the random noise is usually small, and therefore the variability of the forecasting 

is small. With the historical electricity prices, conditions, and 48-dimensional random noise as 

inputs to the forecasting model, the future 24-hour electricity prices can be obtained by just one 

forecast. However, for probabilistic forecasting, the dimensionality of the noise is usually large, and 

thus there is a rich diversity of forecasting results. By selecting different random noises that satisfy 

the Gaussian or Uniform distribution as random noise input of CTSGAN, multiple forecasted 

scenarios can be obtained and combined to form the probabilistic forecasting results. For both the 

point and probabilistic forecastings of electricity prices, different criteria are introduced to evaluate 

the performance of the proposed forecasting model as follows. 

Visualization: The PCA is an unsupervised linear dimensionality reduction method by 

transforming the original set to a new set, known as the principal component. In this case, PCA tries 

to preserve the global structure of 48-dimensional day-ahead electricity price scenarios, and the 

local structures might get lost. The t-SNE is also an unsupervised nonlinear dimensionality 

reduction method. It embeds the points from a higher dimension to a lower dimension and tries to 

preserve the neighborhood of that point. Unlike the PCA, the t-SNE tries to preserve the local 

structure of data by minimizing the Kullback–Leibler divergence between the two distributions 

concerning the locations of the points in the map. In this case, it maps each 48-dimensional day-

ahead electricity price scenario to a 2-dimensional point in such a way that similar scenarios are 

modeled by nearby points, and different scenarios are modeled by distant points with high 

probability. 

Point forecasting criteria: Different error measures are employed as the criteria to evaluate 

the performance of day-ahead electricity price point forecasting models. The most used indicators 

are MAE, the MAPE, and RMSE, defined as follows: 
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where 
i

Y  and 
i

y  denote the actual and forecasting electricity prices at the time i , respectively, 

and n  is the number of the prices in a day. In the Australian electricity market, the settlement 

process operates on a 30-minute basis, and therefore, n  is set to 48. Generally, a lower error 

measure indicates a better forecasting performance. As a measure of forecasting quality, the U2 

proposed by Theil [58] is calculated by 
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U2 is employed to compare the forecast quality between the proposed forecast results and naïve 

forecast results. The naïve forecast is a forecasting technique in which the actual electricity prices 

of the last moment are used as the forecast results of the current moment without adjusting them or 

attempting to establish causal factors. If U2=1, there is no difference between a naïve forecast and 

the proposed method; if U2<1, the proposed method is better than a naïve forecast; and if U2>1, the 

proposed method is worse than a naïve forecast. 

Probabilistic forecasting criteria: The performance of the day-ahead electricity price 

probabilistic forecasting models should be evaluated from both uncertainty and variation should be 

considered. The uncertainty criteria contain reliability and sharpness. A considerable reliability 

value indicates that the forecasting scenarios should be able to cover the actual electricity prices, 

and a low sharpness value indicates that the forecasting value is close to the actual values at the 

same time. When both reliability and sharpness are met, the synthetic price scenarios are 

representative of the possible future realizations. The CRPS is employed to jointly evaluate the 

reliability and sharpness of scenarios forecasts by 

2
( , ) ( ( ) ( ))

i i i i i
CRPS F y F y I y Y dy



−

= − −         (22) 

where ( )
i

F y  is the cumulative distribution function for forecasting prices scenarios value at the 

i  -th time instant, ( )
i i

I y Y−   represents the indicator to compare the forecasting and actual 

scenarios, ( ) 1
i i

I y Y− =  if 
i i

y Y , and otherwise, ( ) 0
i i

I y Y− = . 

Not only the sharpness and reliability but also the confidence level needs to be taken into 

account. The WS is introduced to evaluate the interval forecasts as the following: 
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where 
i

U  and 
i

L  denote the upper and low bounds of forecasting intervals of electricity prices, 

respectively, and 
i i i

U L = −  is the width of the interval at i -th time instant. The upper and low 

bounds of intervals can be transformed from the scenarios if the confidence level 1   , and 

1 = − . Then, 1 2−  and 2  are selected as the upper and low bounds of intervals. When 

the confidence level 1 = , the maximum and minimum values of each point of scenarios can be 

used as the upper and lower bounds for this point, respectively. 

 

3.2 Implementation details 



 

3.2.1 Selection and parameter setting of core NNs 

The choice of core NNs in GAN is also a significant issue. Any NN can be used for GAN, even 

like the BPNN. However, when handling large datasets, it is best to employ DL models to guarantee 

that the training process does not collapse. For sequence forecasting, such as the electricity price 

forecasting in this paper, RNNs, including LSTM and GRU, are usually chosen. For model 

simplicity, LSTM is chosen as the core NNs of the embedding function, recovery function, generator, 

and discriminator in CTSGAN. The number of hidden layer units in LSTM is set to 100, and the 

number of training iterations is set to 10,000. 

The parameters for the proposed CTSGAN are set as follows: the batch size is 7; the number 

for each training iteration is 10,000; the clipping parameter is 0.5; the learning rate is 0.02; the 

dimensionality of latent space is 100. The parameters for the TSGAN are set as the same as those 

of the proposed CTSGAN. 

 

3.2.2 Selection of optimal conditions 

Another task of preparation for forecasting day-ahead electricity prices is the selection of 

optimal conditions (features). Because electricity prices are related to many factors, by referring to 

the literature and relevant AEMO forecasting manual, data of various types of factors are 

downloaded from the public data websites of the Australian Government, including the Bureau of 

Statistics, the Bureau of Meteorology, and the Department of Industry, Science, Energy, and 

Resources, to obtain a dataset of potential conditions, p
C , as the following: 
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where 
d t−

p  denotes the daily historical electricity price of t  days before the predicted day, and 

the length of daily electricity price is 48; p̂
coal

d
 and p̂

gas

d
 are the daily average coal spot price at the 

Newcastle port and natural gas price in AEMO, respectively; ˆ
d

L  denotes the estimated load of the 

predicted day and 
d t−

L  the daily historical load profiles of the t  day before the predicted day; 

ˆ temp

d
T  denotes the estimated temperatures of the predicted day, and the length of ˆ temp

d
T  is 24, with 

which the heating degree day Τ̂
hdd

d
 and cooling degree day T̂

cdd

d
 can be calculated [59]; ˆ cloud

d
T ,

ˆ sunshine

d
T , ˆ shortwave

d
T , ˆ windspeed

d
T  and ˆ winddirection

d
T  are the estimated weather conditions, including the duration 

of cloud, duration of sunshine, short wave radiation level, wind speed, and wind direction, 

respectively; D
week

d
 and D

month

d
 are the day types (day of the week and month of the year), and 

D
holiday

d
 represents whether the predicted day is a holiday; M

popu

d
, M

gdp

d
 and M

cpi

d
 denote the latest 

population, GDP and CPI of the NSW, respectively; M
AEG

d
, M

AREG

d
, M

NEG

d
 and M

NREG

d
 represent 

the total electricity generation and the renewable electricity generation in Australia and the state of 

NSW; M
NECC

d
, M

NERC

d
 and M

NEICi

d
 denote the commercial, residential, and industrial components 

of the electricity consumption, respectively, and i  in M
NEICi

d
 represents different industrial sectors; 

1
M

NEIC

d
  represents the electricity consumption of agriculture, forestry, and fishing, 

2
M

NEIC

d
  the 

electricity consumption of mining, 
3

M
NEIC

d
 the electricity consumption of manufacturing, 

4
M

NEIC

d
 



 

the electricity consumption of services of electricity, gas, water, and waste, 
5

M
NEIC

d
 the electricity 

consumption of construction, and 
6

M
NEIC

d
  the electricity consumption of transport, postal and 

warehousing. Although some data, such as the half-hourly electricity interregional transmission and 

electricity savings by policies, are unavailable, as their impacts on forecasting are limited, they are 

not discussed in depth in this paper. 

 

Fig. 4. Structure of the proposed model for selecting optimal conditions 

With the potential set p
C  and inspired by [60], we propose a PSO-LSTM condition selection 

model, as shown in Fig. 4. The PSO algorithm is applied to randomly choose a condition set from 

the potential set p
C  for training the LSTM model. The well-trained LSTM model can then be used 

to forecast the day-ahead electricity prices. The PSO algorithm can be used to optimize the random 

condition set gradually by minimizing the error between the forecasting results and the actual prices. 

After 10,000 iterations, the optimal condition set of electricity prices, C , can be obtained, as the 

following: 
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From the final optimal condition set, it is evident that the day-ahead price is related to several 

factors, including the historical price data, price of coal and gas, predicted and historical loads, 

temperate and heating or cooling degree day, CPI, renewable electricity generation in the NSW, and 

electricity consumption of residential and manufacturing in the NSW. The total dimension of the 

input of the CTSGAN is 322=48*6+24+10. 

 

3.2.3 Dimensionality of random noise input 

For day-ahead electricity price point forecasting, the desired outcome is low-diversity scenarios 

so that the dimensionality of random noise is set to 48, keeping it consistent with the number of 

inputs of the embedding network. For probabilistic prediction, it is necessary to guarantee the 

diversity of scenarios. Because of the large dimensionality of random noise [44], in the simulation, 

the process is repeated several times, and it is found that this value is best set to 100 for probabilistic 

forecasting. In addition, this property can be exploited to obtain different confidence levels and 

different prediction intervals by changing this value of dimensionality. 

 

4. Case studies and analysis results 

In this section, the proposed CTSGAN model is applied to point forecasting and probabilistic 

forecasting of electricity day-ahead prices in NSW, Australia. 
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4.1 Case 1: Electricity price point forecasting 

As mentioned in Section 3.1, electricity price datasets from 15 September 2001 to 31 August 

2020) are downloaded from AEMO. After data pre-processing, the price datasets are normalized to 

fit in [0,1] by using (17). The parameters are set as described in Section 3.2.1, and then the well-

trained CTSGAN model can be employed to forecast electricity prices. 

 

4.1.1 Experiment 1: Comparison with different forecasting models 

To verify the point forecasting performance of the proposed CTSGAN model, we introduce 

four other neural networks, TSGAN, LSTM, GRU, and BPNN models, and two linear regression 

model, ARIMA and LASSO [61], for forecasting and comparison. Both the CTSGAN and TSGAN 

choose the LSTM as the core NN and the same parameter settings of LSTMs as described in Section 

3.2.1. The GRU also has the same parameter as the LSTM. The number of layers and hidden units 

in BPNN [14] are set to 3 and 200, respectively, and the number of iterations is set to 50,000. The 

forecasts of electricity prices for 2012, 2014, 2016, and 2018 are conducted, respectively. Table 1 

lists the results of four indicators, MAPE and U2 in p.u., and MAE and RMSE in A$/MWh, which 

can reflect the real world meaning well. Fig. 5 illustrates the average indicators from 2012 to 2018. 

 

Table 1. Comparison of different point forecasting models for four years 

Year Indicators CTSGAN TSGAN LSTM GRU BPNN ARIMA LASSO 

2012 MAE 4.82 22.32 5.63 7.02 31.77 8.69 7.69 

RMSE 6.17 24.26 6.75 8.24 33.98 8.64 8.15 

MAPE 0.1342 0.7353 0.1656 0.1958 1.1626 0.2969 0.1961 

U2 0.1617 0.8665 0.2067 0.2196 1.3718 0.4333 0.2234 

2014 MAE 4.37 23.85 7.88 5.54 35.91 9.32 8.10 

RMSE 5.94 25.83 9.27 6.93 37.94 9.59 7.11 

MAPE 0.1765 0.8827 0.3238 0.2156 1.3038 0.5236 0.3375 

U2 0.1555 0.9810 0.3108 0.1912 1.6995 0.3238 0.2186 

2016 MAE 16.20 28.04 17.19 18.77 37.62 20.84 20.61 

RMSE 20.52 33.71 22.37 23.54 43.47 28.85 23.09 

MAPE 0.3069 0.4865 0.2959 0.3295 0.6681 0.4922 0.3081 

U2 0.1668 0.2512 0.1555 0.1626 0.3790 0.1937 0.1684 

2018 MAE 12.78 39.92 17.82 19.98 54.77 24.12 20.84 

RMSE 16.74 43.83 22.59 25.92 58.01 37.89 23.31 

MAPE 0.1570 0.4793 0.2959 0.2527 0.6597 0.3044 0.3012 

U2 0.1253 0.3364 0.1960 0.2093 0.4405 0.3139 0.2330 

 

In Table 1, the best or least value for each indicator in each year is marked in bold. As shown, 

overall, the proposed CTSGAN model gives the best performance in forecasting electricity prices, 

with a MAE of A$4.82/MWh and a RMSE of A$6.17/MWh, followed by the LSTM model, which 

also gives satisfactory forecasting performance in 2016 with a MAPE of 0.2959 and a U2 of 0.1555. 

The GRU model has slightly inferior forecasting ability to the LSTM model. The predictive ability 

of the LASSO model is similar to that of the GRU model for the prediction of 2016, with a RMSE 

of A$23.09/MWh (LASSO) and A$23.54/MWh (GRU), then followed by the ARIMA model. The 

TSGAN model has poor predictive results due to not considering the conditions, with all indicators 

larger than those of the GRU, LSTM, LASSO, and ARIMA models. This further demonstrates that 

it is not accurate to rely on the historical electricity price data alone to forecast electricity prices, 



 

and it is necessary to consider the conditions, such as the weather, calendar, and demands. BPNN is 

the worst forecasting model, which is worse than the naïve forecasts for 2012 and 2014, with the 

U2 indicator greater than 1. From average indicators radar charts in Fig. 5, one can find that the 

proposed CTSGAN model is more effective than other models in terms of MAE, RMSE, MAPE, 

and U2. There is little difference in MAPE and U2 of LSTM, GRU, and LASSO, for which the 

forecasting accuracies fluctuate at the same level.  

Fig. 5. Radar charts of average indicator based on seven models 

However, the values in Table 1 can only be used to provide a model ranking, Uniejewski et al. 

[62] pointed out that DM [63] test can be introduced to verify whether the values in Table1 are 

statistically significant. Fig. 6 depicts the results of the DM test for MAE and RMSE in 2012. The 

color bar on the right represents the range of p-values: the closer they are to zero (→greener), the 

more significant the difference between the forecasts of a set on the X-axis (better) and those on the 

Y-axis (worse); otherwise, the closer they are to 0.1 (→redder or black), the less statistically 

significant the difference between the forecasts of models on the X-axis and Y-axis. For example, 

the second row in both Fig.6 is green except for one black square, which indicates that TSGAN 

gives poorer performance significantly than all other forecasting models except BPNN. 

(a)                          (b)  

Fig. 6. Results of DM test of forecast models in terms of (a) MAE and (b) RMSE 

Fig.6 clearly shows that the proposed CTSGAN is the best forecast model with a small p-value, 

and BPNN is the worst model. In addition, one can find that the prediction performance of the 

CTSGAN is statistically significant, with highly saturated green squares in the column labeled 

CTSGAN. In terms of both the DM test of RMSE, it is not outperformed significantly by the GRU, 

LASSO, and LSTM. 

Fig. A1 shows the autocorrelation error for CTSGAN model, LSTM model, LASSO model 

and BPNN model, respectively, with a confidence interval of 95%. It can be seen that the 

autocorrelation is not significant for CTSGAN and LSTM models. The autocorrelation plot shows 

two spikes at lag 2 and 5 for LASSO, but it is unlikely to have any noticeable impact on forecasts, 

which is slightly less than 95 percent confidence interval. However, the residuals of BPNN show 



 

large autocorrelation, because of poor forecasting performance.  

To compare the models graphically, Fig. 7 plots the rolling forecast (red) and actual (blue) 

electricity prices for five days in the winter, spring, summer, and autumn seasons for the 2019-2020 

financial year by the BPNN, GRU, LSTM, TSGAN, CTSGAN, ARIMA, and LASSO models. As 

shown in Figs. 7(a)-(d), the BPNN model cannot effectively capture the complex characteristics of 

electricity prices, and in the four seasons of the financial year 2019-2020, the forecasting results 

fluctuate between A$20/MWh and A$40/MWh. As shown in Figs. 7(e)-(h), the forecast results of 

the GRU model are inaccurate for spring and autumn in 2019-2020. The actual autumn daily 

electricity price usually has two peaks (the blue curve in Fig. 7(h)), while the forecasted result has 

only one peak (the red curve in Fig. 7(h)). This phenomenon may be attributed to overfitting, where 

the GRU model learns features that do not belong to each season. The LSTM has also exhibited the 

same problem of overfitting, e.g., the winter forecasts in Fig. 7(i). The TSGAN model also exhibits 

poor, unstable forecasting results, as shown in Figs. 7(m)-(p), as it does not include the relevant 

conditions as the input and relies only on the historical data for forecasting. The forecasting prices 

given by TSGAN are good for only the days of 28 July 2019 (the first day in Fig. 7(m)), 27 October 

2019 (the last day in Fig. 7(n)), 28-29 January 2020 (the first two days in Fig. 7(o)), and 30 April 

2020 (the third day in Fig. 7(p)). The ARIMA model provides inaccurate forecasting prices, 

especially as shown in Fig. 7(v), and the LASSO model forecasts better than the ARIMA model for 

the winter prices in Fig. 7(y). It is very interesting to note that the GRU, LSTM, ARIMA, and 

LASSO models all forecast two price peaks incorrectly for the summer prices (Figs. 7(g), (k), (w), 

(α)), while CTSGAN is able to accurately forecast only one electricity price peak during these five 

days. The proposed CTSGAN model captures temporal variation very well, with outstanding 

forecasts of electricity prices for all seasons from 2019-2020 with errors only occurring at the spikes, 

as shown in Figs. 7(q)-(t). 

 

(a)                   (b)                  (c)                   (d) 

 
(e)                   (f)                  (g)                   (h) 

 

(i)                   (j)                  (k)                   (l) 



 

 

(m)                   (n)                  (o)                   (p) 

 

 (q)                   (r)                  (s)                   (t) 

 

 (u)                   (v)                  (w)                   (x)  

 

(y)                   (z)                  (α)                   (β) 

Fig. 7. Day-ahead forecasting for five days in four seasons of the financial year 2019-2020 

by (a)-(d) BPNN, (e)-(h) GRU, (i)-(l) LSTM, (m)-(p) TSGAN, (q)-(t) CTSGAN models 

(u)-(x) ARIMA, and (y)-( β) LASSO 

 

4.1.2 Experiment 2: Verification of generalization ability with CTSGAN 

To investigate why the proposed CTSGAN model gives a better prediction than the simple 

LSTM model, we compare the test and training errors of the CTSGAN and LSTM models for each 

month in the year 2012. The error gain between the test and training errors, which represents the 

generalization capability, is calculated. 

 

Table 2. Comparison of CTSGAN and LSTM point forecasting model for each month in 2012  

Month Indicators 
CTSGAN LSTM  

Test Training Gain Test Training Gain  

Jan MAE 0.0048  0.0046  1.0445  0.0049  0.0045  1.0968   

MAPE 0.0888  0.0671  1.3229  0.0875  0.0668  1.3099   

RMSE 0.0057  0.0053  1.0772  0.0059  0.0054  1.0995   

U2 0.1214  0.1196  1.0149  0.1232  0.1183  1.0416   

MAE 0.0064  0.0061  1.0536  0.0078  0.0060  1.3040   



 

Feb MAPE 0.1199  0.1161  1.0328  0.1418  0.1055  1.3436   

RMSE 0.0075  0.0063  1.1933  0.0092  0.0059  1.5569   

U2 0.1303  0.1037  1.2567  0.1442  0.1063  1.3568   

Mar MAE 0.0055  0.0038  1.4444  0.0084  0.0039  2.1559   

MAPE 0.0929  0.0637  1.4592  0.1390  0.0529  2.6275   

RMSE 0.0064  0.0048  1.3391  0.0097  0.0043  2.2619   

U2 0.1223  0.0998  1.2255  0.1793  0.0947  1.8930   

Apr MAE 0.0053  0.0052  1.0250  0.0061  0.0051  1.1942   

MAPE 0.1022  0.1004  1.0174  0.1130  0.0831  1.3600   

RMSE 0.0062  0.0049  1.2663  0.0072  0.0047  1.5219   

U2 0.1221  0.1104  1.1061  0.1395  0.1122  1.2430   

May MAE 0.0111  0.0083  1.3407  0.0156  0.0078  2.0024   

MAPE 0.1449  0.1271  1.1404  0.2016  0.1284  1.5700   

RMSE 0.0128  0.0103  1.2386  0.0171  0.0093  1.8420   

U2 0.1534  0.1498  1.0239  0.1922  0.1577  1.2187   

Jun MAE 0.0068  0.0038  1.7894  0.0082  0.0044  1.8743   

MAPE 0.1085  0.0841  1.2900  0.1482  0.0749  1.9783   

RMSE 0.0085  0.0064  1.3243  0.0096  0.0057  1.6913   

U2 0.1695  0.0931  1.8202  0.2342  0.0893  2.6224   

Jul MAE 0.0219  0.0114  1.9232  0.0111  0.0108  1.0278   

MAPE 0.2371  0.1113  2.1305  0.1288  0.1136  1.1336   

RMSE 0.0261  0.0134  1.9492  0.0150  0.0133  1.1302   

U2 0.1660  0.0978  1.6974  0.1068  0.0922  1.1587   

Aug MAE 0.0163  0.0143  1.1380  0.0173  0.0144  1.1989   

MAPE 0.1413  0.1294  1.0920  0.1521  0.1309  1.1619   

RMSE 0.0222  0.0221  1.0068  0.0229  0.0222  1.0299   

U2 0.1052  0.1039  1.0126  0.1063  0.1027  1.0350   

Sep MAE 0.0105  0.0103  1.0210  0.0108  0.0101  1.0735   

MAPE 0.1291  0.1082  1.1929  0.1353  0.0922  1.4676   

RMSE 0.0131  0.0116  1.1267  0.0140  0.0121  1.1542   

U2 0.1847  0.1655  1.1161  0.2074  0.1672  1.2404   

Oct MAE 0.0078  0.0078  0.9993  0.0073  0.0083  0.8810   

MAPE 0.1104  0.1021  1.0814  0.1048  0.1013  1.0349   

RMSE 0.0094  0.0063  1.4950  0.0095  0.0064  1.4795   

U2 0.1810  0.1733  1.0445  0.1987  0.1536  1.2936   

Nov MAE 0.0145  0.0113  1.2836  0.0270  0.0125  2.1624   

MAPE 0.1638  0.1333  1.2289  0.3221  0.2001  1.6097   

RMSE 0.0222  0.0208  1.0655  0.0313  0.0209  1.4976   

U2 0.1749  0.1677  1.0429  0.2804  0.1631  1.7191   

Dec MAE 0.0170  0.0143  1.1846  0.0249  0.0154  1.6206   

MAPE 0.1713  0.1093  1.5670  0.3135  0.0978  3.2058   

RMSE 0.0241  0.0198  1.2170  0.0286  0.0152  1.8806   

U2 0.3100  0.2931  1.0577  0.5681  0.2992  1.8986   

Average MAE 0.0107 (14.4%) 0.0084  1.2706  0.0125  0.0086  1.4660   

MAPE 0.1342 (19.0%)  0.1043  1.2963  0.1656  0.1040  1.6502   

RMSE 0.0137 (8.7%) 0.0110  1.2749  0.0150  0.0104  1.5121   

U2 0.1617 (21.7%) 0.1398  1.2015  0.2067  0.1380  1.4768   

Table 2 shows a monthly analysis of the forecasted electricity prices in 2012. The values in 

brackets in the bottom four cells of the CTSGAN/Test Column represent the improvement of error 

by using the CTSGAN model compared to the LSTM model, elucidating that the proposed 

CTSGAN model can give overall better forecasts for the test set. However, the forecasts in July are 

worse than those given by the LSTM model. The errors of forecasts given by the CTSGAN model 



 

are 0.0219 (MAE), 0.2371 (MAPE), 0.0261 (RMSE) and 0.1660 (U2), which are larger than those 

of the simple LSTM model by 0.0111 (MAE), 0.1288 (MAPE), 0.0150 (RMSE) and 0.1068 (U2), 

respectively. The reason for this may be attributed to the introduction of carbon pricing in July. 

Although carbon pricing has been removed from our model, it still has a profound effect not only 

on prices but also on the amount of electricity generation and demand. In July, the first month of 

introducing the carbon tax, the generator in the proposed CTSGAN fits not well, and the 

discriminator requires more training to effectively distinguish between the real data and the 

generated data under the data mutation. Also, it can be found that the difference in fitting error with 

two models for the July training set is not significant, and only the generalization ability is affected. 

After calculating the average of the training and test errors for each of the 12 months, it is 

evident that the proposed CTSGAN model can forecast better for the test set, with the average MAE 

of 0.0107, MAPE of 0.1342, RMSE of 0.0137, and U2 of 0.1617. Compared to the simple LSTM 

model, the 12-month average MAE, MAPE, RMSE, and U2 are improved by 14.4%, 19.0%, 8.7%, 

and 21.7%, respectively. However, when comparing the fitting errors of the training set, the fitting 

errors of the LSTM model are smaller, with the average MAPE of 0.1040, the average RMSE of 

0.0104, and the average U2 of 0.1380. Overall, the LSTM model is an excellent fitting tool for the 

time series due to the selection of long and short network memory ability, resulting in a minimal 

training error, but at the same time may introduce the problem of overfitting. For the proposed 

CTSGAN model, due to the latent space, there are two other network errors, the embedding error 

and the recovery error. Compared to the simple LSTM model, the overall fitting error is inferior to 

that of the LSTM model. 

Furthermore, the CTSGAN/Gain Column and LSTM/Gain Column, obtained by dividing the 

test error by the training error, represent the generalization ability based one the CTSGAN model 

and the LSTM model. The smaller the value, the better the generalization ability. Fig. 8 illustrates 

the gains with CTSGAN and LSTM in terms of MAE, MAPE, RMSE, and U2 in the year 2012. 

(a)             (b) 

(c)             (d) 

Fig. 8. Monthly gains between CTSGAN and LSTM in terms of  

(a) MAE (b) MAPE (c) RMSE (d) U2 



 

From Figs. 8(b), compared to the gain between testing MAPE error and training error of LSTM, 

the gain of CTSGAN is significantly smaller, for example, which is only half of that of LSTM, with 

a MAPE of 1.45 and 1.57 in March and December, respectively. In terms of MAE, RMSE, and U2, 

the gains based on CTSGAN are much smaller in most months of the whole year, which means that 

the CTSGAN model has a better generalization ability than the LSTM model. Although the training 

error of the CTSGAN model is not the same as that of the LSTM model, the gain of the CTSGAN 

model is significantly better than that of the LSTM model due to the generalization ability provided 

by the discriminator. Since the latent space retains the temporal dynamics, which is an excellent 

improvement to the forecasting ability, the point forecasting based on the CTSGAN model is 

effective. 

 

4.1.3 Experiment 3: Verification of optimal condition selection method and effect of removal 

of spikes 

 In Section 3.2.2, we propose a PSO-LSTM condition selection method to choose the optimal 

condition set as the input of CTSGAN due to the core NNs of CTSGAN are LSTMs. In this section, 

the forecasts of electricity prices for the year 2019 are conducted with historical electricity price set, 

all condition set, and the optimal condition set, respectively, to verify the effectiveness of the optimal 

condition selection method. Fig. 9 plots the bar charts of forecasting errors with three different 

condition sets, and Table 3 lists the results of four indicators and improvements. 

Fig. 9. Forecasting errors with optimal condition set and other two different condition sets 

In Fig. 9, one can find that when the CTSGAN input condition set only contains historical 

prices, the forecasting errors almost double or triple the errors with all condition sets as input. 

However, all condition set contains too many irrelevant variables, and DL will learn the features 

and result in poorer forecasting results. The optimal condition set selected by PSO, which is applied 

as the input of the CTSGAN model, provides the best forecasting performance.  

 

Table 3. Comparison of different condition sets as input 

Year Indicators Optimal condition set All condition set Historical price set 

2019 MAE 0.0093 (47.7%, 86.4%) 0.0178 0.0682 

MAPE 0.1034 (29.8%, 73.1%) 0.1473 0.3839 

RMSE 0.0108 (32.1%, 81.2%) 0.0159 0.0574 

U2 0.1362 (13.9%, 74.4%) 0.1581 0.5312 

The values in brackets in cells of the optimal condition set column represent the improvement 

of error by introducing the optimal condition set compared to all condition set and historical price 

set, elucidating that the PSO-LSTM condition selection method can reduce forecasting errors. 

Compared with all condition set input, MAE, MAPE, RMSE, and U2 are improved by 47.7%, 



 

29.8%, 32.1%, and 13.9%, respectively. When the condition input is only historical price set, the 

CTSGAN model provides the worst prediction error, with MAE of 0.0682, MAPE of 0.3839, RMSE 

of 0.0774, and U2 of 0.5312, all of which are several times larger than those with optimal condition 

set. 

 

Table 4. Comparison of effect of removing spikes on forecasts 

Year Indicators 
w/o positive  

w/o negative  

w/ positive  

w/o negative  

w/o positive  

w/ negative  

w/ positive  

w/ negative  

2019 MAE 0.0093 (92.6%, 32.6%, 93.3%) 0.1248 0.0138 0.1392 

MAPE 0.1034 (76.6%, 16.5%, 78.9%) 0.4422 0.1239 0.4904 

RMSE 0.0108 (87.8%, 13.6%, 89.5%) 0.0891 0.0125 0.1025 

U2 0.1362 (82.5%, 29.4%, 84.7%) 0.7803 0.1930 0.8917 

Table 4 lists the effect of the removal of positive and negative spikes on forecasts. The values 

in brackets in cells of the “w/o positive w/o negative” column represent the improvement of error 

by removing all spikes compared to removing one or none spikes. One can find that the removal of 

positive and negative spikes can improve forecasting performance. Compared with the removal of 

none spikes data (original prices), MAE, MAPE, RMSE, and U2 are improved by 93.3%, 78.9%, 

89.5%, and 84.7%, respectively. Another finding is that removing only positive spikes resulted in a 

greater boost than removing only negative spikes, with a RMSE of 0.0891 (w/o negative) and 0.0125 

(w/o positive). The main reason is that the positive spikes are large (>10000A$/MWh) and if not 

removed will result in the normalized electricity rices becoming very small, making it difficult to 

fit the prediction model. Negative electricity price spikes, on the other hand, are small (>-

100A$/MWh) and have limited effect on forecasts.  

 

4.1.4 Experiment 4: Verification of contribution of each component in CTSGAN 

Table 5. Contribution of each component in CTSGAN 

 2012 2014 2016 2018 

CTSGAN 0.0137±0.0061 0.0132±0.0043 0.0456±0.0074 0.0372±0.0036 

w/o conditions 0.0539±0.0073 0.0574±0.0047 0.0749±0.0094 0.0974±0.0055 

w/o Wasserstein 0.0377±0.0143 0.0465±0.0122 0.0691±0.0101 0.0571±0.0098 

w/o supervised loss 0.0471±0.0078 0.0493±0.0068 0.0731±0.0073 0.0837±0.0061 

w/o embedding networks 0.0289±0.0086 0.0316±0.0094 0.0592±0.0082 0.0629±0.0063 

w/o joint training 0.0363±0.0116 0.0485±0.0127 0.0605±0.0099 0.0774±0.0122 

To analyze the contribution of each component in CTSGAN, RMSE is used as a point prediction 

benchmark with the following modifications: (1) without conditions; (2) without Wasserstein 

Distance mechanism; (3) without the supervised loss; (4) without the embedding networks; and (5) 

without joint training process. Table 5 lists the RMSE results of the ablation experiment. Overall, 

one can find that all five elements make important contributions in improving the quality of 

electricity prices forecasting. The condition set plays one of the most important roles in improving 

the accuracy of the prediction results. Taking the 2014 price prediction results as an example, one 

can find that the ranking according to the error range contribution is in the order of the joint training 

process (±0.0127), Wasserstein Distance (±0.0122), embedding networks (±0.0094), and 

supervised loss (±0.0068), which well reveals the reason for the stability of the proposed CTSGAN. 

 



 

4.2 Case 2: Electricity price probabilistic forecasting 

To verify the probabilistic forecasting performance of the proposed CTSGAN model, the 

TSGAN model is introduced for forecasting and comparison in Section 4.2.1 and 4.2.2. The 

parameter setting and selection of core NNs are the same as described in Section 4.1. Different from 

point forecasting, probabilistic forecasting chose 100 as the noise dimensionality. In Section 4.2.3, 

Bootstrap and LUBE-based models are introduced to compared with CTSGAN model for winter 

and summer electricity price forecasting. 

 

4.2.1 Experiment 5: Comparison of synthetic scenarios with CTSGAN and TSGAN 

Fig. 10 illustrates the PCA and t-SNE visualization on the synthetic scenarios (blue) and 

original (red) electricity prices with (a) and (b) the proposed CTSGAN model, and (c) and (d) the 

TSGAN model. The scenarios generated by the proposed CTSGAN show a better overlap with the 

original electricity price than the TSGAN model. Comparing Figs. 10(a) and (c), one can find that 

the original data is clustered into two concentrated regions, and the generated data from the 

CTSGAN model can also be clustered into two regions, while the generated data from the TSGAN 

model does not have this feature. Besides, the data generated by the CTSGAN model has a good 

overlap of features outside of the aggregated regions, while the data from the TSGAN model has 

lost this feature. The same conclusion can be found for Figs. 10(b) and (d), where the data generated 

by the CTSGAN model can retain more original features and overlap better with the original 

electricity price data than those by TSGAN. The CTSGAN model can make the generated price 

scenarios relatively realistic. 

 

(a)                                          (b) 

 

(c)                                          (d) 

Fig.10. Visualization with t-SNE and PCA for synthetic scenarios based on 

(a) and (b) CTSGAN, and (c) and (d) TSGAN 

 

4.2.2 Experiment 6: Comparison of probabilistic forecasting with CTSGAN and TSGAN 

The high and fluctuating electricity prices during the autumn and winter months due to the high 



 

heating demand makes it difficult to forecast. Therefore, the autumn and winter seasons are chosen 

for a probabilistic forecasting case study. Figs. 11 and 12 show forecasts of 1,000 scenarios of 5 

days for the winter and autumn seasons in the financial years of 2018-2019 and 2019-2020, 

respectively.  

 

(a)                                          (b) 

 

(c)                                          (d) 

Fig. 11. Day-ahead probabilistic forecasting for five days based on CTSGAN, (a) Winter in 2018-

2019, (b) Autumn in 2018-2019, (c) Winter in 2019-2020, (d) Autumn in 2019-2020 

 

(a)                                          (b) 

 

(c)                                          (d) 

Fig. 12. Day-ahead probabilistic forecasting for five days based on TSGAN, (a) Winter in 2018-

2019, (b) Autumn in 2018-2019, (c) Winter in 2019-2020, (d) Autumn in 2019-2020 



 

The blue solid and dotted curves represent the upper and lower bounds of the 1,000 scenarios, 

respectively. The probability of each electricity price occurring is calculated with 1,000 scenarios, 

and the predicted probability of each occurrence is represented with a blue-grey pixel. As shown in 

the color bar (the legend on the right), the darker the color, the higher the probability. As there are 

few points with a probability greater than 0.5, the range of the color bar is set as 0-0.5, and the white 

pixel is shown for the probability of 0. 

As shown in Figs. 11 and 12, the variances of forecasting scenarios are significantly more 

extensive at the price peaks. For example, in Fig. 11(a), the maximum value of each spike forecast 

is close to A$200/MWh, while the minimum value of that is only around A$100/MWh. However, 

in the low-price areas, this fluctuation is smaller, within a range between A$50/MWh and 

A$70/MWh, as shown in Fig. 11(a). The same phenomena can be seen in Fig. 12. Another noticeable 

phenomenon is that the forecast intervals in Fig. 12 are significantly larger than those in Fig. 11, 

with the interval widths even more remarkable than A$200/MWh at the price peak and greater than 

A$50/MWh in the low price areas. While a large interval maximizes the inclusion of actual 

electricity prices, the forecast accuracy is significantly reduced. A A$200/MWh width interval 

forecast is not meaningful in many cases. The high probability pixel in Fig. 11 is more concentrated 

around the actual electricity prices. This phenomenon is even more evident in Fig. 11(b), where the 

large probability forecast pixels almost coincide with the actual electricity prices, from about the 

144-th point on the horizontal axis to the 240-th point (1 May 2019-2 May 2019). Conversely, the 

large probability forecast pixels in Fig. 12 are mainly concentrated below 50, deviating from the 

actual electricity prices and challenging the forecast effectively. 

Table 6 lists the performances of the proposed CTSGAN model and the TSGAN model for 

probabilistic forecasting of day-ahead electricity prices in terms of CRPS, WS with α=0.1, and WS 

with α=0.2. As shown, the CTSGAN model outperforms the TSGAN model, with an average CRPS 

of 7.0371, WS of 10.6850 (α=0.1), and WS of 10.0204 (α=0.2). 

 

Table 6. Comparison of CTSGAN and TSGAN probabilistic forecasting model for each season  

Year Season Model CRPS WS α=0.1 WS α=0.2 

2018 

- 

2019 

Winter CTSGAN 6.8006 9.0710 8.7695 

TSGAN 18.2032 57.0985 48.9610 

Spring CTSGAN 7.8141 8.9321 5.5526 

TSGAN 16.8523 57.3740 54.5402 

Summer CTSGAN 3.4887 9.4051 9.3615 

TSGAN 17.5536 58.9055 52.4945 

Autumn CTSGAN 6.0216 10.2391 9.9875 

TSGAN 18.6793 59.0754 55.7626 

2019 

- 

2020 

Winter CTSGAN 9.2235 11.6335 11.1395 

TSGAN 18.8676 58.2664 57.1147 

Spring CTSGAN 8.3984 11.4421 11.1248 

TSGAN 22.5368 59.0245 57.1315 

Summer CTSGAN 7.0288 13.7510 13.5858 

TSGAN 22.4623 57.7852 55.2205 

Autumn CTSGAN 7.5209 11.0063 10.6418 



 

TSGAN 16.1978 58.3173 49.4602 

Average 
CTSGAN 7.0371 10.6850 10.0204 

TSGAN 18.9191 58.2309 53.8356 

Overall, the price scenarios generated by the proposed CTSGAN model are more concentrated 

compared with the TSGAN model. The main reason is that the introduction of conditions improves 

the forecasting accuracy, and the latent space further preserves the temporal dynamics. If the 

difference between the forecasted scenarios and actual prices is too significant, the discriminator 

can readily recognize the forecasted scenarios. 

 

4.2.3 Experiment 7: Comparison of probabilistic forecasting with different models 

Conventional probabilistic forecasting models like Bootstrap, LUBE, QR and KDE introduced 

to benchmark the proposed CTSGAN model. The parameters of ELM combined Bootstrap (ELM-

Bootstrap) are set as [64], and three LUBE models are constructed by ANN (ANN-LUBE) [65], 

WNN (WNN-LUBE) [13], RNN (RNN-LUBE) [26], respectively. The parameters of QRRF and 

KDE are set as [66] and [67]. Table 7 lists the performances of five different models for probabilistic 

forecasting in terms of CRPS, WS with α=0.1, and WS with α=0.2.  

 

Table 7. Comparison of four probabilistic forecasting models for winter and summer sets 

Year Seasons Model CRPS WS α=0.1 WS α=0.2 

2018 

- 

2019 

Winter CTSGAN 6.8006 9.0710 8.7695 

ELM-Bootstrap 17.8312 48.9931 40.7897 

ANN-LUBE 13.9349 25.8316 23.9824 

WNN-LUBE 10.7461 20.9943 19.1923 

RNN-LUBE 10.3832 18.9492 17.5467 

 QRRF 10.8467 16.7312 14.2791 

 QRRF-KDE 8.9827 13.3732 12.6639 

Summer  CTSGAN 3.4887 9.4051 9.3615 

ELM-Bootstrap 14.8311 36.1319 34.0389 

ANN-LUBE 10.3785 30.4334 29.7812 

WNN-LUBE 10.8423 31.0327 28.9314 

RNN-LUBE 8.7303 30.1924 28.8902 

  QRRF 8.0371 26.7723 21.8369 

  QRRF-KDE 7.7990 23.9754 20.6363 

2019 

- 

2020 

Winter CTSGAN 9.2235 11.6335 11.1395 

ELM-Bootstrap 19.0395 59.8314 55.8831 

ANN-LUBE 14.7873 25.3746 23.2423 

WNN-LUBE 14.5523 22.2537 20.3784 

RNN-LUBE 13.3936 22.8848 20.6642 

 QRRF 12.1114 21.6312 20.1977 

 QRRF-KDE 11.6700 19.9081 19.0834 

Summer CTSGAN 7.0288 13.7510 13.5858 

ELM-Bootstrap 19.7371 47.8456 44.9173 

ANN-LUBE 15.3314 40.6649 38.8943 

WNN-LUBE 10.8731 29.6764 24.5238 



 

RNN-LUBE 10.1731 25.8837 21.4831 

  QRRF 8.2726 22.3005 16.8893 

  QRRF-KDE 7.9003 21.7733 15.1023 

The results show that the proposed CTSGAN model has the best performance in the electricity 

price interval forecasting for winter and summer from 2018 to 2019 and 2019 to 2020, giving a 

smaller error than other models. For example, the WS (α=0.1) is 9.0710 (winter, 2018-2019), 9.4051 

(summer, 2018 -2019), 11.6335 (winter, 2019-2020), and 13.7510 (summer, 2019-2020), while that 

obtained by Bootstrap models and LUBE models are approximately two times or three times than 

that obtained by proposed CTSGAN model. The QRRF predictor, with a CRPS of 8.2726, 

outperforms all LUBE models, but is slightly inferior to QRRF-KDE, with a CRPS of 7.9003, in 

the summer from 2019 to 2020. Compared forecasting accuracy in summer with that in winter, one 

can find that the proposed CTSGAN model provides a smaller CRPS in summer, which means that 

the forecasting intervals in summer have higher reliability and lower sharpness. 

 

4.2.4 Experiment 8: Probability density of prediction intervals based on CTSGAN 

 

(a)                                 (b) 

 

(c)                                 (d) 

Fig. 13. Probability density of prediction scenarios 

(a) Overall view,(b) Enlarged partial view, (c) Left view (d) Top view 

The conventional interval prediction methods, such as the LUBE-based methods, only give the 

upper and lower bounds of prediction intervals but cannot give the probability density of each 

electricity price in the interval. Our proposed CTSGAN method can generate prediction intervals 

and probability densities by combining the pattern-diversity scenarios. The visualized prediction 

scenarios are shown in Fig. 13(a), where the x, y, and z axes are the prediction time scale, the 

normalized prediction electricity price, and the probability density for each different price, 

respectively. The colors represent the probability densities of the occurrence of these scenarios. The 

x-axis [0,10] in Fig. 13(a) is partially enlarged, as shown in Fig. 13(b), which presents the detailed 

probability density of each scenario. The probabilities vary from time to time for different scenarios, 

with the highest probabilities ranging from 0.15 to 0.2. Fig. 13(c) presents the left view of Fig. 13(b). 

As shown, the probability density cross-section of each scenario for different times approximates a 



 

Gaussian distribution curve. This indicates that the pattern-diversity scenarios generated by 

CTSGAN follow approximately the normal distribution, consistent with the input random noise 

distribution. Fig. 13(d) is a top view of Fig. 13(a). Fig. 13(d) shows how scenarios with different 

probability densities can be combined into prediction intervals. Similar to Fig. 13(c), the scenarios 

with greater probabilities appear at the center of the prediction intervals, while scenarios of low 

probabilities stay near the upper and lower boundaries.  

 

4.2.5 Experiment 9: Simulations of multi-objective forecasting with different dimensional 

random noise 

By varying the random noise dimensionality of the input, the proposed CTSGAN model can 

be transformed into a multi-objective forecasting model, which directly gives high-quality 

forecasting intervals with different coverage probabilities. The forecast of electricity prices is 

repeated 11 times for four seasons in the financial years of 2018-2019 and 2019-2020, setting the 

dimensionality of random noise to 40, 60, 80, 100, 120, 140, 160, 180, 200, 220 and 240, 

respectively. The interval widths of the 1,000 generated scenarios are then calculated and compared 

with the actual electricity prices to determine whether the forecasting interval covers the actual 

prices and calculate the coverage probability. The result is shown in Fig. 14. 

 

Fig. 14. Probabilistic forecasting with different dimensional random noise 

In Fig. 14, the different colored points represent different random noise input dimensions, with 

240 on the far left and 40 on the far right. There are 8 points for each color, representing the results 

of four seasons in the two financial years of 2018-2019 and 2019-2020. The multiple red points are 

the results obtained with 100-dimensional noise as the input, and the green points are the results 

obtained with the 120-dimensional noise. Thus, taking 100 or 120 as the input random noise 

dimension can guarantee a higher coverage probability without reducing the accuracy (wider 

intervals). In this paper, 100 is chosen. When the dimension of input random noise increases, the 

increased diverse randomness would diversify the forecasted scenarios, and therefore, the forecast 

interval becomes wider, with the interval width essentially greater than A$60/MWh when the 

dimensionality is 240. As the diversity of the generated scenarios gradually covers some small 

probability prices, the coverage probability increases, with a probability of about 95% when the 

dimensionality is 240. Conversely, as the dimensionality of the input random noise decreases, the 

diversity of the generated scenarios also decreases. The forecasted interval becomes progressively 



 

narrower, and the probability of coverage decreases, with a coverage probability of less than 60% 

and a forecasted interval width of less than A$20/MWh when the dimensionality is 40 or 60. 

The black points with the red outlines in the top left corner of Fig. 14 are the forecasted interval 

width and probability results based on the TSGAN model, with 100-dimensional noise as the input. 

This result is relatively poor. Although the coverage probability is large, the width of the forecasted 

interval is also large, equal to about A$115/MWh, even greater than the interval width of the output 

based on the CTSGAN model with 240 dimensions of noise as the input (about A$60/MWh to 

A$85/MWh). Consequently, the proposed CTSGAN model is more appropriate for obtaining 

different forecasting results by changing the input dimensions, which is not the case with the 

TSGAN model. 

 

5. Conclusion and future work 

Accurate electricity price forecasting plays an essential role in the electricity market. In this 

paper, a new CTSGAN-based electricity price forecasting model is proposed, which can well 

preserve the temporal dynamics for the whole period. This model exhibits the excellent 

performances of both point and probabilistic forecasting according to case studies. 

Firstly, for point forecasting, the proposed CTSGAN model has better forecasting accuracy than 

other conventional ML or DL models and has better generalization ability than the simple LSTM 

model due to the introduction of the discriminator. Secondly, compared with different condition sets 

as input, the effectiveness of PSO based optimal condition selection method is verified. Thirdly, for 

probabilistic forecasting, the CTSGAN model can generate relatively realistic price scenarios, 

which retains more of the original features and has a better overlap with the original electricity 

prices. And the CTSGAN model has better probabilistic forecasting performance than the TSGAN 

model in terms of CRPS and WS. Furthermore, other conventional probabilistic forecasting models 

are introduced to compare with the CTSGAN model, validating the effectiveness. Finally, by 

varying the random noise dimensionality of the input, the proposed CTSGAN model can directly 

yield high-quality forecasting intervals with different coverage probabilities. 

Future works will be conducted on the following two aspects. The first is the improvement and 

optimization of the forecasting model. At present, deep learning is getting progressively larger, and 

larger-scale prediction models will undoubtedly improve the accuracy of forecasts. The second is 

the inclusion of some factors that were not previously included but can significantly affect the 

electricity prices, such as Covid-19 and the 2019-2020 NSW bushfires. 
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Appendix A. Autocorrelation analysis of residuals 

   

(a)           (b) 

   

(c)           (d) 

Fig. A1  ACF test of residuals with different models 

(a) CTSGAN, (b) LSTM, (c) LASSO and (d) BPNN 
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