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Abstract—In this paper, a novel system-level robust design 

optimization method is presented to improve the performance of 

switched reluctance motor (SRM) drive systems under multiple 

operating conditions. Based on typical driving cycles of electric 

vehicles (EVs), five typical driving modes of the SRM are 

determined. The optimization objectives in each driving mode are 

established. The significant parameters of the motor and 

controller of each driving mode are selected as the optimization 

variables by using the sensitivity analysis. In order to simplify the 

optimization process, correlation analysis is performed to 

determine the coherence of the objective functions of all driving 

modes. Then, a sequential Taguchi method is applied to find an 

optimal design which is less sensitive to the noise factors. To verify 

the effectiveness of the proposed method, an SRM drive system 

applied in EVs with a 12/10 SRM and angle position control 

method is investigated. It is found that the proposed method can 

significantly reduce the torque ripple and improve the 

comprehensive performance. Finally, a 12/10 SRM is prototyped 

and tested to validate the simulation results. 

 
Index Terms—Multiobjective optimization, robust design, 

switched reluctance motor (SRM), Taguchi method. 

I. INTRODUCTION 

WITCHED reluctance motors (SRMs) are a type of doubly 

salient machines without permanent magnets (PMs), which 

have drawn considerable attention due to their inherent 

advantages of low manufacturing cost, high robustness, and 
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fast dynamic response [1], [2]. They have become a feasible 

alternative to conventional electric machines in applications, 

such as electric vehicles (EVs) and hybrid EVs (HEVs) [3], [4], 

[5]. For instance, as reported in [3], a 50-kW continuous power 

rated SRM was designed based on torque-speed curve for 

off-road vehicle application. In [4], a comprehensive 

optimization which combined static and transient analysis was 

presented for a segmental rotor SRM. The proposed SRM was 

designed to maximize efficiency with the aim of achieving 

performance equivalent to that of interior permanent magnet 

motor utilized in Nissan’s leaf EV. Moreover, load test results 

over the entire speed range of the SRM designed for HEV 

application was presented in [5]. 

To achieve the desired performance, optimization is a 

necessary step for SRMs. Optimization methods in previous 

work can be divided into single objective and multiobjective 

optimization scenarios [6], [7]. The single objective 

optimization method is done to address only one performance 

index with the potential unfavorable downgrading of other 

performance indices [8], [9]. Thus, the multiobjective 

optimization method is preferred to accommodate the 

requirements for different applications [10]. For example, in 

[11], a multiobjective optimization design method which 

contains six objectives was conducted for an SRM designed for 

low-speed EVs. The stator pole arc, rotor pole arc, rotor radius, 

and the air gap of SRM are selected as the design parameters. In 

[12], an in-wheel SRM was designed by using a multiobjective 

differential evolution algorithm. Six geometry variables, i.e., 

stator pole angle, rotor pole angle, stator pole height, rotor pole 

height, stator yoke length, and rotor yoke length are employed 

to optimize the static torque, torque per motor lamination 

volume, and efficiency.  

Aside from the geometry design aspect, multiobjective 

optimization has also been performed on the control aspect of 

SRMs. The PI controller gains, the turn on and turn off angles 

can also be selected as design parameters [13], [14]. To obtain 

the best performance of the drive system, the geometry and 

control variables should be designed and optimized at the 

system level rather than the component level [15], [16]. 

Although the system-level optimization methods have been 

applied to the optimization of PM motors [17], not much work 

has been reported about its application for SRM drives 

optimization. 

There are many unavoidable noise factors for the design 
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variables of SRMs due to manufacturing tolerances and 

material diversity [18], [19]. These variations will greatly affect 

the performance of SRMs. Thus, the robust optimization 

method which takes the manufacturing quality into account is 

an effective way to handle this problem. The six-sigma 

methodology is generally used to develop products to meet the 

needs with very low defect levels, and it can achieve 3.4 defects 

per million. As reported in [20], a multilevel robust 

optimization framework is presented to meet the six-sigma 

level based on finite element analysis (FEA). However, it 

requires abundant data achieved from FEA and complicated 

algorithms, which is time-consuming and will increase the run 

time of the motor optimization. Taguchi method is an efficient 

robust approach since it does not use complex algorithms and 

the number of required finite element simulations can be 

significantly reduced by using an orthogonal array [21], [22]. 

Generally, the above-mentioned optimization techniques 

considering either single or multiple objectives along with a 

system-level approach and further quantifying the designs’ 

robustness are mainly performed for single load point analysis. 

As reported in [23], the optimization process for the in-wheel 

SRM in EVs was only conducted under rated operation 

condition. However, for the application of EVs, manifold 

driving conditions are required during operation, such as 

frequent start and stop, acceleration and deceleration, climbing, 

and high-speed cruise [24], [25]. In [26], the energy efficiency 

of the traction machine over the driving cycle was characterized 

by evaluating a number of representative points. The overall 

design optimization for SRMs applied in EVs are very 

challenging to meet the requirements under different driving 

conditions [27], [28]. Consequently, SRMs designed for EV 

application should possess the capability of multimode 

operation.  

In this paper, this requirement is incorporated into the 

multiobjective robust optimization under the consideration of 

both geometry and control variables. A novel system-level 

robust design optimization method is proposed for SRM in the 

application of EVs. The remainder of this paper is organized as 

follows. Section II presents the proposed system-level robust 

optimization method considering multiple driving cycles. Both 

the sensitive variables in geometry and control aspects are 

selected as the optimization variables. The design levels of 

optimization variables and noise factors are determined to 

facilitate applying the Taguchi method. In Section III, a design 

example of a 12/10 SRM applied in EVs is investigated. The 

concept for multimode evaluation is proposed, and the 

sensitivity analysis, correlation analysis and sequential Taguchi 

method are implemented. Experimental validations are given in 

Section IV, followed by the conclusion in Section V. 

II. SYSTEM-LEVEL ROBUST OPTIMIZATION METHOD 

CONSIDERING MULTIPLE DRIVING CYCLES 

A. Multiple driving cycles 

Fig. 1 shows the typical new European driving cycles 

(NEDC) [24]. It can be seen that several different driving 

modes, i.e. starting and stop, normal cruise, acceleration, 

high-speed cruise, and climbing, frequently occur in the NEDC. 

Thus, it is essential to consider the therewith associated 

manifold SRM operating points during the optimization 

process.  

The relationship among the driving modes, design 

requirements and motor operation is shown in Fig. 2. 

According to the different driving modes, the designed SRM 

should meet the requirements for the whole operating range. It 

should be noted that one driving cycle may put forward 

multiple design requirements, and one design requirement may 

be applied to several driving modes. For example, the normal 

cruise of driving cycles puts forward high torque, low torque 

ripple and high efficiency of the motor. Besides, the low torque 

ripple is correlated to the driving modes like normal operation, 

open-circuit fault and short-circuit fault. 

Since different requirements are needed in different driving 

modes, it is meaningful to propose a multiobjective 

optimization method for the optimization of the multiple 

driving modes. Besides, for the application in EVs, the 

performance evaluation of the motor drive system is necessary, 

and the manufacturing tolerance should also be considered 

during the whole optimization process. Thus, the aim of this 

paper is to propose a design optimization method which 

integrates the concept of multiple driving modes, system level 

optimization, and robust design. 
 

 
 

Fig. 1.  NEDC driving cycle. 

 

 
 

Fig. 2.  Relationships among driving cycles, design requirements and the 
operating range of SRMs. 

B. System-level robust optimization 

Fig. 3 shows in brief the procedures for the proposed new 

system-level robust optimization method for electrical drive 

systems applied in EVs. This kind of system-level robust 

optimization method has simultaneously taken the driving 

cycles of EVs, the geometry and control parameters of the SRM 

drive system, and the manufacturing tolerances into 

consideration. It can be subdivided into the next four steps. 



 

Step 1: Initial design 

In this step, the driving cycles of EVs are determined first 

according to road condition. Then, the requirements of EVs can 

be defined. Based on the driving cycles and requirements, the 

operation of the motor can be classified into different modes. 

Finally, an initial design can be derived based on the 

requirements in each mode. 

Step 2: Sensitivity analysis 

Compared with the optimization for one operating point, the 

proposed approach includes one sensitivity analysis per each 

driving mode. The significant variables of the drive system in 

each mode can be selected according to the results of sensitivity 

analysis. 

Step 3: Taguchi robust optimization 

In this step, the objective function for all the driving modes is 

defined at first. The levels of optimization variables and noise 

factors are determined to set up the orthogonal array. Then, the 

required evaluations based on finite element models (FEMs) 

are specified according to the orthogonal array, which helps 

greatly reduce the overall number of necessary simulations. 

Finally, the optimal design can be selected based on the 

analysis of the results. 

Step 4: Performance evaluation 

The motor performance of the optimal design is evaluated by 

FEA. Consequently, experiments about the investigated driving 

modes are carried out to verify the simulation results. 
 

 
 

Fig. 3.  Procedures of the proposed optimization method. 

 

 
 
Fig. 4.  The prototype of the SRM. 

 

TABLE I 

SPECIFICATIONS OF THE SRM  

Rated power 75 kW 

Peak power 110 kW 

Rated speed 6000 r/min 

Maximum speed 12000 r/min 

DC link voltage 384 V 

Efficiency ≥ 85% at rated speed 

Cooling type Water-cooling 

 

TABLE II 
INITIAL DESIGN VALUES 

 

Parameter Description Unit Value 

Dso Stator outer diameter mm 310 

ls Stack length mm 190 

Dro Rotor outer diameter mm 204 

βs Stator pole arc deg. 13.5 

βr Rotor pole arc deg. 12 

hcs Stator yoke thickness mm 21 

hcr Rotor yoke thickness mm 20 

g Length of air gap mm 0.5 

n Number of turns - 26 

θon Turn-on angle deg. -5 

θoff Turn-off angle deg. 11 

III. A DESIGN EXAMPLE 

In this example, a 12/10 six-phase SRM is designed for the 

application in EVs. The specifications of the SRM are listed in 

Table I, according to which the motor should feature a torque of 

120 Nm at the rated speed of 6000 r/min, while providing a 

minimal efficiency of 85%. Fig. 4 shows the prototype and the 

assembly process of the SRM. The SRM is mainly comprised 

of stator core with 12 poles wrapped by windings, and rotor 

core with 10 poles without any coil, magnets, or squirrel cage. 

It has six phase windings, and each phase winding consists of 

two coils wound on the opposite two poles of the stator. These 

two coils are connected in parallel. The initial design values are 

listed in Table II. The external dimensions of the motor are 

fixed as constant values due to the limitation of the space. Thus, 

the stator outer diameter and stack length are specified to 310 

and 190 mm, respectively. 

The whole discussion of the optimization method is based on 

identifying different driving modes based on the considered 

driving cycle. Thus, this categorization is considered as first 

step. Consequently, the sensitivity analysis based on FEMs is 

performed to select the significant variables for each driving 



 

mode. Then, since some objectives in different driving modes 

may be positively correlated, the correlation analysis is 

conducted to determine these objectives and select only one 

objective to substitute all the positively correlated objectives, 

which will significantly reduce the computational cost. Finally, 

a sequential Taguchi optimization method which holds the 

advantage of both Taguchi method and sequential optimization 

strategy is carried out to find the optimal solution for 

multimode application based on FEMs. 

C. Multimode concept 

The driving modes of the SRM applied in EVs can be 

categorized into the following five types according to the 

driving cycle and design requirements shown in Figs. 1 and 2. 

1) Mode 1: Normal operation 

In this mode, the focus should be laid on the performances of 

torque, losses, and torque ripple. Thus, these three objectives 

are set as the optimization objectives. The objective function in 

this mode is to maximize the average torque, minimize the loss 

and torque ripple, which is given as 
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where Tavg_1, Ploss_1, and Tripple_1 are the output torque, loss, and 

torque ripple in mode 1. 

2) Mode 2: Start or climbing 

The start and stop operation conditions always occur during 

urban driving, as shown in Fig. 1. In the mode of startup 

operation of the motor, high torque is the foremost requirement 

and it is set as the operation objective in this mode. The driving 

cycle of the climbing is similar to the start operation, which also 

requires high output torque. Thus, the mode of start and 

climbing is combined as one single independent driving mode. 

The objective function in this mode is given as  

_ 2Objective :  max avgT                             (2) 

where Tavg_2 is the output torque in mode 2. 

3) Mode 3: Open circuit fault operation 

In this mode, the torque ripple is the major concern due to the 

operation reliability. Thus, the torque ripple is selected as the 

optimization objective. The objective function in this mode is 

given as  

_3Objective :  min rippleT                        (3) 

where Tripple_3 is the torque ripple in mode 3. 

4) Mode 4: Short circuit fault operation 

Since due to vibration the insulation of the copper wire might 

get damaged when the motor runs for long time in this 

operating mode. The most likely scenario in this mode is that 

two adjacent coils are short circuited, thus this situation will be 

considered. The short-circuit condition should be paid attention. 

The objective function in this mode is given as 

_ 4Objective :  min rippleT                        (4) 

where Tripple_4 is the torque ripple in mode 4. 

5) Mode 5: High-speed operation 

Since in this mode the net losses including copper loss and 

core loss has a major influence on the motor efficiency and the 

operation temperature, they have been selected as the objective. 

The objective function in this mode is given as 

_5Objective :  min lossP                        (5) 

where Ploss_5 is the loss in mode 5. 

The angle position control (APC) method will be 

investigated for all the five driving modes since it is the 

commonly used control method for the SRM [13], [29]. 

D. Sensitivity analysis 

For the simplification of the optimization process, a 

comprehensive sensitivity analysis is adopted to select the 

optimization variables and divide them into different subspaces 

[30]. The design variables are listed in Table II, and the 

sensitivity of f with regard to the parameter xi can be given by 

( ( / ))
( )

( )

i

i

V E f x
S x

V f
=                           (6) 

where f is the optimization objective, E(f/xi) is the average 

value of f when xi is constant, V(E(f/xi) is the variance of E(f/xi), 

and V(f) is the overall variance of f. 
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Fig. 5.  Sensitivity indices for mode 1. 
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Fig. 6.  Sensitivity indices (a)-(d) for modes 2-5. 

 

Fig. 5 shows the sensitivity analysis results of the two control 

parameters and six geometry parameters for the three 

objectives in Mode 1. Besides, the sensitivity results of the 

other four driving modes are presented in Fig. 6. The sensitive 

variables can be identified from Figs. 5 and 6, and the results 

are shown in Table III. Besides, representative speeds of each 

mode are presented in Table III. 

It can be found that one driving mode may have several 

influential variables and the same variable may significantly 



 

affect the objectives of multiple driving modes. For example, 

there are four crucial variables in mode 1, i.e., θon, θoff, g, and βs, 

in which θon also shows high impact on the objectives of modes 

2, 3 and 5. The crossover of the driving modes and their 

influential variables highly increase the difficulty of the 

optimization since different variables should be optimized for 

the driving modes. Taking the variables θoff and g as an example, 

θoff  is important for modes 1, 2 and 5 while g has significant 

impact on the objectives of  modes 1, 3 and 4. Thus, the 

selection of the optimal values of θoff  and g cannot be 

determined by the same driving modes. Thus, it is necessary to 

analyze the correlation of all the driving modes to further 

simplify the optimization process.  
 

TABLE III 

SELECTION OF SENSITIVE VARIABLES 
 

Driving modes 
Sensitive 

variables 

Representative  

speed 

Mode 1: Normal operation θon, θoff, g, βs n = nrated 

Mode 2: Start or climbing θon, θoff, βs n ≤ 0.5nrated 

Mode 3: Open circuit fault operation θon, g n = nrated 

Mode 4: Short circuit fault operation g n = nrated 

Mode 5: High speed operation θon, θoff n = 1.5~2nrated 

 

TABLE IV 

CORRELATION ANALYSIS OF OPTIMIZATION OBJECTIVES 
 

 Tavg_1 Ploss_1 Tripple_1 Tavg_2 Tripple_3 Tripple_4 Ploss_5 

Tavg_1 1 0.975 0.215 0.992 0.368 0.128 0.939 

Ploss_1 0.975 1 0.143 0.960 0.313 0.057 0.971 

Tripple_1 0.215 0.143 1 0.218 0.707 0.989 0.215 

Tavg_2 0.992 0.960 0.218 1 0.373 0.134 0.936 

Tripple_3 0.368 0.313 0.707 0.373 1 0.661 0.355 

Tripple_4 0.128 0.057 0.989 0.134 0.661 1 0.135 

Ploss_5 0.939 0.971 0.215 0.936 0.355 0.135 1 

 
TABLE V 

SELECTION OF OPTIMIZATION MODE AND OBJECTIVES 
 

Optimization 

objectives 

Optimization 

variables 

Driving 

mode 

Tavg_1 θon, θoff, βs mode 1 

Ploss_1 θon, θoff, βs mode 1 

Tripple_1 g mode 1 

Tripple_3 θon, g mode 3 

E. Correlation analysis 

The Pearson correlation coefficients [31] between different 

optimization objectives in the five driving modes are calculated 

to show the relationship between the two objectives. The value 

close to 1 indicates a high correlation. It can be found in Table 

IV that Tavg_1 and Tavg_2 are in positive correlation since the 

Pearson correlation coefficient between the two objectives is 

0.992, which is very close to 1. The same relationship can be 

found between Ploss_1 and Ploss_5, and Tripple_1 and Tripple_4, where 

the Pearson correlation coefficients are 0.971 and 0.989, 

respectively. Thus, the analysis of Tavg_2, Ploss_5 and Tripple_4 can 

be substituted by Tavg_1, Ploss_5 and Tripple_1, respectively. It 

should be noted that in Table IV, although the Pearson 

correlation coefficient between Tavg_1 and Ploss_1 is 0.975 

(similar between Tavg_1 and Ploss_5, Tavg_1 and Ploss_1, and Tavg_2 

and Ploss_5), since the optimization goal is to maximize the 

torque and minimize the loss, which means these are 

conflicting objectives, the analysis of the objectives related to 

loss cannot be substituted by the objectives related to torque. 

After the correlation analysis, only four objectives in two 

modes are selected for the optimization, as listed in Table V. 
 

 
 

Fig. 7.  Flowchart of the multilevel sequential Taguchi robust optimization 

method. 

F. Sequential Taguchi method 

Fig. 7 illustrates the flowchart of the multilevel sequential 

Taguchi robust optimization method. It can be divided into six 

steps. 

Step 1: Determine the optimization model combining all the 

optimization objectives in the driving modes. The optimization 

model is defined as 
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where xs, f, gi are the design parameter vector, objective and 

constraints of motor, respectively, xs consists of motor 

parameter vector and control parameter vector, xsl and xsu are 

the lower boundary and upper boundary, respectively, η, sf and 

Jc (in A/mm2) represent the efficiency, slot fill factor and 

current density, respectively, and w1, w2, w3, and w4 are the 

weighting factors. In this example, since Tavg_1, Ploss_1, and 

Tripple_1 are the representation of Tavg_2, Ploss_5, and Tripple_4, 

respectively, the values of w1, w2, w3, and w4 are assigned as 2, 

2, 2, and 1, respectively. The next several steps will constitute 

one iteration process, which is the main difference between the 

proposed sequential Taguchi method and the conventional 

Taguchi method. 
 



 

TABLE VI 
OPTIMIZATION VARIABLES AND RANGES 

 

Parameter Unit Ranges 

θon deg. [-6, -4] 

θoff deg. [9, 11] 

βs deg. [10, 14] 

g mm [0.5, 1] 

 
TABLE VII 

LEVELS OF OPTIMIZATION VARIABLES 

 

Variable Level Iteration 1 Iteration 2 Iteration 3 Iteration 4 

θon (deg.) 

1 -6 -5 -4.5 -4.25 

2 -5 -4.5 -4.25 -4.13 

3 -4 -4 -4 -4 

θoff (deg.) 

1 9 9 9.5 9.75 

2 10 9.5 9.75 9.88 

3 11 10 10 10 

βs (deg.) 
1 10 10 10.5 10.75 

2 12 11 11 11 

3 14 12 11.5 11.25 

g (mm) 
1 0.5 0.75 0.88 0.94 

2 0.75 0.88 0.94 0.97 

3 1 1 1 1 

 
TABLE VIII 

ORTHOGONAL ARRAY 

 

No θon θoff βs g 
1 3 2 3 1 

2 3 3 1 2 

3 2 1 3 2 

4 2 3 2 1 

5 2 2 1 3 

6 1 3 3 3 

7 1 1 1 1 

8 3 1 2 3 

9 1 2 2 2 

 

Step 2: Define the levels for all the selected optimization 

variables and noise factors. 

Table VI lists the optimization variables and their ranges. 

Tables VII lists the design levels of optimization variables for 

each iteration process, respectively. As shown, there are three 

levels for each optimization variable. The data in column 

Iteration 1 in Table VII represents the initial levels of each 

optimization variable. The selection of the levels in the other 

iteration process will be introduced in the next steps. Since 

there are no permanent magnets in SRMs, the air gap g is 

selected as the only noise factor and its design levels are set as 

-0.1 mm and +0.1 mm.  

Step 3: Generate the orthogonal array based on the design 

levels of the control and noise factors, and implement the 

simulations according to the established array.  

Table VIII lists the orthogonal array generated from these 

factors. As shown, it has nine rows defined by the optimization 

variables. 1, 2 and 3 in the table represent the indices of the 

corresponding levels presented in Table VII. During one 

iteration, 18 (9×2) combinations of FEM simulations will be 

performed to evaluate the performances in mode 1, and 6 (3×2) 

combinations of FEM analyses will be considered to determine 

the performances in mode 3. The reason why more samples are 

analyzed for mode 1 than for mode 3 is that there are four 

influential variables in mode 1 while only two in mode 3, as 

shown in Table V. 
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Fig. 8.  Illustration of S/N ratios. (a) Iteration 1, (b) Iteration 2, (c) Iteration 3, 

and (d) Iteration 4. 
 

Step 4: Calculate the S/N ratios and determine the best 

combination of design parameter levels for the optimization. 

The calculation of the S/N ratios can be divided into two 

main steps: The first is to compute the S/N ratio for each row of 

the orthogonal array, and the respective equation is given by 
2

2

1

1
( ) 10 lg[ ( , )]

2 j

SN i F i j
=

= −                 (8) 

where i (1, 2, …, 9) and j (1, 2, 3, 4) are the row number in 

Table VIII and the index of the noise factor (variable), 

respectively. 

Then, the average S/N ratios for all levels of optimization 

variables based on the S/N ratios of each row is computed. For 

example, the average S/N ratio for the first level of θon is the 

average value of SN(6), SN(7), and SN(9). The combination of 

the best design levels for the optimization variables can be 

determined by the S/N ratios. The higher S/N ratio means the 

smaller F. Thus, the level of each optimization variable which 

reveals the highest S/N ratio is selected to determine the overall 

best design. 

Fig. 8 presents the illustration of S/N ratios. As shown in Fig. 

8(a), levels 3, 1, 1, and 3 are selected for θon, θoff, g, and βs, 

respectively, which correspond to -4, 9, 10, 1 in the column 

Iteration 1 in Table VII. 

Step 5: Calculate the value of the selection criterion of the 

selected combination of design levels. 

It should be noted that Steps 2~5 are considered as one 

iteration process. The idea for selecting a sequential iteration 

process is to further improve the performance and to make sure 

that the optimization process is converged and the performance 

of the identified optimal solution cannot be further improved. 

Step 6: Termination judgement. 

Compare the values of the selection criterion F between two 

successive iterations to judge whether the optimal solution 

meets the convergence condition. The value of F in iteration 1 

should be compared with that of the initial design. If their 



 

relative error is larger than 0 and smaller than a given value ε, 

terminate the iteration progress and output the optimal solution. 

Otherwise, reduce the design space and go to Step 2 to perform 

another iteration. It should be noted that if the relative error is 

completely equal to 0, it means the values for each control 

factor that were selected are the same. In this example, the 

value of ε is set as 3%. 

The space reduction method is applied to reduce the design 

space, which is defined as follows. Assume the initial design 

space of an optimization variable is [a, b], and there are three 

levels with a step size d. It should be noted that the step size of 

each optimization variable will be halved during the space 

reduction. If the optimal value of this variable is x0, then the 

design levels in the next iterative process will be determined by 

(9), where d in this formula is the step size of the present 

iteration.  

0

0

0 0 0

( , / 2, ),                  / 2

( , / 2, ),                  / 2

( / 2, , / 2),      

a a d a d x d a

b d b d b x d b

x d x x d others

+ + − 


− − + 
 − +

       (9) 

For example, for the variable θon, the best level is 3 in 

Iteration 1 and its corresponding value is -4º. As the step size in 

Iteration 1 is 1º, the next one is 0.5º. Thus, the next three levels 

in Iteration 2 will be -5, -4.5 and -4, respectively. The values of 

each level in each iteration process are listed in Table VII.  

The illustration of S/N ratios of each iteration is presented in 

Fig. 8, and the best combination of optimization variables in 

each iteration is listed in Table IX, as well as the values of the 

objectives in each driving mode. It can be found in Figs. 8(b) 

and (c) that the same levels are selected in Iterations 2 and 3, 

which means the best combinations of the optimization 

variables in Iterations 2 and 3 are the same. The sequential 

Taguchi method will be terminated after four iterations. Since F 

of Iterations 2/3 achieves the lowest value, the optimal design is 

selected as the same with Iterations 2/3 listed in Table IX. 
 

TABLE IX 

PERFORMANCE COMPARISON 
 

Parameter / 

Objective 
Unit Initial 

Iteration 

1 

Iterations 

2/3 

Iteration 

4 

θon deg. -5 -4 -4 -4 

θoff deg. 11 9 10 10 

βs deg. 13.5 10 11 10.75 

g mm 0.5 1 1 0.97 

Tavg_1 Nm 126.72 115.46 117.60 121.03 

Ploss_1 kW 3.04 2.63 2.67 2.71 

Tripple_1 % 83.84 74.35 32.70 39.74 

Tavg_2 Nm 462.58 420.89 449.65 460.43 

Tripple_3 % 170.32 162.66 138.72 142.57 

Tripple_4 % 83.08 75.60 33.27 40.30 

Ploss_5 kW 2.44 1.83 1.92 1.94 

f - 7 6.65 5.51 5.66 

 

Fig. 9 illustrates the flux density of the initial design and the 

optimal design at the aligned position when the two poles of 

one phase are excited with 50 A. In general, the optimal design 

exhibits lower values of flux density compared with the initial 

design. It means that the initial design is more likely to be 

saturated and the optimal design holds the stronger ability of 

output torque. It can be found in Table IX, the optimal solution 

achieved by the proposed optimization method can 

significantly reduce the torque ripples in modes 1, 3 and 4. 

Compared with the initial design, the torque ripples in mode 1, 

3, and 4 can be reduced by about 60%, 18%, and 60%, 

respectively. Besides, although the torque in mode 1 is reduced 

by about 7%, the losses also be decreased by about 12%. As the 

definition of F is to evaluate the comprehensive performance of 

the SRM drive system considering multiple driving cycles, the 

comprehensive performance is improved by about 21%. 

Moreover, the torque curves of the initial design and optimal 

design in mode 1 and mode 3 are presented in Figs. 10 and 11, 

respectively. They illustrate the changes of torque and torque 

ripple more intuitively. Compared with mode 1, the value of 

minimum torque in mode 3 has been greatly reduced, since the 

open phase loses the ability to generate the force pulling the 

rotor from the unaligned position to the aligned position among 

the range of conduction angle. 
 

 
 

Fig. 9.  Flux density at aligned position when the two stator poles of one phase 

are excited with 50 A. (a) Initial design and (b) Optimal design. 
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Fig. 10.  Comparison of torque in mode 1.  
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Fig. 11.  Comparison of torque in mode 3. 

IV. EXPERIMENTAL VALIDATION 

In order to verify the accuracy of the simulation results and 



 

the aforementioned analyses, the optimal design featuring 12 

stator teeth and 10 rotor teeth is manufactured. Consequently, it 

is put into operation by using a test rig, as shown in Fig. 12. The 

whole motor drive is mounted onto a test bed, where the tested 

SRM, torque and speed sensor, and magnetic powder brake are 

connected by two couplings. A high-performance driving 

controller of dSPACE 1401 is employed to control the turn on 

and turn off angles of the APC method. The position signals are 

detected by the Hall sensor ATS675LSE.  

Fig. 13 shows the measured current waveforms of the normal 

operation and open circuit fault conditions. The motor first 

operates under the normal operation, then an open-circuit fault 

occurs in phase C. It can be observed that the open-circuit fault 

of phase C does not influence the current of the other phases, 

which reveals the high tolerance ability of SRMs. Figs. 14 and 

15 illustrate the comparison of the torque derived by 

simulations and experiments for mode 1 and mode 3, 

respectively. The average errors for mode 1 and mode 3 

considering the difference of the simulation and experimental 

results are no more than 3% and 5%, respectively. 
 

 
 
Fig. 12.  Experimental platform of the 12/10 SRM drive system. 
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Fig. 13.  Measured current waveforms. 
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Fig. 14.  Torque comparison between simulation and experiments for mode 1. 
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Fig. 15.  Torque comparison between simulation and experiments for mode 3. 

V. CONCLUSION 

In this paper, a novel system-level robust design 

optimization considering multiple driving modes was proposed 

for a 12/10 SRM drive system considered for electric vehicle 

application. Five driving modes of the motor system were 

defined according to the considered driving cycle. To improve 

the optimization efficiency, a sensitivity analysis was 

implemented to identify influential variables as the design 

parameters for the optimization. A correlation analysis was 

implemented to determine the coherence of the objective 

functions of all driving modes in order to simplify the 

optimization process. Moreover, a sequential Taguchi method 

was proposed and applied to search for the optimal solution. A 

selection criterion was defined and the iterative process was 

terminated as the value of the selection criterion converged. 

The simulation results and a consequent experimental 

validation revealed that the proposed method allows to 

significantly reducing the torque ripple and improving the 

overall performance of the SRM. 
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