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 

Abstract—This paper presents a comparative study on different 

types of robust design optimization methods for electrical 

machines. Three robust design approaches, Taguchi parameter 

design, worst-case design and design for six-sigma, are compared 

for low-dimensional and high-dimensional design optimization 

scenarios, respectively. For the high-dimensional scenario, the 

computational burden is normally massive due to the robustness 

evaluation of a huge number of design candidates. To attempt this 

challenge, as the second aim of this paper, a space reduction 

optimization (SRO) strategy is proposed for these robust design 

approaches, yielding three new robust optimization methods. To 

illustrate and compare the performance of different robust design 

optimization methods, a permanent magnet motor with soft 

magnetic composite cores is investigated with the consideration of 

material diversities and manufacturing tolerances. 3-D finite 

element model and thermal network model are employed in the 

optimization process and the accuracy of both models has been 

verified by experimental results. Based on the theoretical analysis 

and optimization results, a detailed comparison is provided for all 

investigated and proposed robust design optimization methods in 

terms of different aspects. It shows that the proposed SRO strategy 

can greatly improve the design optimization effectiveness and 

efficiency of those three conventional robust design methods.  

 
Index Terms—Electrical machines, manufacturing tolerances, 

permanent magnet motor, robust design optimization, space 

reduction optimization, soft magnetic composite. 

I. INTRODUCTION 

LECTRICAL machines are the key components in many 

appliances, industrial equipment and systems. To improve 

their performance, such as higher torque density and efficiency 

and lower cost, different kinds of design optimization methods 
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have been developed. These methods can be classified into two 

main approaches, deterministic and robust approaches, in terms 

of the consideration of uncertainties. The deterministic 

approach has dominated the field of design optimization of 

electrical machines for a long time [1-10]. 

    Deterministic approach is able to provide an optimal design 

or a Pareto front (a set of non-dominated designs) for an 

electrical machine in a comparably short time or without high 

computation cost in many situations. For instance, this holds for 

optimizing a permanent magnet (PM) motor with 3-5 structural 

parameters using a genetic algorithm and analyzing the design 

candidates by 2-D finite element models (FEM). However, the 

main problem of the deterministic approach is that it cannot 

handle uncertainties, such as material diversities and 

manufacturing tolerances, that widely exist in the 

manufacturing process of electrical machines. These 

uncertainties will bring significant variations (or low quality) of 

the performance of electrical machines [11-18].       

To ensure the high manufacturing quality of the electrical 

machines in production, strict quality control and management 

methods can be applied, for example, six-sigma quality control. 

However, this requires extra resources and maybe a burden for 

small and medium-sized enterprises. In addition, the therewith 

associated additional cost are usually not accepted, in particular 

when dealing with mass-produced electric machines. 

To solve this problem, robust design optimization methods 

have been developed to investigate the impact of potential 

uncertainties in the early development stage of products like 

electrical machines. The main purpose of robust design is to 

seek a design that is insensitive to the variations of design 

variables and preassigned parameters [2,3,13]. There are three 

popular approaches, the Taguchi parameter design, worst-case 

(WC) design and design for six-sigma (DFSS). They will be 

introduced and compared for the design optimization of 

electrical machines in this work. 

 However, there is a major challenge for the robust design 

optimization of electrical machines in the high-dimensional 

situation, i.e. the huge computation cost for the evaluation of 

robustness of many design candidates. To attempt this 

challenge, a space reduction optimization (SRO) strategy is 

proposed for all three robust design approaches. Then, a 
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comprehensive comparative study will be presented for all 

investigated design optimization methods in this work, 

including the conventional deterministic approach and the 

proposed new methods. 

The remainder of this paper is organized as follows: Section 

II briefs the formulations of Taguchi parameter design, WC 

design and DFSS. Section III presents a comparative study of 

these three robust design optimization methods based on a 

design example. A PM motor with soft magnetic composite 

(SMC) cores is investigated with the consideration of different 

uncertainties. Section IV describes the proposed SRO strategy 

and applies it to the conventional robust design optimization 

methods. Section V investigates the example study again with 

more parameters and uncertainties to show the effectiveness of 

the proposed methods and to compare the performance of 

different robust methods, followed by the conclusion.  

II. ROBUST DESIGN OPTIMIZATION METHODS 

A. Comparison of Deterministic and Robust Designs  

 Figure 1 shows a brief comparison of deterministic and 

robust designs. As shown, the objective value of deterministic 

optimum is smaller and thus better than that of the illustrated 

robust optimum. However, in the presence of a small variation 

(∆x), there is a big fluctuation to the objective value (∆f) of the 

deterministic design. Most importantly, some points in the 

fluctuation are over the limit of the design objective, which 

means unsatisfactory products in production. The main reason 

for this fact is that the deterministic approach (DA) tends to 

push the optimal design close to the boundary of the constraints, 

following a high risk of unsatisfactory designs or failures in the 

presence of uncertainties. A small variation due to imperfect 

materials or manufacturing will lead to a big unsatisfactory rate 

of the product in manufacturing/production. Consequently, a 

robust approach is very important for the industrial application 

of electrical machines, especially in the context of Industry 4.0, 

as both motor performance and production quality must be 

considered in the design process, which may benefit the flexible 

and small batch production or customized electrical machines.        

B. Formulations of Deterministic and Robust Designs  

    Generally, a deterministic design with respect to an objective 

f(x) and m constraints g(x) has the form as 
min: 𝑓(𝐱)

s. t. 𝑔𝑗(𝐱) ≤ 0, 𝑗 = 1,2, … , 𝑚

𝐱𝑙 ≤ 𝐱 ≤ 𝐱𝑢

  ,                    (1) 

where xl and xu are the boundaries of the design parameter x, 

and x does not include any uncertain information [3]. To 

consider the uncertainties, there are three popular robust design 

approaches, Taguchi parameter design [19-24], WC design [25-

27], and DFSS [27-31].   

Taguchi parameter design is a kind of statistical experimental 

method for the quality improvement of product/process by 

minimizing the effects of the uncertainties or variations [23]. 

Figure 2 shows a block diagram of a product/process design in 

the Taguchi method. As shown, there are control factors and 

noise factors. The noise factors represent the uncertainties that 

may be hard to or cannot be controlled by the designer. 
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Fig. 1. Illustration and comparison of deterministic and robust designs. 
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Fig. 2. Block diagram of a product/process design in Taguchi method 
 

    For the design of an electrical machine, material diversities 

and manufacturing tolerances can be considered as noise 

factors. When the target value of a response is given, like the 

output power or torque, the Taguchi design determines an 

optimal combination of control factor levels so that the 

variation of this response is minimized even though noise 

factors exist [24]. To implement the Taguchi design, an 

orthogonal array (OA) consisting of an inner array (formed with 

control factors with certain levels) and an outer array (formed 

with noise factors with certain levels) is required first. Then, the 

best factor-level combinations can be determined by signal-to-

noise ratios (SNRs) based on the simulation data of the OA. 

SNRs can be classified into three types, nominal-is-best, larger-

the-best, and smaller-the-best. As a minimum is sought in (1), 

the smaller-the-best type is considered in this work. The SNR 

of this type is defined as  

SNR =  −10log (
1

𝑛𝑠
∑ 𝑦𝑖

2𝑛𝑠
𝑖=1 ),                      (2) 

where yi is the response of f(x) for ns combinations of noise 

factors in the outer array. Other types of SNRs can be found in 

[23,24]. The Taguchi parameter design has been widely 

employed in many applications due to its efficiency and 

effectiveness. However, it has two main imperfections. First, 

the constraints are not formulated in this method while it is 

typically involved with optimization formulations of electrical 

machines, like the maximal volume, weight and temperature 

rise in the windings. Second, optimization is not generally 

performed, so the obtained Taguchi design depends on the 

designer’s experience [28]. Fortunately, WC design and DFSS 

can handle both constraints and optimization aspects. 

     For WC robust approach, the design optimization model can 

be defined as 
min: 𝑓𝑤(𝐱) = max

𝝃∈𝑈(𝝃)
𝑓(𝐱, 𝝃)

s. t. 𝑔𝑤,𝑗(𝐱) = max
𝝃∈𝑈(𝝃)

𝑔𝑗(𝐱, 𝝃) ≤ 0, 𝑗 = 1,2, … , 𝑚

𝑈(𝝃) = {𝝃 ∈ 𝑅𝑘| |𝝃 − 𝝃𝒏| ≤ ∆𝝃}

 ,       (3) 

where  𝝃  and 𝝃𝒏  stand for the vector and nominal values of 
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noise factors, respectively, U( 𝝃 ) represents the uncertainty 

range. Please note that 𝝃 may be different from the optimization 

parameter vector x. For example, several structural parameters 

of a surface-mounted PM synchronous motor are optimized to 

reduce the variation of cogging torque due to the diversity of 

the PM remanence. Theoretically, WC robust approach is a 

minimax optimization problem. It uses the worst-case scenario, 

the worst performance of a design under uncertainties, as a 

measure of robustness. As it only investigates the worst-case 

scenario, the reliability of a design can be ensured, but the 

robustness is not considered in the implementation.  

     For DFSS robust approach, its design optimization model 

can be defined as 

min: 𝐹[𝜇𝑓(𝐱), 𝜎𝑓(𝐱)]

s. t. 𝑔𝑗[𝜇𝑓(𝐱), 𝜎𝑓(𝐱)] ≤ 0, 𝑗 = 1,2, … , 𝑚

𝐱𝑙 + 𝑛𝝈𝐱 ≤ 𝝁𝐱 ≤ 𝐱𝑢 − 𝑛𝝈𝐱

LSL ≤ 𝜇𝑓 ± 𝑛𝜎𝑓 ≤ USL

  ,         (4)                    

where μ and σ are the mean and standard deviation, respectively, 

and they are usually estimated by Monte Carlo analysis (MCA) 

method. LSL and USL are the lower and upper specification 

limits, respectively, such as the limits for output power and 

material cost. n is the sigma level. The value of n can be 

equivalent to a probability associated with the normal 

distribution, as shown in Fig. 3 and Table I [28,29]. For 

example, 3σ is equivalent to a percent of pass 99.73% or 2,700 

defects per million opportunities (DPMO). However, this is 

only correct in terms of statistics or short-term quality control. 

For the long-term quality control, due to the shift (~1.5 σ) [28] 

in the mean (as shown in Fig. 3), 3σ quality is actually 

equivalent to 66,811 DPMO. Obviously, this is unacceptable 

for the batch production of products in the industry. Therefore, 

6σ quality level has been widely adopted in industry, and its 

DPMO is only 3.4.  

The main difference between WC and DFSS approaches is 

the probability distributions of noise factors. Normal 

distributions are always employed for the noise factors in DFSS, 

while WC approach does not require any information of the 

distributions. Thus, DFSS uses μ and σ as the measure of 

robustness, which is different from that of WC approach. 

To compare the product’s reliability by using different design 

approaches, a criterion called as probability of failure (PoF) has 

been used in many works [28,29]. It has the form as 

PoF = 1 − ∏ 𝑃(𝑔𝑖 ≤ 0)𝑚
𝑖=1                           (5) 

 

 
Fig. 3. Sigma level and its equivalent probability 

 

TABLE I 

PERCENTAGE AND DPMOS WITH RESPECT TO SIGMA LEVEL 

Sigma 

level 

 Percentage DPMO 

(short term) 

DPMO 

(long term) 

 1   68.26 317,400 697,672 

 2   95.46 45,400 308,770 

  3   99.73 2,700 66,811 

  4   99.9937 63 6,210 

  5   99.999943 0.57 233 

  6   99.9999998 0.002 3.4 
 

III. COMPARISON OF ROBUST DESIGN OPTIMIZATION 

METHODS 

    This section compares the performance of three robust design 

approaches introduced in Section II based on a design example 

of a PM claw pole motor (CPM) with SMC stator and NdFeB 

magnets. As a low-dimensional design example, four 

parameters are considered in the design optimization process.  

A. Design Example Description 

   Figure 4 shows the design structure and parameters of the 

investigated motor. SMC powders are used to design and 

fabricate the stator (Fig. 4c) of this motor. Due to the unique 3-

D magnetic characteristics of the SMC powders, this is a 3-D 

flux motor. The advantages of using SMC material in PM 

motors can be found in [32-34]. This motor initially was 

designed to provide a rated output power of 500 W at rated 

speed 1800 rev/min featuring an efficiency of 81.5% [35,36]. 

Table II lists some initial design parameters of this motor. The 

optimization model is defined as, 

min: 𝑓(𝐱) = 𝑤1
𝐶𝑜𝑠𝑡

𝐶𝑜𝑠𝑡_𝑖𝑛𝑖𝑡𝑖𝑎𝑙
+ 𝑤2

𝑃𝑜𝑢𝑡_𝑖𝑛𝑖𝑡𝑖𝑎𝑙

𝑃𝑜𝑢𝑡

s. t.

𝑔1(𝐱) = 500 − 𝑃𝑜𝑢𝑡 ≤ 0

𝑔2(𝐱) = 0.815 − 𝜂 ≤ 0

𝑔3(𝐱) = 𝑠𝑓 − 0.7 ≤ 0

𝑔4(𝐱) = 𝑇𝑐𝑜𝑖𝑙 − 75 ≤ 0

𝑔5(𝐱) = 𝑇𝑝𝑚 − 75 ≤ 0

𝐱𝑙 ≤ 𝐱 ≤ 𝐱𝑢

  ,               (6) 

where Cost and Pout are the motor’s material cost and output 

power, respectively, η, sf, Tcoil, and Tpm are the motor efficiency, 

slot filling factor, temperature rise in the winding, and 

temperature rise in the PM, respectively. w1 and w2 are 

weighting factors and they will affect the optimal results. As 

both cost and output power are normalized and there is no 

preference, they are defined as 1 in this work. Table III lists the 

four design parameters and their ranges. They are considered as 

both control factors and noise factors in this example study. 

     Figure 5 shows a prototype of the SMC stator. It is made by 

molding instead of lamination technology. Figure 6 shows the 

experimental platform and the measured efficiency, input 

power and output power. For the analysis and calculation of the 

motor performance, a 3-D finite element model (FEM) and a 3-

D thermal network model are applied [35]. Figure 7a shows a 

no-load flux density distribution based on the 3-D FEM. Figure 

7b shows the 3-D thermal network model for the middle stack 

of the studied PM CPM.  
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Fig. 4.  3D design structure and parameters of the PM CPM 

 
TABLE II 

INITIAL DESIGN OF THE CPM 

Par. Description Unit Value 

Lpm Length of PM mm 3 

Wst tooth circumferential width mm 10 

Wpm PM circumferential width deg 12 

Hsy Height of stator yoke mm 31 

Hsp Height of stator plate mm 8 

Hst Height of tooth mm 14.35 

Hpm Height of PM mm 8 

D Diameter of copper wire mm 1.1 

N Turns of coil - 70 

Lgap Length of air gap mm 1 

Br PM remanence T 1.15 

ρ SMC core density g/mm3 7.32 

 

TABLE III  
DESIGN PARAMETERS AND RANGES FOR LOW-DIMENSIONAL CASE 

Par. Unit Initial Min Max Step Size 

Wpm deg 12 10 14 0.05 

Hpm mm 15 11 17 0.05 

N turns 75 60 100 1 

D mm 1.1 0.9 1.5 0.01 

 

            
Fig. 5. Prototype of the claw pole stator. 

  

          
                   (a)                                                             (b) 

Fig. 6. (a) Test platform of the CPM, and (b) measured power and efficiency 
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(b)                                                  

Fig. 7. (a) No-load flux density distribution computed using a 3-D FEM, and 

(b) a nodal thermal structure for 3-D heat flow 
 

TABLE IV 

KEY PARAMETERS VALIDATION OF THE INITIAL DESIGN OF PM CPM 

Par. Unit Calculated Measured 
Relative 

error 

Back EMF constant V/rpm 0.0272 0.0271 -0.37% 

No load core loss W 58 60 +3.33% 

Cogging torque peak Nm 0.35 0.33 -6.06% 

Coil temperature rise ℃ 74 71 -4.23% 

 

The two side stacks can be neglected, as the temperature of the 

middle stack is higher than that of the two side stacks. The 

thermal resistances of the conduction in this section are 

calculated as follows: one segment of the stator yoke is divided 

into two parts (Rsy1); stator side disk (Rsd1 and Rsd2); coils (Rcu1, 

Rcu2, and Rcu3); stator claw pole teeth (Rst1, Rst2); air gaps into 

different position (Rg1, Rg2, Rg3); PMs (Rpm1); rotor in radial 

direction (Rrt1); rotor in axial direction(Rry1); and shaft (Rsf1 and 

Rsf2). (Rsta1, Rsta2, Rsta3), Rcua, Rpma, Rrta, and Rsfa are the 

equivalent thermal resistances between the air and stator teeth, 

stator disk, coil, PMs, rotor, and shaft, respectively. The thermal 

resistances in the circumference direction in this motor are 

calculated as: stator yoke (Rsya1 and Rsya2); coil (Rcu4); stator 

teeth (Rsta4 and Rsta5); and rotor (Rra1 and Rra2). The heat sources 

in this model include the stator core loss, rotor core loss, copper 

loss, and mechanical loss. In order to gain a relatively high 

accuracy, each loss component is subdivided into several parts. 

The stator core loss is divided into six parts (PFes1), the copper 

loss is divided into two parts (Pcu1), the rotor core loss is divided 

into four parts (PFer1), and the mechanical loss is divided into 

six parts (Pmech1). 

0 0.5 1.0 1.5 2.0 2.5 3.0

200

400

600

800

25 

50

75

100Eff. (%)Pin & Pout (W)

Eff.

Pin

Pout

Output torque (Nm)



 

5 

 

5 

Table IV tabulates several calculated and measured motor 

performance parameters. For the back EMF constant, no-load 

core loss and temperature rise in the winding, the relative errors 

between calculated and measured values are less than 5%. For 

the accurate calculation of core loss in this PM-SMC motor, 

both alternating and rotational core losses are included [32,34]. 

Therefore, both the 3-D FEM and 3-D thermal network model 

are of good accuracy and it is reliable to use them in the 

following optimization. 

B. Optimization Process and Results of Taguchi Approach 

The implementation of Taguchi parameter design approach 

includes the following four main steps:  

Step 1: Develop an OA consisting of an inner array and an 

outer array. The inner array and outer array are determined by 

the control factors and noise factors, respectively. Tables V and 

VI list the control factors and noise factors and their levels for 

this motor, respectively. As can be seen, there are three levels 

for each control factor, and there are only 2 levels for each noise 

factor. Based on these two tables, an OA L9(34) can be selected 

as the inner array, and an OA L8(27) can be selected as the outer 

array. The OAs can be found in a Statistical Software like SPSS.  

Table VII lists the OA for this motor. The OA consists of an 

inner array with 9 combinations (as 9 rows) and an outer array 

with 8 combinations (as 8 columns on the right). The complete 

8 combinations are 1111, 1112, 1221, 1222, 2121, 2122, 2211 

and 2212, where 1 or 2 represents the level of the noise factor. 

Please note only the first and the last combinations are listed in 

the OA due to the limited space. Therefore, 72 (9×8) 

combinations will be required as the samples of this Taguchi 

design. They are located in the bottom right corner of the table 

with double solid lines. 

Step 2: Calculate the response of all 72 (9×8) samples. By 

using 3-D FEM and thermal network model, all motor 

performance parameters listed in (6) can be computed. For 

example, the output powers of the first and last columns (18 

values in total) are listed in Table VII. Then, the objective 

values can be obtained. Please note that constraints are 

normally not considered in the Taguchi design [19-24]. When 

the constraints are ignored and conventional Taguchi design is 

applied, the PoF of the optimal design is always big. To solve 

this problem, a penalty objective function is defined as follows. 

𝑦𝑖,𝑗  = 𝑓(x𝑖,𝑗) + 1000 ∑ 𝑢(𝑔𝑖,𝑗)5
𝑘=1                 (7)   

                  

where i (1,2,…,9) and j (1,2,…,8) are the indices of the 

considered control and noise factor, respectively, as shown in 

Table VII. 𝑢(𝑔𝑖,𝑗) = 1 if 𝑔𝑖,𝑗 > 0, otherwise, it is 0. 

      Step 3: Calculate the SNR and average SNR for each level 

of every control factor. As the design target is the smaller the 

better, the SNR calculation equation of this motor is  

SNR(𝑖) =  −10 log (
1

8
∑ 𝑦𝑖,𝑗

28
𝑗=1 ).                        (8) 

 

The average SNR of a level of a parameter can be calculated 

based on these SNRs and Table VII. For example, the average 

SNR for the first level of the second factor (Hpm) can be 

computed as 

SNR(𝐻𝑝𝑚 , 1) =  
SNR(1)+SNR(4)+SNR(7)

3
= −21.85 𝑑𝐵 ,      (9) 

where the numbers 1, 4, and 7 are the positions of level 1 for the 

second factor (Hpm) in Table VII. Average SNRs for other 

parameters and respective levels can be calculated in a similar 

way. Figure 8 shows the average SNRs for all control factors.  

Step 4: Determine the best factor-level combination. As the 

design target is the smaller the better, the best level of each factor 

is the one that has the highest SNR. As shown in Fig. 8, levels 

3, 1, 1, 2 are the best for the four control factors, respectively. 

The motor performance of this design is listed in Table VIII. As 

shown, the output power is 568.9 W, which is higher than the 

value (500 W) of the initial design, the material cost is AUD 

13.04, which is smaller than that (AUD 16.46) of the initial 

design. Thus, the motor performance can be improved by using 

Taguchi design approach. Table IX lists the probability values 

for each constraint and the final motor PoF for this design. For 

the evaluation, MCA with 10,000 points was employed. As 

shown in the table, the probability of each constraint to be 

fulfilled is 1 or 100%. Thus, the PoF of this motor with the 

optimal Taguchi design listed in Table VIII is 0 (or the reliability 

is 100% in terms of the defined five constraints). 
TABLE V 

LEVELS OF CONTROL FACTORS 

Control 

Factor 
Unit 

Level 

1 2 3 

Wpm deg 11 11.5 12 

Hpm mm 11 11.5 12 

N turns 77 80 83 

D mm 1.0 1.1 1.2 

 
TABLE VI 

 LEVELS OF NOISE FACTORS 

Noise 

Factor 

 

Unit 

Level 

1 2 

Wpm deg -0.05 +0.05 

Hpm mm -0.05 +0.05 

N turns -0.5 +0.5 

D mm -0.01 +0.01 

 
TABLE VII 

 OA AND OUTPUT POWER RESPONSE 

 
Inner Array L9(34) 
(control factors) 

Outer Array L8(27) 
(noise factors)  

No 1 2 3 4 1111 … 2212 

1 1 1 1 1 524.5 … 532.8 

2 1 2 2 2 570.2 … 578.7 

3 1 3 3 3 616.8 … 625.6 

4 2 1 2 3 568.6 … 577.0 

5 2 2 3 1 616.6 … 625.2 

6 2 3 1 2 586.9 … 594.7 

7 3 1 3 2 611.0 … 619.6 

8 3 2 1 3 583.2 … 590.9 

9 3 3 2 1 631.5 … 639.5 

 

 
Fig. 8. Average SNRs for all factors 
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TABLE VIII  
PERFORMANCE COMPARISON OF DIFFERENT OPTIMAL ROBUST DESIGNS 

Par. Unit DA Taguchi WC DFSS 

Wpm deg 10.15 12.00 10.15 10.60 

Hpm mm 11.00 11.00 11.00 11.45 

N turns 97 77 94 82 

D mm 1.08 1.10 1.08 1.09 

Cost AUD 11.96 13.04 11.89 12.36 

Pout W 645.5 568.9 623.2 575.5 

η % 84.96 83.74 84.64 83.84 

sf - 0.70 0.57 0.68 0.60 

Tcoil ℃ 75.0 71.4 74.1 71.9 

Tpm ℃ 58.1 56.5 57.5 56.6 

Obj. - 1.50 1.67 1.52 1.62 

 

 
TABLE IX  

RELIABILITY OF CONSTRAINTS AND POF OF MOTOR FOR DIFFERENT DESIGNS  

 

 DA Taguchi WC DFSS 

g1 1 1 1 1 

g2 1 1 1 1 

g3 0.676 1 1 1 

g4 0.531 1 1 1 

g5 1 1 1 1 

PoF 0.641 0 0 0 

 

   
Fig. 9. Distributions of material cost after MCA for different designs. 

 

 
Fig. 10. Distributions of output power after MCA for different designs. 

 

 
Fig. 11. Distribution of the slot filling factor for the design obtained by the 
deterministic approach. 

 
Fig. 12. Distributions of coil temperature rise for different designs,               

(a) deterministic, (b) Taguchi, (c) WC, and (d) DFSS in the presence of 

uncertainties. 

C. Optimization Process and Results of WC Approach 

     The optimization process of WC approach includes the 

following three steps.  

     Step 1: Construct the WC optimization model. Based on (3) 

and (6), the WC optimization model can be expressed as 

  

min: 𝑓𝑤(𝐱) = max
𝝃∈𝑈(𝝃)

𝑓(𝐱, 𝝃)

s. t. 𝑔𝑤,𝑗(𝐱) = max
𝝃∈𝑈(𝝃)

𝑔𝑗(𝐱, 𝝃) ≤ 0, 𝑗 = 1,2, … ,5

𝑈(𝝃) = {𝝃 ∈ 𝑅4|∆𝝃 = [0.05, 0.05, 0.5, 0.01]𝑇}

   (10) 

where design variables (x) and noise factors (ξ) are the same 4 

parameters listed in Table III, ∆ξ is defined in Table VI.  

     Step 2: Develop the Kriging model for the corresponding 3-

D FEM. In the implementation, a five-level full-factor design is 

applied to parameters Wpm and Hpm. Thus, 25 samples will be 

simulated and the Kriging model will be developed based on 

these samples. As the performance of this motor is calculated 

based on 3-D FEM, it is very time-consuming if FEM is used 

in the optimization. Thus, Kriging model is used in this work to 

replace the FEM. Kriging model has been widely used as an 

approximation model in the design optimization of 

electromagnetic devices. The formulations and advantages of 

Kriging model can be found in [2,5,38,39].  

     Step 3: Optimize the model (10) based on Kriging models. 

Many optimization algorithms can be used, such as genetic 

algorithm or differential evolution algorithm (DEA). DEA is 

used in this work. Its details can be found in [2]. The 

optimization results are listed in Table VIII. The corresponding 

probability of each constraint and the motor PoF are listed in 

Table IX. As can be observed, PoF of 0 is obtained for this 

approach. A comparison of all approaches will be conducted in 

subsection E.    

D. Optimization Process and Results of DFSS Approach 

     The optimization process of DFSS approach is similar to that 

of WC, except for two aspects. The first aspect is the 

construction of the robust optimization model. Based on (4) and 

(6), the DFSS optimization model can be expressed as 
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min: 𝜇[𝑓(𝐱)]

s. t. 𝜇[𝑔𝑗(𝐱)] + 6𝜎[𝑔𝑗(𝐱)] ≤ 0, 𝑗 = 1,2, … ,5
       (11) 

     Please note that there are several forms for this objective 

function, like 𝜇[𝑓(𝐱)] + 𝜎[𝑓(𝐱)] and 𝜎[𝑓(𝐱)] 𝜇[𝑓(𝐱)].⁄  As the 

average performance is used in the Taguchi method, 𝜇[𝑓(𝐱)] is 

defined in (11) to make a fair comparison of the different 

methods. Nevertheless, comparisons for alternative 

formulations could be considered either.  

The second aspect is the distributions of the noise factors. For 

WC approach, only the range of each noise factor is required. 

For the DFSS approach, a probability distribution function is 

required for each noise factor. The noise factors in electrical 

machines are mainly related to the manufacturing tolerances 

which are random in the manufacturing process, like the 

dimension of PM. Therefore, they are usually defined to follow 

normal distributions [28,29]. For a specific application, it is 

possible to have a noise factor following another distribution. 

This may affect the distributions of the objectives. Therefore, a 

distribution map with frequency is clearer to show the 

performance variations under uncertainties compared with 

single-valued distribution quantities like the mean. 

For the investigated motor, it is reasonable to take normal 

distributions for those noise factors from previous studies 

[2,3,29]. The optimization results given by DEA and the 

corresponding probability and PoF are tabulated in Tables VIII 

and IX as well. 

E. Comparison and Discussions 

     The optimization results of the deterministic approach (DA 

column) are listed in Tables VIII and IX as well for comparison. 

Figures 9 and 10 show the distributions of material cost and 

output power, respectively, for different robust designs after 

MCA. Form these figures and Tables VIII and IX, the following 

conclusions can be drawn:  

     First, the motor performance of all robust designs are better 

than that of the initial design, for example, the output powers 

are exceeding 500 W. However, they are slightly worse than for 

the design obtained by the deterministic approach. The 

objective value for that design is 1.50, which is the smallest one 

among them.      

Second, the PoF values of all Taguchi design, WC and DFSS 

are zero, while the PoF of deterministic design is 64.1%. Thus, 

the smallest objective value of deterministic design is obtained 

at the cost of high PoF. The reason for this fact is that the 

reliabilities of the third and fourth constraints are less than 1. 

As shown, the nominal values for the slot filling factor and 

winding temperature rise of the optimal deterministic design are 

0.70 and 75.0 ℃, respectively, which are equal to the permitted 

limits (0.7 and 75 ℃). This is the nature of deterministic design,. 

As they are obtained without the consideration of the 

uncertainties, the practical values obtained in the presence of 

inevitable uncertainties will have an increased risk of violating 

the limit. To have a clear understanding, Fig. 11 illustrates the 

distribution of the slot filling factor (third constraint) after MCA. 

As shown, many practical design points (considering 

uncertainties) are over the limit of 0.7. Figure 12 illustrates the 

distributions of the temperature rise in the winding (the fourth 

constraint) for all four optimal designs. Similarly, some points 

of the deterministic approach are over the limit of 75 ℃. For all 

three robust designs, the temperature is below the limit for any 

variation. Thus, deterministic design tends to have high PoF. 

Third, it can be observed that the optimal Taguchi design 

highly depends on the selected levels of control factors listed in 

Table V. Table X lists another attempt where the second level of 

each factor is selected as the value for the initial design (this is 

quite reasonable). After a similar process, the best combination 

of control factor levels and the corresponding motor 

performance and PoF are listed in Table XI. Similarly, motor 

performance has been improved. However, please note that the 

temperature rise in the winding of this design is 84.2 ℃, which 

is much higher than the limit, 75 ℃. The corresponding PoF is 

1 or 100%. Therefore, a good Taguchi design requires some 

useful prior information or experience for the determination of 

the levels of control factors.  
 

TABLE X 
CONTROL FACTORS OF TAGUCHI DESIGN – ANOTHER ATTEMPT 

Control 

Factor 
Unit 

Level Best 

level 1 2 3 

Wpm deg 11.5 12 12.5 11.50 

Hpm mm 14.5 15 15.5 14.50 

N turns 72 75 78 78 

D mm 1.0 1.1 1.2 1.00 

 
TABLE XI  

PERFORMANCE AND POF OF TAGUCHI DESIGN – ANOTHER ATTEMPT 

Par. Unit Value Reliability Value 

Cost AUD 15.26 g1 1 

Pout W 697.7 g2 1 

η % 84.42 g3 1 

sf - 0.49 g4 0 

Tcoil ℃ 84.2 g5 1 

Tpm ℃ 66.6 PoF 1 

IV. SPACE REDUCTION OPTIMIZATION STRATEGY FOR 

ROBUST DESIGN OPTIMIZATION 

 There are two main reasons for proposing a space reduction 

technique here. First, as discussed in the last section, Taguchi 

design approach is a very powerful robust design tool. However, 

it cannot handle design spaces with large number of dimensions 

efficiently and its effectiveness highly depends on the control 

factor levels (requiring experience about the optimization 

problem). Second, for the high-dimensional case, the WC and 

DFSS methods based on Kriging model are not efficient or 

applicable either. For example, if 7 parameters with 5 levels 

each are considered for evaluation by FEM, the number of 

required FEM samples is huge, i.e. 57 =78,125 samples, which 

is a huge computational burden as 3-D FEM is required and 

both alternating and rotational core losses are calculated 

(several minutes are required for one sample or design 

candidate when evaluating it by using ANSYS.  

To attempt these two problems, a space reduction 

optimization (SRO) strategy is proposed in this section. Figure 

13 shows the flowchart of the proposed strategy. The main idea 

is that the initial design space is normally quite large while the 

final optimal design is typically located in a small subspace of 

the initial design space. If an appropriate space reduction 

method can be developed to reduce the space first, the overall 

optimization efficiency is improved. 
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Fig. 13. A flowchart of the space reduction optimization strategy 
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Fig. 14. Illustrations of space reduction method with three reduction steps,   

(a) reduction only, and (b) reduction with moving 

     

    Figure 14 illustrates the main idea of the space reduction 

method in the SRO strategy. In the implementation of SRO, 

there are five main steps.  

 Step 1: Define the robust optimization models, including 

objective functions, constraints, design parameters (control and 

noise factors) and their ranges (or the initial design space) for 

the investigated electrical machine. 

 Step 2: Generate samples and simulate their response. For 

Taguchi design approach, an OA is required in this step. For 

WC and DFSS, the following sampling strategy is used. First, 

divide all parameters into two groups by using sensitivity 

analysis results and assign them to two subspaces, significant 

parameter space and non-significant parameter space. For the 

sensitivity analysis, several methods can be employed, such as 

local sensitivity analysis method, global sensitivity analysis 

method, and analysis of variance. The implementation of them 

including the selection of factor levels can be found in reference 

[6]. Second, apply different levels to two groups. An OA with 

a higher level like 5 levels can be assigned to the first subspace, 

while a smaller level, like 3 levels, can be applied to the second 

group. Third, combine them to generate the samples for WC 

and DFSS approaches.  

 

Step 3: Analyze the data by using SNRs or optimize the 

models by using Kriging model. For the Taguchi method, only 

SNR is required to obtain the best factor-level combination of 

control factors. For the WC and DFSS, develop a Kriging 

model based on the data first. Then, conduct the optimization 

by using DEA to gain optimization results. Last, calculate the 

motor performance, objective value and PoF for the optimal 

designs.  

Step 4: Compute the motor performance with the obtained 

optimal design and compare it with the last objective. If the 

relative error between them is less than ε (a positive value like 

1%), finish the optimization process and output the obtained 

optimal design. Otherwise, go to the next step and re-implement 

steps 2 and 3.  

Step 5: Reduce the design space of the control factors by 

using the optimal design. The space reduction method is 

defined as follows. Assume the initial design space of a control 

factor is [a, b], and there are three levels with a step size 2d. If 

the optimal value of this factor is xo, then the design space and 

new levels in the next iteration process are 

{

[𝑎, 𝑎 + 𝑑, 𝑎 + 2𝑑] 𝑥𝑜 − 𝑑 < 𝑎

[𝑏 − 2𝑑, 𝑏 − 𝑑, 𝑏] 𝑥𝑜 + 𝑑 > 𝑏

[𝑥𝑜 − 𝑑,  𝑥𝑜 , 𝑥𝑜 + 𝑑] 𝑜𝑡ℎ𝑒𝑟𝑠
                         (12) 

If there are four levels for each design parameter, the design 

space and new levels in the next iteration process are 

{

[𝑎, 𝑎 + 𝑑, 𝑎 + 2𝑑, 𝑎 + 3𝑑] 𝑥𝑜 − 3𝑑/2 < 𝑎

[𝑏 − 3𝑑, 𝑏 − 2𝑑, 𝑏 − 𝑑, 𝑏] 𝑥𝑜 + 3𝑑/2 > 𝑏

[𝑥𝑜 −
3

2
𝑑, 𝑥𝑜 −

1

2
𝑑, 𝑥𝑜 +

1

2
𝑑, 𝑥𝑜 +

3

2
𝑑] 𝑜𝑡ℎ𝑒𝑟𝑠

 (13) 

If there are five levels for each design parameter, the design 

space and new levels in the next iteration process are 

{

[𝑎, 𝑎 + 𝑑, 𝑎 + 2𝑑, 𝑎 + 3𝑑, 𝑎 + 4𝑑, ] 𝑥𝑜 − 2𝑑 < 𝑎

[𝑏 − 4𝑑, 𝑏 − 3𝑑, 𝑏 − 2𝑑, 𝑏 − 𝑑, 𝑏] 𝑥𝑜 + 2𝑑 > 𝑏

[𝑥𝑜 − 2𝑑, 𝑥𝑜 − 𝑑,  𝑥𝑜 , 𝑥𝑜 + 𝑑, 𝑥𝑜 + 2𝑑] 𝑜𝑡ℎ𝑒𝑟𝑠
  (14) 

As shown in (12)-(14), the design space can be halved by 

using this space reduction strategy. This will speed up the 

optimization process. Similar strategy has been proposed for 

Taguchi design method in the previous work and good robust 

designs have been obtained [40,41]. This work extends it to the 

WC and DFSS by using a new sampling strategy for the 

samples of Kriging model.   

V. COMPARISON OF ROBUST DESIGN OPTIMIZATION 

METHODS WITH SRO STRATEGY 

    This section compares the performance of the three robust 

design approaches without and with SRO strategy. The first two 

subsections present low-dimensional and high-dimensional 

case studies, respectively. The last subsection presents a 

comparison for all robust design optimization methods.  

A. Low-Dimensional Design Case  

     For the low-dimensional design example, as discussed in 

section III, WC and DFSS approaches can present good designs 

while Taguchi design has two problems (as mentioned in 

section III.E). To solve these problems, SRO strategy is applied 
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to the conventional Taguchi design with the initial design space. 

Thus, the same initial design space applies to all Taguchi, WC 

and DFSS method. Table XII lists the optimization results and 

motor performance. As can be seen, the motor performance has 

been improved and the PoF is 0. As a comparison, Fig. 15 

shows the distribution of winding temperature rise after MCA. 

As shown, all points are below the limit. Figure 16 illustrates 

the iteration process of Taguchi design with SRO. As shown, 

six iterations are required for the convergence of the proposed 

SRO. Each iteration requires 72 points, so 422 FEM simulations 

in total. In this case, WC and DFSS are more efficient. In the 

iteration process, though two designs (k=1,3 as shown in Fig. 

16) do not satisfy the constraints, the others are good. Thus, the 

proposed method is efficient and robust.  

     
TABLE XII 

TAGUCHI DESIGN WITH SRO FOR LOW-DIMENSIONAL CASE 

Par. Vlaue Par. Value Prob. Value 

Wpm 10.57 η 83.09 g1 1 

Hpm 12.98 sf 0.53 g2 1 

N 73 Tcoil 73.4 g3 1 

D 1.08 Tpm 58.4 g4 1 

Cost 13.26 Obj 1.70 g5 1 

Pout 559.7   PoF 0 

 

 
Fig. 15. Distribution of coil temperature rise for Taguchi design with SRO for 

low dimensional case 

 

 
Fig. 16. Iteration process of Taguchi method with SRO for low dimensional 

case 

B. High-Dimensional Design Case  

Table XIII lists the nine parameters to be considered in this 

case. For the optimization, six parameters will be considered as 

control factors, and they are Wpm, Hpm, N, D, Wst, Hst. Among 

them, Wpm and Hpm are related to the rotor, Wst and Hst are 

related to the SMC stator, and N and D are winding parameters, 

as defined in Table II. The other three parameters, Lgap, Br, ρ, 

are considered as noise factors only. From previous research, it 

is found that Lgap, Br, ρ, are very important to motor 

performance. The ranges of these three parameters are 

determined by previous experimental results [30]. Due to the 

small ranges of them, they are assigned to the non-significant 

subspace as only 3 levels are required. Please note that Wpm, 

Hpm, N, D, are considered as noise factors as well. Thus, there 

are 6 control factors and 7 noise factors for this example.  

Seven approaches are discussed and compared in this case, 

as they are the deterministic, conventional Taguchi, Taguchi 

with SRO strategy, WC, WC with SRO strategy, DFSS, and 

DFSS with SRO strategy approach.  

For the conventional Taguchi approach, Tables XIV and XV 

list the control factors and noise factors, respectively, and their 

levels. As shown, 5 levels are defined for each control factor, 

and 2 levels are defined to each noise factor. The levels of noise 

factors are mainly defined based on our previous work on SMC 

motors. For example, the levels of the remanence of PM and the 

core density are chosen based on previous experimental results 

[30].To implement the Taguchi design, an OA L25(56) is defined 

as the inner array, and L8(27) is selected as the outer array, so 

200 FEM simulations (25×8) are required (this process is 

similar to the analysis steps 1 and 2 in section III.B). For the 

Taguchi design with SRO strategy, Table XVI lists the control 

factors and their levels for the first iteration of the SRO. As 

shown, the levels completely cover the big initial design space 

defined in Table XIII. This is the difference between Tables 

XIV and XVI. Table XVII tabulates the optimization results for 

these seven approaches. Table XVIII lists the probability values 

for all constraints and the PoF values for the motor.  

 
TABLE XIII  

DESIGN PARAMETERS AND RANGES FOR HIGH-DIMENSIONAL CASE 

Par. Unit Initial Min Max Step Size 

Wpm deg 12 10 14 0.05 

Hpm mm 15 11 17 0.05 

N turns 75 60 100 1 

D mm 1.1 0.9 1.5 0.01 

Wst mm 8 7 10 0.05 

Hst mm 14.35 10 16 0.05 

Lgap mm 1 0.95 1.05 - 

Br T 1.15 1.10 1.20 - 

ρ g/mm3 7.32 7.17 7.47 - 

 
TABLE XIV 

LEVELS OF CONTROL FACTORS FOR HIGH-DIMENSIONAL CASE 

Control 

Factor 
Unit 

Level 

1 2 3 4 5 

Wpm deg 7.60 7.80 8.00 8.20 8.40 

Hpm mm 11.00 11.50 12.00 12.50 13.00 

N turns 69 72 75 78 81 

D mm 0.90 1.00 1.10 1.20 1.30 

Wst mm 13.85 14.10 14.35 14.60 14.85 

Hst mm 14.00 14.50 15.00 15.50 16.00 
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TABLE XV 
 LEVELS OF NOISE FACTORS FOR HIGH-DIMENSIONAL CASE 

Noise 

Factor 

 

Unit 

Level 

1 2 

Wpm deg -0.05 +0.05 

Hpm mm -0.05 +0.05 

N turns -0.5 +0.5 

D mm -0.01 +0.01 

Lgap mm -0.05 +0.05 

Br T -0.05 +0.05 

ρ g/mm3 -0.15 +0.15 

 
TABLE XVI  

LEVELS OF CONTROL FACTORS FOR TAGUCHI DESIGN WITH SRO STRATEGY 

Control 

Factor 
Unit 

Level 

1 2 3 4 5 

Wpm deg 10 11 12 13 14 

Hpm mm 11 12.5 14 15.5 17 

N turns 60 70 80 90 100 

D mm 0.9 1.05 1.2 1.35 1.5 

Wst mm 7 7.8 8.6 9.2 10 

Hst mm 10 11.5 13 14.5 16 

 
TABLE XVII  

PERFORMANCE COMPARISON OF DIFFERENT ROBUST METHODS FOR          

HIGH-DIMENSIONAL CASE 

Par. Unit DA Tag. 
Tag. 
SRO 

WC 
WC 
SRO 

DFSS 
DFSS 
SRO 

Wst mm 7.35 8.20 7.95 7.10 7.00 7.00 7.30 

Wpm deg 10.15 11.00 11.75 10.10 10.00 10.00 10.00 

Hst mm 12.40 14.35 10.00 11.25 11.45 11.10 10.95 

Hpm mm 11.05 14.50 13.25 11.05 11.45 11.05 11.05 

N turns 100 69 73 96 94 95 96 

D mm 1.06 1.20 1.13 1.07 1.08 1.07 1.07 

Cost AUD 11.88 15.16 14.63 11.75 11.99 11.64 11.68 

Pout W 675.5 589.8 540.7 618.2 617.2 600.6 606.8 

η % 85.79 83.64 84.37 85.49 85.54 85.32 85.36 

sf - 0.70 0.61 0.57 0.68 0.68 0.67 0.68 

Tcoil ℃ 74.9 73.2 65.8 70.7 70.0 69.8 70.1 

Tpm ℃ 68.5 70.6 62.2 64.8 64.5 63.9 64.1 

F - 1.46 1.77 1.81 1.52 1.54 1.54 1.53 

FEM - ~9k 200 600 >10k 675 >10k 450 

      
TABLE XVIII 

PROBABILITY AND POF VALUES FOR HIGH-DIMENSIOANL CASE 

 DA Tag. 
Tag. 

SRO 
WC 

WC 

SRO 
DFSS 

DFSS 

SRO 

g1 1 1 1 1 1 1 1 

g2 1 1 1 1 1 1 1 

g3 0.866 1 1 1 1 1 1 

g4 0.541 0.963 1 1 1 1 1 

g5 1 1 1 1 1 1 1 

PoF 0.532 0.037 0 0 0 0 0 

 

 
Fig. 17. Iteration process of the proposed SRO strategy for robust methods 

 

     Figure 17 shows the iteration process for the three robust 

design optimization methods with SRO. As shown, only 2 or 3 

iterations are required for them. Thus, the proposed method is 

efficient. Figures 18 and 19 illustrate the distributions of the 

material cost and output power of all seven optimal designs 

after MCA. The following conclusions can be drawn:       

     Firstly, regarding the motor performance and objective value, 

all robust designs are better than those of the initial design. The 

deterministic design is the best among them, and it has the 

smallest objective value, 1.46. The WC and DFSS (with and 

without SRO) have similar objective values (in the range of 

1.52 to 1.54) and motor performance. The objective values of 

two Taguchi designs are larger, around 1.80. 

     Secondly, regarding the PoF of the motor in production with 

these designs, the PoF of deterministic design is 53.2%, the PoF 

of conventional Taguchi design 3.7%, while the others are zero. 

Thus, the cost of the minimal objective of deterministic design 

is the highest PoF, which is unacceptable from the perspective 

of industrial design and production. As an illustration of the PoF, 

the distributions of the temperature rise in the winding (the 

fourth constraint) of seven designs are illustrated in Fig. 20. As 

shown, some points in the deterministic and Taguchi 

approaches are violating the limit. Thus, its PoF is higher than 

zero.   

     Thirdly, regarding the computation cost, deterministic 

approach requires around 9,000 FEMs (45×200, where 45 is the 

population size for each generation and 200 is the average  

number of generations for DEA), the FEM samples required by 

WC and DFSS are more than 10,000 (for the development of a 

sufficiently accurate Kriging model), which represent huge 

computational cost. For the conventional Taguchi design, only 

200 FEMs are required, which is the smallest one among all 

seven different approaches. The required FEM samples for 

Taguchi with SRO strategy are 600, which is higher than the 

ones required by the conventional Taguchi design. However, 

the PoF of the optimal design is 0, which is much more 

reasonable. Also, this method does not require any prior 

information for the levels of the control factors. The FEM 

samples required by WC and DFSS with SRO strategy are 675 

and 450, respectively, which are less than 10% of those required 

by the conventional WC and DFSS. Furthermore, both WC and 

DFSS combined with SRO can provide optimal designs of 

similar performance when compared with the classical 

computationally costly approaches without SRO. Therefore, the 

proposed SRO is very efficient for all three robust design 

optimization methods.   
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Fig. 18. Distributions of material cost for different methods 

 
Fig. 19. Distributions of output power for different methods 

 
Fig. 20. Distributions of coil temperature rise for seven designs,  

(a) deterministic, (b) Taguchi, (c) Taguchi with SRO, (d) WC, (e) WC with 
SRO, (f) DFSS, and (g) DFSS with SRO 

 

C. Comparison of Robust Design Optimization Methods   

Table XIX summaries the comparison of six types of robust 

design optimization methods, the conventional Taguchi design, 

WC design and DFSS, Taguchi design with SRO strategy, WC 

with SRO and DFSS with SRO methods. The three SRO robust 

approaches are combined in one column in the table. These 

methods are compared in terms of ten aspects, such as the 

applicable dimensionality (low or high) and the overall design 

space size (small or big).  

 Regarding the conventional Taguchi design method, it can 

be easily applied to high-dimensional problems and requires 

small FEM samples. However, it is hard to handle the 

constraints and wide design spaces, and the optimal design’s 

PoF  highly depends on the initially selected levels of control 

factors.  

 Regarding the conventional WC and DFSS methods, they 

have similar advantages, like easy to handle constraints and 

smaller PoF. However, they are more efficient for the low-

dimensional case and require huge computation cost for the 

high-dimensional case. The main difference between them is 

that for DFSS the distribution type of the noise factors is 

required, while for WC it is not. Also, as WC is a minimax 

problem, the optimization process usually takes more time than 

DFSS.  

 Regarding the three robust design optimization methods 

with SRO strategy, they have the advantages of all the 

conventional methods and their disadvantages are significantly 

reduced. They can be applied to high-dimensional optimization 

scenarios with comparably low computation cost. 

 Regarding the last aspect, multi-objective robust 

optimization, Taguchi design approach can hardly handle 

multi-objective optimization problems due to its limited 

number of levels. The WC and DFSS approaches do not feature 

this limitation. This aspect will be considered in another paper 

with a new optimization strategy. 

 
TABLE XIX  

COMPARSION OF DIFFERENT ROBUST DESIGN OPTIMIZATION METHODS 

Aspect Taguchi WC DFSS 

SRO 

(Taguchi, 
WC, DFSS) 

Dimension low/high low low high 

Design space small  big big big 

Ability to handle 

constrains 
not good good good good 

Experience for 
DoE samples 

required 
not 

required 
not 

required 
not  

required 

Approximate 

model 
no yes yes yes 

Optimal 

objective value 
depends smaller smaller smaller 

PoF depends zero zero zero 

Computation 

cost 
low high high low 

distribution of 
uncertainty 

no no yes 
yes to DFSS 
only 

Multiobjective 

application 
hard easy easy 

easy to WC 

& DFSS 
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VI. CONCLUSION 

     This paper presented an overview and comparative study for 

three popular robust design optimization methods, Taguchi 

parameter design, worst-case design and design for six-sigma. 

To efficiently attempt high-dimensional robust design 

optimization problems, SRO strategy was presented for all three 

robust design optimization methods. A design example was 

investigated for two different scenarios (low-dimensional and 

high-dimensional case) to compare the performance of different 

robust optimization methods in terms of the number of required 

design evaluations and achieved performance of the optimal 

design. From the comparison, it is found that applying the 

proposed SRO strategy allows for significantly minimizing the 

computational effort while achieving comparable results as 

obtained for the conventional robust design optimization 

methods. The proposed new methods are in particular very 

efficient for the high-dimensional robust optimization of 

electrical machines. In that case, they can provide similar 

optimal designs than the conventional worst-case and design for 

six-sigma approaches, but the required computational cost is 

less than 10 percent of the conventional approaches. Future 

work will be about more detailed studies of the proposed 

approaches featuring SRO and potential further improvements. 
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