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 

Abstract—This paper presents a new method for multi-objective 

robust design optimization of electrical machines and provides a 

detailed comparison with so far introduced techniques. First, two 

robust design approaches, worst-case design and design for six-

sigma, are compared with the conventional deterministic 

approach for multi-objective optimization. Through a case study 

on a permanent magnet motor, it is found that the reliabilities of 

motors produced based on robust designs are 100% under the 

investigated constraints, while the reliabilities of deterministic 

designs can be lower than 30%. A major disadvantage of robust 

optimization is the huge computation cost, especially for high-

dimensional problems. To attempt this problem, a new multi-

objective sequential optimization method (MSOM) with an 

orthogonal design technique and hypervolume indicator (as a 

measure of convergence) is proposed for both deterministic and 

robust design optimization of electrical machines. Through 

another case study, it is found that the new MSOM can improve 

motor performance and greatly reduce the computational cost. 

For the robust optimization, the number of required finite element 

simulations can be reduced by more than 40%, compared with 

that required by the conventional approach. The proposed method 

can be applied to many-objective (robust) design optimization of 

electrical machines.  

 
Index Terms—Electrical machines, manufacturing tolerances, 

multi-objective optimization, orthogonal design, permanent 

magnet motor, robust design, sequential optimization method. 

 

I. INTRODUCTION 

ESIGN optimization of electrical machines is a multi-

objective and multiphysics problem, which usually 

includes electromagnetic analysis, thermal analysis, stress and 

modal analysis [1-6]. The objectives always conflict with each 

other, such as minimizing the material cost and maximizing the 

output power. The optimal solutions are normally called as  
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non-dominated or non-inferior solutions and are illustrated as a 

Pareto front. To efficiently derive the optimal designs, a number 

of multi-objective optimization algorithms developed in the 

field of evolutionary computation, like multi-objective genetic 

algorithm (MOGA), have been applied to the design 

optimization of various electrical machines, such as permanent 

magnet (PM) motors and reluctance synchronous machines [7-

15].  

     There are two main types of design models for the multi-

objective optimization of electrical machines, deterministic and 

robust models. The main difference is that there is no 

uncertainty information, like material diversities and 

manufacturing tolerances of PMs, in the deterministic model. 

The obtained optimal deterministic designs can be very 

impressive theoretically, but the practical performance of the 

motor after production may be significantly different due to the 

unavoidable uncertainties in the manufacturing process, which 

will result in unacceptable failure rate in production [2,16,17]. 

In this context, robust design optimization has been introduced 

to the (multi-objective) optimization of electrical machines.   

     Regarding the robust design of electrical machines, there are 

three popular approaches, the Taguchi parameter design [18-

20], worst-case (WC) design [21,22], and design for six-sigma 

(DFSS) [16,17,23]. WC and DFSS can be easily converted into 

multi-objective situations. However, it is hard to convert the 

Taguchi parameter design into a multi-objective optimization 

problem due to the special formulation of the method. Thus, 

WC and DFSS will be investigated and compared with the 

deterministic multi-objective approach in this work.   

    A major challenge for the robust (multi-objective) 

optimization of electrical machines is the huge computation 

cost, especially in the high-dimensional situation. It originates 

from two aspects, multiphysics analysis like finite element 

model (FEM) for the electromagnetic analysis, and robustness 

evaluation of a design candidate, for example, realized by 

applying Monte Carlo analysis (MCA) [2,16]. To attempt this 

challenge, a new multi-objective sequential optimization 

method (MSOM) is proposed for both deterministic and robust 

multi-objective optimization problems in this work. An 

orthogonal design method and a hypervolume indicator used as 

a measure of convergence are employed in the new method to 

improve its efficiency. To illustrate the effectiveness of the 

proposed method, a case study will be investigated.  
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The remainder of this paper is organized as follows. Section 

II briefs the formulations of a deterministic and two robust 

multi-objective design optimization models. Section III 

describes the design example, a PM motor with soft magnetic 

composite (SMC) cores, and specifies the uncertainty 

information. Section IV presents a comparative study of these 

multi-objective design optimization methods based on the 

design example. Section V describes the proposed new MSOM 

for the high-dimensional multi-objective design optimization 

problems. Section VI gives a detailed comparison of the results 

and a consequent discussion to show the effectiveness of the 

proposed method, followed by the conclusion.  

II. MULTI-OBJECTIVE ROBUST DESIGN OPTIMIZATION 

METHODS 

A typical multi-objective optimization model of a 

deterministic optimization problem can have the form as  
 

min: {𝑓𝑖(𝐱), 𝑖 = 1,2, … , 𝑝}

s. t. 𝑔𝑗(𝐱) ≤ 0, 𝑗 = 1,2, … , 𝑚

𝐱𝑙 ≤ 𝐱 ≤ 𝐱𝑢

                        (1) 

 

where p and m are the numbers of objectives, fi(x), and 

constraints, gj(x), respectively, x is a vector, and its size 

corresponds to the number of design parameters considered. 

Any design investigated features a particular setting of x.  By 

analogy, xl and xu are vectors of the lower and upper boundaries 

of all design parameters, and thus they are of the same size as 

x. In this model, x does not include any uncertainty information, 

like manufacturing tolerances.  

     Through extensive research activity, it is found that there are 

many uncertainties in the practical manufacturing process of 

electrical machines, such as material diversities (like different 

remanences of a batch of PMs), manufacturing tolerances (like 

the variations of dimensions of a batch of PMs and the lengths 

of air gap of a batch produced PM motors), and assembly 

imperfections (for example, the eccentricity problem) [24-29]. 

These uncertainties will affect the practical performance of the 

produced electrical machines, for example, the cogging torque 

and torque ripple may be significantly higher than the value 

obtained by finite element simulations for the ideal geometry 

[24,25]. To consider the uncertainties and reduce their impact 

on the motor performance in the production, two robust design 

approaches have been investigated for the multi-objective 

optimization of electrical machines, the WC design and DFSS 

[2,21-23].   

     Regarding the WC robust design approach, its multi-

objective optimization model can be defined as 
 

min: {𝑓𝑤,𝑖(𝐱) = max
𝝃∈𝑈(𝝃)

𝑓𝑖(𝐱, 𝝃) , 𝑖 = 1,2 … , 𝑝}

s. t. 𝑔𝑤,𝑗(𝐱) = max
𝝃∈𝑈(𝝃)

𝑔𝑗(𝐱, 𝝃) ≤ 0, 𝑗 = 1,2, … , 𝑚

𝑈(𝝃) = {𝝃 ∈ 𝑅𝑘||𝝃 − 𝝃𝒏| ≤ ∆𝝃}

          (2) 

 

where 𝝃 and 𝝃𝒏 stand for the vector and nominal values of noise 

factors, respectively, U(𝝃) represents the uncertainty range of 

these parameters. Similar to the single-objective scenario, WC 

multi-objective model is a minimax optimization problem. It 

uses the worst motor performance of a design under 

uncertainties as a measure of robustness. Thus, a WC-designed 

motor can have very high reliability in production.  

     For the DFSS robust design approach, its multi-objective 

optimization model can be expressed as 
 

min: {𝐹𝑖[𝜇𝑓(𝐱), 𝜎𝑓(𝐱)], 𝑖 = 1,2, … , 𝑝}

s. t. 𝑔𝑗[𝜇𝑓(𝐱), 𝜎𝑓(𝐱)] ≤ 0, 𝑗 = 1,2, … , 𝑚

𝐱𝑙 + 𝑛𝝈𝐱 ≤ 𝝁𝐱 ≤ 𝐱𝑢 − 𝑛𝝈𝐱

LSL ≤ 𝜇𝑓 ± 𝑛𝜎𝑓 ≤ USL

             (3)                    

 

where μ and σ are the mean and standard deviation (SD), 

respectively, and they are usually estimated by Monte Carlo 

analysis (MCA) method. LSL and USL are the lower and upper 

specification limits, respectively. n is the sigma level, and it is 

defined as 6 in many applications. The value of n can be 

equivalent to a probability of a normal distribution. For 

example, 6σ is equivalent to 0.002 (or a per cent of pass 

99.9999998%) and 3.4 defects per million opportunities 

(DPMO) in terms of short-term and long-term quality control, 

respectively [2,30].    

The main difference between WC and DFSS approaches is 

the requirement of probability distribution functions of the 

uncertainty parameters. WC approach only needs the variation 

range of these parameters, while DFSS usually requires 

probability distribution functions for all uncertain parameters 

and normal distributions are widely employed in DFSS.  

To compare the motor’s reliability by using different design 

approaches, a criterion called as probability of failure (PoF) will 

be used in this work [2,30]. It has the form as 
 

PoF = 1 − ∏ 𝑃(𝑔𝑖 ≤ 0)𝑚
𝑖=1                           (4) 

 

III. DESCRIPTION OF THE CASE SCENARIO 

This section describes an exemplary optimization problem 

that is applied to compare the performance of the three multi-

objective optimization methods introduced in Section II. The 

comparison results will be shown in the next section.  

Figure 1 shows a 3-D design structure and parameters of the 

investigated motor, a PM claw pole motor (CPM) with SMC 

stator and NdFeB magnets. Table I lists seven main design 

parameters (as well as optimization parameters), for this motor. 

The rated output power and efficiency of the reference motor 

are 500 W and 81.5%, respectively. More details of this motor 

can be found in [31-33]. For the multi-objective optimization of 

this motor, the two selected objectives are minimizing the 

material cost (Cost) and maximizing the output power (Pout). 

The deterministic multi-objective optimization model can be 

defined as 
 

min: {
𝑓1(𝐱) = 𝐶𝑜𝑠𝑡             

𝑓2(𝐱) = 1000 − 𝑃𝑜𝑢𝑡

s. t.

𝑔1(𝐱) = 500 − 𝑃𝑜𝑢𝑡 ≤ 0

𝑔2(𝐱) = 0.815 − 𝜂 ≤ 0

𝑔3(𝐱) = 𝑠𝑓 − 0.7 ≤ 0

𝑔4(𝐱) = 𝑇𝑐𝑜𝑖𝑙 − 75 ≤ 0

𝑔5(𝐱) = 𝑇𝑝𝑚 − 75 ≤ 0

𝐱𝑙 ≤ 𝐱 ≤ 𝐱𝑢

                    (5) 
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where η, sf, Tcoil, and Tpm are the motor efficiency, slot filling 

factor, temperature rise in the winding, and temperature rise in 

the PM, respectively. Thus, this model requires both 

electromagnetic and thermal analyses. For this purpose, a 3-D 

FEM and a 3-D thermal network model are used [2,32,33]. 

    Table II lists several calculated and measured motor 

performance parameters, including the back EMF constant, no-

load core loss and temperature rise in winding [32,33]. As 

shown, the calculated and measured values are in good 

agreement. Thus, it is reliable to use these models to conduct 

the following multi-objective optimization for this motor. 
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Fig. 1.  3-D design structure and parameters of the PM CPM with SMC cores 

 

TABLE I 

DESIGN  OPTIMIZATION PARAMETERS AND RANGES 

Par. Description Unit Initial Min Max 

Wst 
tooth circumferential 

width 
mm 8 7 10 

Wpm 
PM circumferential 

width 
deg 12 10 14 

Hst Height of tooth mm 14.35 10 16 

Br PM remanence T 1.15 1.10 1.30 

Lgap Length of air gap mm 1.0 0.8 1.1 

ρ SMC core density g/mm3 7.32 6.75 7.35 

N Turns of coil - 70 60 100 

  
TABLE II 

MEASURED AND CALCULATED PERFORMANCES OF PM CPM 

Parameter Unit Calculated Measured 

Back EMF constant V/rpm 0.0272 0.0271 

No load core loss W 58 60 

Cogging torque peak Nm 0.35 0.33 

Coil temperature rise ℃ 74 71 

 
TABLE III 

UNCERTAINTIES FOR THE DESIGN PARAMETERS 
  

Par. Unit Uncertainties 

Wpm deg Nominal ± 0.05 

Br T Nominal ± 0.05 

Lgap mm Nominal ± 0.05 

ρ g/mm3 Nominal ± 0.15 

N turns Nominal ± 0.5 

IV. COMPARISON OF MULTI-OBJECTIVE ROBUST DESIGN 

OPTIMIZATION METHODS 

A. Applied Multi-objective Optimization Approaches 

     Based on the WC formulation of (2), the deterministic multi-

objective optimization model of (5) can be converted into the 

following form.  
 

min: {
𝑓𝑤,1(𝐱) = max

𝝃∈𝑈(𝝃)
𝑓1(𝐱, 𝝃)

𝑓𝑤,2(𝐱) = max
𝝃∈𝑈(𝝃)

𝑓2(𝐱, 𝝃)
 

s. t. 𝑔𝑤,𝑗(𝐱) = max
𝝃∈𝑈(𝝃)

𝑔𝑗(𝐱, 𝝃) ≤ 0, 𝑗 = 1,2, … ,5

𝑈(𝝃) = {𝝃 ∈ 𝑅5|∆𝝃 = [0.05, 0.05,0.05, 0.15,0.5]𝑇}

 (6) 

where optimization variables (x) are the seven parameters listed 

in Table I.  

     Based on previous experience on the manufacturing of 

several SMC motors, there are no significant variations for the 

dimension of SMC tooth (the stator tooth) because the SMC 

stator is manufactured by using molding instead of the 

lamination technology. It is also a major advantage of SMC 

motors as this manufacturing method is good for mass 

production at low cost. Thus, no uncertainty information will 

be applied to the two parameters related to the SMC stator (Wst 

and Hst). Consequently, there are only five parameters in the 

uncertainty parameter vector 𝝃. Experience is also applied to 

determine the variation of the air gap length and the winding 

turns. For the variations of other parameters, like the PM 

remanence and SMC core density, they are determined based 

on previous measurements [2,17]. Table III tabulates the 

uncertainties for these five design parameters. ∆𝝃  in (6) 

represents the variation ranges of these parameters. 

     Similarly, the DFSS multi-objective optimization model of 

this SMC motor, based on (3) and (5), can be expressed as 
 

min: {
𝜇[𝑓1(𝐱)]

𝜇[𝑓2(𝐱)]

s. t. 𝜇[𝑔𝑗(𝐱)] + 6𝜎[𝑔𝑗(𝐱)] ≤ 0, 𝑗 = 1,2, … ,5

       (7) 

 

B. Optimization Methods 

     For the optimization of models (5) to (7), a kind of multi-

objective genetic algorithm, the non-dominated sorting genetic 

algorithm (NSGA) II, is used in this work [34]. The population 

size is 40. To conduct the optimization, there are two typical 

ways.  

     The first one is based on the multiphysics analysis models 

directly. This may require about 12,000 simulations (40×300, 

where 300 is a typical number for the number of generations 

used for NSGA II) of both 3-D FEM and 3-D thermal network 

model for the deterministic multi-objective optimization. For 

the robust multi-objective optimization, even significantly 

more simulations are required to evaluate the robustness of each 

design candidate (one of the 12,000 simulations in the 

deterministic approach). For example, extra 10,000 points are 

needed if MCA is used. To reduce the computation cost, several 

local approximate methods, like Taylor series, are used. If the 

first-order Taylor series is applied, 4 extra FEM samples are 

required for one design candidate [30,35]. Thus, 48,000 

(12,000×4) FEMs are required. As a consequence, the total 
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required number of multiphysics simulations will be huge. This 

approach may work for some motors with simple 2-D FEM and 

a small number of design parameters, but it is not recommended 

for motors with 3-D FEM or many design parameters.  

     The second way is based on the approximate models or 

surrogate models, such as response surface model (RSM) and 

Kriging model [2]. In the implementation, RSM or Kriging 

model is developed first to approximate the multiphysics 

analysis models. Then, the optimization can be conducted based 

on the developed RSM or Kriging models. The main 

computation cost of this method is the samples for the modeling. 

For this motor, if a 5-level full-factor design is applied to the 

six parameters in the FEM, 15,625 (56) FEM simulations will 

be required for both deterministic and robust multi-objective 

optimization. This is acceptable for the robust design 

optimization of some motors with no time-consuming 

multiphysics analysis models. However, it is still too much for 

the investigated PM SMC motor as it requires several minutes 

for one simulation due to the calculation of both alternating and 

rotational core losses.  

     Based on previous research work and prototyping 

experience, four levels can be applied to several parameters, 

such as the air gap and core density. Five levels will be 

employed for other parameters. Thus, 6,400 FEMs are sampled 

to develop the approximate model for the optimization of (5)-

(7). Regarding the approximate model, Kriging is employed in 

this work due to its superior modeling ability in both local and 

global region. It is a semi-parametric model and consists of a 

determined term like RSM and a random term. It has been 

claimed to be more accurate than RSM and has been widely 

employed in the optimization work of electromagnetic devices 

[36]. The detailed modeling process of Kriging model can be 

found in [37-39]. Please note that another step, verification of 

model accuracy, is required before starting the optimization 

based on some extra FEM samples. For the evaluation of model 

accuracy, several measures like root mean square error can be 

used. More details can be found in previous work [39].     

C. Optimization Results and Discussions 

     Figure 2 shows the optimization results of the three multi-

objective optimization methods, deterministic approach 

(illustrated as DA in Fig. 2a), WC robust approach and DFSS 

robust approach. As shown, for the same material cost, like 

AUD 15, the output power of the motor with optimal DA design 

is around 750 W, which is higher than that of WC (around 620 

W) and DFSS (around 680 W). Therefore, the deterministic 

approach can provide the maximal output power while WC 

approach will have the minimum output power for a given 

material cost for the investigated SMC motor.  

     Figure 3 illustrates the PoF values of all Pareto optimal 

points for these three multi-objective optimization approaches. 

As shown, the PoF values of WC and DFSS designs are zero, 

which are much better than those of the deterministic approach. 

The minimal and maximal PoFs of the deterministic approach 

are 0.07% (the 6th point) and 73.81% (the last point or 40th 

point), respectively. The average PoF of all 40 points is 44.55%. 

Therefore, the higher output power given by the deterministic 

approach, as shown in Fig. 2, is obtained at the cost of high PoF, 

which is not acceptable in terms of batch/massive industrial 

production.  

Figure 4 shows the sigma levels of all Pareto optimal points 

for these three multi-objective methods. As shown, all WC and 

DFSS Pareto optimal points can reach 6 sigma levels, while the 

maximal sigma level of deterministic approach is 3.39 (the 6th 

point with PoF 0.07%), which is much smaller than 6. This 

figure illustrates a more clear comparison (a small difference of 

the PoF means a big difference in terms of sigma level) of the 

deterministic and robust multi-objective design optimization 

approaches. To have a further understanding of the higher PoF 

of the deterministic approach, Fig. 5 illustrates the PoF values 

of five constraints for all Pareto optimal points. As shown, the 

third and fourth constraint (slot filling factor and winding 

temperature rise) have high PoF values. Meanwhile, the first 

constraint also contributes to the cumulative PoF for the first 

five Pareto optimal points.  

 

 

 
Fig. 2. Pareto fronts for three multi-objective optimization methods,  

(a) Deterministic, (b) WC, and (c) DFSS 
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Fig. 3. PoF values of all Pareto optimal points for three multi-objective 
optimization methods 

 

 

 
Fig. 4. Sigma levels of all Pareto optimal points for three multi-objective 

optimization methods 
 

 

 
Fig. 5. PoF values and sigma levels of all Pareto optimal points  of the 
deterministic approach, when applying the five considered constraints 

     
 
 

 

TABLE IV  
DESIGN PARAMETERS AND MOTOR PERFORMANCE OF THE LAST PARETO 

POINT FOR THREE MULTI-OBJECTIVE OPTIMIZATION METHODS 
 

Par. Unit DA WC DFSS 

Lgap mm 1.09 0.80 1.00 

Wst mm 8.10 7.25 8.00 

Wpm deg 13.10 10.10 10.65 

Hst mm 11.60 10.25 10.75 

Br mm 1.20 1.30 1.30 

ρ g/cm3 6.75 6.85 6.80 

N turns 94 89 89 

Cost AUD 18.3 15.3 16.1 

Pout W 788 684 700 

η % 87.51 86.80 86.81 

sf - 0.70 0.66 0.66 

Tcoil ℃ 75.0 70.1 70.7 

Tpm ℃ 58.5 53.8 54.9 

      As an example of a detailed comparison, Table IV lists the 

optimal parameters and motor performance of the last Pareto 

point (the one with the highest output power) for three multi-

objective optimization methods. As can be seen, the 

deterministic approach provides the highest output power, 

however, the slot filling factor is 0.7 and the winding 

temperature rise is 75 ℃, which are exactly the same of the 

design limits. With the consideration of uncertainties, the 

practical motor performance in batch production, like the 

winding temperature rise, will violate the limit. This will result 

in a non-zero PoF for the motor. Figures 6-8 show the 

distributions of motor performance obtained from MCA for the 

last Pareto optimal point of three multi-objective optimization 

methods. As can be seen in Fig. 6e, around half of the 

simulation points are over the limit of temperature rise (75℃), 

which result in a big PoF for this constraint as well as for the 

motor. A similar situation applies to the third constraint. This 

confirms the analysis results shown in Fig. 5. For the WC and 

DFSS methods, as shown in Figs. 7 and 8, the values of all 

simulation points are away from the limits. For example, the 

maximal winding temperature rises are 74 ℃ for all simulation 

points in the MCA for both WC and DFSS methods.                

     The last comparison considers the deviation of the motors’ 

performances. Figures 6-8 show the distributions of various 

motor performances for one Pareto optimal point after MCA. 

Mean and SD of each performance index, like the winding 

temperature rise, can be obtained for that point (the last Pareto 

point in this case). Similarly, the means and SDs of other Pareto 

optimal points (points 1-39) can be gained for each performance 

index. As an example, Fig. 9 shows the values of mean and SD 

of the winding temperature rise for all Pareto points for three 

multi-objective methods. As can be seen, the SD of WC and 

DFSS robust methods are less than those of the deterministic 

approach. To clearly show the advantage of the robust 

approaches, the average SDs of all five constraints are listed in 

Table V, including the winding temperature rise.  As shown, the 

WC and DFSS have smaller average SDs, meaning smaller 

performance variation in the batch production. This is another 

advantage of robust design optimization method compared with 

deterministic design optimization. 
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Fig. 6. Distribution of motor performance for the last Pareto optimal point (the 

one with the highest output power) of the deterministic approach  
 

 

 
Fig. 7. Distribution of motor performance for the last Pareto optimal point (the 

one with the highest output power) of WC approach 

 
Fig. 8. Distribution of motor performance for the last Pareto optimal point (the 
one with the highest output power) of DFSS approach 

 

 

 
Fig. 9. Mean and SD of the coil temperature for all Pareto optimal points for 

three multi-objective optimization methods  
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 TABLE V  
AVERAGE SDS OF ALL CONSTRAINTS 

 

 Unit DA WC DFSS 

Pout W 11.90 11.15 10.95 

η % 0.08 0.06 0.07 

sf - 0.001 0.001 0.001 

Tcoil ℃ 0.93 0.80 0.75 

Tpm ℃ 0.80 0.68 0.64 

   
Through the case study and comparison, it is also found that 

DFSS is better than WC in several aspects. First, the derived 

optimal DFSS motor designs have a better performance, like 

higher output power for a given material cost. Second, no 

further optimization steps are required for DFSS, while WC is 

a minimax optimization problem (dual optimization is required) 

and will complicate the optimization process. This will also 

increase the computational burden of multi-objective robust 

optimization. 

D. Comments on the Computation Cost 

The computation cost of optimizing (5)-(7) consists of two 

main parts, the simulation time of FEM samples in ANSYS and 

the run time of optimization algorithm in Matlab.  

The FEM simulation work is conducted in a cluster of our 

university. The main features of the used node are processor 

(Intel CPU 8 cores with base speed 2.9 GHz) and memory (32 

GB RAM). As this is a 3-D FEM and both alternating and 

rotational core losses are needed to calculate, the average 

simulation time of each sample is 2 minutes. Thus, around 213 

hours are required to simulate those 6,400 FEM samples for the 

development of Kriging model.  

The optimization algorithm is run on a laptop. The main 

features of the used node are processor (Intel CPU 4 cores with 

base speed 1.9 GHz) and memory (8 GB RAM). The average 

running times of a deterministic and a robust (WC/ DFSS) 

optimization process are 20 minutes and 12 hours, respectively. 

Therefore, the FEM simulation time takes a major part of the 

total computation time. Consequently, in this work, we only 

compare the required FEM samples for different methods.  

 

V. A NEW MSOM FOR HIGH-DIMENSIONAL MULTI-

OBJECTIVE ROBUST OPTIMIZATION 

     Besides the multiphysics analysis models and uncertainty 

characterization, a major challenge of robust multi-objective 

optimization is the huge computation cost due to the large 

robustness evaluations. Though the approximate models (the 

second way mentioned in subsection IV-B) can be employed to 

alleviate this problem, it is still not applicable for many 

situations, like high-dimensional problems. Please note that 

there is not a definite value for the number of dimensions of 

high-dimensional problems, as it relates to the complexity and 

simulation time of the analysis models (like 2-D or 3-D FEMs) 

and the optimization model (like deterministic and robust 

optimization models).  

     In the field of design optimization of electromagnetic 

devices including electrical machines, if the performance of the 

device is based on the finite element analysis, the common 

practice of definition of a high-dimensional design problem is 

based on the number of the parameters. If the simulation time 

of an electrical machine design is more than 1 minute and the 

optimization parameters are no less than 6, this kind of problem 

can be regarded as a high-dimensional optimization problem. 

The main reason for this is that at least 46=4,096 samples (6 

parameters with four levels for each parameter) will be required 

to develop the approximate model. If 5 levels are applied to 

each parameter, then 56=15,625 samples are required. The 

simulation process will be time-consuming. With the increase 

of one more parameter, the total number of required samples 

will be increased by 4 or 5 times if 4 or 5 levels are assigned for 

that parameter. Therefore, it is very hard to use conventional 

robust multi-objective optimization methods to solve these 

high-dimensional optimization problems. To attempt this 

challenge, a new and efficient multi-objective robust 

optimization method is proposed in this section.  

  Figure 10 shows the flowchart of the proposed new MSOM. 

The main idea of this method is to update the Pareto front by 

improving the approximate models with less samples 

sequentially. The method includes five main steps. 

  Step 1: Define the multi-objective robust optimization 

problems, including objective functions, constraints, design 

parameters and their ranges, uncertainty parameters and 

information, for the investigated electrical machine.  

Meanwhile, develop the analysis models for the performance 

evaluation of electrical machines, such as the FEM for magnetic 

field analysis, the thermal network model for the analysis of 

temperature rise, and the FEM for the stress and modal analysis. 

Step 2: Generate samples, simulate their responses and 

develop approximate models based on the samples. As it is hard 

to use high levels for all factors for high-dimensional situation 

and the Pareto front is expected to be improved step by step, a 

three-level full-factorial design is recommended in this step. 

The required simulation samples will be reduced greatly. For 

example, only 36=729 samples are required for a multi-

objective optimization problem with six parameters in the FEM. 

For a problem with eight parameters, 38=6,561 samples are 

necessary. This is acceptable if the FEM is not very time-

consuming. The initial set of samples is defined as S(1). 

  To develop the approximate models based on S(1), a type of 

approximate model should be chosen first, for example, a RSM 

with a quadratic polynomial. Then, the data S(1) will be used to 

estimate the coefficients of the quadratic polynomial based on 

several parameter estimation methods in Statistics, like the least 

square method. For a Kriging model, as it includes a random 

term, maximum likelihood estimation may be required as well. 

More details of the development of approximate models can be 

found in [39]. 

Step 3: Conduct the multi-objective optimization based on 

beforehand developed approximate models and NSGA II.  A 

Pareto optimal front with a certain number of points can be 

obtained. For these points, calculate their hypervolume 

indicator (Ih) with respect to a reference point. Fig. 11 illustrates 

an example of the calculation of the hypervolume indicator for 

a two objective situation with five Pareto points. In this case, 

the hypervolume indicator is actually the area of the shaded part 

[40,41]. The main reason for using the hypervolume indicator 

is that it can evaluate the convergence behavior and uniformity 

of the Pareto solutions at the same time [42,43].  
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(1) Generate samples S (k) by a DoE technique 
(2) Develop an approximation model based on  
      the samples for the FEM

Output

Yes

Update S(k) with 
P(k) and 

orthogonal DoE
k = k +1

No
ΔIh / Ih  < ε

k th optimization proces

(1) Optimze the model by using a multi-objective 
      optimization algorithm, like NSGA II  
(2) Calculate the hypervolume indicator (Ih) of 
      the points P(k) in the Pareto front

Start

(1) Define optimization model, including objectives, 
      constraints, and parameters and their design ranges
(2) Determine the uncertainty information
(3) Develop the analysis models, like FEM, for the 
      evaluation of motor performance  

 
 

Fig. 10. Flowchart of the proposed new MOSM 

Reference 
pointa

b

c

d
e

f1

f2

Pareto front

 
Fig. 11. Illustration of the hypervolume indicator for two objectives situation 

 

 
                             (a)                                                 (b) 

Fig. 12. (a) An orthogonal design sampling, and (b) a modified CCD sampling 

 

  Step 4: Compare the hypervolume indicator of two 

continuous iterations of this MSOM. If the relative change 

between two iterations is smaller than a specific value ε (like 

5% or 2.5%), finish the optimization process and output the 

obtained Pareto optimal designs and front. Otherwise, go to the 

next step, update the samples and approximate models, and re-

implement the multi-objective optimization process until the 

convergence criterion is met.  

Step 5: Update the samples and approximate models by using 

an orthogonal design technique. If the analysis models are 

accurate, the obtained Pareto optimal front should be located in 

a small area of the final Pareto front. The next step is to update 

the points in the front. For this purpose, new samples are 

required to update the approximate models.  

  If a three-level full-factor design is employed, there will be 

36=729 new samples for each point in the Pareto front, resulting 

in 29,160 (729×40) new samples, which is huge and not 

implementable. To overcome this issue, orthogonal design is 

suggested here. In statistics, orthogonal design is more efficient 

(fewer samples) than the full-factorial design for the data 

analysis like analysis of variance.  

  Figure 12 shows the samples for an orthogonal design with 

three levels for three design parameters. As shown, only nine 

samples (indicated as squares) are required, which is less than 

the 27 samples (vertex and intersections of lines) required by a 

full-factorial design. This orthogonal design can be applied to 

up to four design parameters and the corresponding orthogonal 

array is normally termed as L9(34), as listed in Table VI. As 

shown, the first column represents the number of experiment 

(equivalent to one FEM simulation), from 1 to 9; the first row 

stands for the number of parameters, from 1 to 4. As there are 

only 3 parameters in Fig. 12, we may just use the columns 2-4 

to define the 9 samples (covered by the double-line boundary), 

where 1, 2, and 3 give the selected level of a parameter (for 

example, 0.8, 0.9, and 1.0 mm for the length of the air gap).  
TABLE VI  

AN EXAMPLE OF ORTHOGONAL ARRAY L9(3
4) 

 

No. of 

exp. 

Parameters 

1 2 3 4 

1 1 1 3 2 

2 2 1 1 1 

3 3 1 2 3 

4 1 2 2 1 

5 2 2 3 3 

6 3 2 1 2 

7 1 3 1 3 

8 2 3 2 2 

9 3 3 3 1 

 

  As we have 6 parameters in the FEM of this motor, an 

orthogonal design L27(313) is recommended for the proposed 

MSOM. It can handle up to 13 design parameters and only 27 

points are required for each point in the Pareto front. Thus, only 

1,080 (27×40) new samples are needed for updating of the 

samples and models in each iteration of MSOM. In the 

implementation, the step size of two levels is initially defined 

as the step size of the corresponding parameter in the S(1),  then 

it will be halved in the next iteration as the Pareto front should 

be more and more accurate with the updating process.  

  Furthermore, to ensure the accuracy of the approximate 

model, there should be enough distance for any two points, 

otherwise, the inversion of matrix will be ill-posed. This can 

further reduce the new samples and increase the optimization 

efficiency as well.  



 

9 

 

9 

  Compared with the previous MSOM mentioned in [44,45], 

the new MSOM has two main differences. First, a modified 

central composite design (CCD) was used in previous work; 

however, it is not suitable for this high-dimensional case. For 

example, Fig. 12b shows the new samples for a three 

parameters case. As shown, 14 samples (six triangles and 8 

squares) are required. In general, 2D+2D new samples are 

required for an optimization problem with D parameters. Thus, 

76 new samples are needed for the optimization of the 

investigated motor. Consequentially, 3040 (76×40) new 

samples are required for each iteration of MSOM, which is 

significantly larger than those of orthogonal design. Second, 

root mean square error is used as the convergence criterion, 

which is not based on the comparison of the Pareto fronts. The 

hypervolume is better and more clear in terms of the theory of 

multi-objective optimization.  

VI. EXAMPLE STUDY FOR THE NEW MSOM 

   This section illustrates the performance of the proposed 

MSOM by using two design approaches, deterministic and 

DFSS. As the performance of DFSS is better than WC, only 

DFSS will be investigated in this section. The value of ε in the 

proposed MSOM is set at 2.5%. 

A. Deterministic Multi-objective Optimization 

Figure 13 shows the Pareto optimal results of the MSOM for 

the deterministic multi-objective optimization of this motor by 

using model (5). As shown, four iteration processes, MSOM1, 

MSOM2, MSOM3, and MSOM4, are needed for the new 

MSOM. The hypervolume indicator of each iteration of new 

MSOM is shown in Fig. 14. For the calculation of the 

hypervolume indicator, the reference point is [19, 500]. As can 

be seen, the relative error of the hypervolume indicators of the 

last two iterations is 2.22%, which is smaller than the default 

value, 2.5%. As shown in Fig. 13, the Pareto fronts of the last 

two iterations are in good agreement. The first Pareto front, 

indicated as MSOM1, is not good, and there is an obvious 

difference between it and the one given by the conventional 

deterministic approach (indicated as DA in the figure). Then, a 

clear approaching process is observed for the following three 

Pareto fronts (from MSOM2 to MSOM4). Most importantly, 

the last Pareto optimal front given by the proposed new MSOM 

is better than that (red triangles in the figure) given by 

conventional deterministic approach.   

To show more details of the obtained Pareto solutions, Table 

VII lists the parameter values and the corresponding motor 

performance of the last point in the Pareto front. As shown, the 

output power of the design variant obtained by the deterministic 

approach is 790 W. After Monte Carlo analysis, the PoF of this 

design is 0.74 (or 74%), which is very high.  

      For the computation cost of FEM, 6,400 FEMs are used for 

the conventional deterministic approach, which was discussed 

in section IV. For the new MSOM, 729, 720, 818 and 982 

(3,249 in total) new samples are required for the four iterations, 

which is 50.8% of the one required by the conventional method. 

Therefore, the proposed method is efficient for deterministic 

multi-objective optimization.      

 
Fig. 13. Iteration process of the Pareto fronts for the deterministic multi-
objective optimization by using the new MSOM 

 

 

 
Fig. 14. The hypervolume indicator of the Pareto fronts for deterministic 

multi-objective optimization by using the new MSOM 
 

TABLE VII 

DESIGN PARAMETERS AND MOTOR PERFORMANCE OF THE LAST PARETO 

POINT FOR DESIGNS OBTAINED FROM THE NEW MSOM 
 

Par. Unit 
DA-

MSOM 
DFSS-
MSOM 

Lgap mm 0.81 0.91 

Wst mm 7.85 7.95 

Wpm deg 12.45 11.75 

Hst mm 10.65 1020 

Br mm 1.15 1.20 

ρ g/cm3 6.90 6.75 

N turns 94 93 

Cost AUD 17.1 16.7 

Pout W 790 723 

η % 87.64 87.31 

sf - 0.70 0.69 

Tcoil ℃ 75.0 70.8 

Tpm ℃ 58.2 54.6 

PoF - 0.74 0 
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     Last, a comment goes to the Pareto fronts of MSOM3 and 

MSOM4. As shown in Fig. 13, MSOM3 presents higher values 

of output power than MSOM4 for some points in the Pareto 

front. However, the difference between them is not significant. 

There are two possible reasons for the difference: First, the 

Kriging models for MSOM3 and MSOM4 optimization are 

slightly different, as some new points have been added to 

MSOM4. Second, there are some minor variations for the 

Pareto fronts due to the nature of multi-objective optimization 

algorithm and nonlinear optimization problems featuring a 

random component. 

B. Robust Multi-objective Optimization based on DFSS 

    Figure 15 shows the Pareto optimal results of the MSOM 

for the DFSS multi-objective optimization of this motor by 

using model (7). As shown, five iteration processes are required 

for the proposed new MSOM. The hypervolume indicator of 

each iteration of new MSOM is shown in Fig. 16. For the 

calculation of the hypervolume indicator, the reference point is 

[17, 550]. As shown, the relative error of the hypervolume 

indicators of the last two iterations is 2.15%, which is smaller 

than the default value. As can be seen from Fig. 15, the Pareto 

fronts of the last two iterations are in good agreement. Most 

importantly, the last Pareto optimal front given by the proposed 

new MSOM is better than that of the conventional DFSS 

obtained in section IV. The parameter values and the 

corresponding motor performance of the last point in the Pareto 

front are listed in Table VII. As shown, the output power of the 

considered design variant is 723 W, which is slightly better than 

that of the conventional DFSS approach (700 W as listed in 

Table IV). After Monte Carlo analysis, the PoF this design is 0, 

meaning that six-sigma quality will be achieved in the 

manufacturing of this motor.  

     For the computation cost of FEM, 729, 687, 667, 788 and 

765 (3,636 in total) new samples are required for the five 

iterations of the MSOM. This is 56.8% compared with the 

samples required by the conventional DFSS method. Therefore, 

the proposed method is efficient for the robust multi-objective 

optimization. Moreover, the final Pareto optimal front obtained 

from the MSOM is better than that of the conventional DFSS.    

The main reason for this fact is that the proposed multi-

objective problem is a high-dimensional multiphysics problem. 

It has many local optimums. The results of the conventional 

methods may be better if there are more samples in the 

modelling process, but this will increase the computation 

burden.   

C. Remarks on the New MSOM 

 First, please note that the obtained Pareto fronts and 

iterations of the proposed MSOM are related to the value ε. If 

5% is selected as a measure, only two iterations are required for 

the deterministic multi-objective optimization. As shown in 

Fig. 14, the second relative error of the hypervolume indicator 

is 4.9%. As can be seen in Fig. 13, the obtained Pareto front 

(indicated as green x) is good as well, very close to the DA. For 

the DFSS, only one MSOM is required. Similarly, the obtained 

Pareto front (indicated as green x) is acceptable as well.  

 
Fig. 15. Iteration process of the Pareto fronts for the DFSS multi-objective 

optimization by using the new MSOM 

 

 
Fig. 16. The hypervolume indicator of the iteration process of the Pareto 

fronts of DFSS multi-objective optimization 

 

Second, the proposed MSOM can be applied to an 

optimization problem with up to eight design parameters for 

analyses based on FEM. In addition, several other parameters 

that do not require FEM analyses can additionally be added, like 

winding parameters (number of turns and winding diameter). 

Therefore, around 10 parameters can be effectively handled by 

this method. Consequently, most high-dimensional robust 

multi-objective optimization problems of electrical machines 

can be solved by utilizing this method. 

    Third, the proposed method can be applied to a design 

problem with more than three objectives. However, the 

calculation of the hypervolume indicator will be harder with the 

increasing number of objectives. Fortunately, some research 

works have investigated this problem theoretically (many-

objective situation) in the field of evolutionary computation. 

There are several methods to handle this problem [41-43]. 

Therefore, this should not be a big problem for the application 

of this method to most multi-objective problems of electrical 

machines.  

Fourth, to further increase the optimization efficiency, 

parallel computation and pre-robustness analysis can be 

applied. For the pre-robustness analysis, it means to determine 
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which designs in the population are required to conduct the 

robustness analysis. If a design does not satisfy the constraints 

for rated parameters, robust analysis is not required at all, and 

this can save a lot of computation cost for the overall 

optimization. 

Last, this paper focuses on the development of a generic 

multi-objective optimization method. It should be meaningful 

and promising to apply it to motors used in some specific 

applications, especially for those applications of new/advanced 

magnetic materials for drive/propulsion systems, such as the 

linear propulsion systems with superconducting motors for 

maglevs [46-48] and the motors with amorphous cores for 

electric vehicles [49,50]. There should be more opportunities in 

these topics with the investigation of different manufacturing 

methods and uncertainty information for the new/advanced 

materials.   

VII. CONCLUSION 

     This paper presented a comparative study for three popular 

multi-objective design optimization methods for electrical 

machines, including two robust approaches based on WC and 

DFSS designs. To efficiently attempt high-dimensional multi-

objective robust optimization problems, a new MSOM with an 

orthogonal design technique and hypervolume indicator was 

proposed. A design example was investigated to compare the 

performance of different multi-objective optimization methods. 

Through the comparison, the following conclusions can be 

drawn.  

      First, regarding the deterministic and robust multi-objective 

optimization, it is found that the two robust approaches are 

better than the deterministic approach from a reliability point of 

view, as the PoF of the robust methods can be decreased to zero. 

Moreover, the averaged SDs of the motors’ performances 

obtained by the robust methods are smaller than that of the 

deterministic approach, meaning smaller quality variation in 

production. Moreover, DFSS is better than WC in terms of 

motor performance and computation cost. 

     Second, the proposed new MSOM is efficient for the high-

dimensional deterministic and robust multi-objective 

optimization of electrical machines. Through the case study, the 

FEM samples required by the new MSOM are less than 60% of 

those required by the conventional methods, while the obtained 

motor performance is better. Furthermore, several remarks are 

presented for the application of the proposed method.  
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