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Abstract: This paper reviews the recent developments of design optimization methods for electro- 17 

magnetic devices, with a focus on machine learning methods. First, the recent advances in multi- 18 

objective, multidisciplinary, multilevel, topology, fuzzy, and robust design optimization of electro- 19 

magnetic devices are overviewed. Second, a review is presented to the performance prediction and 20 

design optimization of electromagnetic devices based on the machine learning algorithms, includ- 21 

ing artificial neural network, support vector machine, extreme learning machine, random forest, 22 

and deep learning. Last, to meet modern requirements of high manufacturing/production quality 23 

and lifetime reliability, several promising topics, including the application of cloud services and 24 

digital twin, are discussed as future directions for design optimization of electromagnetic devices. 25 

Keywords: electromagnetic devices; electrical machines; optimization methods; machine learning; 26 

deep learning; reliability; topology optimization, robust design. 27 

 28 

1. Introduction 29 

Electromagnetic devices have been widely employed in many domestic appliances, 30 

biomedical instruments, and industrial equipment and systems, such as electrical drive 31 

systems for air conditioners, artificial hearts, electric vehicles (EVs), and more electric air- 32 

craft, wireless power transmission systems for mobile and EV battery charging, and su- 33 

perconducting magnetic energy storage (SMES) for power systems. To meet the design 34 

specifications and improve their performance, such as high efficiency, high power den- 35 

sity, and high resource efficiency, optimization is always necessary in the design process. 36 

Design optimization of electromagnetic devices has been an active research topic in sev- 37 

eral international conferences, like COMPUMAG and CEFC. Through extensive research 38 

work, many design optimization methods have been employed/developed for electro- 39 

magnetic devices, including multi-objective, multilevel, and multidisciplinary design op- 40 

timization methods [1-7]. The performance of electromagnetic devices can be improved 41 

by using these methods.  42 

As the number of design parameters/objectives and complexity of analysis model 43 

increase, high optimization efficiency becomes a serious challenge for many design sce- 44 

narios, e.g. the multidisciplinary design optimization of machines and drive systems for 45 
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EVs and magnetic levitations (maglevs). The computation costs are huge in many situa- 46 

tions due to the high dimension of the optimization problem and the complex multi-phys- 47 

ics analysis, e.g., the optimization of a high-speed permanent magnet motor with 10 pa- 48 

rameters, 3 objectives, and multi-physics analysis of electromagnetic, thermal and rotor 49 

dynamics [8,9]. Therefore, how to improve the optimization efficiency (or reduce the com- 50 

putation cost) is a challenge for efficient design optimization of many electromagnetic de- 51 

vices.  52 

Furthermore, the practical performance of electromagnetic devices is affected signif- 53 

icantly by the inevitable material diversities and uncertainties in the manufacturing or 54 

production process. To improve the manufacturing quality of the optimized electromag- 55 

netic devices, design optimization in the presence of uncertainties should be conducted at 56 

the early stage of the development. From the perspective of industrial production, the 57 

performance of a good design of an electromagnetic device, like transformer, should not 58 

be sensitive to those uncertainties. To achieve this goal, reliability-based and robust opti- 59 

mizations have attracted significant research attention recently, especially when the in- 60 

dustrial big data about the material and manufacturing process are considered [6,10-15]. 61 

These topics are of ever-growing significance for smart manufacturing in the context of 62 

industry 4.0. However, the application of multidisciplinary analysis and/or industrial big 63 

data also brings many challenges to the design optimization process and degrades the 64 

optimization performance with conventional optimization methods. Advanced technolo- 65 

gies, such as machine learning and cloud computing, will greatly improve the handling 66 

of these design optimization problems.  67 

This paper reviews the recent developments in design optimization of electromag- 68 

netic devices, with a focus on machine learning methods. Compared to the current state 69 

of the art, this review has three new contributions. First, this review covers more types of 70 

electromagnetic devices, instead of specific types, like electrical machines and antennas 71 

[4,5,713,14]. Second, besides the review of recent developments in typical optimization 72 

methods, such as multi-objective and multidisciplinary optimizations, this work reviews 73 

the topology optimization, fuzzy optimization, and new optimization strategies like 74 

space-reduction strategy. Third, a systematic review of machine learning algorithms is 75 

presented and four promising research directions are proposed to integrate these algo- 76 

rithms with other emerging technologies like digital twin.     77 

The remainder of this paper is organized as follows. Section 2 presents an overview 78 

of the recent advances in design optimization of electromagnetic devices, including multi- 79 

objective, multidisciplinary, multilevel, topology, and robust optimization methods. 80 

Three examples are investigated, including superconducting magnetic energy storage 81 

(SMES), high-frequency transformers, and permanent magnet (PM) motors. Section 3 re- 82 

views the design optimization of electromagnetic devices based on machine learning 83 

methods, with two examples. Section 4 discusses several promising topics as future direc- 84 

tions for this research field, followed by the conclusion. 85 

2. An Overview of Recent Advances in Design Optimization of                  Elec- 86 

tromagnetic Devices 87 

Design optimization of electromagnetic devices has been an active research topic for 88 

many years. Many design optimization methods have been developed through extensive 89 

research work worldwide. To compare the performance of different methods, some 90 

benchmark works have been developed in International Compumag Society (ICS), like 91 

TEAM problems [6,11,12,16-18]. Some papers reviewed popular design optimization 92 

methods of several types of electromagnetic devices, such as electrical machines [4- 93 

6,13,14], and antennas [7]. This section presents an overview of the recent advances in 94 
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design optimization of electromagnetic devices, including multi-objective, multidiscipli- 95 

nary, multilevel, topology, and robust optimization methods. Subsection 2.1 starts with 96 

the deterministic design optimization (without any consideration of uncertainties).  97 

2.1. Deterministic Design Optimization 98 

A generic optimization model of the following form can be defined to the multi-ob- 99 

jective optimization of electromagnetic devices.  100 

min: {𝑓𝑖(𝐱), 𝑖 = 1,2, … , 𝑝}

s. t. 𝑔𝑗(𝐱) ≤ 0, 𝑗 = 1,2, … ,𝑚

𝐱𝑙 ≤ 𝐱 ≤ 𝐱𝑢

                           (1) 101 

where p and m are the numbers of objectives, fi(x), and constraints, gj(x), respectively. x is 102 

a vector of design parameters, xl and xu are vectors of the lower and upper boundaries of 103 

x. This model will be simplified as a single-objective problem if p is equal to 1.  104 

The detailed forms of x, f(x) and g(x) depend on the specific type and application of 105 

an electromagnetic device. Figure 1 illustrates three popular applications. They are a 106 

SMES, a high-frequency transformer, and a surface-mounted permanent magnet synchro- 107 

nous motor (SPMSM). 108 
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Figure 1. Design optimization illustrations of several electromagnetic devices, (a) a topology of SMES with two 110 
solenoids, (b) SMES design structure and optimization parameters, (c) a high-frequency transformer with Litz- 111 
wire windings, (d) design structure and optimization parameters for the high-frequency transformer, (e) a to- 112 
pology of an outer-rotor SPMSM, (f) SPMSM design structure and optimization parameters. 113 
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SMES is a grid-enabling device for power systems as it can store and discharge a large 114 

amount of electricity/power almost instantaneous. SMES stores the power in terms of 115 

magnetic energy by its superconducting coils. Nowadays, high penetration of renewable 116 

energy sources, like wind and solar, are integrated into the power system worldwide. 117 

They will affect the power quality and stability due to their intermittency. This is one of 118 

the main challenges of integrating renewable energy sources in the smart grid. SMES is a 119 

promising technology to address this challenge [19-21]. The common shapes of supercon- 120 

ducting coils are solenoid (Figure 1a) or toroidal. The solenoid type is simple, robust and 121 

cost-effective. For the design optimization of solenoid-type SMES, there are several pa- 122 

rameters, such as the dimensions of the solenoids and currents.  123 

Figure 1b illustrates an optimization structure of an SMES based on a benchmark 124 

problem (TEAM problem 22) in ICS. For this example, eight parameters, x = [R1, h1, d1, J1, 125 

R2, h2, d2, J2], where (R, h, d) and J are the dimension and current density of the solenoid, 126 

respectively, subscript 1 and 2 mean the inner solenoid and outer solenoid, respectively. 127 

These parameters will be optimized to minimize the mean stray fields (Bstray) while keep- 128 

ing the total stored energy (E) close to 180 MJ. The optimization model can be defined as 129 

min: {
𝑓1(𝐱) = 𝐵𝑠𝑡𝑟𝑎𝑦    

𝑓2(𝐱) = |𝐸 − 180|

s. t. {
𝑔1(𝐱) = |𝐵𝑚𝑎𝑥| − min (

54−|𝐽𝑖|

6.4
) ≤ 0

𝑔2(𝐱) = 𝑅1 +
𝑑1

2
+

𝑑2

2
− 𝑅2 < 0    

𝐱𝑙 ≤ 𝐱 ≤ 𝐱𝑢

                      (2) 130 

In the model, Bstray is estimated by the magnetic fields on 21 points with the same space 131 

along lines a and b, as shown in Figure 1b. The first constraint is related to the supercon- 132 

ductivity of the SMES, where the maximal magnetic field (Bmax) is limited to a value deter- 133 

mined by the current density of two coils. This optimization problem can be converted to 134 

a single-objective problem (minimizing the mean stray fields only) by considering the re- 135 

quirement of stored energy through a constraint [22-25]. 136 

Please note that there are no analytical expressions to show the relationship between 137 

design parameters and performance quantities of many electromagnetic devices, for ex- 138 

ample, the relationship between the parameters x and E in (2). Thus, finite element analy- 139 

sis (FEA) method is widely employed to calculate the magnetic field distribution. For ex- 140 

ample, Figure 2 shows a design scheme of SMES and its magnetic field distribution by 141 

using FEA method (can be done in several software like ANSYS). Due to the symmetry, 142 

only the part above x-axis is given. As shown, the maximal magnetic field (indicated as 143 

MX) is around 4.27 T. Other performance measures like the energy can be obtained based 144 

on the results for the magnetic field. If a parameter, like radius of the inner solenoid, is 145 

changed, the corresponding magnetic field and the values of E, Bmax, and Bstray should vary 146 

as well. Thus, FEA and model link the design parameters and performance quantities.  147 

 148 

  
(a) (b) 

Figure 2. The magnetic field distribution for a design scheme of SMES with current density of 20 MA/m2, (a) the 149 
design scheme (symmetric about the x-axis), and (b) the corresponding magnetic field obtained from ANSYS 150 
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Figure 1c shows a prototype of a high-frequency transformer with Litz-wire windings 151 

and a magnetic core made of nanocrystalline films. High-frequency transformers have 152 

many potential and promising applications, including in the power systems and wireless 153 

power transmission systems [26-28]. For the design optimization of a high-frequency 154 

transformer, there are many objectives, such as minimizing the loss and volume. Regard- 155 

ing the design optimization parameters, dimensions (as shown in Figure 1d) and core ma- 156 

terials (like nanocrystalline or amorphous) can be considered [29-32]. Detailed optimiza- 157 

tion models can be referred to these works as well.   158 

The third example is a PM motor. PM motors have been widely used in industry and 159 

transportation, such as hybrid electric vehicles [33-37]. The design optimization of electri- 160 

cal machines, including MP motors, is very challenging in many situations due to the con- 161 

sideration of multi-physics analysis. Figure 1e shows the topology of an outer-rotor 162 

SPMSM. This kind of machine has been used in many applications as well, like in EVs. In 163 

our previous work, it is designed as an in-wheel motor for an EV to achieve four-wheel- 164 

drive performance [38,39]. This motor has many parameters to optimize, like the dimen- 165 

sions shown in Figure 1f. In addition, the material of PMs and winding parameters (like 166 

the number of turns and winding diameter) can be investigated. Popular optimization 167 

objectives are maximizing the output power, average torque, and efficiency, and minimiz- 168 

ing the cost and torque ripple.  169 

Furthermore, as this motor is used as the in-wheel motor, the operating condition 170 

should be considered. There are two major challenges for in-wheel-motors, the unsprung 171 

weight and cooling [40,41]. The unsprung mass is the weight of all components that are 172 

not supported by the suspension, including the wheels with motors, tires, and brakes. As 173 

the EV travels up and down over various bumps, potholes, and debris, excessive un- 174 

sprung weight would cause serious vibration. The weight of in-wheel motors must be 175 

minimized (e.g., through topology optimization, will be discussed in section 2.3.5) for 176 

smooth drive performance and better vehicle reliability and durability. Cooling is a critical 177 

issue for safe operation of high torque density in-wheel motors due to the limited and 178 

sealed space in the wheels. Therefore, accurate multi-physics analysis is required, includ- 179 

ing the electromagnetic, thermal and mechanical analysis. Based on these considerations, 180 

an optimization model of this motor can be defined as   181 

min:

{
 
 

 
 𝑓1(𝐱) = −𝑇𝑎𝑣𝑒𝑟𝑎𝑔𝑒    

𝑓2(𝐱) = 𝑇𝑟𝑖𝑝𝑝𝑙𝑒       

𝑓3(𝐱) = −𝜂         

𝑓4(𝐱) = 𝑀𝑎𝑠𝑠       

s. t. {

𝑔1(𝐱) = 𝑇𝑒𝑚𝑝𝑚 − 𝑇0 ≤ 0

𝑔2(𝐱) = 𝑇𝑒𝑚𝑐𝑜𝑖𝑙 − 𝑇1 ≤ 0

𝑔3(𝐱) = 𝑉𝑜𝑙𝑚 − 𝑉0 ≤ 0

𝐱𝑙 ≤ 𝐱 ≤ 𝐱𝑢

                           (3) 182 

where Taverage, Tripple, η, and Mass represent the average torque, torque ripple, efficiency, 183 

and mass of the motor, respectively. The temperature rises in PM (Tempm), winding 184 

(Temcoil), and motor volume (Volm) are considered as constraints. They should not be 185 

larger than the limits (indicated as T0, T1 and V0). For example, for a specific type of PM 186 

N38M, its Curie temperature is 100 ˚C. To avoid demagnetization in operation, T0 can 187 

be defined as 70 ˚C, assuming that the room temperature in an application is 30 ˚C. In 188 

the implementation of the optimization, both magnetic field analysis and thermal anal- 189 

ysis should be conducted first to estimate parameters in (3), except the Mass and Volume. 190 

Then an optimization algorithm/method can be applied to find the optimal parameters 191 

x. Similarly, it is hard to analytically express the relationship between parameters x and 192 
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many performance quantities in (3), such as torque ripple and efficiency. Therefore, 193 

FEA is required for this motor (applies to other motors as well).    194 

2.2. Design Optimization Models in The Presence of Uncertainties 195 

Theoretically, the performance of an electromagnetic device can be improved by op- 196 

timizing the optimization model of (1) or its single-objective form. However, this kind of 197 

optimal design (mathematical optimum) often features a lower performance than ex- 198 

pected after the practical manufacturing process, because there are many inevitable ma- 199 

terial diversities and uncertainties involved. For example, assume that the optimal height 200 

of PMs is 4 mm for an SPMSM after an optimization. Considering a batch production of 201 

this motor (for examples, 1,000 motors) with this design scheme, the practical height 202 

should be around 4 mm, like 4.05 mm and 3.97 mm, after measurement. It normally fol- 203 

lows a normal distribution, as indicated by some research work [15]. Therefore, the prac- 204 

tical performance of this motor will be different from the theoretically optimized value. 205 

There are obvious variations in batch production. To improve the manufacturing quality 206 

of the motors and other electromagnetic devices, some quality control methods, like six- 207 

sigma quality control, can be applied. However, this requires a lot of resources which may 208 

be a burden for some companies. Alternatively, this problem can be investigated in the 209 

early stage of product development through robust design optimization [6,14,42-46].  210 

Figure 3 illustrates a comparison of deterministic and robust optimums, and their per- 211 

formance variations in the presence of uncertainties. As shown, there are two optima, in- 212 

dicated as deterministic and robust optimum. For rated conditions, the deterministic one 213 

is better than the robust one. However, when a variation ∆x occurs, the performance of 214 

the deterministic design shows a significant degradation, while some designs likely will 215 

not fulfill the illustrated constraint regarding the maximum objective value. This will be 216 

regarded as a defect in practical quality evaluation. For example, considering the design 217 

optimization of a PM motor, the temperature rise in the winding shall be less than 70 ˚C. 218 

Then, normally, the deterministic design will have an optimum with a temperature rise 219 

of the exact 70 ˚C or very close to it, like, e.g., 69.7 ˚C. If any uncertainties happen during 220 

the manufacturing or operation, the practical temperature rise in the PM may exceed this 221 

limit. This may demagnetize the PMs and fail/damage the whole device. By contrast, the 222 

robust optimum can ensure the required quality of the device in batch production [6, 47]. 223 

That is why the popularity of robust design optimization is increasing compared to the 224 

conventional deterministic design optimization in many research fields, including the de- 225 

sign optimization of electromagnetic devices.  226 

 227 
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Figure 3. A comparison between the deterministic optimum and robust optimum in the presence of uncertain- 229 
ties for a function f(x), in which ∆x and ∆f stand for the variations of the parameter and objective, respectively. 230 

 231 

There are three popular approaches for the robust design optimization of electromag- 232 

netic devices, namely Taguchi parameter design, worst-case design and design for six- 233 
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sigma (DFSS) [47-54]. Figure 4 shows a block diagram for the Taguchi parameter design 234 

method. In this method, the parameters are classified as two groups, control factors and 235 

noise factors. Some techniques, such as orthogonal array and signal-to-noise ratios, are 236 

then employed to determine the best combination of control factor levels so that the vari- 237 

ation of this response is minimized in the presence of noise factors [54]. The Taguchi pa- 238 

rameter design has been widely employed in many applications due to its efficiency and 239 

effectiveness. However, there are several drawbacks, e.g., it cannot effectively deal with 240 

the constraints in optimization models.  241 

 242 
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Figure 4. Block diagram of a product/process design in Taguchi method considering control factors (de- 244 

sign variables) and noise factors (uncertainties) 245 

 246 

Worst-case design and DFSS are able to handle both constraints and optimization 247 

objectives in a generic optimization model. Regarding the worst-case approach, its multi- 248 

objective optimization model can be defined as 249 

 250 
min: {𝑓𝑤,𝑖(𝐱) = max

𝝃∈𝑈(𝝃)
𝑓𝑖(𝐱, 𝝃) , 𝑖 = 1,2… , 𝑝}

s. t. 𝑔𝑤,𝑗(𝐱) = max
𝝃∈𝑈(𝝃)

𝑔𝑗(𝐱, 𝝃) ≤ 0, 𝑗 = 1,2, … ,𝑚

𝑈(𝝃) = {𝝃 ∈ ℝ𝑘||𝝃 − 𝝃𝒏| ≤ ∆𝝃}

                (4) 251 

 252 

where 𝝃 and 𝝃𝒏 are vectors representing the actual and nominal values of noise factors, 253 

respectively, and U(𝝃) represents the uncertainty range of these parameters, ∆𝝃 is a vector 254 

for the limit of uncertainty range, ℝ stands for real coordinate space, k is dimension, sub- 255 

script w in the objective and constraints means the worst case. 256 

 For the DFSS approach, its multi-objective optimization model can have the form as 257 

 258 

min: {𝐹𝑖[𝜇𝑓(𝐱), 𝜎𝑓(𝐱)], 𝑖 = 1,2, … , 𝑝}

s. t. 𝑔𝑗[𝜇𝑓(𝐱), 𝜎𝑓(𝐱)] ≤ 0, 𝑗 = 1,2, … ,𝑚

𝐱𝑙 + 𝑛𝝈𝐱 ≤ 𝝁𝐱 ≤ 𝐱𝑢 − 𝑛𝝈𝐱
LSL ≤ 𝜇𝑓 ± 𝑛𝜎𝑓 ≤ USL

                  (5)                    259 

where μ and σ are the mean and standard deviation, respectively, 𝝁𝐱 and 𝝈𝐱 are the mean 260 

and standard deviation of x, respectively, LSL and USL are the lower and upper specifi- 261 

cation limits, respectively. n is the sigma level, and it is defined as 6 in many applications. 262 

The value of n can be equivalent to a probability of a normal distribution, as shown in 263 

Figure 5. Six-sigma level (n=6) has been widely adopted in industry as it can provide good 264 

reliability for both short-term quality control (equivalent to statistic values) and long-term 265 

quality control (with considerations of uncertainties by shifting mean with 1.5 σ). It is 266 

equivalent to 0.002 (or a per cent of pass 99.9999998%) for short-term quality control and 267 

3.4 defects per million opportunities (DPMO) for long-term quality control [6,14,48].  268 
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 269 
Figure 5. Probability density function of the standard normal distribution for short-term quality control and 270 
long-term quality control (with a 1.5σ shift from the mean), with probabilities for three sigma levels  271 

   272 

As an example, the robust optimization model of the investigated SMES with deter- 273 

ministic optimization model (2) can be defined as 274 

min: {
𝑓1(𝐱) = 𝜇(𝐵𝑠𝑡𝑟𝑎𝑦) + 𝜎(𝐵𝑠𝑡𝑟𝑎𝑦)      

𝑓2(𝐱) = 𝜇(|𝐸 − 180|) + 𝜎(|𝐸 − 180|)

s. t. {
𝑔1(𝐱) = 𝜇 (|𝐵𝑚𝑎𝑥| − min (

54−|𝐽𝑖|

6.4
)) + 6𝜎 (|𝐵𝑚𝑎𝑥| − min (

54−|𝐽𝑖|

6.4
)) ≤ 0

𝑔2(𝐱) = 𝜇 (𝑅1 +
𝑑1

2
+

𝑑2

2
− 𝑅2) + 6𝜎 (𝑅1 +

𝑑1

2
+

𝑑2

2
− 𝑅2) < 0       

𝐱𝑙 + 6𝝈𝐱 ≤ 𝝁𝐱 ≤ 𝐱𝑢 − 6𝝈𝐱

    (6) 275 

where μ and σ are the mean and standard deviation, respectively. In the implementation, 276 

each design optimization in x, like R1 (radius of the inner solenoid) can be assumed to 277 

follow a normal distribution with two parameters, a mean (the nominal value of a design) 278 

and a standard deviation (one third of its manufacturing tolerance) [6,14]. 279 

    In the implementation of the optimization, the evaluation processes of performance 280 

quantities, like E, Bmax, and Bstray are same as those applied for solving (2), like FEA. The 281 

main difference between (2) and (6) is that some extra information (μ and σ) is needed in 282 

(6). To obtain the required data sets, Monte Carlo method can be applied with four main 283 

steps. First, assume that each parameter in x follow a normal distribution. Second, gener- 284 

ate a large amount of samples, like 10,000 samples (means 10,000 design schemes of 285 

SMES), from the distributions. Third, evaluate the SMES’s performance quantities, such 286 

as E and Bmax, for these 10,000 designs. Fourth, estimate the mean and standard deviation 287 

of these performance quantities. Then optimization algorithms can be applied to find the 288 

optimum solutions for this model. 289 

There are two main differences between the worst-case approach and DFSS ap- 290 

proach. First, the worst-case multi-objective model is a minimax optimization problem. It 291 

uses the worst motor performance of a design under uncertainties as a measure of robust- 292 

ness. DFSS uses the sigma level as the measure of robustness. Second, the probability dis- 293 

tribution functions of the uncertainty parameters are required for DFSS, while the worst- 294 

case approach only needs intervals for the uncertain parameters. In general, the compu- 295 

tation cost of worst-case is higher than that of DFSS, as it is a minimax optimization prob- 296 

lem. Moreover, the worst-case approach is typically more affected by modeling errors, as 297 

this quantity is estimated based on a single numerical result, while DFSS measures are 298 

determined by evaluating a significant number of design variations. 299 

In the case of hybrid uncertainties, the objective functions and constraints have the 300 

characteristics of both random and interval uncertainties. Both worst-case and DFSS 301 

should be considered in the optimization model, and the computation cost is huge. This 302 
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kind of robust optimization has been investigated for a PM motor in our previous work. 303 

Polynomial chaos Chebyshev interval (PCCI) method was employed to improve its opti- 304 

mization efficiency [49].  305 

In the context of Industry 4.0, robust design optimization has been an active and 306 

promising research topic in many fields recently, including electrical engineering, me- 307 

chanical engineering, and civil engineering. A main driving force behind this is that robust 308 

design optimization is able to include the manufacturing data and product quality into 309 

the design problem. There are many research activities about the robust design analysis 310 

and optimization of different types of electromagnetic devices, such as SMES [21,50-53], 311 

and several types of electrical machines including high-temperature superconducting lin- 312 

ear synchronous motor [55], and synchronous reluctance motors [56], and PM motors [57- 313 

65]. It is observed that there are more discussions on robust design optimization of PM 314 

motors than other types of electrical machines, due to the fact that there are many uncer- 315 

tainties for the PMs. These uncertainties will affect the performance of the PM motors and 316 

their reliability, e.g., considering potential demagnetization. This is also challenging for 317 

the mass-production of the PM motors. Recently, a special section on robust design and 318 

analysis of electric machines and drives was published in the IEEE Transactions on Energy 319 

Conversion. Both the robust design analysis and optimization of the motors and control 320 

systems are investigated by many authors and, correspondingly, a significant number of 321 

papers was published [66]. The outcomes will lay a solid foundation for the development 322 

of high-reliability electrical drive systems for many challenging applications, such as EVs 323 

and wind power generation.    324 

2.3. Optimization Methods 325 

2.3.1. Optimization Algorithms 326 

After the development of single- and/or multi-objective optimization models, differ- 327 

ent optimization methods can be employed to discover the optimal results. In general, 328 

optimization methods consist of optimization algorithms and strategies. Regarding the 329 

optimization algorithms, there are many types, such as gradient-based algorithms and 330 

evolutionary optimization algorithms (called intelligent optimization algorithms in many 331 

situations). Due to the nature of the high nonlinearity of the optimization models, evolu- 332 

tionary optimization algorithms are more popular nowadays, such as genetic algorithm 333 

(GA), differential evolution algorithms (DEAs), PSO algorithm, grey wolf algorithm, ob- 334 

jective black hole algorithm, and their improvements [39, 67-92]. More details about these 335 

optimization algorithms with applications to different electromagnetic devices can be 336 

found in review papers [4,5,14]. 337 

2.3.2. Surrogate Models or Approximation Models 338 

A major challenge for optimizing models (1)-(3) or their single-objectives forms with 339 

an appropriate algorithm is the large computation cost, as accurate magnetic field distri- 340 

bution obtained from 2-D or 3-D finite element analysis (FEA) is required for many appli- 341 

cations, like PM motors. The FEA usually takes a lot of simulation time, especially for 342 

some complex electromagnetic devices that require 3-D finite element models (FEMs). 343 

Therefore, surrogate models, such as response surface model (RSM), radial basis function 344 

model (RBF), and Kriging model, have been employed to approximate the performance 345 

of electromagnetic devices, like flux linkage and core loss. These models can be developed 346 

based on the simulation data of FEM by using an appropriate design of experiment (DoE) 347 

technique [93-96]. Details about surrogate models and their applications to different elec- 348 

tromagnetic devices can for instance be found in [4,5,14]. A comparison of different sur- 349 

rogate models will be discussed in subsection 3.1, with consideration of several machine 350 

learning models. Furthermore, these surrogate models can be used to estimate the mean 351 
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and standard deviation terms in the robust optimization. This will significantly reduce the 352 

computation cost of the typical Monte Carlo analysis with finite element model.  353 

2.3.3. Multilevel and Space Reduction Optimization Strategies 354 

Surrogate models can be used to improve the optimization efficiency or reduce the 355 

computation cost of low-dimensional electromagnetic design problems, for example, in 356 

case a total of five dimensions is not exceeded. Its efficiency is not good for high-dimen- 357 

sional optimization problems, such as the optimization of SMES with 8 parameters (Figure 358 

1b) and the optimization of a PM motor with 11 parameters and FEM (Figure 1f). There- 359 

fore, appropriate optimization strategies should be considered. For this purpose, three 360 

optimization strategies, namely multilevel optimization, space reduction optimization, 361 

and sequential optimization strategies have been proposed in our previous work for both 362 

deterministic/robust and single- or multi-objective optimization problems of electromag- 363 

netic devices [6,14,47,97-100].  364 

For the multilevel optimization strategy, a high-dimensional optimization problem 365 

is converted into several low-dimensional optimization problems by using sensitivity 366 

analysis techniques, such as local sensitivity and analysis of variance. Considering the op- 367 

timization of SMES with 8 parameters, a three-level structure can be defined as: Level 1 (3 368 

parameters of [R1, h1, d1]), Level 2 (2 parameters of [J1, J2]), Level 3 (3 parameters of [R2, h2, 369 

d2]). To implement the optimization, a sequential optimization process, Level 1 – Level 2 370 

–Level 3 will be conducted, as shown in Figure 6. This process should be repeated until a 371 

convergence criterion is met (for example, the relative error of the objective between two 372 

iterations are no more than a given value ε like 1%). This kind of optimization strategy will 373 

decrease the computation cost, as the optimization of each level is a low-dimensional 374 

problem which can be done effectively by a surrogate model. For example, if each factor 375 

needs 5 levels in a DoE technique, then Level 1 requires 125 points, Level 2 requires 125 376 

points, and Level 3 requires 25 FEM points, resulting in a total of 275 points for one loop 377 

of the optimization. If three optimization loops are needed, a total of 825 points are re- 378 

quired for multilevel optimization. This is much smaller than the samples 379 

(125×125×25=390,625) required by developing a model for 8 input parameters.  380 

 381 
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                              Figure 6. A three-level optimization flowchart for SEMS, in which 8 optimization parameters 384 

are allocated to three subspaces X1, X2 and X3.  385 

For the sequential optimization strategy, it uses a sophisticated strategy to sample 386 

the most important variants in a small subspace (instead of the initial big design space) by 387 

using some space reduction and moving techniques. According to the design examples 388 

on SMES and PM motors with soft magnetic composite cores, it can be found that the 389 

computation cost of FEA has been reduced significantly by using these strategies. These 390 

and improved optimization strategies (like new and improved sensitivity analysis meth- 391 

ods) have been successfully applied to the design optimization of other PM motors 392 

[35,38,101].   393 

2.3.4. System-level Multidisciplinary Design Optimization 394 

Besides the optimization problems discussed above, there are two emerging and 395 

challenging research topics in the design optimization of electromagnetic devices, system- 396 

level design optimization and topology optimization. 397 

The system-level design optimization is very important for electrical machines and 398 

drive systems, e.g., the in-wheel motor drive systems for EVs. The conventional compo- 399 

nent-level (e.g., the motor) optimization cannot guarantee optimal performance of the 400 

whole system. To design and optimize this kind of drive systems, electromagnetic analy- 401 

sis, thermal analysis, mechanical analysis, power electronics, and control systems have to 402 

be investigated in the optimization [102-110]. Therefore, multidisciplinary design optimi- 403 

zation methods should be investigated. Another example is the design of high-speed elec- 404 

trical machines, where utilizing a multi-physics analysis is crucial to obtain accurate and 405 

good optimization results [8,9,111].  406 

2.3.5. Topology Optimization 407 

The optimization discussed above is mainly about the structure size or dimension 408 

optimization of the electromagnetic devices, which is one of the three main optimizations 409 

in engineering, structural size, shape and topology optimizations. The topology optimi- 410 

zation aims to obtain the optimal layout of components in the design domain for the best 411 

objective performance. Compared with the former two optimization methods, the topol- 412 

ogy optimization is more adept at innovative concept design with superior performance. 413 

Moreover, it can shorten the design cycle with less expertise to the optimal design [112]. 414 

Topology optimization has been an important research topic in computational electro- 415 

magnetics for a significant time. It has attracted much attention nowadays due to the re- 416 

quirements of some modern electromagnetic devices, like the in-wheel motor drive sys- 417 

tems for (hybrid) EVs, and the development of some advanced AI techniques like deep 418 

learning (this will be discussed in the next section) [113-116]. As mentioned in Section 2, 419 

unsprung weight is a major challenge for in-wheel-motors [40,41]. The weight of in-wheel 420 

motors must be minimized for smooth driving performance and better vehicle reliability 421 

and durability. Topology optimization is an effective method to achieve this goal. In many 422 

situations, some holes can be designed to the ferromagnetic cores of the motors, such as 423 

the rotor cores of IPMSMs (Figure 1e) and the stator cores of SPMSMs (Figure 1g) [112].  424 

There are some challenges for topology optimization as well. To ensure good manu- 425 

facturability of the obtained design, some constraints, like rounded corners, should be 426 

considered in the optimization. Alternatively, this aim can be achieved by robust topology 427 

optimization (a combination of robust optimization and topology optimization).  428 

2.3.6. Fuzzy Optimization 429 

The optimization effectiveness of deterministic and robust models depends on the 430 

precise quantifications of design parameters and uncertainties. However, these quantifi- 431 

cations are not always possible. Fuzzy optimization is good at handling this kind of un- 432 
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certain. In this case, the performance of electromagnetic devices can be described as qual- 433 

itative objectives, such as high, medium, and low. Fuzzy membership functions can be 434 

used to quantify them and can be included in quantitative optimization models. There are 435 

two main types of fuzzy optimization problems in terms of the consideration of con- 436 

straints. Fuzzy programming has been developed and widely used to handle optimization 437 

problems with fuzzy parameters and constraints [117,118]. Fuzzy optimization has been 438 

employed to design electromagnetic devices, including different types of motors [119- 439 

121]. In addition, fuzzy method has been combined with Taguchi method to address 440 

multi-objective optimization of electromagnetic devices [122-128]. Taguchi method has a 441 

drawback of handling robust multi-objective optimization of electromagnetic devices. 442 

Fuzzy method can be employed to solve this kind of problem.     443 

3. Machine Learning for the Design Optimization of Electromagnetic Devices 444 

From the review and discussions in Section 2, it can be seen that there are two major 445 

challenges in the design optimization of electromagnetic devices. First, accurate multi- 446 

physics analysis is required for many applications, but it normally requires huge compu- 447 

tation cost of FEA, for example, for the design of high-speed PM motors. Second, highly- 448 

accurate surrogate models are essential for the optimization process. Naturally, the surro- 449 

gate models of electromagnetic devices are highly nonlinear. In this case, non-parametric 450 

models may be superior to the parametric and semi-parametric models for the perfor- 451 

mance prediction as there is no specific relationship (like linear) between the inputs and 452 

outputs. For example, the relationship between efficiency of a PM motor and its dimen- 453 

sion may not be able to predict accurately by using polynomials (or RSMs). Fortunately, 454 

machine learning presents an opportunity to address these two challenges.  455 

Machine learning is a method of data analysis (including prediction and optimiza- 456 

tion) that automates analytical model building. It is seen as a subset of artificial intelli- 457 

gence. As a type of non-parametric modeling technique, machine learning is good at de- 458 

veloping complex nonlinear relationships between a number of inputs and outputs by 459 

using different neural networks. Thus, it can be used to build surrogate models for models 460 

(1)-(3). Many machine learning algorithms have been used to the design optimization of 461 

electromagnetic devices, such as artificial neural networks (ANN), support vector ma- 462 

chines (SVM), extreme learning machines (ELM), random forest (RF), and deep learning 463 

(DL) [3]. DL is a kind of deep neural networks (DNN), and is one subset of machine learn- 464 

ing algorithms. There are many more layers of neurons in the architectures of DL, com- 465 

pared with ANN, which can be employed to achieve specialized functionalities. To apply 466 

them to design electromagnetic devices, there are two major contributions in the common 467 

practice. First, these algorithms have been used to predict/estimate the device’s field dis- 468 

tribution or performance. Second, they can be used to develop surrogate models for opti- 469 

mization [129-153].  470 

Table 1 lists a comparison of several surrogate models for performance prediction 471 

and optimization of electromagnetic devices. There are three types regarding their para- 472 

metrization. The first category is about parametric models. It includes RSM and RBF. The 473 

second one gives semi-parametric models, e.g., Kriging based approaches. The last group 474 

involves non-parametric models. It includes three popular machine learning models with 475 

explicit mathematical expressions, such as ANN, SVM, and ELM. Please note that RF and 476 

DL models are not included in this table as they are hard to be expressed by explicit math- 477 

ematical equations.  478 

These models have been employed to design and optimize different types of electro- 479 

magnetic devices recently. Please note that different networks may be applied to different 480 

machine learning models. For example, there are two popular networks of ANN, back- 481 

propagation (BP) and radial basis function networks. And there are many types of DL, 482 

such as the convolutional neural network (CNN), recurrent neural network (RNN), and 483 

generative adversarial networks (GAN). Table 2 lists some selective bibliography focusing 484 
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on electromagnetic device design optimization based on different machine learning meth- 485 

ods. More details are discussed in the following subsections. 486 

 487 

3.1. Machine Learning for Performance Prediction of Electromagnetic Devices 488 

The performance of electromagnetic devices highly depends on the field analysis re- 489 

sults of electromagnetic, mechanical, and thermal analyses. These analyses are usually 490 

based on FEA and time-consuming, as different dimension and materials and excitations 491 

will affect the results. Also, the performance of electromagnetic devices, like the torque 492 

and efficiency of a motor, depends on the accurate estimation of the flux linkage and core 493 

loss. Typically, those measures feature strongly nonlinear and multi-modal characteristics 494 

regarding the input parameters, e.g., due to saturation effects. Consequently, surrogate 495 

models based on parametric or semi-parametric approaches might not follow accurate 496 

results in general. Through several attempts on machine learning methods, it is found that 497 

deep learning algorithms, like CNN and RNN, are good at the distribution estimation of 498 

magnetic field and temperature [129-131], and the prediction of torque and efficiency for 499 

motors [132-134]. These works established a solid foundation for the generalizable data- 500 

driven model for the analysis, design and optimization of electromagnetic devices [129].  501 

       502 
                   Table 1. Comparison of several surrogate models 503 

Model Mathematical expression Type 

RSM 
𝑦 = 𝑿𝜷 + 𝜀 

X: structure matrix; 𝜷: coefficient matrix 
Parametric 

RBF 
𝑦 = ∑ 𝛽𝑖𝐻(‖𝐱 − 𝐱𝑖‖)

𝑛
𝑖=1   

H: RBF function; 𝛽𝑖 : coefficient matrix 
Parametric 

Kriging 
𝑦 = 𝑞(𝐱)′𝜷 + 𝑧(𝐱) 

q(x): basis function; 𝜷: coefficient matrix; z(x): a stochastic process 
Semi-parametric 

ANN 

𝑦𝑗 = 𝑓(∑ 𝑤𝑗𝑖𝑥𝑖 − 𝜃𝑗)
𝑛
𝑖=1 ;  

Basic artificial neuron model, 𝑤𝑗𝑖 : weightings, 𝜃𝑗 : neuron’s activa-

tion threshold; f :transfer function. 

Non-parametric 

SVM 

𝑦 = 𝑤 ∙ 𝜙(𝑥) + 𝑏  

𝜙: a function maps the input space to a higher dimensional feature 

space, w is a weighting vector, b: bias term. 
Non-parametric 

ELM  
𝑦 = ∑ 𝛽𝑖𝑔(𝐰𝑖𝐱𝑗 + 𝑏𝑖)

𝐾
𝑖=1   

g: activation function, w: weighting vector; b: threshold [138]. 
Non-parametric 

 504 

An example for the torque prediction of a switched reluctance motor (SRM) based on 505 

SVM is considered in the following. Figure 7 shows the machine topology of a four-phase 506 

segmented-rotor SRM with 16/10 stator/rotor poles. As shown, the motor consists of 8 507 

excited stator poles and 8 auxiliary poles (16 poles in total). The basic operating principle 508 

and structural parameters of this motor have been introduced in our previous work [133]. 509 

In general, accurate torque modeling of SRM is a difficult problem, as this motor features 510 

a double salient structure. Thus, the torque response usually shows a significant ripple, 511 

and its modeling is a highly nonlinear problem. In a previous study, two significant fac- 512 

tors, phase current and position angle, were investigated as inputs for modeling the 513 

torque based on three forms of SVM algorithms. They are a conventional SVM, a least 514 

square support vector regression (LSSVR) and a maximum-correntropy-criterion-based 515 

least squares support vector regression (MCC-LSSVR). Figure 8 illustrates the modeling 516 

of phase flux linkage and torque of this motor by using the MCC-LSSVR model. Table 3 517 

lists the mean absolute error (MAE) and root mean square error (RMSE) for all three mod- 518 

eling approaches. As shown, the MCC-LSSVR model appears more effective than the 519 

other two techniques.               520 
 521 
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 523 

Table 2. Selective bibliography focusing on electromagnetic device design optimization                             524 

based on different machine learning methods  525 

Reference Model Application 
Estimation objectives or Optimization 

methods 

[129] CNN 
Electromagnetic devices including 

transformer and PM motor 
Magnetic field estimation 

[130, 131] CNN, RNN PMSMs Temperature Estimation 

[132] 
ANN, CNN, 

RNN 
Interior PM motors 

Efficiency map and flux-linkage pre-

diction 

[133, 134] SVM Switched reluctance motor Torque prediction 

[135, 136] SVM PMSMs Multi-objective optimization 

[137] RF Induction machine Random forest algorithms 

[138] ELM PM synchronous linear motors 
Multi-objective optimization, grey 

wolf optimization algorithm 

[139] KNN PM synchronous linear motors Differential evolution algorithm 

[140] MLP PMSMs Hybrid metaheuristic algorithm 

[141] R-DNN Double secondary linear motor Cuckoo search algorithm 

[142] CNN Synchronous reluctance motor Binary PSO 

[143-145] CNN Interior PM motors 
Topology optimization, multi-objec-

tive optimization, genetic algorithm 

[146] ANN High-frequency transformer Structure optimization 

[147-150] 
ANN, SVM, 

DNN 
Antennas 

Multi-objective and robust design op-

timization 

    526 
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                  Figure 7.  Machine topology of the 16/10 SRM with segmented rotors and excited and auxiliary stators. 528 
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                 Figure 8. (a) flux linkage prediction based on MCC-LSSVR model with respect to phase current and position 532 
angle, (b) torque prediction based on MCC-LSSVR model with respect to phase current and position angle. 533 

 534 

 535 

Table 3. Comparison of modeling accuracy of several methods  536 

Modeling method 
Flux linkage (mWb)  Torque (Nm) 

MAE RMSE MAE RMSE 

SVM 0.846 0.756 0.1008 0.0925 

LSSVR 0.424 0.306 0.0525 0.0494 

MCC-LSSVR 0.086 0.073 0.0252 0.0189 

3.2. Machine Learning for Optimization of Electromagnetic Devices 537 

Overall, there is more research carried out on machine learning for improving the 538 

runtime of the optimization of electromagnetic devices, as was also shown in Table 2. Dif- 539 

ferent machine learning algorithms, such as SVM, multi-layer perceptron (MLP), KNN, 540 

CNN have been investigated to optimize transformers, antennas and motors (motors are 541 

the majority applications) [135-142, 146-150]. It is noted that deep learning follows prom- 542 

ising results when applied for topology optimization of electromagnetic devices and this 543 

topic has been attracted much attention recently [143-145]. The presented studies con- 544 

firmed that good optimization results can be obtained by using different machine learning 545 

models for optimization. 546 

To illustrate the effectiveness of these models, as an example, a single-objective opti- 547 

mization problem of a SMES is investigated below. Three types of surrogate models, RBF 548 

(a parametric model), Kriging (a semi-parametric model), and ANN (a non-parametric 549 

model), are compared. Meanwhile, an optimization strategy, sequential optimization 550 

method (SOM), is investigated to decrease the computation cost of FEM.   551 

In the optimization, the dimensions of the outer superconducting coil, [R2, h2/2, d2] as 552 

shown in Figure 1b, are optimized to minimize the mean stray fields (Bstray) while keeping 553 

the stored energy (E) close to 180 MJ and guaranteeing the requirements for achieving 554 

superconductivity. Other parameters are fixed for this case study. Detailed information 555 

about the parameters and objective can be found in [98,99]. 556 

Figure 9 illustrates the optimization results of SOM by using these three models. As 557 

shown, RBF model requires 5 optimization loops to output the final optimum, while the 558 

other two models only need 4 loops to converge [6]. Table 4 lists the final optimal. For the 559 

purpose of a sound comparison, the direct optimization results of DEA with FEM are 560 

listed in the table as well. 561 

As shown in the Figure, though the RBF model has the smallest optimum for the first 562 

loop of SOM, the differences among the optimal results are small. In the first optimization 563 

loop of SOM, the same samples are used to derive the models, then DEA is employed for 564 

optimization to find the ideal result. After the convergence of the SOM, the difference 565 
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among the considered approaches becomes relatively small, and the overall best results 566 

are achieved for the ANN-based approach. Regarding the required number of samples 567 

evaluated through FEA, the combination of SOM and any of these modeling approaches 568 

necessitates approximately 200 samples, which are less than 10% of that required by the 569 

direct DEA optimization (2310 evaluations). Therefore, such approaches are effective for 570 

optimization and facilitate minimizing the computational cost and the corresponding 571 

runtime.   572 

More importantly, there is no big difference between different models with SOM. 573 

Therefore, it can be concluded that the optimization strategy may be more important than 574 

the particular modeling approach for the optimization of electromagnetic devices. For 575 

high-dimensional problems, this conclusion has been confirmed by further studies [47,48].    576 

 577 

       578 
Figure 9. Convergence processes of SOM with three surrogate models (RBF, Kriging, and ANN) for the optimi- 579 
zation of SMES  580 

 581 
                                       Table 4. Optimization results of SMES with different models  582 

Par. Unit DEA RBF Kriging ANN-BP 

R2 m 3.18 3.16 3.11 3.10 

h2/2 m 0.428 0.365 0.267 0.232 

d2 m 0.211 0.244 0.340 0.394 

Bstray mT 1.032 0.957 0.943 0.938 

E MJ 180.00 179.95 179.94 179.94 

F ─ 0.344 0.319 0.315 0.313 

FEM ─ 2310 202 157 159 

 583 

4. Future Directions 584 

Based on the above discussions, it can be seen that there are many opportunities as 585 

well as challenges for the application of machine learning to the design optimization of 586 

electromagnetic devices. Compared with conventional design optimization work (includ- 587 

ing design optimization based on RSM, RBF, and Kriging), the activity of machine-learn- 588 

ing-based optimization is very limited, as can be seen from Table 2. It is expected that 589 

there is a significant increase of corresponding research activities in the future. We think 590 

the following topics require further studies:  591 

4.1. DL for Field Estimation or Multiphysics Analysis 592 

DL has been successfully employed to estimate the electromagnetic field distribution 593 

and temperature distribution of transformers and PM motors, and the efficiency of PM 594 

motors. Due to the nature of high nonlinearity, more studies can be conducted to estimate 595 

other field distributions for structure analysis. The field estimation of multi-physics anal- 596 

ysis is challenging for this aspect, especially a coupled field analysis, as for instance re- 597 

quired for the in-wheel motors and high-speed motors. If multi-physics performance can 598 
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be predicted accurately by using DL techniques, this will greatly benefit the optimization 599 

work.  600 

4.2. Machine Learning for System-Level Design Optimization of Electrical Drive Systems 601 

Machine learning algorithms have been used to optimize the dimensions of several 602 

electrical machines, like PM motors. They can be used to design the whole electrical drive 603 

systems, including both electrical machines and their power electronics, and control sys- 604 

tems. Recently, DL has been successfully employed to design the controller to drive the 605 

electrical machines [154-155]. As there are many types of control algorithms, such as field- 606 

oriented control, direct torque control and model predictive control, more research work 607 

shall be conducted.  608 

Currently, selected machine learning approaches do not show significant advances 609 

for solving particular optimization problems involving electromagnetic devices when 610 

compared with conventional parametric and semi-parametric modeling techniques. The 611 

main reason is that their effectiveness depends on the complexity of the considered opti- 612 

mization problems, which, for instance, is a function of the number of parameters to be 613 

optimized. In case the number of design parameters and objectives and, consequently, the 614 

overall complexity of the analysis increases, machine learning algorithms typically feature 615 

promising opportunities and feature crucial benefits, e.g., for the system-level multidisci- 616 

plinary design optimization of electrical drive systems for (hybrid) EVs.  617 

4.3. Machine Learning for Reliability Improvement of Electromagnetic Devices  618 

High reliability, especially lifetime reliability, is crucial to all electromagnetic devices. 619 

Besides the monitoring of devices’ operational status, some important work can be done 620 

in the stage of design optimization. Many techniques/methods have to be integrated, such 621 

as robust topology design optimization, robust tolerance design optimization [156], and 622 

multidisciplinary design optimization. Besides the performance modeling, aspects of the 623 

manufacturing and the process itself should be considered within the design optimiza- 624 

tion, like the integrated product and process development of electric drives using a 625 

knowledge-based system [157].  626 

Another important technology is the digital twin. Digital twin is an emerging and 627 

fast-growing technology which connects the physical and virtual world. It has attracted 628 

much attention worldwide recently [158-160]. The future of product and service design 629 

will be hugely impacted by digital twin technology. With the help of digital twin, the re- 630 

liability of the product can be controlled with more freedom. Regarding the design opti- 631 

mization of electromagnetic devices, it has benefits in three main aspects, product devel- 632 

opment (design process), manufacturing/production, and operation and management. In 633 

the design process, digital twin can be used to test the virtual design scheme given by 634 

optimization. Thus, possible design defects can be avoided/corrected in the early design 635 

stage of electromagnetic devices. Regarding the production process, digital twin can be 636 

applied to determine the best manufacturing process (including product chain and quality 637 

control). This will increase the robustness and production efficiency and decrease the pro- 638 

duction cost of the electromagnetic devices. Regarding the operation and management, 639 

digital twin can be employed to find out the best control strategy and parameters for elec- 640 

tromagnetic devices, like offshore wind generators, to increase their lifetime reliability.      641 

4.4. Data-Driven Design Optimization Based on Cloud Services  642 

Considering the characteristics and benefits of the technologies mentioned above, a 643 

data-driven design optimization platform can be developed based on industrial big data 644 

(material data and manufacturing data) and available cloud services (cloud computing 645 

[14,161] and manufacturing). In the future, the optimal design of an electromagnetic de- 646 

vice should include the best topology, shape, dimension and material, and the most ap- 647 

propriate manufacturing process. Reliability-based design and analysis results should be 648 
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available by evaluating a multidisciplinary analysis model and digital twin technology. 649 

Machine learning, especially deep learning, will play an important role in this process.  650 

 651 

5. Conclusions 652 

This paper reviewed the recent developments in design optimization of electromag- 653 

netic devices, with a focus on the application of machine learning algorithms. Through 654 

the discussions, it is found that there are many challenges and promising opportunities 655 

for the design optimization of electromagnetic devices, with the fast development of ad- 656 

vanced machine learning algorithms and intelligent manufacturing technology. Besides 657 

the requirements of high performance, there are some challenging objectives for the de- 658 

sign optimization of electromagnetic devices, including high lifetime reliability, high ro- 659 

bustness and manufacturing quality and flexibility. To address these challenges, there are 660 

promising opportunities for the applications of machine learning algorithms and some 661 

modern technologies like digital twin. As investigated in Section 4, machine learning al- 662 

gorithms, such as SVM and DL, revealed very good accuracy in performance prediction 663 

of electromagnetic devices, e.g, regarding the estimation of torque and efficiency. DL al- 664 

gorithms are superior to predict the distribution of the magnetic field and temperature. 665 

Due to their excellent suitability for modeling nonlinear characteristics, more extensive 666 

research activities on machine learning algorithms are expected in the future. Four prom- 667 

ising research directions are presented, including the application of cloud services and 668 

digital twin, to achieve the intelligent design and manufacturing of electromagnetic de- 669 

vices with the consideration of lifetime performance and reliability control. 670 
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