
“© 2021 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all
other uses, in any current or future media, including reprinting/republishing this material for advertising or
promotional purposes, creating new collective works, for resale or redistribution to servers or lists, or reuse
of any copyrighted component of this work in other works.”

1

A Drift Region-Based Data Sample Filtering
Method

Fan Dong, Jie Lu, Fellow, IEEE, Yiliao Song, Member, IEEE, Feng Liu, Member, IEEE, Guangquan Zhang

Abstract—Concept drift refers to changes in the underlying
data distribution of data streams over time. A well-trained model
will be outdated if concept drift occurs. Once concept drift
is detected, it is necessary to understand where drift occurs
to support the drift adaptation strategy and effectively update
outdated models. This process, called drift understanding, has
rarely been studied in this area. To fill this gap, this paper
develops a drift region-based data sample filtering method to
update the obsolete model and track the new data pattern
accurately. The proposed method can effectively identify the drift
region and utilize information on the drift region to filter the
data sample for training models. Theoretical proof guarantees the
identified drift region converges uniformly to the real drift region
as the sample size increases. Experimental evaluations based on
four synthetic datasets and two real-world datasets demonstrate
our method improves the learning accuracy when dealing with
data streams involving concept drift.

Index Terms—concept drift, data stream, nonstationary envi-
ronment, machine learning

I. INTRODUCTION

Real-world applications generate a tremendous amount of
streaming data, and learning from data streams is among the
most vital contemporary fields in machine learning and data
mining [1], [2]. In streaming data, the data distribution may
change over time as new data arrive [3], [4]. This problem is
termed as concept drift, such as the recognition pattern shifts
when new images are added to the database [5], [6], changes in
user interest in shopping behaviors, and the emergence of new
types of spam in email filtering systems [7]. Once concept drift
occurs, the patterns induced from past data may not be relevant
to the latest data [8]. Learning under concept drift becomes
a big challenge when applying machine learning techniques
into data stream mining applications.

A typical framework of learning under concept drift (Fig. 1)
consists of three main modules: 1) concept drift detection
detects when drift occurs in the data stream; 2) concept
drift understanding retrieves useful information where concept
drift has occurred, such as identifying the drift region; and
3) concept drift adaptation designs a strategy to update the
learning model by incorporating the outputs of concept drift
detection and concept drift understanding to track the newly

F. Dong, J. Lu, Y. Song, F. Liu and G. Zhang are with the Decision Systems
and e-Service Intelligence Laboratory, The Australian Artificial Intelligence
Institute, University of Technology Sydney, Ultimo, NSW 2007, Australia
(e-mail: Fan.Dong@uts.edu.au; Jie.Lu@uts.edu.au; Yiliao.Song@uts.edu.au;
Feng.Liu@uts.edu.au; Guangquan.Zhang@uts.edu.au.).

The code and relevant data for this paper can be found in
https://code.research.uts.edu.au/120074/cm-drift.

...

data stream

...

Concept Drift
Adaptation

Yes

No

Update
Training

Concept Drift
Detection

Concept Drift
UnderstandingPrediction

Fig. 1: A framework of learning under concept drift.

arrived concepts promptly. A clear taxonomy of concept drift
adaptation was given by [9].

So far, limited research focuses on the concept drift un-
derstanding module. Most existing concept drift techniques
update the learning model when drift is detected [10]. Once
a concept drift is detected, it is necessary to understand the
drift region where drift has occurred; a process known as
drift understanding. Concept drift understanding will directly
support the drift adaptation strategy to update the outdated
models to fit newly arrived data.

To fill this research gap, we propose a drift region-based
data sample filtering method to deal with the concept drift
problem by understanding where the drift occurred. The pro-
posed method uses information in the drift region to filter the
data sample. This filtered data sample represents the latest
pattern and therefore, will help to update the learning model
accurately.

Specifically, the proposed drift region-based data sample fil-
tering method consists of three modules: 1) the drift detection
module is realized by a competence model-based drift detec-
tion (CM-DD) method [11] that monitors the data distribution
changes of the data stream; 2) the drift understanding module
utilizes the cumulative distribution functions and the degree
of drift to identify the drift region; 3) the drift adaptation
module updates the data sample according to the output of
drift understanding module and trains models on the updated
data sample.

The main contributions in this paper are listed as follows.
1) We extend the theoretical foundation of the competence

model-based drift detection (CM-DD) method [11] so that it
can combine with the drift understanding module, in principal.

2) A competence model-based drift region identification
(CM-DRDI) method is proposed to understand drift which can
effectively identify the drift region.

3) In CM-DRDI, we prove the upper and lower bounds
of competence-based discrepancy density estimation (CDDE)

2

by ensuring the output of concept drift understanding is
reliable. The theoretical proof guarantees that as the sample
size increases, the identified drift region converges with the
real concept drift region uniformly.

4) Based on CM-DRDI, We develop a competence model-
based drift region filtering (CM-DRIFT) method for drift
adaptation. CM-DRIFT updates the data sample by removing
obsolete data in the drift region from the data sample and
adding new valuable data into the data sample. Therefore,
CM-DRIFT guarantees that the model trained with the updated
data sample can always represent the new concept.

Comprehensive comparison experiments are conducted on
on four synthetic datasets and two real-world datasets to eval-
uate the proposed modules. The rest of this paper is organized
as follows. Section II discusses the related work. Section III
presents our proposed drift region-based data sample filtering
method. Section IV describes and discusses the results of the
experimental evaluation and Section V concludes this study
with suggestions for future work.

II. RELATED WORK

Incremental algorithms partially update the existing learning
model rather than retraining an entire learner when concept
drift has occurred [12]. These approaches are arguably more
efficient when drift only occurs in local regions. Many models
in this category are based on a decision tree algorithm because
decision trees have the ability to examine and adapt to each
sub-region separately. CVFDT [13] is an online decision tree
algorithm that can handle concept drift. In CVFDT, a sliding
window is maintained to hold the latest data. An alternative
sub-tree is trained based on the window, and its performance is
monitored. If the alternative sub-tree outperforms its original
counterpart, it is used for future prediction and the original
obsolete sub-tree is pruned. VFDTc [14] is another attempt
to improve VFDT with several enhancements: the ability to
handle numerical attributes; the application of naive Bayes
classifiers in tree leaves; and the ability to detect and adapt to
concept drift. The Hoeffding tree [15] stores old information
in root nodes and new information in the leaves. By comparing
the distribution of the errors in the leaf nodes with the upper
nodes, Hoeffding trees can reveal whether a drift has occurred.
Similar implementations have been adopted in HAT [16] and
FIMT-DD [17].

KNN-based algorithms have emerged in recent years [18].
KNN-PAW [19] integrates probabilistic adaptive windowing
in its model and eliminates instances in the kNN model so
as to give new instances greater weight while de-emphasising
older ones. SAM-kNN [20] maintains two kNN models and
separates the instances into the two models – one for the old
concept, one for the new one. Only one model is used to
make predictions and which one depends on the given situation
NEFCS [21] is another adaptation method based on kNN.

Informed adaptation strategies only conduct adaptation
when drift is detected; hence, the informed part of the nomen-
clature. As such, a concept drift detection method is an integral
part of any informed drift adaptation approach. One of the
most commonly used concept drift detection algorithms is the

“drift detection method” [10]. It monitors the online error-rate
of the base classifier to determine whether there are changes in
the new incoming data. DDM can work independently of the
base classifier because it only needs information on whether
the base classifier has classified the data instance correctly. Lu
et al. [11] proposed a competence model-based drift detection
that uses competence-based empirical distance to show the
difference between two data windows. Their method confirms
that a drift has occurred by verifying whether the empirical
competence-based distance is sufficiently large through a
permutation test. Liu et al. [22] proposed a regional density
estimation-based drift detection method NN-DVI, which is
sensitive to small regional drift. Similar distribution-based drift
detection methods are: fuzzy competence model drift detection
[23], equal density estimation [24], and local drift degree-
based density synchronized drift adaptation [25].

In spite of their high computation costs, adaptive ensembles
are still drawing the interests of the research community.
Adaptive ensembles handle concept drift by extending clas-
sical ensemble methods or by following specific adaptive
voting rules. Dynamic Weighted Majority (DWM) [26] is
an ensemble method that is able to adapt to drifts with a
simple set of weighted voting rules. It manages base classifiers
according to the performance of both the individual classifiers
and the global ensemble. If the ensemble incorrectly predicts
an instance, DWM will train a new base classifier and add
it to the ensemble. If a base classifier incorrectly predicts
an instance, DWM reduces its weight by a factor. When
the weight of a base classifier drops below a user-defined
threshold, DWM removes it from the ensemble. A similar
technique is SEA [27]. SEA maintains a fixed-size ensemble of
classifiers, and each classifier is trained from a batch of a data
stream. When a new batch of data becomes available, a new
classifier is added into the ensemble and the worst classifier
is eliminated. Learn++.NSE [28] has the advantage of being
able to handle any type of concept drift. Learn++.NSE does
not store historical data, only the latest batch of data and the
base classifiers trained by each batch of data. Underperforming
classifiers can be reactivated or deactivated as needed by
adjusting their weights. Other adaptive ensemble strategies
have been applied to handle concept drift, such as hierarchical
ensemble structure [29], AUE2 [30], and DTEL [31].

III. METHODOLOGY DESCRIPTION

This method is inspired by the idea that: when there is no
concept drift, current data instances in the data sample can
help to identify noise and improve classification accuracy. On
the contrary, when concept drift occurs, new data instances are
more suitable to represent the new concept, and the obsolete
data instances should be removed from the data sample.

Drift region data refers to the obsolete instances, and the
core technique of our method is to accurately identify the drift
region data.

An overview of our method is shown in Fig. 2. For each
new available data dt in the data stream, the latest learning
model Lt−1 classifies the new data and obtains the prediction.
After that, we assume the new data are labeled and ready for

3

drift region-based data sample editing
method

... ...data stream

dt−2 dt−1 dt dt+1 dt+2 dt+3 dt+4 dt+5 dt+6

Get prediction label ŷt by
learning model Lt−1(Xt)

New data dt = (Xt, ?)

Concept drift
occurs?

(by CM-DD)

Sliding the data time window to cover
the new data dt = (Xt, yt)

Identify drift region
data by CM-DRDI

Yes

Filter data sample Dt−1 →
Dt by CM-DRIFT

No

Read next data dt+1;
Set t = t + 1

Update learning model
Lt−1 → Lt by

data sample Dt

Fig. 2: Overview of data stream classification using drift
region-based data sample editing method.

further processing. The data time window slides and covers the
new data, and then CM-DD is performed to detect if concept
drift has occurred. If concept drift has occurred, CM-DRDI
uses the outputs of CM-DD to identify drift region data, and
then CM-DRIFT utilizes the outputs of CM-DRDI to filter
the existing data sample. If no concept drift has occurred,
CM-DRIFT adjusts the data sample and enhances the ability
of the data sample to represent the new concept. After data
sample is filtered, the learning model updates itself with the
latest data sample Dt. The last step is to read the next available
data instance.

In the next subsections, the three modules in Fig. 2 will
be explained. Before that, some of the notations for data are
listed below:
• X = {X1, . . . , Xn} where Xi is a d-dimensional data instance
• X0 = {X1, . . . , X6} is an example of X
• wp denotes the previous time window of data
• wc denotes the current time window of data

A. Competence model-based drift detection—CM-DD

The essence of CM-DD is to monitor if the data distribu-
tions between the previous time window of data wp and the
current time window of data wc have significant difference.
Since the true distributions of wp and wc are unknown,
CM-DD estimates their empirical data distributions F̂t and
F̂t′ instead. To obtain the empirical data distribution, CM-DD
partitions the union set wp ∪ wc into a group of overlapped
RelatedSet of competence models, and then estimates their
empirical data distributions F̂t and F̂t′ using the competence-
based density vector and competence-based empirical vector,
respectively. The difference between F̂t and F̂t′ is measured

0.45

0.5

0.55

0.6

0.65

0.7

0.75

0.4 0.5 0.6 0.7 0.8

X 1

X 2

X 3

X 4

X 5 X 6

"Solve" range
"Solve" range
Data instance

Fig. 3: An example of competence model.

by the competence-based empirical distance dE . The relevant
definitions of CM-DD are given as follows.

Definition 1. Coverage Set. For any Xi ∈ X , the coverage
set [32] of Xi is defined as:

C(Xi) = {Xj ∈ X : Solve(Xi, Xj)}, (1)

where Solve(Xi, Xj) indicates a Solve rule that Xi can be
retrieved and adapted to solve Xj . In a classification task, the
Solve rule is a set to meet following conditions: 1) Xi and
Xj have the same class label; 2) Xk is the closest data of
Xi which has a different class label to Xi; 3) the distance
between Xi and Xj is less than the distance between Xi and
Xk.

Example 1. Given X0 = {X1, . . . , X6} a set of data
instances, the Solve rule is defined as two data that mutually
solve each other if the Euclidean distance between the two data
is less than 0.1, as shown in Fig. 3. The color-filled circles
highlight the Solve range of the data. X1, X2, X3, X4, X5, X6

are located within the Solve range of X1, which is highlighted
by the yellow circle. According to Definition 1, C(X1) = X0.

Definition 2. Reachability Set. For any Xi ∈ X , the
Reachability Set [32] of Xi is defined as:

R(Xi) = {Xj ∈ X : Solve(Xj , Xi)} (2)

Example 2. In Fig. 3, X1 is located within the Solve range
of X1, X2, X3, X4, X5, X6, Therefore, R(X1) = X0.

Definition 3. Related Set. For any Xi ∈ X , the related Set
[33] of Xi is defined as:

Rs(Xi) = C(Xi) ∪R(Xi) (3)

Example 3. In Fig. 3, Rs(X1) = C(X1) ∪R(X1) = X0.

Definition 4. Related Closure. For any Xi ∈ X , the related
closure [11] of Xi is defined as:

<(Xi) = {Rs(Xj) : Xi ∈ Rs(Xj), j = 1, . . . n}
= {r1, r2, . . . , rm,m ≤ n}

(4)

Moreover, for a subset S ⊆ X , the related closure of S is
defined as:

<(S) = ∪Xi∈S<(Xi) (5)

Example 4. In Fig. 3, Rs(X1) is given in example
3, Rs(X2) = {X1, X2, X4}, Rs(X3) = {X1, X3}, and
Rs(X4) = {X1, X2, X4}. Given S = {X2, X3}, the related
closure of S is computed as <(S) = <(X2) ∪ <(X3).
<(X2) = {Rs(X1),Rs(X2),Rs(X4)} = {X0, {X1, X2, X4}},

4

and <(X3) = {Rs(X1),Rs(X3)} = {X0, {X1, X3}}. Therefore,
<(S) = {X0, {X1, X2, X4}}, {X1, X3}.

Definition 5. Competence-based Density Vector. For any
Xi ∈ X , the competence-based density vector of Xi is defined
as:

ν(Xi) =

(
|{Xi} ∩ r1|
|<(Xi)|

,
|{Xi} ∩ r2|
|<(Xi)|

, . . . ,
|{Xi} ∩ rm|
|<(Xi)|

)
(6)

ν(Xi) is a 1− by−m vector. It represents the density proba-
bility of Xi in the competence model-based measurable space.
In addition, for ν(Xi) = (w1, w2, . . . , wm),

∑m
i=1 wi = 1.

Example 5. In Fig. 3, Rs(X1) = X0; Rs(X2) = Rs(X4) =
{X1, X2, X4}; Rs(X3) = Rs(X6) = {X1, X3}. The related
closure <(X) = {Rs(X1),Rs(X2),Rs(X3),Rs(X5)}, and
the ν(X2) is calculated by:

ν(X2) = (
|{X2} ∩ Rs(X1)|

|<(X2)|
,
|{X2} ∩ Rs(X2)|

|<(X2)|
,
|{X2} ∩ Rs(X3)|

|<(X2)|
,

|{X2} ∩ Rs(X5)|
|<(X2)|

) = (
1

2
,

1

2
,

0

2
,

0

2
) = (

1

2
,

1

2
, 0, 0)

Definition 6. Competence-based Empirical Vector. Given
S ⊆ X , the competence-based empirical vector of S is defined
as:

E(S) =
1

|S|
∑
Xi∈S

ν(Xi) (7)

E(S) is essentially an average of ν(Xi). The sum of each
elements in E(S) equals 1. This empirical vector E(S) can
be treated as the discrete probability distribution of the data
instances over competence model-based measurement space.

Example 6. In Fig. 3, given S = {X1, X2, X3}, ν(X1) is
calculated by:

ν(X1) = (
1

4
,

1

4
,

1

4
,

1

4
), ν(X2) = (

1

2
,

1

2
, 0, 0), ν(X3) = (

1

2
, 0,

1

2
, 0)

E(S) =
1

3
(ν(X1) + ν(X2) + ν(X3)) = (

5

12
,

1

4
,

1

4
,

1

12
)

Definition 7. Competence-based Empirical Distance. Given
two subsets S1, S2 ⊂ X , E(S1) = (p1, . . . , pm) and E(S2) =
(q1, . . . , qm) are their respective competence-based empirical
vectors, the competence-based empirical distance between
E(S1) and E(S2) is defined as:

dE(S1, S2) =
1

2
‖E(S1)− E(S2)‖1 =

1

2

m∑
i=1

|pi − qi| (8)

dE(S1, S2) ∈ [0, 1] compares the distance between two subsets
through their competencies, rather than their real distributions.
dE(S1, S2) = 0 means that two subsets S1 and S2 are
identical, while dE(S1, S2) = 1 denotes S1 and S2 are
completely different.

Example 7. In Fig. 3, given S1 = {X1, X2, X3} and
S2 = {X4, X5, X6}, E(S1) = (5

12 ,
1
4 ,

1
4 ,

1
12) and E(S2) =

(1
2 ,

1
6 , 0,

1
3). dE(S1, S2) = 1

2 (| 5
12 −

1
2 | + |

1
4 −

1
6 | + |

1
4 − 0| +

| 1
12 −

1
3 |) = 1

3 .

To detect concept drift, we set S1 = wp, S2 = wc, and
X = S1 ∪ S2. After dE(wp, wc) is computed, the two-sample
non-parametric permutation test method [34] is applied to
verify if dE(wp, wc) is significantly large (larger than the p-th

percentile of a sample of dE(wp, wc) values obtained by the
permutation test. Normally, p is pre-assigned as 5). Drift is
identified between wp and wc once dE(wp, wc) is significantly
large. Therefore, the competence-based empirical distance is a
quantitative value that shows the degree of drift. If dE(wp, wc)
is closer to 0, the degree of drift between wp and wc is low.
While if dE(wp, wc) is closer to 1, the degree of drift between
wp and wc is high.

B. Identify drift region data—CM-DRDI

The competence model-based drift region identification
(CM-DRDI) is proposed to identify drift region data.
CM-DRDI uses competence-based discrepancy density esti-
mation (CDDE) [35] and competence-based empirical distance
(dE) as input. The main task of CM-DRDI is to find a threshold
F̂∗ for CDDE. For any data instances X , X is drift region data
if F̂(X) ≥ F̂∗. The definition of F̂(X) is defined as follows.

Definition 8. Competence Discrepancy Density Estimation
(CDDE). Given X = wp ∪ wc = {X1, . . . , Xn}, the subsets
S1, S2 ⊆ X , and <(X) = {r1, r2, . . . , rm}. For any rj ∈
<(X), the competence discrepancy density estimation [35] of
given data instance X between wp and wc is defined as:

F̂(X) =
1

m

m∑
j=1

Kj(X) · Ω(rj),

Kj(X) = |H(rj)|−d/2 ·K
(
H(rj)

−1/2 · (P (rj)−X)
) (9)

where K(·) is the kernel function, P (rj) =
∑
x∈rj x/|rj | is

the kernel point of rj (Definition 8 in [35]), Ω(rj) is the jth

element in the vector |E(wp)−E(wc)| (discrepancy weight of
rj between wp and wc (Definition 7 in [35]), and H(rj) is
the kernel bandwidth of rj (Definition 9 in [35]).

Next, the uniform convergence bound of our F̂(X) is given.
Before that, we define the empirical distribution for any
subsets A ∈ Rd as Fm = 1

m

∑m
j=1 1{kp(rj) ∈ A}. According

to the [36], we have the following lemma.

Lemma 1. Define ellipsoid BH0(X, r) = {X ′ ∈ Rd :
|H0

−1/2(X−X ′)| ≤ r}, and B = {BH0
(X, r) : X ∈ Rd, r >

0, H0 is a unit bandwidth}. With probability at least 1−1/m,
the following holds uniformly for every B ∈ B and γ ≥ 0:

F(B) ≥ γ ⇒ Fm(B) ≥ γ − βm
√
γ − β2

m, (10)

F(B) ≤ γ ⇒ Fm(B) ≤ γ + βm
√
γ + β2

m, (11)

where βm = 8d
√

logm/m.

Before giving the general upper and lower bounds for F̂(X),
we need to characterize how much the density can respectively
decrease and increase from X in B(X, r).

Definition 9. Given B defined in Lemma 1, we define

ǔx(r) = F (X)− inf
X′∈B(X,r)

F (X ′),

ǔx(r) = sup
X′∈B(X,r)

F (X ′)− F (X).
(12)

Theorem 1. Let vd be the volume of the unit ball in Rd.
Then the following holds uniformly in x ∈ Rd, ε > 0, unit

5

bandwidths H0, and h > (logm/m)1/d with the probability
at least 1− 1/m.

If
∫
Rd K(u)ǔx(hmax|u|/

√
σd(H0))du < ε, we have

F̂(X) ≥ cl
(
F (X)− ε− C

√
logm
mhd

max

)
, (13)

and if
∫
Rd K(u)ûx(hmax|u|/

√
σd(H0))du < ε, we have

F̂(X) ≤ cu

(
F (X) + ε+ C

√
logm
mhd

min

)
, (14)

where cl = 1/(mdmax), cu = 1/(mdmin), C =
8d
√
vd||F ||∞(

∫∞
0
k(t)td/2dt + 1) + 64d2k(0), σd is the dth

eigenvalue of H0, k(|u|) = K(u) (an assumption for K(u)),
hmin, hmax are minimum and maximum values of hj and
dmin, dmax are minimum and maximum values of Ω(rj), j =
1, ...,m (H(rj) = hjH0).

The proof for Theorem 1 can be found in the Appendix.
Because hmin, hmax, dmin and dmax will decrease when m

increasing, conditions of Theorem 1 can be satisfied if we have
enough samples. This theorem shows that our estimation will
approach the real distribution function of drift region at rate
O((logm/m)1/2), which provides a theoretical foundations
for our following work. Next, the definitions to obtain the
threshold of drift region are described as follows.

Definition 10. Drift Region Threshold. Given X = wp ∪
wc = {X1, X2, . . . , Xn}, drift region threshold is defined as:

F̂∗ = arg min
F̂(Xi)

(
cdf(F̂(Xi)) ≥ 1− dE(E(wp), E(wc)

)
, (15)

cdf(F̂(Xi)) =
|{Xj : F̂(Xj) ≤ F̂(Xi)}|

n
, j = 1, . . . , n, (16)

where F̂(Xi) is the CDDE of Xi, and cdf(F̂(Xi)) is the cumulative
distribution function (CDF) of F̂(Xi).

It should be noted that F̂∗ is not used to detect whether
drift is presented unlike other papers, such as two-sample non-
parametric permutation test [11], [23], [37]. The threshold
is used to find the specific region of drift when a drift has
occurred between two windows of data. Because F̂(X) will
approach the real distribution function when m increases, it
is clear that cdf(F̂(X)) will approach the real one when m
increases. Fig. 4 shows an example of obtaining F̂∗. The x-
axis is the CDDE value, and the y-axis is the CDF of the
CDDE value. The data instance which has a larger CDDE
has a higher chance of being located in the drift region.
Since the competence-based empirical distance reveals the
relative difference between wp and wc, CM-DRDI utilizes
the competence-based empirical distance to determine how
many data instances should be marked as drift region data.
Therefore, the minimum CDDE value whose CDF is equal to
1− dE is used as the threshold.

By applying the outputs of CM-DD with kernel density esti-
mation, CDDE accurately maps the drift-affected discrepancy
from one-dimensional competence measurement space to the
multi-dimensional data feature space. However, the result of
CDDE is highly affected by noisy data. To solve this issue,
the Recursion Noise Reduction (RNR) algorithm is applied on

CDF of CDDE

threshold

dᵋ

Fig. 4: An example of obtaining F̂∗.

Algorithm 1 Recursion Noise Reduction (RNR)
Require:

A set of data X = {X1, X2, . . . , Xn}
1: CheckSet ← ∅
2: for all Xi ∈ X do
3: Get P(Xi) and L(Xi)

4: if |L(Xi)| > 0 then
5: CheckSet ← CheckSet ∪ {Xi}
6: end if
7: end for
8: CheckList ← sorted Xi ∈ CheckSet by |L(Xi)| ↓
9: while CheckList 6= ∅ do
10: X ← the first item of CheckList
11: MisclassifiedFlag ← false

12: for all Xi ∈ P(X) do
13: if Xi cannot be correctly classified by X − {Xi} − {X} then
14: MisclassifiedFlag ← true; break
15: end if
16: end for
17: CheckSet ← CheckSet − {X}
18: if MisclassifiedFlag == false then
19: X ← X − {X}
20: for all Xi ∈ CheckSet(X) do
21: if X ∈ L(Xi) then
22: L(Xi) ← L(Xi) − {X}
23: if |L(Xi)| == 0 then
24: CheckSet ← CheckSet − {Xi} ; continue
25: end if
26: end if
27: if X ∈ P(Xi) then
28: P(Xi) ← P(Xi) − {X}
29: end if
30: end for
31: CheckList ← sorted Xi ∈ CheckSet by |L(Xi)| ↓
32: end if
33: end while
34: return X

each time window to remove noisy data and preserve potential
new concept data.

Definition 11. Positive Set. For any Xi ∈ X , the positive
set of Xi is defined as:

P(Xi) = {Xj ∈ X : Xi ∈ kNN(Xj), yj == yi,

Xj is correctly classified by kNN(Xj)}
(17)

where kNN(Xj) is the k-nearest neighbors of Xj , y is the class
label of X .

Definition 12. Liability Set. For any Xi ∈ X , the liability
set of Xi is defined as:

L(Xi) = {Xj ∈ X : Xi ∈ kNN(Xj), yj 6= yi} (18)

Algorithm 1 lists the procedure of RNR. At line 3, the first
step is to get the PositiveSet (Definition 11) and LiabilitySet
(Definition 12) of each data instance. Any data instance whose
LiabilitySet is not null is added to CheckSet (line 4–6). At
line 8, the CheckSet is ordered in an descending order of
the size of LiabilitySet. From line 9 to line 33, the recursion
loop removes the data which are confirmed as noisy data from
the data sample. If any data instance Xi in P(X) cannot
be correctly classified by X − {Xi} − {X}, then X is not
noisy data. If X is confirmed as noisy data, X is removed
(line 19). Then, the PositiveSet and LiabilitySet of each data
instance in CheckSet is updated (line 20–20). At line 24,
the data instance whose LiabilitySet is null is removed from

6

Algorithm 2 CM-DRDI
Require:

Two data time windows wp and wc where there is a concept drift occurred.
Preparation Stage:

1: wp ← RecursionNoiseReduction(wp)

2: wc ← RecursionNoiseReduction(wc)

3: Get dE (wp,wc)

4: for all Xi ∈ X = wp ∪ wc do
5: Get F̂(Xi) through Definition 8
6: end for
7: Get F̂∗ through Definition 10

Evaluation Stage:
8: For any data instance X , get F̂(X) through Definition 8
9: if F̂(X) ≥ F̂∗ then
10: return true . X is drift region data
11: else
12: return false . X is not drift region data
13: end if

CheckSet. CheckSet is reordered (line 31) and the recursion
loop is repeated until CheckSet is null.

In summary, the whole procedure of CM-DRDI is listed
in Algorithm 2. CM-DRDI has two stages: 1) preparation
stage: to calculate F̂∗; and 2) evaluating stage to evaluate if
a data instance X is in the drift region. After CM-DD has
confirmed that concept drift has occurred between wp and
wc, CM-DRDI applies RNR to remove noisy data (line 1–1).
Then, CM-DRDI recalculates the competence-based empirical
distance dE(wp, wc) (line 3) and the CDDE values of each
data instance (line 4–6). In the last step of the preparation
stage, CM-DRDI obtains the threshold of CDDE F̂∗ through
Definition 10 (line 7). In the evaluation stage, CM-DRDI first
calculates the CDDE values of a data instance X (line 8). If
F̂(X) is greater than F̂∗, this means that X is a data instance
located in the drift region.

C. Filtering drift region instances—CM-DRIFT

Competence model-based drift region filtering(CM-DRIFT)
is to filter the data sample used for learning, which is a
concept drift adaptation method. CM-DRIFT relies on two
pieces of input information: 1) the output of CM-DD, which
indicates whether a concept drift has occurred; 2) the output
of CM-DRDI, which evaluates if a data instance is located
in the drift region. CM-DRIFT adopts an intuitive idea that:
1) when concept drift occurs, it removes the obsolete drift
region data from the data sample, and adds drift region data
which belongs to the time window wc, into the data sample;
2) whether concept drift occurs or not, it uses the prediction
history of data instances to enable/disable the data instance to
enhance the ability of the data sample to represent the current
concept. The details of CM-DRIFT are listed in the pseudo-
code of Algorithm 3.

As shown in Fig. 2, the procedure of CM-DRIFT is imple-
mented immediately after CM-DD or CM-DRDI. The input of
CM-DRIFT comprises four parts: 1) X represents the current
data sample; 2) Boolean variable DriftF lag shows whether
concept drift has occurred; 3) wp and wc are used to identify
drift region data; 4) Xt is the last data instance with a class
label.

The first step of CM-DRIFT is to remove noisy data from
wc by RNR. The cleaned data are stored in Wnew’ (line 1).
When concept drift occurs, all data instances in the current
data sample X need to be checked by CM-DRDI to evaluate
if they are located in the drift region (line 3–8). All drift

Algorithm 3 CM-DRIFT
Require:

The data sample X .
The output of CM-DD DriftFlag, which indicates the status of drift.
Two data time windows wp and wc .
New labeled data instance Xt .

1: Wnew’ ← RecursionNoiseReduction(wc)

2: if DriftFlag == true then
3: DriftSet ← ∅
4: for all Xi ∈ X do
5: if CM-DRDI(wp,wc,Xi) == true then
6: DriftSet ← DriftSet ∪ {Xi}
7: end if
8: end for
9: for all Xi ∈ DriftSet do
10: Get kNN(Xi) in context of DriftSet ∪Wnew’
11: for all Xj ∈ kNN(Xi) and Xj ∈ Wnew’ do
12: if ClassLabel(Xi) 6= ClassLabel(Xj) then
13: X ← X − {Xi}; continue
14: end if
15: end for
16: end for
17: for all Xi ∈ Wnew’ do
18: if CM-DRDI(wp,wc,Xi) == true then
19: X ← X ∪ {Xi}
20: end if
21: end for
22: else
23: if Xt ∈ Wnew’ then
24: X ← X ∪ {Xt}
25: Get kNN(Xt) in context of X
26: for all Xi ∈ kNN(Xt) do
27: if ClassLabel(Xi) 6= ClassLabel(Xt) then
28: X ← X − {Xi}
29: end if
30: end for
31: end if
32: end if
33: for all Xi ∈ X do
34: Enable/Disable Xi based on its prediction accuracy pi
35: end for

region data identified by CM-DRDI are stored in DriftSet
(line 6). CM-DRDI may misidentify some data instances that
are actually located in the non-drift region, and these data
may be useful for prediction. To solve this problem, we only
remove the drift region data that is in conflict with the new
concept (line 9–16). To implement this solution, for each data
instance Xi in DriftSet, we find its kNN in the context of
DriftSet∪Wnew’ (line 10). If any Xj in kNN(Xi) belongs
to the new concept, and Xi and Xj have different class labels,
Xi is considered to have conflicts with the new concept and
will be removed from data sample X (line 13). After this, in
the cleaned time window Wnew’, data instances marked as drift
region data will be added to data sample X (line 17–21).

If there is no concept drift, the first step is to verify if the
new data Xt is noisy (line 23). If new data Xt is not removed
by RNR, Xt will be added into the data sample X . For each
data instance Xi in kNN(Xt), it will be checked if it is in
conflict with the new data Xt. If Xi and Xt have different
class labels, Xi will be removed. Because Xt brings the new
concept into the data sample, removing the conflicting data
instance will help the data sample to keep the new concept as
much as possible.

To ensure the data sample represents the new concept,
we introduce the prediction history of Xi to control the
effectiveness of the data instance. The prediction history
is denoted by the array A of maximum length l. which
records the latest prediction accuracy of Xi when Xi is a
retrievable data instance. A retrievable data instance means
the dist(Xi, Xt) ≤ dist(Xk, Xt), where dist(Xi, Xt) is the
distance between Xi and Xt, and Xk is the kth nearest
neighbor of Xt. If Xi and Xt have the same class label, 1
will be pushed into A; otherwise, 0 will be pushed into A. If

7

array A reaches the maximum length l, the last item of A will
be dropped. Therefore, we can obtain the prediction accuracy
pi of data instance Xi by (19), where lA is the length of array
A.

pi =
∑
a∈A

a/lA (19)

CM-DRIFT adopts the same confidence interval test used in
the IB3 algorithm [38] and the PECS algorithm [39] to control
the effectiveness of the data instance. Then, the confidence
interval of the prediction accuracy of Xi is calculated below.

confidence interval =
pi + z2

2lA
± z

√
pi(1− pi)/lA + z2/4l2A

1 + z2/lA
(20)

where z is the confidence interval coefficient, which is either
tabulated or computed. If the upper bound of the confidence
interval falls below the inactivation threshold pmax, Xi is
temporarily disabled from the data sample for training the
learner; on the contrary, Xi may eventually be re-enabled to
the data sample if its lower bound rises above the agreement
acceptance probability pmin.

IV. EXPERIMENTAL EVALUATION

CM-DRIFT is a drift adaptation method based on the drift
understanding process. It can be combined with any detection
method. Conventional detection-based adaptation methods re-
train/tune the outdated model when drift is detected. However,
they do not consider that the data instances used to re-
train/tune the model could present the old pattern. CM-DRIFT
is proposed to solve that problem. Therefore, the experimental
evaluation in this paper mainly focuses on two aspects: 1)
whether the drift region is successfully identified; and 2) how
the identified drift region improves the classification accuracy?

The experimental evaluation consists of three sections with
ten experiments. Section IV-A validates the effectiveness of
CM-DRDI by two synthetic data. Section IV-B compares
CM-DRIFT to seven concept drift adaptation methods on four
synthetic data and two real-world data. Section IV-C evaluates
the performance of CM-DRIFT with different parameters,
and Section IV-D evaluates CM-DRIFT with different base
learners. Section IV-E give the computation efficiency of the
proposed method.

Data. Six datasets of concept drift are used in this sec-
tion: SEA [27], Rotating Hyperplane (RH) [13], Usenet1 and
Usenet2 [40], [41], NOAA weather [28] and Spam [40], [42].
These data have been widely used in the research of concept
drift and detailed description of these data can be found in the
cited papers.

Measurement. In this paper, we assume that the instances
are obtained one-by-one in temporal order to mimic a real data
stream scenario. CM-DRIFT is proposed to respond to drift
accurately and quickly when detected. Therefore, our goal is to
improve the online classification performance. In data stream
mining, the prequential evaluations are mainly used as criteria
whereby each instance is first used to test the model, and
then to retrain/tune the model. We use prequential accuracy,
prediction, recall, and F1 score as the evaluations for the
classification performance on data streams [43]. In addition,
to show the capacity of drift identification in our method, we

plot and compare the identified drift regions identified by our
method with two baseline methods where we manually add
drift with different degrees in the synthetic data. Furthermore,
we use the statistical test to validate the significance of the
classification performance results.

A. Evaluating CM-DRDI

SEA and RH are used to validate how many drift region
data can be correctly retrieved by CM-DRDI. In this section,
CM-DRDI is compared to TPCA and MTPCA method. TPCA
[21] can also identify drift region data. However, TPCA uses
one threshold of 0.05 for all datasets. To conduct comprehen-
sive comparisons, we modify the threshold in TPCA to be
equal to distCM so that TPCA can suit different datasets. The
modified TPCA is denoted by MTPCA.

For each synthetic dataset, several tests with different con-
cept drift parameter settings are conducted. In each test, there
are data from two concepts. The first concept represents the
previous data pattern before drift has occurred, and the second
concept represents the current data pattern. As the data is
synthetically generated, the concept drift region is known in
advance. The task of each test is to identify the data instances
belonging to the second concept that are located in the drift
region.

Experiment 1. The SEA dataset. SEA contains three
features x1, x2, x3, and the class decision boundary is given by
x1 +x2 = θ. Sudden drift occurs when the value of θ changes.
In addition, noise is introduced by randomly switching the
labels of 10% of the data instances. There are four tests in
this experiment. Each test in this experiment involves two
concepts, and each concept has 500 data instances. In all tests,
the θ value of the first concept is 7, and θ values of the second
concept is 8, 8.5, 9.5, 11 for Test 1-4 separately. To display the
result of drift region identification in a 2D-figure, we remove
the irrelevant attribute x3. Fig. 5 shows test results of drift
region identification on the SEA dataset. In Fig. 5, the sub-
figures in the same column are the results of the same test.
In each column of sub-figures, the 1st and 2nd sub-figures
present the data instances belonging to the first concept and
second concept separately; the 3rd sub-figure draws the drift
region and the 4th-6th sub-figures draw drift region identified
by CM-DRDI, TCPA, and MTPCA separately.

As shown in Fig. 5, as the degree of drift becomes larger
(larger θ for the second concept), drift region contains more
data instances. CM-DRDI identifies almost all the drift region
data, and picks out a few non-drift region data located very
close to the drift region. TCPA only identifies some drift region
data, and also a few data that are located outside the drift
region. Compared to TCPA, MTPCA can identify more drift
region data; however, more data instances located outside the
drift region are also identified.

Fig. 6 shows results of recall, precision, and F1 score
of these three methods. The recall values of CM-DRDI in
the four tests are very close to 1, which means CM-DRDI
well identifies drift region. The precision values of CM-DRDI
increase as θ becomes large, which means fewer non-drift
region data will be identified when the degree of drift is larger.

8

0 2 4 6 8 10
0

2

4

6

8

10
SEA = 7

0 2 4 6 8 10
0

2

4

6

8

10
SEA = 8

0 2 4 6 8 10
0

2

4

6

8

10
0 2 4 6 8 10

0

2

4

6

8

10
Drift Data: 7 8

0 2 4 6 8 10
0

2

4

6

8

10

0 2 4 6 8 10
0

2

4

6

8

10

0 2 4 6 8 10
0

2

4

6

8

10
SEA = 7

0 2 4 6 8 10
0

2

4

6

8

10
SEA = 8.5

0 2 4 6 8 10
0

2

4

6

8

10
0 2 4 6 8 10

0

2

4

6

8

10
Drift Data: 7 8.5

0 2 4 6 8 10
0

2

4

6

8

10

0 2 4 6 8 10
0

2

4

6

8

10

0 2 4 6 8 10
0

2

4

6

8

10
SEA = 7

0 2 4 6 8 10
0

2

4

6

8

10
SEA = 9.5

0 2 4 6 8 10
0

2

4

6

8

10
0 2 4 6 8 10

0

2

4

6

8

10
Drift Data: 7 9.5

0 2 4 6 8 10
0

2

4

6

8

10

0 2 4 6 8 10
0

2

4

6

8

10

0 2 4 6 8 10
0

2

4

6

8

10
SEA = 7

0 2 4 6 8 10
0

2

4

6

8

10
SEA = 11

0 2 4 6 8 10
0

2

4

6

8

10
0 2 4 6 8 10

0

2

4

6

8

10
Drift Data: 7 11

0 2 4 6 8 10
0

2

4

6

8

10

0 2 4 6 8 10
0

2

4

6

8

10MTPCA MTPCA MTPCAMTPCA

TPCA TPCA TPCA TPCA

CM-DRDI CM-DRDI CM-DRDI CM-DRDI

Test 1 Test 2 Test 3 Test 4

Fig. 5: Drift region identification on SEA with different θ.

The F1 scores of CM-DRDI show that it outperforms TPCA
and MTPCA. The recall values of TPCA are only around
0.2, which indicates that only 20% of drift region data have
been identified. Even though the precision values of TPCA
are higher than the other two methods, the F1 scores of TPCA
are relative small. MTPCA has good performance in recall but
not in precision, which means that MTPCA does not improve
TPCA’s performance in identifying drift region.

Discussion. The Recall subplot in Fig. 6 denotes how many
instances from the true drift region are successfully identified
by CM-DRIFT. The Precision subplot in Fig. 6 denotes how
many instances identified as drift region by CM-DRIFT are
truly in the drift region (i.e., 1− false positive rate). Although
CM-DRIFT sometimes wrongly identifies many instances as
drift region (the precision is not always high), it can success-
fully identify most true drift region instances (the recall is
high). For example, when θ is 1, recall is 98% and precision
is 53%, which means that 47% identified instances are wrong.
Fig. 5 gives a deep view of these wrongly identified instances.
According to Fig. 5, we found that these wrongly identified
instances are closed to the true drift region. Therefore, the
classification accuracy is not significantly affected by these
wrongly identified instances.

Experiment 2. The Rotating Hyperplane dataset (RH).

1.0 1.5 2.5 4.00

0.2

0.4

0.6

0.8

1

ᶱ 1.0 1.5 2.5 4.0
0.2

0.4

0.6

0.8

1

4.01.0 1.5 2.50

0.2

0.4

0.6

0.8

1

CM-DRDI TPCA MTPCA

Recall

Precision

F1 Score

0.98 1 0.99 0.99

0.70 0.72
0.79 0.78

0.12
0.21 0.21

0.14

0.68

0.84
0.93

0.68 0.74
0.80 0.91

0.15

0.33

0.34

0.25

0.33
0.44

0.57
0.66

0.53 0.59
0.68

0.83

0.22 0.31

0.45

0.57

Fig. 6: Drift region identification on SEA with different θ.

The parameter settings of the gradual drift in RH have been
described in [44]. In summary, three parameters (N , k and
t) control the gradual drift, and the parameter d controls the
data dimension. The concept changes gradually during N data
instances. Noise is introduced by randomly switching the label
of 10% of the data instances.

Four tests are conducted to validate the effectiveness of
drift region identification. In Test 1-3, we only change one
of the parameters and fix the others. In Test 4, k and d
are changed simultaneously. Fig. 7a–7d show the results of
these experiments. In Fig. 7a and Fig. 7b, we find that the
precision of each drift region identification method improves
a little when the size of the concept increases or the number
of changing dimensions increases. From Fig. 7c, we find that
the performance of each method improves when the degree of
drift is large, since the magnitude of the change defines the
degree of drift. Fig. 7d shows that the performance of each
method decreases as the dimension of data increases. As the
data feature space grows exponentially as the data dimension
increases linearly, it is more challenging to identify drift region
data. CM-DRDI can still identify over 60% of drift region
data, which is much better than TPCA and MTPCA. From
the results of all 4 test groups, we conclude that CM-DRDI
outperforms TPCA and MTPCA in precision, recall and F1
score.

B. Evaluating CM-DRIFT

In this subsection, CM-DRIFT is compared to seven drift
adaptation methods. The selected baselines are: 1) DDM [10]
retrains learners by an online error rate-based drift detection
method; 2) HDDM(A-test) [45] retrains learners by the He-
offding’s inequality-based drift detection method with A-test;
3) HDDM(W-test) [45] is similar to HDDM(A-test) but uses
W-test; 4) ECDD [46] retrains learner by the EWMA chart-
based drift detection method; 5) NEFCS [21] is a kNN-based
adaptive model that uses the output of the competence model-
based drift detection method to discard the data instances
affected by concept drift. 6) NSE [28] is an adaptive ensemble
that uses dynamic voting weights to handle concept drift;
7) SAMkNN [20] is an adaptive ensemble that keeps past
concepts in memory and considers all buffered concepts to
make a final prediction. NEFCS is implemented in MATLAB
with default parameters. All other baseline methods were
implemented with default parameters via MOA [47].

In CM-DRIFT, we use kNN as the base learner with k =
5. We use k = 5 because this is the default value of most
kNN-based concept drift adaptation methods. In all baseline
methods, the value of k is also 5, which is their default value.
The size of the time window is equal to the size of the training
set. The distance function used in CM-DRIFT is Euclidean.

9

N = 2000 4000 6000

0.2

0.4

0.6

0.8

2000 4000 6000
0.1

0.2

0.3

0.4

0.5

2000 4000 60000.1

0.2

0.3

0.4

0.5

0.6

Recall Precision F1 Score

Test 1: Fix: d = 6, k = 3, t = 0.5 ; Vary: N = 2000, 3000, 4000, 5000, 6000

(a) Test 1: drift region identification on RH with varying N .

0.1

0.2

0.3

0.4

0.5

1 2 3 4 5
0.1

0.2

0.3

0.4

0.5

0.6

1 2 3 4 5k = 1 2 3 4 5

0.2

0.4

0.6

0.8

Recall Precision F1 Score

Test 2: Fix: d = 6, N = 2000, t = 0.5; Vary: k = 1, 2, 3, 4, 5

(b) Test 2: drift region identification on RH with varying k.

t = 0.3 0.4 0.5 0.6 0.7

0.2

0.4

0.6

0.8

0.3 0.4 0.5 0.6 0.70

0.2

0.4

0.6

0.3 0.4 0.5 0.6 0.70

0.2

0.4

0.6

0.8
Recall Precision F1 Score

Test 3: Fix: d = 6, N = 2000, k = 3; Vary: t = 0.3, 0.4, 0.5, 0.6, 0.7

(c) Test 3: drift region identification on RH with varying t.

(d,k) = (2,1)

0.2

0.4

0.6

0.8

1

0

0.2

0.4

0.6

0.8

1

0

0.2

0.4

0.6

0.8

1

CM-DRDI TPCA MTPCA

Recall Precision F1 Score

Test 4: Fix: N = 2000, t = 0.5; Vary: (d, k) = (2, 1), (4, 2), (6, 3), (8, 4), (10, 5)

(4,2) (6,3) (8,4) (10,5) (4,2) (6,3) (8,4) (10,5)(2,1) (4,2) (6,3) (8,4) (10,5)(2,1)

(d) Test 4: drift region identification on RH with varying d and k.

Fig. 7: Four tests in Experiment 2.

Other parameters required by CM-DRIFT are lA, pmin, pmax ,
and z. We adopted the same values suggested by the authors
in [21], which are lA = 10, pmin = 0.5, pmax = 0.5. For the
parameter z, we set z = 1.96, which indicates the critical value
for a 95% confidence interval. The 95% confidence interval is
a common value used in statistics.

We evaluate CM-DRIFT on four synthetic concept drift
datasets and two real-world datasets. The results on the
synthetic datasets demonstrate CM-DRIFT’s performance on
different types of concept drift. The results on the real-world
datasets demonstrate CM-DRIFT’s performance in real-world
situations.

Experiment 3. The SEA dataset. The experiment is set
up as follows. Each concept block contains 2, 500 random
data instances, and there are a total of 10, 000 data instances.
The first 500 data instances from the first block are used
as the initial training set. The remaining 9, 500 instances are
classified and learned incrementally.

Fig. 8a shows the online classification accuracy of baselines
on the SEA dataset. The online classification accuracy at
each time point is reported based on the most recent 500
data instances. According to this experiment’s setting, three
sudden drifts occur at time points 2, 500, 5, 000, and 7, 500.
CM-DRIFT increased in accuracy as the number of instances
increased while there is no drift. It also had the highest
online accuracy before drift occurs and, immediately after drift
presents, the accuracy of all baselines dropped – for example,

1000 2000 3000 4000 5000 6000 7000 8000 9000 10000
0.75

0.8

0.85

0.9
Online accuracy of every 500 instances

(a) SEA.
Online accuracy of every 500 instances

1000 2000 3000 4000 5000 6000 7000 8000 9000 10000
0.72

0.77

0.82

0.87

0.91

(b) RH.

Online accuracy of every 100 instances

200 300 500 700 900 1100 1300 1500
0.2

0.4

0.6

0.8

1

(c) Usenet1.

200 300 500 700 900 1100 1300 1500
0.5

0.7

0.9

CM-DRIFT DDM HDDM(A-test) HDDM(W-test)
ECDD NEFCS NSE SAMkNN

Online accuracy of every 100 instances

(d) Usenet2.

Fig. 8: The online classification accuracy on different datasets.

at time points, 3, 000, 5, 500, and 8, 000. However, CM-DRIFT
was the quickest to respond drift and has the highest accuracy
at next report time point (3, 500, 6, 000, and 8, 500). Once the
concept stabilizes, CM-DRIFT’s performance is consistently
at the forefront. Plus, CM-DRIFT had the highest overall
accuracy over the whole period, as shown in TABLE I.

Experiment 4. The Rotating Hyperplane dataset (RH).
The experiment is set up as follows. The dataset has a total
of 10, 000 data instances with d = 10 dimensions. The rest
of the parameters are set up as K = 5, T = 0.5, and
N = 1000. Concept drift occurs gradually over all 10, 000
instances. The first 500 data instances are used as the training
set. The remaining 9, 500 instances are classified and learned
incrementally. Fig. 8b shows the online classification accuracy
of baselines on the RH dataset. The online classification
accuracy at each time point is reported based on the most
recent 500 data instances. Since the concept gradually drifts
in the RH dataset all the time, it is more challenging to
track concepts continually. Over all 19 reported time points,
CM-DRIFT has the highest accuracy for 10 times, second
highest for 7 times, and third highest for twice. The average
online accuracy rank for CM-DRIFT is 1.57. According to the
results in TABLE I, CM-DRIFT has the highest values in both
Accuracy and F1 Score, which indicates that our algorithm is
superior to the other algorithms in dealing with gradual drift.

Experiment 5. The Usenet datasets. Each data instance
in Usenet1 and Usenet2 is derived from Usenet posts in the
20 Newsgroups collection . Each dataset consists of 1, 500
data instances. Each data instance has 99 attributes. The task
is to classify messages as either interesting or junk as they

10

TABLE I: Comparison among learning algorithms.
Datasets Methods Accuracy (rank) Precision Recall F1 Score (rank) Time

SEA CM-DRIFT 0.8623 (1) 0.8598 0.9229 0.8903 (1) 27.63
DDM 0.8521 (6) 0.8548 0.9102 0.8816 (6) 1.97
HDDM(A-Test) 0.8534 (5) 0.8614 0.9029 0.8817 (5) 1.79
HDDM(W-Test) 0.8541 (4) 0.8617 0.9040 0.8823 (4) 1.73
ECDD 0.8418 (7) 0.8539 0.8909 0.8720 (7) 1.31
NEFCS 0.8542 (3) 0.8557 0.9130 0.8834 (3) 23.94
NSE 0.8166 (8) 0.8283 0.8793 0.8530 (8) 100.00
SAMkNN 0.8563 (2) 0.8589 0.9125 0.8849 (2) 1.00

RH CM-DRIFT 0.8520 (1) 0.8513 0.8580 0.8547 (1) 30.94
DDM 0.8215 (4) 0.8258 0.8213 0.8235 (4) 4.71
HDDM(A-Test) 0.8215 (4) 0.8258 0.8213 0.8235 (4) 4.48
HDDM(W-Test) 0.8215 (4) 0.8258 0.8213 0.8235 (4) 4.42
ECDD 0.7880 (7) 0.7933 0.7871 0.7902 (7) 2.43
NEFCS 0.8446 (2) 0.8445 0.8502 0.8473 (2) 23.69
NSE 0.7596 (8) 0.7641 0.7609 0.7625 (8) 22.20
SAMkNN 0.8444 (3) 0.8453 0.8485 0.8469 (3) 1.42

Usenet1 CM-DRIFT 0.7157 (1) 0.7376 0.7094 0.7232 (1) 3.82
DDM 0.6843 (5) 0.7181 0.6535 0.6843 (6) 1.68
HDDM(A-Test) 0.6914 (4) 0.7197 0.6726 0.6954 (5) 1.13
HDDM(W-Test) 0.6950 (3) 0.7198 0.6835 0.7012 (3) 1.13
ECDD 0.7157 (1) 0.7417 0.7012 0.7209 (2) 1.24
NEFCS 0.6650 (6) 0.6618 0.7367 0.6972 (4) 2.92
NSE 0.6407 (8) 0.6474 0.6890 0.6676 (7) 4.84
SAMkNN 0.6521 (7) 0.6940 0.6003 0.6438 (8) 0.37

Usenet2 CM-DRIFT 0.7271 (1) 0.7453 0.8971 0.8142 (1) 3.62
DDM 0.6821 (4) 0.7037 0.9035 0.7912 (7) 2.73
HDDM(A-Test) 0.6821 (4) 0.6990 0.9185 0.7939 (5) 2.95
HDDM(W-Test) 0.6814 (6) 0.6946 0.9314 0.7958 (4) 2.24
ECDD 0.6793 (7) 0.7061 0.8885 0.7869 (8) 2.96
NEFCS 0.7157 (2) 0.7526 0.8542 0.8002 (3) 3.53
NSE 0.6786 (8) 0.6962 0.9185 0.7921 (6) 3.22
SAMkNN 0.7157 (2) 0.7378 0.8896 0.8066 (2) 0.37

NOAA
Weather

CM-DRIFT 0.7906 (1) 0.8098 0.9086 0.8564 (1) 67.34
DDM 0.7634 (4) 0.6389 0.5612 0.5975 (3) 6.33
HDDM(A-Test) 0.7626 (5) 0.6417 0.5469 0.5905 (4) 5.93
HDDM(W-Test) 0.7516 (6) 0.6221 0.5254 0.5697 (6) 3.62
ECDD 0.7423 (7) 0.6006 0.5277 0.5618 (7) 1.94
NEFCS 0.7839 (2) 0.8230 0.8732 0.8474 (2) 54.45
NSE 0.7054 (8) 0.5360 0.4550 0.4922 (8) 47.09
SAMkNN 0.7777 (3) 0.7122 0.4891 0.5800 (5) 2.05

Spam CM-DRIFT 0.9507 (3) 0.9184 0.8723 0.8948 (3) 151.03
DDM 0.9216 (5) 0.8910 0.7679 0.8249 (5) 161.55
HDDM(A-Test) 0.9190 (6) 0.8728 0.7761 0.8216 (6) 111.42
HDDM(W-Test) 0.9290 (4) 0.9055 0.7866 0.8419 (4) 210.00
ECDD 0.9027 (7) 0.8304 0.7478 0.7870 (7) 63.37
NEFCS 0.9581 (1) 0.9190 0.9056 0.9123 (1) 146.09
NSE 0.6084 (8) 0.3253 0.5860 0.4184 (8) 1577.35
SAMkNN 0.9567 (2) 0.9531 0.8623 0.9054 (2) 24.97

TABLE II: The average rank of accuracy and F1 score for learning algorithms.

Algorithms
Average rank
on accuracy

Average rank
on F1 score

Average
computation time

CM-DRIFT 1.33 1.33 47.40
DDM 4.67 5.17 29.83
HDDM(A-Test) 4.67 4.83 21.28
HDDM(W-Test) 4.50 4.17 37.19
ECDD 6.00 6.33 12.21
NEFCS 2.67 2.50 42.44
NSE 8.00 7.50 292.45
SAMkNN 3.17 3.67 5.03

arrive. Usenet1 simulates sudden drift scenarios and Usenet2
simulates reoccurring drift [41].

Fig. 8c and Fig. 8d show the online classification accuracy
of baselines on Usenet1 and Usenet2. The online classification
accuracy at each time point is reported based on the most
recent 100 data instances. In Fig. 8c, CM-DRIFT consistently
responded quickly to sudden drift and has the highest accuracy
prior to the next drift occurring, for example, the online
accuracy at time points 600, 900 and 1, 200. In Fig. 8d,
CM-DRIFT maintains a part of the data sample to deal
with possible drift recurrences in the future. As a result,
the accuracy of CM-DRIFT suffers slightly in comparison
to SAMkNN. Nevertheless, CM-DRIFT can deal with the
situation of concept reoccurring (e.g., 301–600 and 901–
1, 200) with the highest accuracy at time point 1, 200.

Experiment 6. The NOAA weather dataset. TABLE I lists
the overall classification accuracy of baselines on the NOAA
weather dataset. Even though most of the learning algorithms
have similar overall accuracy, the F1 scores of these methods
are less than 60%, which means the accuracy of predicting rain
is less than 60%. CM-DRIFT outperforms the other methods

not only in overall accuracy but also in the F1 score of the
minority class, which means CM-DRIFT can handle concept
drift in an imbalanced data environment.

Experiment 7. The spam dataset. TABLE I lists the overall
classification accuracy of baselines on the spam dataset. Al-
though the overall accuracy of CM-DRIFT is only the third
highest, its accuracy is very closed to the best and the second
best methods.

TABLE I lists the performance of all methods on different
datasets. In addition to the evaluation measurements, this
table summarizes the ranking of accuracy, the ranking of
F1 score, and the computation time in seconds. TABLE II
lists the average performance of all methods on six datasets.
We use Friedman-post-hoc test after Conover to test whether
the difference of accuracy between CM-DRIFT and other
baseline methods is significant [12]. The results are shown
in TABLE III where |Ri−RCM-DRIFT| is the value of the rank
difference between i-th baseline and CM-DRIFT over all data
streams. For example, 18 is the rank difference between DDM
and CM-DRIFT. The p-value row is the corresponding p-value
for |Ri−RCM-DRIFT|. The analysis results of these experiments
can be summarized as follows:

1) Generally, TABLE III shows that our method is signif-
icantly better than other baseline methods at the significance
level of 0.05. The proposed CM-DRIFT outperforms the other
learning algorithms on five datasets and for the spam email
datasets, the performance of CM-DRIFT is very close to the
best performing learning algorithm. CM-DRIFT and NEFCS,
both being adaptive models, have better performance than the
retraining models, which indicates that adaptive models are
more suitable for handling concept drift on the tested data.

2) The online classification accuracy of CM-DRIFT on the
synthetic datasets shows that CM-DRIFT reduces the recovery
time of accuracy when concept drift occurs. The strategy of
filtering drift region data is effective and CM-DRIFT can adapt
to different types of concept drift.

3) Regarding computational complexity, it can be seen that
CM-DRIFT and NEFCS require more computation time than
the retraining models. This is because the data distribution-
based drift detection method used in these methods incurs
more computation cost than the learner error-based drift de-
tection method. Nevertheless, CM-DRIFT shows no manifest
disadvantages over other baselines. NSE has the highest com-
putation time since it needs more computation cost to evaluate
and weight the multiple base learners.

TABLE III: Statistical test based on the classification accuracy in Table I
Post-hoc test after Conover DDM HDDM HDDM ECDD NEFCS NSE SAMkNN

(A-Test) (W-Test)

|Ri − RCM-DRIFT| 18 18 16 24 7 35 10
p-value 4E-10 4E-10 6E-09 3E-13 1E-3 4E-18 2E-05

C. Evaluating CM-DRIFT with different parameters

The CM-DRIFT algorithm utilizes two time windows and
the competence model to filter drift region data. The size
of the time window defines how many data instances are
used to represent one concept. If the size is too small, the

11

250 375 500 625 750
window

size

0.858

0.86

0.862
Ac

cu
ra

cy

Euclidean
Chebychev
Manhattan

(a) SEA
250 375 500 625 750

0.83

0.84

0.85

0.86

(b) RH
50 75 100 125 1500.55

0.6

0.65

0.7

0.75

(c) Usenet1

50 75 100 125 1500.6

0.65

0.7

0.75

(d) Usenet2
150 225 300 375 4500.77

0.78

0.79

0.8

(e) NOAA weather
100 200 3000.75

0.8

0.85

0.9

0.95

150 250

(f) Spam

Fig. 9: The classification accuracy of CM-DRIFT with differ-
ent window sizes and different distance functions.

data instances in the latter time window cannot correctly
represent the new concept. If the size is too large, the latter
time window may cover the previous concept leading to bad
performance. The distance function defines the Solve rule for
constructing the competence model and the condition if any
two data instances could be k-nearest neighbors. Therefore,
the size of the time window and the distance function have
an impact on the performance of CM-DRIFT. In this section,
we describe two experiments to evaluate the performance of
CM-DRIFT with different sized time windows and different
distance functions. The remaining parameters are set to the
default values.

Experiment 8. Varying the size of the time window.
To evaluate how the size of the time window affects the
performance of CM-DRIFT, we set the size of the time
window to 0.5×, 0.75×, 1×, 1.25×, or 1.5× of the size
number set in the Section IV-B.

Experiment 9. Varying the distance function. To eval-
uate how the distance function affects the performance of
CM-DRIFT, in addition to Euclidean distance, two of the
most commonly used distance function, Manhattan distance
and Chebyshev distance, are used in this experiment.

Fig. 9 plots the classification accuracy of CM-DRIFT with
different parameters on the six datasets. From Fig. 9a, we
find that an increase in the size of the time window results in
a decrease in classification accuracy because a time window
which is too large is not good for handling sudden drift. From
Fig. 9e, we find an increase in the size of the time window
correlates with an increase in classification accuracy, since
a small time window cannot correctly represent the weather
concept. We conclude that the choice of time window has a
significant impact on the performance of CM-DRIFT.

Compared with the other two distance functions, Euclidean
outperforms on all the datasets. Therefore, we recommend
using Euclidean as default option for most situations.

D. Evaluating CM-DRIFT with different base learners

Our method filters the data sample to represent the current
concept more accurately. Further, it is not restricted to any par-
ticular base learner for classification tasks. In this section, we
present an experiment designed to evaluate the performance

TABLE IV: The classification accuracy of the drift region-based data sample
filtering method with different base learners.

SEA RH Usenet 1 Usenet 2 NOAA Weather Spam
kNN 0.8623 0.8520 0.7157 0.7271 0.7906 0.9507
NB 0.8748 0.8706 0.7307 0.7907 0.7014 0.9479
Tree 0.8573 0.7842 0.6979 0.7693 0.7542 0.9287
SVM 0.8748 0.9077 0.7343 0.7757 0.7794 0.9643

TABLE V: Statistical test based on the classification accuracy in Table IV
Post-hoc test after Conover NB Tree SVM

|Ri − RkNN| 2 6 7
p-value 0.245761 0.025767 0.01305

of CM-DRIFT with different base learners. The parameters
settings remain as per Sections IV-A and IV-B.

Experiment 10. Varying the base learner. CM-DRIFT is
not limited on kNN. It can embed other base learners as well.
To evaluate how different base learners affect accuracy, we
also show the result of CM-DRIFT with three commonly used
base learners other than kNN: Naive Bayes, Deicision Tree and
SVM. The base learner is retrained with the data sample Dt

that had been updated by CM-DRIFT.

The results of six datasets are shown in TABLE IV. This
experiment revealed clear discrepancies based on the different
characteristics of each base learner and dataset. For example,
the RH dataset appears more suited to SVM since SVM is
good at finding a separating hyperplane between data of two
classes. The proposed data sample filtering method with kNN
(Column 6) returned the highest accuracy on the imbalanced
dataset NOAA Weather and is the right choice for imbalanced
data given the comparative performance with the other three.

TABLE V shows the statistical test result of the comparison
between different base learners where notations are similar to
them in TABLE III. It can be seen that CM-DRIFT could
achieve significantly greater accuracy when the base learner is
Tree or SVM on the tested data streams. Therefore, we suggest
trying different base learners when CM-DRIFT is applied
to other data streams. In summary, any data-driven base
learner could be applied to optimize accuracy, which should
be considered when processing data in different scenarios.

E. Computation efficiency analysis

In this section, we analyze the computation efficiency for
each algorithm. For concise descriptions, we use the fol-
lowing notations: d is the dimension, w = |wp| = |wc|,
n = |DriftSet|, and N = |X |.

Computation efficiency analysis for Algorithm 1 (RNR).
Line 2-7 are a kNN search process. Therefore, the complexity
is d logw. Line 8 is to order the result of Line 2-7, which
is w logw. However, we implement this step with Line 2-
7. Therefore, it is actually 1. For the while loop in Line 9-
33, if every Checklist goes into this loop, the complexity is
(1 + 2 + · · ·+w) = w(1 +w)/2. The complexity for RNR is
at most d logw + w2

2 + w
2 .

Computation efficiency analysis for Algorithm 2 (CM-
DRDI). Line 1-2 activate RNR. Therefore, the complexity will
not exceed 2 × (d logw + w2

2 + w
2). Line 3 computes the

distance between wp and wc. Therefore, the complexity is (w+
w)2 = 4w2. Line 3-7 involve arg min, the complexity being

12

at most 2w. Line 8-13 can be directly computed given the
results from Line 1-7. The complexity for CM-DRDI is at
most 2d logw+w2 +w+ 4w2 + 2w = 2d logw+ 5w2 + 3w.

Computation efficiency analysis for Algorithm 3 (CM-
DRIFT). Line 1 activates RNR, so the complexity is at
most d logw + w2

2 + w
2 . Given DriftF lag is always

true: the complexity for Line 3-8 is N ; Line 9-16 are
a kNN search process with complexity of d log n; Line
17-21 will activate CM-DRDI, which is no greater than
2d logw + w2 + w + 4w2 + 2w = 2d logw + 5w2 + 3w.
Line 23-31 evolve Wnew′ checks, that reaches a maxi-
mum of w. The complexity for CM-DRIFT at its greatest
is max

{
3d logw + d log n+ 5.5w2 + 3.5w +N,w

}
, with a

greatest complexity of 3d logw+d log n+5.5w2+3.5w+N ∼
O(w2) +O(N).

Based on the computation efficiency analysis, CM-DRIFT
will have high complexity if the length of data sample X
increases. As shown in Algorithm 3, when drift is not detected
and the newly arrived instance is easily classified (i.e., far from
the decision boundary), this instance will be stored in the data
sample. Therefore, CM-DRIFT might be slow for data streams
without the drift problem. As a solution for this situation, we
suggest introducing redundancy removal techniques to ensure
that the length of the data sample will not exceed a workable
extent.

V. CONCLUSIONS AND FURTHER STUDIES

In this paper, we proposed a drift region-based data sample
filtering method which can remove obsolete data and add new
data for training. The effectiveness of our method is guaranteed
by theoretic proof, and validated on 6 datasets that contain
different types of drift.

Our future research endeavors will seek to improve the per-
formance of CM-DRIFT on high-dimension data and reduce
the complexity by evolving redundancy data instances removal
algorithms. In addition, it is possible to further improve the
performance if our method is embedded with other incremental
algorithms.

ACKNOWLEDGMENT

The work presented in this paper was supported by the Aus-
tralian Research Council (ARC) under the Discovery Project
DP190101733.

REFERENCES

[1] B. Krawczyk and A. Cano, “Adaptive ensemble active learning for
drifting data stream mining,” in International Joint Conference on
Artificial Intelligence, Macao, China, Aug. 10-16, 2019, pp. 2763–2771.

[2] J. Lu, A. Liu, Y. Song, and G. Zhang, “Data-driven decision support
under concept drift in streamed big data,” Complex & Intelligent Systems,
vol. 6, no. 1, pp. 157–163, 2020.

[3] P. Duda, L. Rutkowski, M. Jaworski, and D. Rutkowska, “On the parzen
kernel-based probability density function learning procedures over time-
varying streaming data with applications to pattern classification,” IEEE
Transactions on Cybernetics, vol. 50, no. 4, pp. 1683–1696, April 2020.

[4] A. Liu, J. Lu, and G. Zhang, “Concept drift detection via equal intensity
k-means space partitioning,” IEEE Transactions on Cybernetics, 2020.

[5] X. Tian, W. W. Y. Ng, and H. Wang, “Concept preserving hashing
for semantic image retrieval with concept drift,” IEEE Transactions on
Cybernetics, pp. 1–14, 2019.

[6] W. W. Ng, X. Tian, Y. Lv, D. S. Yeung, and W. Pedrycz, “Incremental
hashing for semantic image retrieval in nonstationary environments,”
IEEE transactions on cybernetics, vol. 47, no. 11, pp. 3814–3826, 2016.

[7] J. B. Gomes, E. Menasalvas, and P. A. C. Sousa, “Learning recurring
concepts from data streams with a context-aware ensemble,” in Proceed-
ings of the 2011 ACM Symposium on Applied Computing. TaiChung,
Taiwan: ACM, 2011, Conference Paper, pp. 994–999.

[8] G. Widmer and M. Kubat, “Learning in the presence of concept drift
and hidden contexts,” Machine Learning, vol. 23, no. 1, pp. 69–101,
1996.

[9] J. Gama, I. Žliobaitė, A. Bifet, M. Pechenizkiy, and A. Bouchachia, “A
survey on concept drift adaptation,” ACM Computing Surveys, vol. 46,
no. 4, pp. 1–37, 2014.

[10] J. Gama, P. Medas, G. Castillo, and P. Rodrigues, “Learning with drift
detection,” in Proceedings of the 17th Brazilian Symposium Artificial
Intelligence, ser. Lecture Notes in Computer Science. Springer, 2004,
Book Section, pp. 286–295.

[11] N. Lu, G. Zhang, and J. Lu, “Concept drift detection via competence
models,” Artificial Intelligence, vol. 209, pp. 11–28, 2014.

[12] Y. Song, J. Lu, H. Lu, and G. Zhang, “Fuzzy clustering-based adaptive
regression for drifting data streams,” IEEE Transactions on Fuzzy
Systems, vol. 28, no. 3, pp. 544–557, 2020.

[13] G. Hulten, L. Spencer, and P. Domingos, “Mining time-changing data
streams,” in Proceedings of the 7th ACM SIGKDD International Confer-
ence Knowledge Discovery and Data Mining. San Francisco, California:
ACM, 2001, Conference Paper, pp. 97–106.

[14] J. Gama, R. Rocha, and P. Medas, “Accurate decision trees for mining
high-speed data streams,” in Proceedings of the 9th ACM SIGKDD In-
ternational Conference Knowledge Discovery and Data Mining. ACM,
2003, Conference Proceedings, pp. 523–528.

[15] J. Gama, R. Fernandes, and R. Rocha, “Decision trees for mining data
streams,” Intelligent Data Analysis, vol. 10, no. 1, pp. 23–45, 2006.

[16] A. Bifet and R. Gavaldà, “Adaptive learning from evolving data streams,”
in Proceedings of the 8th International Symposium Intelligent Data
Analysis. Springer, 2009, Conference Proceedings, pp. 249–260.

[17] E. Ikonomovska, J. Gama, and S. Dzeroski, “Learning model trees from
evolving data streams,” Data Min. Knowl. Discov., vol. 23, no. 1, pp.
128–168, 2011.

[18] H. Wang, “Nearest neighbors by neighborhood counting,” IEEE Trans-
actions on Pattern Analysis and Machine Intelligence, vol. 28, no. 6,
pp. 942–953, 2006.

[19] A. Bifet, B. Pfahringer, J. Read, and G. Holmes, “Efficient data stream
classification via probabilistic adaptive windows,” in SAC. ACM, 2013,
pp. 801–806.

[20] V. Losing, B. Hammer, and H. Wersing, “Knn classifier with self
adjusting memory for heterogeneous concept drift,” in Proceedings
of the 16th International Conference Data Mining, 2016, Conference
Proceedings, pp. 291–300.

[21] N. Lu, J. Lu, G. Zhang, and R. Lopez de Mantaras, “A concept drift-
tolerant case-base editing technique,” Artificial Intelligence, vol. 230,
pp. 108–133, 2016.

[22] A. Liu, J. Lu, F. Liu, and G. Zhang, “Accumulating regional density
dissimilarity for concept drift detection in data streams,” Pattern Recog-
nition, vol. 76, no. Supplement C, pp. 256–272, 2018.

[23] F. Dong, G. Zhang, J. Lu, and K. Li, “Fuzzy competence model drift
detection for data-driven decision support systems,” Knowledge-Based
Systems, vol. 143, pp. 284–294, 2018.

[24] F. Gu, G. Zhang, J. Lu, and C.-T. Lin, “Concept drift detection based on
equal density estimation,” in Proceedings of the 2016 International Joint
Conference Neural Networks. IEEE, 2016, Conference Proceedings, pp.
24–30.

[25] A. Liu, Y. Song, G. Zhang, and J. Lu, “Regional concept drift detection
and density synchronized drift adaptation,” in the 26th International
Joint Conference on Artificial Intelligence, Melbourne, Australia, Aug.
19-25, 2017, pp. 2280–2286.

[26] J. Z. Kolter and M. A. Maloof, “Dynamic weighted majority: An
ensemble method for drifting concepts,” Journal of Machine Learning
Research, vol. 8, no. Dec, pp. 2755–2790, 2007.

[27] W. N. Street and Y. Kim, “A streaming ensemble algorithm (sea) for
large-scale classification,” in Proceedings of the 7th ACM SIGKDD
International Conference Knowledge Discovery and Data Mining.
502568: ACM, 2001, Conference Proceedings, pp. 377–382.

[28] R. Elwell and R. Polikar, “Incremental learning of concept drift in
nonstationary environments,” IEEE Transactions on Neural Networks,
vol. 22, no. 10, pp. 1517–31, 2011.

[29] X.-C. Yin, K. Huang, and H.-W. Hao, “De2: Dynamic ensemble of
ensembles for learning nonstationary data,” Neurocomputing, vol. 165,
pp. 14–22, 2015.

13

[30] D. Brzezinski and J. Stefanowski, “Reacting to different types of concept
drift: The accuracy updated ensemble algorithm,” IEEE Transactions on
Neural Networks and Learning Systems, vol. 25, no. 1, pp. 81–94, 2014.

[31] Y. Sun, K. Tang, Z. Zhu, and X. Yao, “Concept drift adaptation by
exploiting historical knowledge,” IEEE Trans. Neural Netw. Learning
Syst., vol. 29, no. 10, pp. 4822–4832, 2018.

[32] B. Smyth and M. Keane, “Remembering to forget: a competence
preserving deletion policy for case-based reasoning system,” in Proceed-
ings of the 14th International Joint Conference Artificial Intelligence
(Morgan-Kaufmann, 1995), 1995, pp. 377–382.

[33] B. Smyth and E. McKenna, “Modelling the competence of case-
bases,” in European Workshop on Advances in Case-Based Reasoning.
Springer, 1998, pp. 208–220.

[34] F. Liu, W. Xu, J. Lu, G. Zhang, A. Gretton, and D. J. Sutherland, “Learn-
ing deep kernels for non-parametric two-sample tests,” in Proceedings of
the 37th International Conference on Machine Learning, Online, 2020.

[35] F. Dong, J. Lu, K. Li, and G. Zhang, “Concept drift region identification
via competence-based discrepancy distribution estimation,” in Proceed-
ings of the 12th International Conference on Intelligent Systems and
Knowledge Engineering (ISKE), Nov 2017, pp. 1–7.

[36] H. Jiang, “Uniform convergence rates for kernel density estimation,” in
International Conference on Machine Learning, 2017, pp. 1694–1703.

[37] F. Liu, G. Zhang, and J. Lu, “A novel non-parametric two-sample test on
imprecise observations,” in Proceedings of the 2020 IEEE International
Conference on Fuzzy Systems, Online, 2020.

[38] D. W. Aha, D. Kibler, and M. K. Albert, “Instance-based learning
algorithms,” Machine Learning, vol. 6, no. 1, pp. 37–66, Jan 1991.

[39] M. Salganicoff, “Tolerating concept and sampling shift in lazy learning
using prediction error context switching,” in Lazy learning. Springer,
1997, pp. 133–155.

[40] I. Katakis, G. Tsoumakas, and I. Vlahavas, “Tracking recurring contexts
using ensemble classifiers: an application to email filtering,” Knowledge
and Information Systems, vol. 22, no. 3, pp. 371–391, 2009.

[41] I. Katakis, G. Tsoumakas, and I. P. Vlahavas, “An ensemble of classifiers
for coping with recurring contexts in data streams,” in Proceedings of
the 18th European Conference Artificial Intelligence, 2008, Conference
Proceedings, pp. 763–764.

[42] I. Katakis, G. Tsoumakas, E. Banos, N. Bassiliades, and I. Vlahavas, “An
adaptive personalized news dissemination system,” Journal of Intelligent
Information Systems, vol. 32, no. 2, pp. 191–212, 2008.

[43] A. Liu, J. Lu, and G. Zhang, “Diverse instance-weighting ensemble
based on region drift disagreement for concept drift adaptation,” IEEE
Transactions on Neural Networks and Learning Systems, 2020.

[44] H. Wang, W. Fan, P. S. Yu, and J. Han, “Mining concept-drifting data
streams using ensemble classifiers,” in Proceedings of the 9th ACM
SIGKDD International Conference Knowledge Discovery and Data
Mining. Washington, D.C.: ACM, 2003, Conference Paper, pp. 226–
235.

[45] I. Frias-Blanco, J. d. Campo-Avila, G. Ramos-Jimenez, R. Morales-
Bueno, A. Ortiz-Diaz, and Y. Caballero-Mota, “Online and non-
parametric drift detection methods based on hoeffding’s bounds,” IEEE
Transactions on Knowledge and Data Engineering, vol. 27, no. 3, pp.
810–823, 2015.

[46] G. J. Ross, N. M. Adams, D. K. Tasoulis, and D. J. Hand, “Exponentially
weighted moving average charts for detecting concept drift,” Pattern
Recognition Letters, vol. 33, no. 2, pp. 191–198, 2012.

[47] A. Bifet, G. Holmes, R. Kirkby, and B. Pfahringer, “MOA: Massive
online analysis,” Journal of Machine Learning Research, vol. 11, no.
May, pp. 1601–1604, 2010.

Fan Dong is Research Fellow of Australian Arti-
ficial Intelligence Institute, University of Technol-
ogy Sydney. He is the recipient of SIEF STEM+
Business Fellowship. He received the dual Ph.D.
degree from University of Technology Sydney and
Beijing Institute of Technology in 2018. His research
interests include concept drift detection, adaptive
learning under concept drift and data stream mining.

Jie Lu (F’18) is a Distinguished Professor and the
Director of Australian Artificial Intelligence Institute
(AAII) at the University of Technology Sydney
(UTS), Australia. She is also an IFSA Fellow and
Australian Laureate Fellow. She received a PhD
degree from Curtin University, Australia, in 2000.
Her main research expertise is in fuzzy transfer
learning, concept drift, decision support systems and
recommender systems. She has been awarded 10
Australian Research Council (ARC) discovery grants
and led 15 industry projects. She has supervised 40

PhD students to completion. She serves as Editor-In-Chief for Knowledge-
Based Systems (Elsevier) and Editor-In-Chief for International Journal on
Computational Intelligence Systems (Atlantis). She has delivered 27 keynote
speeches at IEEE and other international conferences and chaired 15 inter-
national conferences. She has received the UTS Medal for Research and
Teaching Integration (2010), the UTS Medal for research excellence (2019),
the IEEE Transactions on Fuzzy Systems Outstanding Paper Award (2019), the
Computer Journal Wilkes Award (2018), and the Australian Most Innovative
Engineer Award (2019).

Yiliao Song (M’17) received a M.S. in probabil-
ity and statistics in mathematics from the School
of Mathematics and Statistics, Lanzhou University,
China, in 2015. She received the Ph.D. degree in
computer science from University of Technology
Sydney, Australia. Her research interests include
concept drift, data stream mining and real-time pre-
diction. She is a Postdoctoral Researcher at Aus-
tralian Artificial Intelligence Institute, University of
Technology Sydney, Australia.

Feng Liu (M’16) is a Postdoctoral Researcher at
Australian Artificial Intelligence Institute, University
of Technology Sydney, Australia. He is the recipient
of Australian Laureate Postdoctoral Fellowship. He
received the Ph.D. degree in computer science from
Australian Artificial Intelligence Institute, University
of Technology Sydney, Australia, in 2020, and the
M.Sc. degree in probability and statistics and the
B.Sc. degree in pure mathematics from the School
of Mathematics and Statistics, Lanzhou University,
China, in 2015 and 2013, respectively. His research

interests include domain adaptation and two-sample test. He has served as
a senior program committee member for ECAI and program committee
members for NeurIPS, ICML, ICLR, AISTATS, ACML, IJCAI, CIKM,
FUZZ-IEEE, IJCNN and ISKE. He also serves as reviewers for IEEE-TPAMI,
IEEE-TNNLS, IEEE-TFS and IEEE-TCYB. He has received the UTS-FEIT
HDR Research Excellence Award (2019), Best Student Paper Award of FUZZ-
IEEE (2019) and UTS Research Publication Award (2018).

Guangquan Zhang received the Ph.D. degree in ap-
plied mathematics from Curtin University, Australia.
He is an Australian Research Council (ARC) QEII
fellow and Associate Professor in the Faculty of
Engineering and Information Technology at the Uni-
versity of Technology Sydney, Australia. From 1993
to 1997, he was a full Professor in the Department
of Mathematics, Hebei University, China. His main
research interests lie in the area of concept drift,
fuzzy multi-objective, bilevel, and group decision
making, fuzzy measure and fuzzy machine learning.

He has published six authored monographs, five edited research books, and
over 450 papers including more than 240 refereed journal articles. Dr. Zhang
has won nine ARC Discovery Project grants and many other research grants.
He has served as a Guest Editor for five special issues of IEEE transactions
and other international journals.

14

APPENDIX A
PROOF OF THEOREM 1

This section presents the proof of Theorem 1.

Proof. At first, we define two new variables as following.

K∆(u) =

∞∑
j=1

(k(j∆)− k((j + 1)∆)) · 1{|u| < j∆}, (21)

K∆(u) =

∞∑
j=1

(k(j∆)− k((j + 1)∆)) · 1{|u| < (j + 1)∆}, (22)

where ∆ > 0. Thus, it is clear that the following holds for
all ∆ > 0.

K∆(u) < K(u) < K∆(u). (23)

Then, we assume that the event that Lemma 1 holds, which
occurs with the probability at least 1 − 1/m. And we show
the lower bound for F̂(X). Define

F̂∆,H(X) =
1∑m

k=1 Ω(rk)

m∑
j=1

K∆(X, rj) · Ω(rj)

hdmax

, (24)

where K∆(X, rj) = K∆

(
H
−1/2
0 (kp(rj)−X)

hmax

)
. It is clear that

F̂(X) > F̂∆,H(X) for all X ∈ Rd. Let us use the following
shorthand ∆k,j = k(j∆). We have

F̂∆,H(X) =

∑∞
j=1(∆k,j −∆k,j+1) · Fm(BH0

(X, jhmax∆))

mdmaxhdmax

. (25)

Next, we have the following property:

Fm(BH0(X, jhmax∆) ≥ vd · (jhmax∆)d · Fj , (26)

where Fj = max{0, F (X) − ǔX(jhmax∆/
√
σd(H0))}. Thus,

according to Lemma 1, we have

Fm(BH0(X, jhmax∆)

≥ vdFj(jhmax∆)d − βm
√
vd(jhmax∆)d/2

√
Fj − β2

m

≥ vdFj(jhmax∆)d − βm
√
vd||F ||∞(jhmax∆)d/2 − β2

m.

Therefore,

mdmaxF̂∆,hmax (X) ≥ vd
∞∑
j=0

(∆k,j −∆k,j+1)(j∆)
d
F (X)

− vd
∞∑
j=0

(∆k,j −∆k,j+1)(j∆)
d
ǔX

(
jhmax∆√
σd(H0)

)

−
βm

√
vd||F ||∞
h
d/2
max

·
∞∑
j=0

(∆k,j −∆k,j+1)(j∆)
d/2 −

β2
mk(0)

hd
max

.

For the first term, we have

lim
∆→0

vd

∞∑
j=0

(∆k,j −∆k,j+1)(j∆)
d

= vd

∫ ∞
0

k(t)t
d
dt

=

∫ ∞
0

K(u)du = 1.

Next, we have

lim
∆→0

vd

∞∑
j=0

(∆k,j −∆k,j+1)(j∆)dǔX

(
jhmax∆√
σd(H0)

)

= vd

∫ ∞
0

k(t)tdǔX(thmax/
√
σd(H0))dt < ε.

(27)

Lastly, we have

lim
∆→0

∞∑
j=0

(∆k,j −∆k,j+1)(j∆)d/2 =

∫ ∞
0

k(t)td/2dt <∞.

Thus, taking ∆→ 0, we know

F̂(X) ≥ cl(F (X)−ε−
βm
√
vd||F ||∞
h
d/2
max

·
∫ ∞

0

k(t)td/2dt− β
2
mk(0)

hd
max

).

Let us redefine

F̂∆,H(X) =
1∑m

k=1 Ω(rk)

m∑
j=1

K∆(X, rj) · Ω(rj)

hd
min

,

where

K∆(X, rj) = K∆

(
H
−1/2
0 (kp(rj)−X)

hmin

)
.

We can similarly obtain

F̂(X) ≤ cu

(
F (X) + ε+

βm

√
vd||F ||∞
h
d/2
min

·
∫ ∞

0

k(t)t
d/2

dt+
β2
mk(0)

hd
min

)
.

The result follows.

	Clipboard Data(1)
	A_Drift_Region_Based_Data_Sample_Filtering_Method

