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Abstract—This paper proposes a novel label ranker
network to learn the relationship between labels for
classification and ranking problems. The Preference Neu-
ral Network (PNN) uses spearman correlation gradient
ascent and two new activation functions, positive smooth
staircase (PSS), and smooth staircase (SS) that accelerate
the ranking by creating almost deterministic preference
values. PNN is proposed in two forms, fully connected
simple Three layers and Preference Net (PN), where the
latter is the deep ranking form of PNN to learning feature
selection using ranking to solve images classification
problem. PN uses a new type of ranker kernel to generate
a feature map. PNN outperforms five previously proposed
methods for label ranking, obtaining state-of-the-art re-
sults on label ranking, and PN achieves promising results
on CFAR-100 with high computational efficiency.

Index Terms—Preference learning, Deep label ranking,
Neural network, Preference mining.

I. INTRODUCTION

PREFERENCE learning (PL) is an extended paradigm
in machine learning that induces predictive pref-

erence models from experimental data [1]–[3]. PL has
applications in a variety of research areas such as knowl-
edge discovery and recommender systems [4]. Objects,
instances, and label ranking are the three main categories
of PL domain. Of those, label ranking (LR) is a challeng-
ing problem that has gained importance in information
retrieval by search engines [5], [6]. Unlike the common
problems of regression and classification, label ranking
involves predicting the relationship between multiple label
orders. For a given instance x from the instance space
x, there is a label L associated with x, L ∈ π, where
π = {λ1, ..,λn}, and n is the number of labels. LR is
an extension of multi-class and multi-label classification,
where each instance x is assigned an ordering of all the
class labels in the set L. This ordering gives the ranking
of the labels for the given x object. This ordering can be
represented by a permutation set π= {1,2, · · · ,n}. The label
order has the following three features. irreflexive where
λa � λa ,transitive where (λa Â λb)∧ (λb Â λc) =⇒ λa Â λc
and asymmetric λa Â λb =⇒ λb � λa. Label preference
takes one of two forms, strict and non-strict order. The
strict label order (λa Âλb Âλc Âλd) can be represented as
π = (1,2,3,4) and for non-restricted total order π = (λa Â
λb ' λc Â λd) can be represented as π = (1,2,2,3), where
a,b, c,and,d are the label indexes and λa,λb,λc and λd
are the ranking values of these labels.

For the non-continuous permutation space, The order is
represented by the relations mentioned earlier and the ⊥
incomparability binary relation. For example the partial
order λa Â λb Â λd can be represented as π = (1,2,0,3)

where 0 represents an incomparable relation since λc is
not comparable to (λa,λb,λd).

Various label ranking methods have been introduced
in recent years [7], such as decomposition based meth-
ods, statistical methods, similarity, and ensemble-based
methods. decomposition methods include pairwise compar-
ison [8], [9], log-linear models and constraint classifica-
tion [10]. The pairwise approach introduced by Hüller-
meier [11] divides the label ranking problem into sev-
eral binary classification problems in order to predict
the pairs of labels λi Â λ j or λ j ≺ λi for an input x.
Statistical methods includes decision trees [12], instance-
based methods (Plackett-Luce) [13] and Gaussian mixture
model [14] based approaches. For example, Mihajlo uses
Gaussian mixture models to learn soft pairwise label
preferences [14].

The artificial neural network (ANN) for ranking was
first introduced as (RankNet) by Burge to solve the prob-
lem of object ranking for sorting web documents by a
search engine [15]. Ranknet uses gradient descent and
probabilistic ranking cost function for each object pair.
The multilayer perceptron for label ranking (MLP-LR) [16]
employs a network architecture using a sigmoid activation
function to calculate the error between the actual and
expected values of the output labels. However, It uses a
local approach to minimize the individual error per output
neuron by subtracting the actual - predicted value and
using Kendall error as a global approach. Neither direction
uses a ranking objective function in backpropagation (BP)
or learning steps.

The deep neural network DNN is introduced for
object ranking to solve document retrieval problems.
RankNet [15], RankBoost [17], and Lambda MART [18],
and deep pairwise label ranking models [19], are convo-
lution neural Network (CNN) approaches for the vector
representation of the query and document-based. CNN is
used for image retrieval [20] and label classification [21].
A multi-valued activation function has been proposed by
Moraga and Heider [22] to propose a Generalized Mul-
tiple–valued Neuron with a differentiable soft staircase
activation function, which is represented by a sum of a
set of sigmoidal functions.

Some of the methods mentioned above and their vari-
ants have some issues that can be broadly categorized into
three types:

1) The ANN prediction probability is almost the output
value of rectified linear unit (Relu), Sigmoid, or Soft-
max activation functions. Predictive probability can be
enhanced by changing the function slope to be almost
a step shape to create multiple almost discrete values.

2) The drawback of ranking based on the classification
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technique ignores the relation between multiple la-
bels: When the ranking model is constructed using
binary classification models, These methods cannot
consider the relationship between labels because the
activation functions do not provide deterministic mul-
tiple values. such rankings based on minimizing pair-
wise classification errors are not necessarily equiva-
lent to maximizing the label ranking’s performance
considering all labels. This is because pairs have
multiple models that may reduce ranking unification
by increasing ranking pairs conflicts where there is
no ground truth, which has no generalized model
to rank all the labels simultaneously. For example,
D = (1,1,1) for π = (λa Â λb Â λc) and D = (1,1,1) for
π = (λa Â λc Â λb) the ranking is unique; however,
pairwise classification creates no ground truth rank-
ing for the pair λb Âλc and λc Âλb which adds more
complexity to the learning process.

3) Ignoring the relation between features. The convolu-
tion kernel has a fixed size that detects one feature
per kernel. Thus, it ignores the relationship between
different parts of the whole image in large images. For
example, CNN detects the face by combining features
(the mouth, two eyes, the face oval, and a nose)
with a high probability to classify the subject without
learning the relationship between these features.

The proposed PNN has several advantages over existing in
label ranking methods and CNN classification approaches.

1) PNN uses the smooth staircase SS as an activation
function that enhances the predictive probability over
the sigmoid and Softmax due to the step shape that
enhances the predictive probability from a range from
-1 to 1 in the sigmoid to almost discrete multi-values.

2) PNN uses gradient ascent to maximize the spear-
man ranking correlation coefficient. In contrast, other
classification-based methods such as MLP-LR use the
absolute difference of root mean square error (RMS)
by calculating the differences between actual and
predicted ranking and other RMS optimization, which
may not give the best ranking results.

3) PNN is implemented directly as a label ranker. It uses
staircase activation functions to rank all the labels
together in one model. The SS or PSS functions pro-
vide multiple output values during the conversions;
however, MLP-LR and Ranknet use sigmoid and Relu
activation functions. These activation functions have
a binary output. Thus, it ranks all the labels together
in one model instead of pairwise ranking by classifi-
cation.

4) PN uses a novel approach for learning the feature
selection by ranking the pixels and use different size
of weighted kernels to scan the image and generate
the features map.

The next section explains the Ranker network experiment,
problem formulation and the PNN components (Activa-
tion functions, Objective function, and network structure)
that solve the Ranker problems and comparison between

Ranker network and PNN.

II. PNN COMPONENTS

A. Initial Ranker
The proposed PNN is based on an initial experiment

to implement a computationally efficient label ranker
network based on the Kendall τ error function and sigmoid
activation function using simple structure as illustrated in
section IV Fig. 7.

The ranker network is a fully connected, three-layer
net. The input represents one instance of data with three
inputs, and there are six neurons in the hidden layer,
and three output neurons representing the labels’ index.
Each neuron represents the ranking value. A small toy
data set is used in this experiment. The Ranker uses
RMS gradient descent as an error function to measure
the difference between the predicted and actual ranking
values. The Ranker has Kendall τ as a stopping criterion.
The same ANN structure, number of neurons and learning
rate using SS activation function , and spearman error
function and gradient ascent of ρ will be discussed in
section IV. The ranking convergence reaches to τ' 1 after
160 epochs using the Sigmoid function [23]. The sigmoid
and ReLU shape have a slightly high rate of change of y,
and it produces larger output range of data. Therefore, we
consider ranking performance as one of the disadvantages
of sigmoid function in the ranker network.

The ranker network has two main problems.
1) The ranker uses two different error functions, RMS

for learning and Kendall τ for stopping criteria.
Kendall τ is not used for learning because it is not
continuous or differentiable. Both functions are not
consistent as stopping criteria measure the relative
ranking, and RMS does not, which may lead to incor-
rect stopping criteria. Enhancing the RMS may not
also increase the error performance, as illustrated in
Fig. 3 in a comparison between the ranker network.
evaluation using both τ and RMS and PNN ranking
evaluation using ρ and RMS.

2) The convergence performance takes numbers of iter-
ations to reach the ranking τ' 1 based on the shape
of sigmoid or Relu functions and learning rate as
shown in the experiment video link [23] due to the
slope shape between -1 or 0 and 1. The prediction
probability is almost equal the values from -1 or 0 to
1.

B. Problem Formulation
For a multi-class and multi-label problems, learning the

data’s preference relation predicts the class classification
and label ranking. i.e. data instance D ∈ {x1, x2, . . . , xn}.
the output labels are predicted as ranked set labels that
have preference relations L = {λy1, . . . ,λyn}. PNN creates
a model that learns from an input set of ranked data
to predict a set of new ranked data. The next section
presents the initial experiment to rank labels using the
usual network structure.
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C. Activation Functions
The usual ANN activation functions have a binary

output or range of values based on a threshold. However,
these functions do not produce multiple deterministic
values on the y-axis. This paper proposes new functions
to slow the differential rate around ranking values on the
y-axis to solve ranking instability. The proposed functions
are designed to be non-linear, monotonic, continuous, and
differentiable using a polynomial of the tanh function.
The step width maintains the stability of the ranking
during the forward and backward processes. Moraga [22]
introduced a similar multi-valued function. However, the
proposed exponential derivative was not applied to an
ANN implementation. Moraga exponential function is ge-
ometrically similar to the step function [24]. However,
The newly proposed functions consist of tanh polynomial
instead of exponential due to the difficulty in implementa-
tion. The new functions detect consecutive integer values,
and the transition from low to high rank (or vice versa) is
fast and not interfere with threshold detection.

1) Positive Smooth Staircase (PSS): As a non-linear and
monotonic activation function, positive smooth staircase
(PSS) is represented as a bounded smooth staircase func-
tion starts from x=0 to ∞. Thus, it is not geometrically
symmetrical around the y-axis as shown in Fig. 1. PSS is
a polynomial of multiple tanh functions and is therefore
differentiable and continuous. The function squashes the
output neurons values during the FF into finite multiple
integer values. These values represents the preference
values from {0 to n} where 0 represent the incomparable
relation ⊥ and values from 1 to n represent the label
ranking. The activation function is given in Eq. 1. PSS
is scaled by increasing the step width w

-4 -2 2 4
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2.0

2.5

3.0

Fig. 1: PSS activation function where n = 3 and step width
w = 1

y=−1
2

( n∑
i=0

tanh(−100(x−wi))
)
+ n

2
(1)

Where n is number of output labels, w is the step width.
2) Smooth Staircase (SS): The proposed (SS) represents

a staircase similar to (PSS). However, SS has a variable
boundary value used as a hyperparameter in the learn-
ing process. The derivative of the activation function is
discussed in section III and the performance comparison
between SS and PSS is mentioned in section v.
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Fig. 2: SS activation function where n = 6 and 9 and
boundary b = 1 and 10 in (a) and (b) respectively.

The activation function is given in Eq. 2.

y=−1
2

( n∑
i=0

tanh(
−100

b
x+ c(1− 2i

n−1
))

)
+ n

2
(2)

where c = 100, n = number of ranked labels, b is the
boundary value, and (SS) lies between −b and b. The
(SS) function has the shape of smooth stair steps, where
each step represents an integer number of label ranking
on the y-axis from 0 to ∞ as shown in Fig. 1, The SS step
is not flat, but it has a differential slope. The function
boundary value on x-axis is from -b to b Therefore, input
values must be scaled from -b to b. The step width is 1
when n' 2b. The convergence rate is based on the step
width. However, it may take less time to converge based
on network hyperparameters. Fig. 2 (a) and (b) shows the
activation functions to rank 6 and 9 labels, respectively.
The SS is scaled by increasing the boundary value b

D. Ranking Loss Function

Two main error functions have been used for label
ranking; Kendall τ [25] and spearman ρ [26]. However, the
Kendall τ function lacks continuity and differentiability.
Therefore, The spearman ρ correlation coefficient is used
to measure the ranking between output labels. spearman
ρ error derivative is used as a gradient ascent process for
BP, and correlation is used as a ranking evaluation func-
tion for convergence stopping criteria. τAvg is the average
τ per label divided by the number of instances m, as shown
in line 8 of Algorithm 1. spearman ρ measures the relative
ranking correlation between actual and expected values
instead of using the absolute difference of root means
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square error (RMS) because gradient descent of RMS may
not reduce the ranking error. For example, π1 = (1,2.1,2.2)
and π2 = (1,2.2,2.1), have a low RMS = 0.081 but a low
ranking correlation ρ = 0.5 and τ= 0.3.

0 20 40 60 80

0.2

0.3

0.4

0.5

0.6

#iterations

spearman ρ

0 20 40 60 80
0.2

0.25

0.3

0.35

0.4

#iterations

RMS

ANN
PNN

Fig. 3: Ranker network and PNN evaluation in terms of
RMS and spearman correlation error functions

Fig 3 shows the comparison between the initial ranker
network and PNN; the ranker network uses Kendall τ
in which has lower performance as a stopping criterion
compared to PNN spearman because the stopping criteria
are based on the RMS per iteration; however, PNN uses
spearman for both ranking step and stopping criteria.

The spearman error function is represented by Eq.3

ρ = 1− 6
∑m

i=1 (yi − yti)2

m(m2 −1)
(3)

where yi, yti, i and m represent rank output value,
expected rank value, label index and number of instances,
respectively.

E. PNN Structure
1) One middle layer: The ANN has multiple hidden

layers. However, we propose PNN with a single middle
layer instead of multi-hidden layers because ranking per-
formance is not enhanced by increasing the number of
hidden layers due to fixed multi-valued neuron output,
as shown in Fig. 4; Seven benchmark data sets [27] was
experimented using SS function using one, two, and three
hidden layers with the following hyperparameters; learn-
ing rate (l.r.)=0.05, and each layer has neuron i = 100 and
b = 10). We found that by increasing the number of hid-
den layers, the ranking performance decreases and more
iteration are required to reach ρ ' 1. The low performance
because of the shape of SS produces multiple deterministic
values, which decrease the arbitrarily complex decision
regions and degrees of freedom per extra hidden layer.

2) Preference Neuron: Preference Neuron are a multi-
valued neurons uses a PSS or SS as an activation function.
Each function has a single output; however, PN output
is graphically drawn by n number of arrows links that
represent the multi-deterministic values. The PN in the
middle layer connects to only n output neurons stp = n+1;
where stp is the number of SS steps. The PN in output
layer represents the preference value. The middle and
output PNs produce a preference value from 0 to ∞ as
illustrated in Fig. 5.

Fig. 4: Multiple layer label ranking comparison of bench-
mark data sets [27] results using the PNN and SS func-
tions after 100 epochs and learning rate = 0.007.

Preference Neuron

λn =ϕ4
(∑k

i=1 ai .wi
)

Input

Weights

a1

w1.

.

ai
wi

.

.

ak

wk

λa

λb

λc

λd

a j
∑k

i=1 ai .wi ϕ

-3 -2 -1 1 2 3

1

2

3

4

Fig. 5: The structure of preference neuron where ϕn=4.

The PNN is fully connected to multiple-valued neurons
and a single-hidden layer ANN. The input layer represents
the number of features per data instance. The hidden
neurons are equal to or greater than the number of output
neurons, Hn ≥Ln, to reach error convergence after a finite
number of iterations. The output layer represents the label
indexes as neurons, where the labels are displayed in a
fixed order, as shown in Fig. 6.

The ANN is scaled up by increasing the hidden layers
and neurons; however, increasing the hidden layers in
PNN does not enhance the ranking correlation because it
does not arbitrarily increase complex decision regions and
degrees of freedom to solve a more complex ranking prob-
lems. This limitation due to the multi-semi discrete-valued
activation function, which limits the output data variation.
Therefore, instead of increasing the hidden layer, PNN is
scaling up by increasing the number of neurons in the
middle layer and scaling input data boundary value and
increase the PSS step width and SS boundaries which
are equal to the input data scaling value, which leads to
increased data separability.

PNN reaches ranking ρ ' 1 after 24 epochs compared to
the initial ranker network that reaches the same result in
200 iterations, The video link demonstrates the ranking
convergence as shown in Fig. 7 and video demo [23], and
a summary of the three networks are presented in Table
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Fig. 6: PNN where ϕn=16, f in = 16 and λout = 16, per
〈x1,π1〉, L ∈ {λa,λb,λc,λd} where π1 = {1,2,3,4, . . . ,16}.

I.
The output labels represent the ranking values. The

differential PSS and SS functions accelerate the conver-
gence after a few iterations due to the staircase shape,
which achieves stability in learning. PNN simplifies the
calculation of FF and BP, and updates weights into two
steps due to single middle layer architecture. Therefore,
the batch weight updating technique is not used in PNN,
and pattern update is used in one step. The network bias
is low due to the limited PN output variation, so it is
not calculated. Each neuron uses the activation function
in FF step, and calculates the preference number from 1
to n, where n is the number of label classes. During BP.
The processes of FF and BP are executed in two steps
until ρAvg ' 1 or the number of iterations reaches (106) as
mentioned in the algorithm section.

The SS step width decreases by increasing the number
of labels; thus, we increase function boundary b in order
to increase the step width to ' 1 to make the ranking con-
vergence; In addition, a few complex data sets may need
more data separability to enhance the ranking. Therefore,
we use the b value as a hyperparameter to keep the stair
width >= 1 and normalize input data from −b to b.

Table I shows a brief comparison between Ranker ANN
and PNN.

The following section describes the data preprocessing
steps, feature selections, and components of PN.

τ

0 50 100 150 200

0

0.2

0.4

0.6

0.8

1

#iterations

Ranking Convergence

Ranker NN
PNN

Fig. 7: The structure used in both ranker ANN and
PNN where ϕn=3, f in = 3 and λout = 3, per 〈x1,π1〉,
L ∈ {λa,λb,λc} where π1 = {1,2,3}. and comparison of the
convergence for both NN’s. The demo video of convergence
of two NN in the link [23].

TABLE I: ANN types used in initial experiment.

Type Ranker ANN PNN
Activation Fun. ReLU,Sigmoid PSS, SS

Gradient Descent Ascent
Objective Fun. RMS ρ

Stopping Criteria. τ ρ

III. PN COMPONENTS

A. Image Preprocessing

1) Greyscale Conversion: Data scaling as red, green and
blue (RGB) colours is not considered for ranking because
PN measures the preference values between pixels. Thus,
The image is converted from RGB colour to Greyscale.

2) Image Pixels’ Ranking: Ranking the image from π=
{λ1, ..,λm} to π= {λ1, ..,λk} where the maximum greyscale
value λm = 255 and λk is the maximum ranked pixel value
as illustrated in Fig. 8

0 2 10 5 95 1
8 10 140 2 68 3

138 3 255240 6 54
53 155 1 255 64 195
5 4 56 167230 42
0 65 2 94 69 12

1 3 9 6 20 2
8 9 22 3 17 4
21 4 28 27 7 13
12 23 2 28 15 25
6 5 14 24 26 11
1 16 3 19 18 10

6 9 2
5 4 7
1 8 3

28 X 28
0-255

28 X 28
1-156

3 X 3
1-23

3 X 3
1-9

Fig. 8: Image pixel ranking for each flattened window.

3) Pixel Averaging: Ranking image pixels has almost
low ranking correlation due to noise, scaling, light and
object movement; therefore, window averaging is proposed
by calculating the mean of pixel values of the small
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flattened window size of 2x2 of 4 pixels as shown in Fig. 9.
The overall image ρ of pixels increased from 0.2 to 0.79
in (a and b), from 0.137 to 0.75 for noisy images in (s and
d) and scaled images from -0.18 to 0.71 in (e and f).

(a) ρ = 0.216 (b) ρ = 0.79

(c) ρ = 0.137 (d) ρ = 0.75

(e) ρ =−0.18 (f) ρ = 0.71

Fig. 9: Sample of moving objects in (a) and (b) without
and with averaging by window 2x2. The ranking of two
flattened images are ρ = 0.216 and 0.79 in (a) and (b)
respectively. Sample of moving noisy object in (c) and (d)
without and with image averaging by a window of 2x2.
The ranking of two flattened images are ρ = 0.137, 0.75
and 0.75 in (c) and (d) respectively. ranking scaled circle
in (e) and (f) respectively.

The two approaches Pixel ranking and Averaging has
been applied on remote sensing and faces images to detect
the similarity, and it shows high ranking correlations
using different window size as shown in Fig 10. It detects
the high correlation by starting from the large window size
= image size and reduces the size and scan till it reaches
the highest correlation.

ρ = 0.84ρ = 0.81ρ = 0.6

Fig. 10: Detecting the similarity in remote sensing and
face recognition by ranking the image pixels after averag-
ing the pixels using a 2x2 window.

B. Feature Extraction

This paper proposes a new approach for feature se-
lection based on data preference values by ranking the
pixels instead of CNN convolution. The features are based
on ranking computational space. Therefore, the kernel
window size is considered a factor for feature selection.

1) Window Pixels’ Ranking: For each scanned window
in the image, the flatten ranked vector is ranked before
measuring the ρ with the ranker kernel. the Fig. 8 shows
the window size 3X3 range from λk1 = 23 to λk2 = 9.

Ranking the pixel reduce the data margin so it reduce
the computational complexity.

2) Weighted Ranker Kernel: The kernel weights are
randomly initialized from -0.05 to 0.05 learns the features
by BP the weights. the partial change in the kernel is by
differentiating the spearman correlation as in Eq. 4

dKw = 2 · Img−dρ · n3 −n
−6

(4)

Different kernel sizes could be used. However, we propose
multiple kernels for big images’ size. We use three dif-
ferent kernels to capture the relations between different
features in the image.

3) Max Pooling: We use the max. pooling approach
to reduce the features map’s size and select the highest
correlation values to feed to the PNN.

C. PN Structure

PN is the deep learning structure of PNN for image
classification. It consists of five layers, ranking features
map, a max. pooling and three PNN layers. PN has one or
multiple different sizes of PNNs connected by one output
layer. Each PNN has SS or PSS where ϕn=2 for binary
ranking to map the classification. The number of output
neuron is the number of the classes. The structure is
shown in Fig 11. PN have one or more ranker kernel with
different sizes, Each kernel has one corresponding PNN.
PN uses the weighted kernel ranking to scan the image
and extract the features map of spearman correlation val-
ues of the kernel with the scanned ranked image window
as ρ(πk,πw) where πk is the kernel preference values and
πw is the scanned window image preference values. Each
kernel scans the image by one step and creates a spearman
features list. Max. pooling is used to minimize the feature
map used as input to PNN.

One 5X5 kernel is used for fashion Mnist data set [28].
Three kernels with sizes (3, 10, and 20) are used for CFAR-
100 [29].

IV. ALGORITHMS

A. Baseline Algorithm

Algorithm 1 represents the three functions of the net-
work learning process; feed-forward (FF), BP, and updat-
ing weights. Algorithm 2 represents the learning flow of
PN. Algorithm 3 represents the simplified BP function in
two steps.
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0
1
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Fig. 11: The PN structure has three kernels and three PNNs where ϕn=2, f1in = 16, f2in = 81, f3in = 169 and λout = 15,
per 〈x1,π1〉,π ∈ {λ1,λ2,λ3 · · · ,λ15}.

Algorithm 1: PNN learning flow
Data: D ∈ {x1, x2, . . . , xd}
Result: π ∈ {λy1, . . . ,λyn}

1 Randomly initialize weights ωi, j ∈ {−0.05,0.05}
2 repeat
3 forall 〈xi,πi〉 ∈D do
4 ai|l−1 =

∑m
i=1ϕ

(
ai ·ωi

)|n // FF
5 PNN BP()
6 ωinew =ωi old −η ·δi //UW

7 until ρAvg = 1 or #iterations ≥ 106;

B. Ranking Visualization

PNN ranking convergence is visualized using the SS
function by displaying the normalized input data points
with corresponding actual ranked five labels represented
in 5 different colours, The plotting of input value and SS
output values per iteration is shown in Fig. 12, which
illustrates the distribution of SS output values against
the actual colour values at iterations 0 and 3900 and τ is

enhanced from 0.39 to 0.85.

C. Complexity Analysis

1) Time Complexity:

• FF time complexity corresponds to FF of middle and
output layers, and m and n are number of nodes in the
middle and output layers. Wm and Wo are weighted
matrix and SSt is the activation function of number
of instances t. The time complexity in Eq. 5

O (m · o · t) (5)

• BB starts with calculating the error of output layer
Eot = ρ′o Deltao = Eot · SS′ and Deltam = Emt · SS′
then UW

Wm =Wm −Deltam (6)

This time complexity is then multiplied by the num-
ber of epochs n

O (n ·m · o · t) (7)
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Algorithm 2: PN Learning flow

8 Converting image to greyscale
9 Flattening image

10 Image pixel ranking
11 2D Image
12 Pixel averaging by a 2X2 window
13 Flattening image
14 Select one/more kernel sizes.
15 Random init. Kernel Kωx,y ∈ {−0.05,0.05}
16 Random init. PNN ωi, j ∈ {−0.05,0.05}
17 repeat
18 2D Image
19 Scanned window pixel ranking Imgw
20 Compute ρ(Imgw,Kw) feature map
21 Max. Pooling.
22 Flattening image
23 PNN FF()
24 PNN BP()
25 PNN UW()
26 Max. Pooling BP()
27 Ranker kernel BP and UW()
28 until ρAvg = 1 or #iterations ≥ 106;

Algorithm 3: PNN BP

29 Step 1: for each pni in Output layer do
30 Erri = ρ =−6 · (2yti−yi)

m(m2−1) //spearman error
31 δi = Err ·ϕ′
32 Step 2: for each pni in middle layer do
33 Erri =∑m

k=0ωk ·δk
34 δi = Err ·ϕ′

2) Input Neurons: The number of PN input neurons is
represented by Eq. 8

#Input = (ImgW −KW +1) · (ImgH −KH +1) (8)

where KW is kernel width and KH is kernel height.

V. NETWORK EVALUATION

This section evaluates the PNN against different activa-
tion functions and architectures. All weights are initialized
= 0 to compare activation functions and A and B have the
same initialized random weights to evaluate the structure.

A. Activation Functions Evaluation

PNN is tested on iris and stock data sets using four
activation functions. SS, PSS, ReLU, sigmoid, and tanh.
PNN has one middle layer and the number of hidden
neuron (h.n.) is 50, while l.r.= 0.05. Fig. 13 shows the
convergence after 500 iterations using four activation
functions (SS, PSS, sigmoid, ReLU and tanh) respectively.
We noticed that PSS and SS has a stable rate of ranking
convergence comparing to sigmoid, tanh, and ReLU. This
stability is due to the stairstep width, which leads each
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Sum weights X  utput|l-1
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2

3

4
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1
2
3
4
5

Kendal Tau=0.3921
Ep ch =0
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Fig. 12: Visualizing the ranking of five labels using SS
activation function of stock data set at epoch 0 and 3900
in (a) and (b) respectively.

point to reach the correct ranking during FF and BP in
fewer epochs.

1) PSS and SS Evaluation: As shown in Fig 13, PSS
reaches convergence and remains stable for a long number
of iterations compared to SS. However, SS has better ρ

than PSS. This good performance of SS is due to the
reason:

• The symmetry of SS function on the x axis. The SS
shape handles both positive and negative normalized
data. It reduces the number of iterations to reach the
correct ranking values.

To have the same performance for SS and PSS, the input
data should be scaled from 0 to step width X #steps and
from -b to b for PSS and SS respectively.

2) Missing Labels Evaluation: Activation functions are
evaluated by removing a random number of labels per
instance. PNN marked the missing label as -1; PNN ne-
glects error calculation during BP, δ= 0. Thus, the missing
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Fig. 13: PNN activation function comparison using com-
plete labels and 60% missing labels in (a) and (b), respec-
tively.

label weights remain constants per learning iteration. The
missing label approach is applied to the data set by 20%
and 60% of the training data. The ranking performance
decreases when the number of missing labels increases.
However, SS and PSS have more stable convergence than
other functions. This evaluation is performed on the iris
data set, as shown in Fig. 13.

3) Statistical Test: The PNN results were evaluated
using receiver operating characteristic (ROC) curves. The
true positive and negative for each rank are evaluated per
label as shown in Fig. 14

4) Dropout Regularization: Dropout applied as a regu-
larization approach to enhance the PNN ranking stability
by reducing over-fitting. We drop out the weights that
have a probability of less than 0.5. these dropped weights
are removed from FF, BP, and updating weight steps. The
comparison between dropout and non-dropout of PNN are
shown in Fig. 15. The gap between the training model and
ten-fold cross-validation curves has been reduced using
dropout regularization of type A using hyperparameters
(l.r.=0.05, h.n.=100) on the iris data set. The dropout
technique is used with all the data ranking results in the
next section.

The following section is the evaluation of ranking ex-
periments using label benchmark data sets.

VI. EXPERIMENTS

This section describes the classification and label rank-
ing benchmark data sets, the results using PN and PNN,
and a comparison with existing classification and ranking
methods.

A. Data sets
1) Image Classification Data sets: PN is evaluated us-

ing CFAR-100 [29] and Fashion-MNIST [30] data sets.
2) Label Ranking Data sets: PNN is experimented with

using three different types of benchmark data sets to eval-
uate the multi-label ranking performance. The first type
of data set focuses on exceptions preference mining [31],
and the ‘algae’ data set is the first type that highlights
the indifference preferences problem, where labels have
repeated preference value [32]. German elections 2005,
2009, and modified sushi are considered new and re-
stricted preference data sets. The second type is real-world

data related to biological science [11]. The third type of
data set is semi-synthetic (SS) taken from the KEBI Data
Repository at the Philipps University of Marburg [27]. All
data sets do not have ranking ground truth, and all labels
have a continuous permutation space of relations between
labels. Table II summarizes the main characteristics of the
data sets.

TABLE II: Benchmark data sets for label ranking; prefer-
ence mining [32], semi-synthetic (SS) [27] and real-world
data sets

type DS category #inst. #attr. #lbl.

M
in

in
g

da
ta

algae chemical stat. 317 11 4
german.2005 user pref. 413 29 5
german.2009 user pref. 413 32 5

sushi user pref. 5000 10 10
top7movies user pref. 602 7 7

R
ea

l
da

ta

cold biology 2,465 23 4
diau biology 2,465 24 6
dtt biology 2,465 24 4

heat biology 2,465 24 6
spo biology 2,465 24 11

Se
m

i-
Sy

nt
he

si
ze

d
da

ta

authorship A 841 70 4
bodyfat B 252 7 7

calhousing B 20,640 6 5
cpu-small B 8192 3 4
elevators B 16,599 9 9

fried B 40,769 9 5
glass A 214 9 6

housing B 506 6 6
iris A 150 4 3

pendigits A 10,992 16 10
segment A 2310 3 4

stock B 950 5 5
vehicle A 846 18 4
vowel A 528 10 11
wine A 178 13 3

wisconsin B 194 16 16

B. Results
1) Image Classification Results: PN has 3 kernel sizes

of 5,10 and 20 and is tested on the CFAR-100 [29] data
set and 1 kernel with a size 5 for Fashion-MNIST data
set [30]. Table III shows the results compared to other
convolutions networks.

TABLE III: Comparison of classification on CIFAR-
100 [29] and Fashion-Mnist data set [30] Data sets using
different convolution models

DS Model Baseline MixUp

C
IF

A
R

-1
00

ResNet [33] 72.22 78.9
WRN [34] 78.26 82.5
Dense [35] 81.73 83.23

PrefNet 80.6 -

Fa
sh

io
n-

M
N

IS
T MLP 0.871 -

RandomForest 0.873 -
LogisticRegression 0.842 -

SVC 0.897 -
SGDClassifier 0.81 -

PrefNet 0.91 -
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Fig. 14: ROC of three label ranking on the wine data set using PNN h.n=100 and 50 epochs
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Fig. 15: Training and validation performance without and
with dropout regulation approach in (a) and (b) respec-
tively.

2) Label Ranking Results: PNN is evaluated by re-
stricted and non-restricted label ranking data sets. The
results are derived using spearman ρ and converted
to Kendall τ coefficient for comparison with other ap-
proaches. For data validation, we used with 10-fold cross-
validation. To avoid the over-fitting problem, We used
hyperparameters, i.e. l.r.= ( 0.005, 0.05, 0.1) hidden neuron
= no.inputs+(5, 10, 50, 100, 200) neurons and scaling
boundaries from 1 to 250) are chosen within each cross-
validation fold by using the best l.r. on each fold and
calculating the average τ of ten folds. Grid searching is
used to obtain the best hyperparameter. For type B, we
use three output groups and l.r.=0.001 and wb = 0.01.

3) Benchmark Results: Table IV summarizes PNN
ranking performance of 16 strict label ranking data sets
by l.r. and m.n. The results are compared with the four
methods for label ranking; supervised clustering [36],
supervised decision tree [27], MLP label ranking [16], and
label ranking tree forest (LRT) [37]. Each method’s results
are generated by ten-fold cross-validation. The comparison
selects only the best approach for each method.

During the experiment, it was found that ranking per-
formance increases by increasing the number of central
neurons. All the results are held using a single hidden
layer with various hidden neurons (50 to 300) and SS
activation function. The Kendall τ error converges and
reaches close to 1 after 2000 iterations, as shown in
Fig. 16.

Table IV compares PNN with the similar approaches
used for label ranking. These approaches are; Decision
trees [36], MLP-LR [16] and label ranking trees forest
LRT [37]. In this comparison, we choose the method that
has the best results for each approach.

4) Preference Mining Results: Ranking performance of
the new preference mining data set is represented in table
II. Two hundred fifty hidden neurons are used To enhance
the ranking performance of the algae data set’s repeated
label values. However, restricted labels ranking data sets
of the same type, i.e., (German elections and sushi), did
not require a high number of hidden neurons and incurred
less computational cost.
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Fig. 16: Ranking performance comparison of PNN with other approaches.

TABLE IV: PNN performance comparison with various approaches: supervised clustering [36], supervised decision
tree [27], MLP label ranking [16] and label ranking tree forest (LRT) [37]

Label Ranking Methods
DS S.Clust. DT MLP-LR LRT PNN

authorship 0.854 0.936(IBLR) 0.889(LA) 0.882 0.918
bodyfat 0.09 0.281(CC) 0.075(CA) 0.117 0.5591

calhousing 0.28 0.351(IBLR) 0.130(SSGA) 0.324 0.34
cpu-small 0.274 0.50(IBLR) 0.357(CA) 0.447 0.46
elevators 0.332 0.768(CC) 0.687(LA) 0.760 0.73

fried 0.176 0.99(CC) 0.660(CA) 0.890 0.91
glass 0.766 0.883(LRT) 0.818(LA) 0.883 0.8175

housing 0.246 0.797(LRT) 0.574(CA) 0.797 0.712
iris 0.814 0.966(IBLR) 0.911(LA) 0.947 0.917

pendigits 0.422 0.944(IBLR) 0.752(CA) 0.935 0.86
segment 0.572 0.959(IBLR) 0.842(CA) 0.949 0.916

stock 0.566 0.927(IBLR) 0.745(CA) 0.895 0.834
vehicle 0.738 0.862(IBLR) 0.801(LA) 0.827 0.754
vowel 0.49 0.90(IBLR) 0.545(CA) 0.794 0.85
wine 0.898 0.949(IBLR) 0.931(LA) 0.882 0.90

wisconsin 0.09 0.629(CC) 0.235(CA) 0.343 0.612
Average 0.475 0.79 0.621 0.730 0.755

TABLE V: Preference mining ranking performance in
terms of the Kendall τ coefficient and learning step and
number of hidden neurons.

Preference Mining Data
DS Avg.τ l.step #m.n.

algae 0.751 0.005 100
german2005 0.89 0.005 20
german2009 0.78 0.005 20

sushi 0.69 0.005 300
top7 movies 0.602 0.005 20

Experiments on the biological real-world data set were
conducted using supervised clustering (SC) [36], Table
V presents the comparison between PNN type A and
supervised clustering on biological real world data in
terms of LossLR as given in Eq. 9.

τ= 1−2 ·LossLR (9)

where τ is Kendall τ ranking error and LossLR is the
ranking loss function.

SS function with 16 steps is used to rank Wisconsin data
set with 16 labels. By increasing the number of steps in
the interval and scaling up the features between -100 and
100, The step width is small. In order to enhance ranking
performance, the data set has many labels. The number
of hidden neurons is increased in order to exceed τ= 0.5.

C. Computational Platform
PNN and PN are implemented from scratch without

the Tensorflow API and developed using Numba API to
speed the execution on the GPU and use Cuda 10.1
and Tensorflow-GPU 2.3 for GPU execution and executed
at University of Technology Sydney High Performance
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TABLE VI: Comparison between PNN type A and super-
vised clustered on biological real world data in terms of
LossLR

Biological real world data
DS S.Clustering PNN
cold 0.198 0.11
diau 0.304 0.255
dtt 0.124 0.01

heat 0.072 0.013
spo 0.118 0.014

Average 0.1632 0.0804

Computing cluster based on Linux RedHat 7.7, which has
an NVIDIA Quadro GV100 and memory of 32 G.B.

D. Discussion and Future Work

It can be noticed from table II that PN is performing
better than ResNet [33] and WRN [34]. Different types of
architectures of PN could be used to enhance the results
and reach state-of-the-art in terms of image classification.
It can be noticed from table III that PNN outperforms
on SS data sets with τAvg = 0.8, whereas other meth-
ods such as, supervised clustering, decision tree, MLP-
ranker and LRT, have results τAvg = 0.79,0.73,0.62,0.475,
respectively. Also, the performance of PNN is almost 50%
better than supervised clustering in terms of ranking
loss function LossLR on real-world biological data set, as
shown in table V. The superiority of PNN is used for
classification and ranking problems. The ranking is used
in input data as a feature selection criteria is a novel
approach for deep learning.

encoding the labels preference relation to numeric val-
ues and rank the output labels simultaneously in one
model is an advanced step over pairwise label ranking
based on classification. PNN could be used to solve new
preference mining problems. One of these problems is
incomparability between labels, where Label ranking has
incomparable relation ⊥, i.e., ranking space (λa Â λb⊥λc)
is encoded to (1, 2, -1) and (λa Â λb)⊥(λc Â λd) is encoded
to (1, 2, -1, -2). PNN could be used to solve new problem
of non-strict partial orders ranking, i.e., ranking space
(λa Â λb º λc) is encoded to (1, 2, 3) or (1, 2, 2). Future
research may focus on modifying PNN architecture by
adding bias and solving problems of extreme multi-label
ranking.

VII. CONCLUSION

This paper proposed a novel method to rank a complete
multi-label space in output labels and features extraction
in both simple and deep learning. PNN and PN are native
ranker networks for image classification and label ranking
problems that uses SS or PSS to rank the multi-label per
instance. This neural network’s novelty is a new kernel
mechanism, activation, and objective functions. This ap-
proach takes less computational time with a single middle
layer. It is indexing multi-labels as output neurons with

preference values. The neuron output structure can be
mapped to integer ranking value; thus, PNN accelerates
the ranking learning by assigning the rank value to more
than one output layer to reinforce updating the random
weights. PNN is implemented using python programming
language 3.6, and activation functions are modeled using
wolframe Mathematica software [38]. A video demo that
shows the ranking learning process using toy data is
available to download [23].
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