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An Advanced Decision-Making Model for Evaluating Manufacturing Plant using Fuzzy 

Inference System 

 

Abstract 

Locating a manufacturing plant is a complex multi-criteria decision-making problem as it 

involves many tangible and intangible criteria. This paper contributes to the existing theory 

by integrating a qualitative Delphi and a quantitative fuzzy inference system (FIS) for 

developing an advanced and intelligent decision-making framework for evaluating 

manufacturing plant locations. The Delphi method is used to identify the most significant 

manufacturing plant location selection criteria.  The identified major criteria are used to 

develop an advanced FIS framework to evaluate potential manufacturing plant locations. A 

real-life case is presented to demonstrate the applicability of the developed decision-making 

framework. This paper contributes to the literature by developing an advanced decision-

making framework for evaluating manufacturing plant locations and by integrating 

qualitative Delphi and quantitative FIS, which can help industrial managers locate their 

manufacturing plant locations intelligently and accurately.  

Keywords: Manufacturing location; Intelligent decision-making; Fuzzy inference system 

(FIS); Multi-criteria decision-making. 

1. INTRODUCTION  

Decisions regarding the selection of a manufacturing plant’s location have a significant 

impact on a firm’s competitiveness, survival and market share (Jahr & Borrmann, 2018). The 

selection of an appropriate manufacturing plant location contributes significantly to achieving 

the objectives of the company by minimizing operations and facility costs and maximizing 

the best use of available resources and capabilities (Shafiee-Gol et al., 2021; Devi and Yadav, 

2013). Selecting the best manufacturing plant location is not a straightforward decision; 

rather, it is very complex in nature because firms need to assess a large volume of data 

effectively by considering both tangible and intangible criteria in order to evaluate alternative 

locations (Min & Melachrinoudis, 1996; Mousavi et al., 2013). Further, the impact of some 

of these criteria on the firm’s output may be positive, while the impact of others may be 

negative (Dogan, 2012; Jimenez Capilla et al., 2016). Therefore, manufacturing plant location 

selection has long been considered a complex, long-term and multi-criteria decision-making 

(MCDM) problem (Cebi & Otay, 2015; Yoon & Hwang, 1985).  
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Plant location problems can be broadly classified into two categories of approaches: factor 

assessment and mathematical approach (Huang et al., 2019). The factor assessment approach 

mostly focuses on evaluating the strategic factors involved in decision-making to identify the 

most suitable sites from a number of alternatives. These factors or selection criteria might be 

both tangible and intangible, and may include the availability of raw materials, land price, the 

availability of power supply, the security of location, investment cost, the business 

environment and climate (Yang & Hung 2007; Mousavi et al., 2013). Under a mathematical 

approach, the most common objectives are cost minimization or profit maximization through 

the selection of appropriate plant location (Melo et al., 2009).  

Although historically firms focus more on the economic dimensions of site selection for their 

manufacturing plant, several recent studies have indicated that nowadays it is becoming 

increasingly necessary for manufacturing firms to consider other crucial factors – technical, 

social and environmental – during plant location selection (Alam et al., 2015; Beskese et al., 

2015; Cebi & Otay, 2015; Chang, 2015; Jimenez Capilla et al., 2016). For example, a study 

conducted by Dey & Ramcharan (2008) considered technical, economic, environmental, 

socio-cultural and national planning factors to select a site for the extension of limestone 

quarry operations to support cement production in Barbados. In another study, Capilla et al. 

(2016) considered terrain, distance, climate and risk factors to select a site for upper 

reservoirs in pump-back systems. Dou and Sarkis (2010) summarized selection factors for 

plant location decisions in terms of strategy, accessibility, community, business climate, 

labor, utility, risk, and financial and special factors. In order to analyze the facility selection 

process of manufacturing firms, Dogan (2012) considered 36 criteria (variables) under 12 

tangible and intangible categories such as quality of life, quality of supplier, financial 

efficiency and regulation. In a recent study via a systematic literature review, Chen et al. 

(2014) stated that, in manufacturing facility location studies, focusing on industry and 

country factors is a new trend. The criteria for selecting locations vary across the types of 

facilities, origins of firms and cities in which the firms are looking for locations (Cebi & 

Otay, 2015). Moreover, the relative importance of such criteria on decision-making also 

differs with respect to the objectives of the firm and the country of its operation (Beskese et 

al., 2015; Ertugrul & Karakasoglu, 2009). It appears that there may be different strategic 

reasons for location decisions for different manufacturing facilities. Considering all the 

factors that impact location selection, it is evident that determining the best possible location 

for manufacturing facilities has become increasingly difficult (Chen et al., 2014). 
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As plant location selection is critical for the survival of firms, practitioners recognize the 

importance of analyzing this multi-criteria problem (Cebi & Otay 2015). In order to solve 

plant location problems, researchers have identified MCDM approaches as effective and 

powerful tools (Mousavi et al., 2013). Moreover, MCDM approaches can address both the 

subjective and objective factors of decision-making and can also involve practitioners in 

decision-making processes. The analytic hierarchy process (AHP) is the most widely used 

MCDM plant location method that simultaneously integrates qualitative and quantitative 

information to prioritize alternatives when multiple criteria must be considered. AHP is used 

to resolve different location decision problems such as: site-selection for limestone quarry 

expansion; manufacturing plant location selection; site selection for upper reservoirs; 

restaurant location selection; and facility location selection (Dey & Ramcharan, 2008; 

Jimenez Capilla et al., 2016; Mousavi et al., 2013; Tzeng et al., 2002). Among other MCDM 

tools, the technique for order preference by similarity to ideal solution (TOPSIS) is used to 

select the plant location within a linguistic environment (Adhikary et al., 2015; Ertugrul & 

Karakasoglu, 2009; Farahani & Asgari, 2007; Yang & Hung, 2007). Previous research 

(Mousavi et al., 2013) has also utilized outranking methods such as the preference ranking 

organization method for enrichment of evaluations (PROMETHEE). For manufacturing 

facility location selection, researchers (Tuzkaya et al. 2008; Partovi 2006) also utilized the 

VIKOR method – a term originating from the Serbian name ‘vlse kriterijumska optimizacija 

kompromisno resenje’, which means ‘multi-criteria optimization and compromise solution’ 

(Adhikary et al., 2015). The VIKOR method is used to determine the compromise ranking list 

and compromise solution from a list of alternatives in the existence of conflicting and non-

commensurable (attributes with different weights) criteria (Opricovic & Tzeng 2004). Some 

researchers have also used multiple MCDM approaches to solve the location problem. For 

example, Adhikary et al. (2015) and Opricovic & Tzeng (2004) have used TOPSIS and 

VIKOR and Mousavi et al. (2013) have combined AHP and PROMETHEE approaches. 

These MCDM approaches are criticized in the literature as they do not consider the ambiguity 

and vagueness inherent in real-world plant location selection problems (Cebi & Otay, 2015; 

Devi & Yadav, 2013). To overcome this issue, various studies have utilized fuzzy set theory 

(J. R. Chou, 2018; Song et al., 2019) using different fuzzy MCDM approaches including 

fuzzy TOPSIS, fuzzy AHP, fuzzy simple additive weighting system (SAWS) and fuzzy 

Elimination and Choice Expressing Reality (ELECTRE). For example, Beskese et al. (2015) 

have used fuzzy AHP with fuzzy TOPSIS for a landfill site selection.  
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However, these fuzzy MCDM methods are time-consuming in formulating real-life problems, 

particularly when firms need to consider a large number of locations and criteria, and final 

solutions of ranking carry insignificant differences (Amindoust et al., 2012). Furthermore, 

because of the need to consider several qualitative and quantitative criteria, plant location 

selection using the above approaches is very complex and challenging (Devi & Yadav, 2013). 

In addition, none of the above approaches is intelligent in solving complex real-world 

problems. Considering their complexity and user unfriendliness, most decision-makers are 

reluctant to apply these traditional techniques to solve plant location problems. Hence, it is 

important to develop an intelligent and user-friendly decision-making tool to select a 

manufacturing plant location (Xu et al., 2018). However, to our knowledge, none of the 

previous studies developed such an intelligent tool for the plant location selection problem. 

Hence, our objective is to develop an intelligent framework by integrating the Delphi method 

and rule-based fuzzy inference system (FIS) to evaluate the manufacturing plant locations. To 

the best of our knowledge, this study is effective in terms of developing a new MCDM 

framework that can evaluate location alternatives intelligently with no additional inputs from 

decision-makers. The proposed framework is easy to use as it has some internal artificial 

intelligence capacity within the system, and it is user friendly because it requires fewer 

complex mathematical calculations.  

We use the Delphi method to identify key location selection criteria and their respective 

weights, as determined from experts’ opinions, to use in the proposed intelligent framework. 

Such an integration adds to the current literature on the plant location selection problem. 

While this integration has been recognized as useful for strategic decisions and was used in 

other areas, such as supplier selection (Tahriri et al., 2014) and third-party logistics selection 

(Liu & Wang, 2009), none of the previous studies on location selection used this integration. 

We validate the results of the framework by comparing these with the results obtained from 

TOPSIS. Finally, to validate the applicability of our developed tool we use it in a real-world 

example of manufacturing plant location selection for an apparel manufacturing company in 

Bangladesh.  

The present study serves as a new study that uses an integration of the qualitative Delphi 

method and quantitative FIS in the area of manufacturing plant location to provide managers 

with a decision-modeling framework. The main contributions of the present study can be 

summarized as follows. 



 

6 

 

i. Identification of the key selection criteria thorough literature review and Delphi 

method for selecting manufacturing plant location. This study contributes to the 

literature by identifying and categorizing manufacturing plant location selection 

criteria based on both negative and positive influences.  

ii. Integration of qualitative Delphi method and quantitative FIS approach to 

developing an advanced decision-making framework.  

iii. Comparison of results obtained from another standard method namely TOPSIS. 

iv. Confirm the applicability of the developed decision-making framework via a real-

life application. 

The rest of the paper is organized as follows. In Section 2, we discuss and summarize the 

literature review. The research methods of this study are described in Section 3. Results and a 

real-world case study are presented in Section 4. Finally, Section 5 provides the conclusion 

and managerial implications. 

2. LITERATURE REVIEW 

In this section, we discuss the different processes involved in manufacturing plant location 

selection. Firstly, we discuss the criteria used for selecting manufacturing plant locations and 

then discuss the most recent tools and techniques applied to prioritize locations.  

2.1 Manufacturing Location Selection Criteria 

Since location problems are different across different industries and contexts, prior studies 

have already considered numerous problems in the different contexts, such as plant location 

problems (Mousavi et al., 2013), facility location problems, (S. Y. Chou et al., 2008), battery 

charging location problems (Guo et al., 2018), add-on retail products location problems 

(Huang et al., 2019), grain-silo location-allocation problems (Mogale et al., 2018), temporary 

medical service location problems (Y. Liu et al., 2019), and travel facility location problems 

(Amiri-Aref et al., 2019). These studies have analyzed location selection criteria under 

different categories and with respect to different factors (Current & Weber, 1994). For 

instance, Dogan (2012) categorized location decision criteria as dependent on tangible and 

intangible factors. Chen et al. (2014) categorized manufacturing location decision factors as 

economic, environmental and related to social sustainability. In another study, through a 

systematic literature review, Farahani et al. (2010) categorized location selection criteria into 

twelve groups: cost, values and benefits, environmental risks, resource accessibility, public 
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facility, political and regulatory, competition, economic, population, capacity, distance, and 

suitability.  

From the nature of these groupings, it is apparent that economic factors are dominant in 

manufacturing location selection. In the economic category, selection criteria are related to 

different types of costs and expenses, such as the cost of site development, production, 

materials, labor, maintenance, utilities, and transportation, as well as, land prices and taxation 

(Beskese et al., 2015; T.-Y. Chou et al., 2008; Dogan, 2012; Kabir & Sumi, 2012; Mousavi et 

al., 2013; Partovi, 2006). However, nowadays, besides economic factors, firms are 

increasingly attaching importance to environmental, social and infrastructure-related factors 

(Adhikary et al., 2015; Alam et al., 2015; Beskese et al., 2015; Cebi and Otay, 2015; Chang, 

2015; Capilla et al., 2016; Mousavi et al., 2013).  

Environmental factors including waste disposal and treatment opportunity, the availability of 

renewable resources, energy consumption, and biological and ecological factors such as 

temperature, humidity, and rain and sunshine, are also associated with the smooth production 

processes of manufacturing plants (Adhikary et al., 2015; Beskese et al., 2015; Cebi & Otay, 

2015; S. Y. Chou et al., 2008; T.-Y. Chou et al., 2008; Dey & Ramcharan, 2008; Farahani & 

Asgari, 2007; Kabir & Sumi, 2014; Partovi, 2006). These factors become more crucial when 

the location problems involve multinational options (Min & Melachrinoudis, 1996).  In the 

social category, the dominant factors for selecting a location include corruption (Bai & 

Sarkis, 2010; Chowdhury & Paul, 2020; Jørgensen & Knudsen, 2006), political stability, 

general education levels, human rights, safety, population, job creation, local support, 

contribution to society, and maintaining culture and heritage (Adhikary et al., 2015; Cebi & 

Otay, 2015; Kabir & Sumi, 2012). Further, decision-makers considered strategic 

infrastructure factors during site selection for the manufacturing plant (Beskese et al., 2015; 

Dey and Ramcharan, 2008; Farahani et al., 2010; Kabir and Sumi, 2014; Mousavi et al., 

2013). Diverse factors related to site characteristics, such as land suitability, drainage 

capability, site capacity, expansion capacity, and distance from water zones, are considered in 

selecting the best plant location (Chang, 2015; Chu, 2002b; Mousavi et al., 2013; Yoon & 

Hwang, 1985). In addition, the authors of these studies have considered several other 

infrastructural factors, such as the availability of transportation facilities, local labor, raw 

materials, fuel, water, and power in selecting the appropriate plant location (Chu, 2002b; 

Devi & Yadav, 2013; Mousavi et al., 2013; Yoon & Hwang, 1985).  
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From the literature, it is evident that decision-makers consider numerous factors when 

selecting a suitable site for a manufacturing plant. The relative importance of these factors 

varies from country to country and industry to industry (Chen et al., 2014). For example, in 

apparel manufacturing, it is beneficial to consider the availability of labor, labor productivity, 

minimum wages, facilities available to transport goods to and from the factory, the 

availability of raw materials, cost, the availability of infrastructures such as electricity and 

water, and proximity to the nearest port. Hence, it is important to determine plant location 

selection criteria for specific industries and countries that are applicable in a local context.  

Plant location selection criteria have either a positive or negative influence on location 

selection decisions (Jimenez Capilla et al., 2016). We group the location decision factors as 

positive and negative criteria (shown in Table 1). Positive are those that might have a positive 

influence on location selection decisions. For example, a water supply facility is a positive 

criterion as the high availability of water supply in a location will favor that location in 

ranking. On the other hand, some criteria have a negative impact on the ultimate location 

selection decision. For example, the high production costs of a location will unfavorably 

impact that location in ranking. 
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Table 1: Criteria for selecting plant location 

Criteria References Influence 

Fuel/gas supply facility Cebi & Otay (2015); Farahani et al. (2010) Positive 

Water supply facility Cebi & Otay (2015); Farahani & Asgari (2007) Positive 

Power supply facility Cebi & Otay (2015); Farahani & Asgari (2007) Positive 

Raw material availability Cebi & Otay (2015); Mousavi et al. (2013) Positive 

Labor availability Chou et al. (2008); Chen (2001) Positive 

Health care facility for 

employees 

Current et al. (1990); Yoon & Hwang (1985) Positive 

Convenience of garbage 

disposal  

Tuzkaya et al. (2008); Tzeng et al. (2002) Positive 

Labor skills and 

competence  

Devi & Yadav (2013); Yoon & Hwang (1985) Positive 

Transportation system 

facility 

Beskese et al. (2015); Chou et al. (2008) Positive 

Alternative transportation 

facility 

Dogan (2012); Kabir & Sumi (2012) Positive 

Proximity to supplier Dogan (2012); Ertugrul & Karakasoglu (2008) Positive 

Proximity to market Ertugrul & Karakasoglu (2008); Chen (2001) Positive 

Proximity to public 

facilities 

Chou et al. (2008); Tzeng et al. (2002) Positive 

Investment 

cost/Development cost 

Devi & Yadav (2013); Mousavi et al. (2013); 

Kabir & Sumi (2012) 

Negative 

Production cost Kabir & Sumi (2014); Partovi (2006) Negative 

Land price/Rent Beskese et al. (2015); Nazari et al. (2012) Negative 

Raw material cost Partovi (2006); Chu (2002b) Negative 

Transportation cost Kabir & Sumi (2012); Nazari et al. (2012) Negative 

Maintenance cost Yoon & Hwang (1985) Negative 

Utility cost Partovi (2006); Chu (2002b) Negative 

Distance from central 

warehouse 

Beskese et al. (2015); Cebi & Otay (2015) Negative 

2.2 Evaluation of Fuzzy Multi-Criteria Techniques for Location Selection 

Earlier studies used different types of mathematical models such as the network location 

model, the continuous location model (Current et al., 1990; Klose & Drexl, 2005; Wang et 

al., 2019), the mixed integer programming model (Amiri-Aref et al., 2019), integrated multi-

objective, multi-modal and multi-period mathematical model (Mogale et al., 2018; Tsao & 

Thanh, 2019), and the non-monolithic model (Cao & Chen, 2006) for location problems. 

Fewer recent studies (Aktaş et al., 2013; Anvari & Turkay, 2017; Chang, 2015; Dogan, 2012) 

have also used mathematical models to analyze several location problems. The main 
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limitation of these mathematical models is that they do not consider subjective factors in 

analyzing location alternatives, even though they consider objective factors (Dey & 

Ramcharan, 2008). MCDM tools (such as AHP, TOPSIS, PROMETHEE and VIKOR) 

overcome issues in measuring subjective and objective factors; however, they fail to consider 

ambiguity and vagueness in the model, both of which exist in real-world location problems 

(Dotoli & Epicoco, 2018; Wan et al., 2019). The issues of MCDM problems encourage 

researchers to opt for fuzzy MCDM tools.   

Fuzzy MCDM tools are the most recent phenomena used to solve different facility location 

problems including manufacturing plant location selection. In Table 2, we summarize the 

literature on fuzzy-MCDM approaches according to their specific application areas. Among 

the fuzzy-MCDM tools, some notable methods are fuzzy AHP, fuzzy TOPSIS, fuzzy simple 

additive weighting system (SAWS), and fuzzy ELECTRE. 

Table 2: Fuzzy-MCDM approaches used to solve the location problem 

Fuzzy-MCDM 

approaches 
References 

Application in facility location 

problems 

Fuzzy AHP 

Beskese et al. (2015); Nazari et al. 

(2012); Ertugrul & Karakasoglu 

(2009); Ertugrul & Karakasoglu 

(2008); Chou et al. (2008); 

Kahraman et al. (2003); Kuo et al. 

(2002) 

Landfill site selection; 

manufacturing plant location 

selection; tourist hotel location 

selection; facility location 

selection; and convenience store 

location selection. 

Fuzzy TOPSIS 

Beskese et al. (2015); Cebi and 

Otay (2015); Chen (2001); Chen 

and Lee (2010); Chu (2002b, 

2002a); Ertugrul and Karakasoglu 

(2008); Yang and Hung (2007); 

Yong (2006) 

Landfill site selection; 

manufacturing plant location 

selection; plant layout design 

selection; distribution and other 

facility site selection; and airport 

site selection. 

Fuzzy SAWS Chou et al. (2008) Facility location selection. 

Fuzzy 

ELECTRE 
Devi & Yadav (2013) 

Manufacturing plant location 

selection. 

Fuzzy additive 

ratio assessment 
Karagöz et al. (2021) Recycling location selection  

Fuzzy MCDM-

based 

combinative 

distance-based 

assessment 

Karagoz et al. (2020) Dismantling center location  
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2.3 Fuzzy Inference System (FIS) 

In the literature, several studies applied the concept of a fuzzy decision support system such as 

fuzzy climate decision (Habib et al., 2017), bipolar fuzzy digraphs (Akram et al., 2016), 

decision support system for fertilizer and CPU scheduling algorithm (Ashraf et al., 2014; Butt 

& Akram, 2016), and risk analysis (Ali et al., 2021; Habib & Akram, 2018). However, the FIS 

is a rule-based decision-making technique that considers different inputs and relates inputs to 

output according to rules (Paul & Azeem, 2010). Output is determined based on these 

relationships and the final output is obtained from the aggregated optimized result of 

individual rules. The fuzzy set theory was originally presented by Zadeh (1965), and fuzzy 

logic was developed from it later, primarily to handle uncertain and vague information, and 

secondarily to represent knowledge in an operationally powerful form (Frantti & Mahomen, 

2001). Fuzzy inference is the process of formulating mapping from a given input to an output 

using fuzzy logic, which then provides a basis from which decisions can be made and/or 

patterns discerned (Ahmed et al., 2013). After examining linguistic variables, membership 

functions are determined. The general working principle of FIS for the input and output 

variables is shown in Figure 1.  

Fuzzification of input 

through fuzzy set and 

membership function

Evaluation of pertinent 

rules from rule base
Defuzzification

Crisp input Crisp output

 

Figure 1: Working principle of FIS (Ahmed et al., 2013) 

Because of its multidisciplinary nature, FIS appears under a number of different names, 

including: fuzzy rule-based system, fuzzy expert system, fuzzy modelling, fuzzy associative 

memory, fuzzy logic controller, or simply (and ambiguously) a fuzzy system. Mamdani’s FIS 

is the most commonly used fuzzy methodology and was among the first control systems built 

using fuzzy set theory (Hasan, Shohag, Azeem, & Paul, 2015; Kothamasu & Huang, 2007). 

In the fuzzy logic toolbox, the fuzzy inference process has five parts: fuzzification of the input 

variables; application of the fuzzy operator (AND or OR) in the antecedents; implication from 

the antecedents to consequents; aggregation of the consequents across the rules, and 

defuzzification. The general components of a FIS are presented in Figure 2 (Paul, 2015; Paul 

et al., 2017). A brief description of these components is as follows: 

i. FIS Editor: In this editor, input and output variables are designed. The number of 

input and output variables can be edited.  
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ii. Membership Function Editor: In this editor, membership functions are designed 

for input and output variables. There are a few types of membership functions 

such as Triangular, Gaussian and Trapezoidal. The types and number of 

membership functions can be edited. 

iii. Rule Editor: In this editor, pertinent rules are designed to relate input variables to 

output. The number of rules is dependent on the specific problem and the number 

of inputs and outputs. These rules can be edited in this editor. 

iv. Rule Viewer: In this viewer, the decision-maker inputs the value of multiple input 

variables and obtains the value of the output of the corresponding input. 

v. Surface Viewer: In this viewer, the graphical relationship between input and 

output variables can be perceived. These relationships are obtained from 

developed membership functions and pertinent rules. 

 

Figure 2: General components of a FIS (Paul, 2015; Paul et al., 2017) 

All fuzzy MCDM approaches are very complex in nature, and hence challenging to 

implement in real-world situations (Devi & Yadav, 2013). Moreover, none of the above 

approaches is intelligent in terms of user-friendliness and ease of application to real-world 

problems. In the literature, to our knowledge, a few studies have integrated qualitative survey 

and quantitative MCDM techniques to evaluate and assess plant location. As a result, these 

fuzzy-MCDM approaches have gained limited acceptance from practitioners. In this paper, to 

assist decision-makers, we develop a decision-making framework by integrating both the 

qualitative Delphi method and quantitative FIS to develop an intelligent and user-friendly 

 

Fuzzy 

Inference 

System 

If (input 1 is Low) then (output) is High 

If (input 1 is High) then (output) is Low 

If (input 2 is High) then (output) is High 

If (input 2 is Low) then (output) is Low 
 

 

 

Input 1 

Input 2 

Input 3 

Fuzzy 

Output 

FIS Editor 

Membership 

Function Editor Rule Editor 

Rule Viewer Surface Viewer 
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MCDM tool for manufacturing plant location selection. The proposed tool is easy to use and 

less time-consuming in determining the ranking of the location once the criteria and 

respective weight of the criteria are given or decided. To fulfill the objectives, we utilize the 

Delphi method to gather both positive and negative influential criteria and their respective 

weights to use in the proposed intelligent FIS framework. In this study, we also implement 

our proposed FIS framework to the real-world case of a garment manufacturing company in 

Bangladesh by selecting a plant location problem for the firm.  

3. RESEARCH METHODS 

We have used the Delphi technique to determine the weights of plant selection criteria and 

the FIS to solve a manufacturing plant location selection problem. The framework is tested 

by using a manufacturing plant location problem in the context of an emerging economy.  

The integrated decision-making framework is illustrated as shown in Figure 3. Our research 

employs several steps in making a decision in regard to the best location for manufacturing 

plants. Initially, we identify the most important criteria for selecting manufacturing plant 

locations and their respective weights based on experts’ opinions, according to the qualitative 

Delphi method. Next, by utilizing the quantitative FIS tool, we calculate and normalize the 

ranking index for each alternative location. Finally, by utilizing the ranking index we select 

the best location out of all alternatives for the manufacturing plant. In brief, the research steps 

are as follows: 

Step 1: Identification of major location selection criteria (in positive and negative 

categories) from experts’ opinions using the Delphi method. 

Step 2: Development of FIS framework using Mamdani-type fuzzy inference system. 

Step 3: Use of FIS to select the best location. 

Step 4: Application of the developed FIS framework. 
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• Forming a group of experts who      

independently and anonymously 

respond to a questionnaire

• Identify selection criteria 

• Summarize and recognize most 

important criteria

• Determine characteristic for input 

and output variables

• Determine membership function 

• Develop pertinent rules

• Determine ranking index

• Determine the most suitable 
manufacturing plant location

• Apply to a real-life case

Delphi method

FIS

Decision making

• Obtain result from TOPSIS

• Compare the results
TOPSIS

 

Figure 3: Integrated decision-making framework for evaluating manufacturing plant 

locations 

We select the ready-made garment (RMG) industry in Bangladesh as the context of the 

application. At present, there are around 3500 ready-made garment manufacturing companies 

in Bangladesh. The total export industry of Bangladesh comprised USD 31.2 billion in the 

year 2014-15, 81.69% of which was made up of ready-made garments (Latifee, 2016). In 

Bangladesh, most garment manufacturing companies are located in two big cities (Dhaka and 

Chittagong). Because of the increasing demand of RMG products at national and 

international levels, it is becoming increasingly important to build new plants. Many factory 

owners are expanding their factories and some of them are relocating to sites where there are 

good infrastructure facilities and supply links. Hence, we consider the garment manufacturing 

plant as a case study.  
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3.1 Location Selection Criteria-Identification using the Delphi Method 

The Delphi method originated in 1950 from a series of studies by the RAND corporation, and 

is one of the most effective techniques to identify and prioritize issues related to managerial 

decision-making ( Devadasan et al., 2005; Okoli and Pawlowski, 2004). This method utilizes 

the opinions of a group of experts or decision-makers to obtain the most reliable and accurate 

agreement about an issue. This group shares their views, expertise and judgment without 

direct confrontation until consensus is reached (Adler & Ziglio, 1996; Sung, 2001). This 

method has been extensively used in previous research to reveal criteria related to a particular 

country or sector (Mousavi et al., 2013). Therefore, our research identifies the manufacturing 

plant location selection criteria and their respective weights from the opinion of experts in the 

garment manufacturing industry in Bangladesh.  

Consultation with a group of 10-18 experts is recommended by Okoli & Pawlowski (2004) to 

maintain the group dynamics for reaching a consensus among experts; this number may vary 

depending on the objective of the study and purpose of using the Delphi method (Keeney et 

al., 2001). In this study, a group of 15 experts (managing directors and owners) of 15 

different garment manufacturing firms in Bangladesh participated in the Delphi study to 

identify appropriate criteria for manufacturing plant location selection and to specify their 

respective weights. As managing directors/owners hold the knowledge and experience 

regarding plant location selection issues, we consider them as experts for this study. These 

experts have extensive experience (15-25 years) in strategic company decision-making, such 

as site selection for the garment industry, site selection of warehouses, or decision-making on 

the extension or expansion of the current facilities.  

In using the Delphi method to identify plant location selection criteria and their respective 

weights, we follow a two-stage process. At the first stage (rounds 1–4), we attempt to obtain 

important plant location selection criteria, while in the second stage (round 5) we explore the 

weight of each criterion. 

In the first round, we sent the questionnaire to individual experts and asked them to send a list 

of as many criteria as possible that they considered important in apparel/garment 

manufacturing plant location selection. After obtaining responses from all the experts we 

prepared a consolidated list by removing exact duplicates and unifying terminology. In the 

second round, we sent the consolidated list of criteria to the participants and asked them to 

clarify or comment on the list of criteria and to provide additional criteria to select the plant 



 

16 

 

location. Based on their responses, we refined the questionnaire and found a total of 15 

criteria for plant location selection. In the third round, we sent out the list of these 15 criteria 

and asked the experts to rank them in such a way that the most important criteria would be 

assigned a first rank (hereafter rank 1). Based on the experts’ opinions we found two criteria 

to be less important than the other thirteen. Therefore, we remove these two criteria from the 

list and created a new list containing the 13 most important criteria related to garment 

manufacturing plant location in the Bangladeshi context. In the fourth round, we sent the list 

of 13 criteria to the experts for final validation. All the experts agreed that the 13 criteria were 

important to consider in the context of the garment manufacturing sector of Bangladesh. 

Subsequently, we prepared the final list of 13 plant location selection criteria, which is shown 

in the second column of Table 3. In the fifth round, we requested the experts to rate these 

criteria on a scale of 0-1 based on importance, where 1 is vitally important and 0 is not 

important at all. From that rating, we calculated the mean of the weight of each criterion, 

which is included in the third column of Table 3.   

Table 3: Plant location selection criteria and their respective weights 

Serial number Plant location selection criteria Weight 

1 Distance from central warehouse 1 

2 Production cost 1 

3 Land price/Rent 1 

4 Transportation system facility 1 

5 Labor availability 0.8 

6 Security 0.7 

7 Power supply facility 1 

8 Raw material availability 0.8 

9 Raw material cost 0.5 

10 Water supply facility 1 

11 Environmental impact 0.6 

12 Suitability of climate and land 0.6 

13 Fuel/gas supply facility 0.7 

3.2 Proposed FIS Tool for Manufacturing Plant Location Selection 

In this study, a FIS tool is developed to evaluate manufacturing plant locations. The algorithm 

for the developed FIS tool has the following steps: 

Step 1: Determination of the characteristic for each input selection criteria. 
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Step 2: Determination of the characteristic of output variable (Ranking Index). 

Step 3: Definition of the range of input and output variables and determination of the 

membership function for each input and output variable. 

Step 4: Evaluation of pertinent rules. 

Step 5: Determination of the location ranking index from surface viewer. 

Step 6: Determination of the ranking index for all alternative locations using Step 5. 

Step 7: Normalization of the ranking index value for all locations. 

Step 8: Selection of the best location from the highest normalized value. 

Using the Delphi method, we obtained 13 different categories of manufacturing plant location 

criteria and their weights as provided by the experts. The criteria are categorized into positive 

and negative criteria, some of which had a positive impact and some of which had a negative 

impact on ranking index value. The input criteria and output value are scaled using the Likert 

scale (Boone & Boone, 2012), as this is very important to quantify the data. The input criteria 

are scaled between 0 and 10, where for positive criteria 0 is least favorable and 10 most 

favorable, and for negative criteria 0 means most favorable and 10 the least. 

During the generation of the FIS’s linguistic variables, 13 major manufacturing plant location 

selection criteria are identified, for each of which three linguistic variables are developed and 

used to evaluate the ranking index. In designing the linguistic variables of input and output a 

triangular membership function is considered. 

For all these inputs to the tool, the linguistic variables are ‘Low’, ‘Medium’ and ‘High’, and 

for the output, the ‘Ranking Index’ are ‘Very Low’, ‘Low’, ‘Medium’, ‘High’ and ‘Very 

High’. After examining the linguistic variables, membership functions are designed. 

The developed FIS tool for manufacturing plant location selection is shown in Figure 4, in 

which the input variables are shown on the left and the output variable on the right. The 

parameters for the developed FIS are presented in Table 4. We have used a Mamdani-Type 

FIS because it is the most commonly used fuzzy methodology. We have also used ‘min’ for 

‘and method’, ‘max’ for ‘or method’, ‘min’ for ‘implication method’, ‘max’ for ‘aggregation 

method’, and ‘centroid’ for ‘defuzzification method’. There are 13 inputs (selection criteria) 

and one output (ranking index).  
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Table 4: FIS parameters for location selection 

Aspects Selected parameter 

Type ‘Mamdani’ 

And method ‘min’ 

Or method ‘max’ 

Implication method ‘min’ 

Aggregation method ‘max’ 

Defuzzification method ‘centroid’ 

Input 13 (1x3 struct) 

Output 1 (1x5 struct) 

Input membership function ‘triangular’ 

Output membership function ‘triangular’ 

 

Distance from central warehouse 

 

 

Production cost  

Price of land/rent 
 

Transportation system facility 

 

Labor availability

 

Security
 

Raw material availability 

Raw material cost  

Water supply facility 

 

Environmental impact 

 

Suitability of climate and land 

Fuel/gas supply facility 

 

Power supply facility 
 

 

 

Evaluation of 

pertinent rules 

from rule base  

 

Defuzzification  

 

Fuzzification of input 

through fuzzy set and 

membership function
Ranking index

 

Figure 4: FIS framework for manufacturing plant location selection 

3.2.1 Triangular membership function (TMF) 

The triangular curve is a function of a vector, 𝑥, and depends on three scalar parameters: 𝑎, 𝑏, 

and 𝑐, shown in Figure 5. The parameters 𝑎, 𝑏 and 𝑐 respectively specify the smallest 
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possible value, the most promising value and the largest possible value that describe a fuzzy 

event. The degree of membership of a triangular fuzzy number can be defined using 

equation (1). 

𝑓(𝑥; 𝑎, 𝑏, 𝑐) =

{
 
 

 
 

0,                    𝑥 ≤ 𝑎  
𝑥 − 𝑎

𝑏 − 𝑎
,              𝑎 ≤ 𝑥 ≤ 𝑏 

𝑐 − 𝑥

𝑐 − 𝑏
 ,               𝑏 ≤ 𝑥 ≤ 𝑐 

0,                         𝑐 ≤ 𝑥 }
 
 

 
 

 (1) 

3.2.2 Using TMF to define input and output variables 

A range of value is defined for each variable. Then the range is divided into several linguistic 

variables based on characteristics and requirements, including ‘Very Low’, ‘Low’, ‘Medium’, 

‘High’ and ‘Very High’. For each linguistic variable, a triangular curve is designed.  

 

Figure 5: A triangular membership functions and linguistic variables 

3.2.3 Designing parameters for input and output variables 

In this section, the parameters for input and output variables are designed. The values of the 

input criteria like production cost, price of land/rent can vary significantly based on the size 

and location of the plant, type of manufacturing products, demographic area, currency, and 

other causes. As the main objective of this study is to develop a general rule-based fuzzy 

inference system (FIS) framework for the best manufacturing plant location selection, we 

consider all the input variables between 0 and 10. Any quantitative criteria value can convert 

easily within the scale of 0-10. As input variables are comparative among alternative 

manufacturing plant locations, we consider triangular membership function for designing the 

FIS, and the linguistic variables for input selection criteria are ‘Low’, ‘Medium’, and ‘High’ 

a b c x

f(x)

1

0
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with values of [0 0 5], [2 5 8] and [5 10 10] respectively. Figure 6(a) shows the membership 

functions with linguistic variables for the input criteria ‘distance from the central warehouse’. 

Similarly, membership functions and linguistic variables are designed for other input criteria. 

Table 5 presents the designed parameters for input criteria. The linguistic variables for the 

output ‘Ranking Index’ are ‘Very Low’, ‘Low’, ‘Medium’, ‘High’ and ‘Very High’ with 

values of [0 0 0.3], [0.1 0.3 0.5], [0.3 0.5 0.7], [0.5 0.7 0.9] and [0.7 1 1] respectively. Figure 

6(b) shows the membership functions with linguistic variables for ‘ranking index’. Table 6 

presents the designed parameters for the output. 

 
 

a) Membership Function for input criteria 

“Distance from central warehouse” 

b) Membership function for output variable 

“Location Ranking Index” 

Figure 6: Membership functions for input criteria and output variable 
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Table 5: Designed parameters of input criteria 

Input 

number 
Input Criteria Range 

Linguistic variables 

[Low], [Medium], 

[High] 

Membership 

Function 

Structure 

Impact* on 

output 

1 Distance [0,10] [0 0 5], [2 5 8], [5 10 10] 1x3 struct Negative 

2 Production Cost [0,10] [0 0 5], [2 5 8], [5 10 10] 1x3 struct Negative 

3 Price of Land/Rent [0,10] [0 0 5], [2 5 8], [5 10 10] 1x3 struct Negative 

4 
Transportation 

System Facility 
[0,10] [0 0 5], [2 5 8], [5 10 10] 1x3 struct Positive 

5 Labor Availability [0,10] [0 0 5], [2 5 8], [5 10 10] 1x3 struct Positive 

6 Security [0,10] [0 0 5], [2 5 8], [5 10 10] 1x3 struct Positive 

7 
Power Supply 

Facility 
[0,10] [0 0 5], [2 5 8], [5 10 10] 1x3 struct Positive 

8 
Raw Material 

Availability 
[0,10] [0 0 5], [2 5 8], [5 10 10] 1x3 struct Positive 

9 Raw Material Cost [0,10] [0 0 5], [2 5 8], [5 10 10] 1x3 struct Negative 

10 
Water Supply 

Facility 
[0,10] [0 0 5], [2 5 8], [5 10 10] 1x3 struct Positive 

11 
Environmental 

Impact 
[0,10] [0 0 5], [2 5 8], [5 10 10] 1x3 struct Negative 

12 
Suitability of 

Climate and Land 
[0,10] [0 0 5], [2 5 8], [5 10 10] 1x3 struct Positive 

13 
Fuel/Gas Supply 

Facility 
[0,10] [0 0 5], [2 5 8], [5 10 10] 1x3 struct Positive 

*Negative means higher the input value, lower the output; and positive means higher the 

input value, higher the output. 

 

Table 6: Designed parameter for the output 

Output Range 
Linguistic variables 

 [Very Low], [Low], [Medium], [High], [Very High] 

Membership 

Function 

Structure 

Ranking 

Index 
[0,1] [0 0 0.3], [0.1 0.3 0.5], [0.3 0.5 0.7], [0.5 0.7 0.9], [0.7 1 1] 1x5 struct 

3.2.4 Rules with weight 

Rules are used to define the relationship between input criteria and output variables. In total 

50 rules are designed. Each rule has a weight value based on the weight value for each input 

criteria. A few examples of developed rules are as follows: 

i. If (Distance is Low) and (Production Cost is Low) and (Land Price/Rent is Low) 

and (Transport Facility is High) then (Ranking Index is Very High) (1) 
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ii. If (Distance is High) and (Production Cost is High) and (Land Price/Rent is High) 

and (Transport Facility is Low) then (Ranking Index is Very Low) (1)  

iii. If (Distance is Medium) and (Production Cost is Medium) and (Land Price/Rent is 

Medium) and (Transport Facility is Medium) then (Ranking Index is Medium) (1)  

iv. If (Labor Availability is Low) and (Security is Low) and (Power Supply is Low) 

and (Raw Material Availability is Low) then (Ranking Index is Very Low) (0.8)  

v. If (Labor Availability is High) and (Security is High) and (Power Supply is High) 

and (Raw Material Availability is High) then (Ranking Index is High) (0.8)  

vi. If (Labor Availability is Medium) and (Security is Medium) and (Power Supply is 

Medium) and (Raw Material Availability is medium) then (Ranking Index is 

Medium) (0.8)  

The reminder rules are presented in Appendix A.  

4. NUMERICAL EXPERIMENTS 

4.1 Random Experimentation  

A numerical example considering random data for eight different locations (L1, L2, L3, L4, 

L5, L6, L7 and L8) is presented. Each location has different values for the input criteria, as 

shown in the second column of Table 7.  

Table 7: Random input data for eight different locations 

Location 
Input value 

[input1, input2…input13] 

FIS TOPSIS 

Ranking 

Index 

Normalized 

Value 
Rank 

Ratio, 

R 
Rank 

L1 [9, 10, 8, 4, 2, 4, 5, 6, 8, 8, 4, 6, 1] 0.465 0.114 7 0.080 7 

L2 [7, 4, 3, 7, 10, 6, 6, 10, 5, 1, 3, 6, 2] 0.500 0.123 4 0.134 4 

L3 [4, 6, 2, 7, 8, 8, 1, 8, 6, 3, 3, 1, 6] 0.489 0.120 6 0.124 6 

L4 [8, 10, 9, 2, 5, 2, 3, 1, 8, 7, 5, 4, 4] 0.397 0.098 8 0.061 8 

L5 [7, 10, 5, 3, 9, 4, 9, 9, 9, 9, 1, 2, 4] 0.497 0.122 5 0.124 5 

L6 [4, 1, 8, 6, 4, 5, 4, 6, 4, 10, 3, 10, 8] 0.528 0.130 2 0.141 2 

L7 [2, 3, 1, 9, 10, 8, 7, 8, 3, 10, 4, 9, 9] 0.678 0.167 1 0.198 1 

L8 [6, 1, 7, 9, 1, 5, 6, 5, 2, 8, 3, 9, 5] 0.508 0.125 3 0.138 3 

 

A ranking index for each location is determined by using the rule viewer of the developed 

FIS. The data for input criteria is given here and the ranking index is determined based on the 
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pertinent developed rules. The ranking index is determined for all the alternative locations by 

providing the value of input criteria of all locations, which is shown in the last column of 

Table 8. Figure 7 shows the rule viewer from the developed FIS for location L1 as a sample 

representation  

We generated 200 random test problems by varying the values for input criteria. Then we 

used our developed FIS framework to evaluate the ranking index. We found that our tool can 

deal with all random cases efficiently and of determining the ranking index value.  

4.2 Results Comparison 

To judge the validity of the developed tool, we compared the FIS results with those obtained 

from the TOPSIS technique. We used the same data and weight as used in the FIS 

framework. We obtained the same location ranking from both the FIS framework and the 

TOPSIS technique. Then, we also generated 30 location selection problems by varying the 

input data and weight randomly. We used uniform random distribution to generate the test 

problems and the results are presented in Table 7. We observed that the ranking and selection 

from both techniques were the same for all random problems. However, the developed 

intelligent framework offers several advantages over the TOPSIS method such as, 

• It mirrors the logical response of a rational human being.  

• It can integrate ambiguity and uncertainty of human decision-making into the 

assessment process.  

• The causal relationship between the inputs and output for different scenarios can be 

resented effectively. 

• It can provide more reliable results with a small amount of data considering the 

expert's judgment and experience. 

• The framework development steps remain the same regardless of the number of 

criteria added or removed. 

• It allows decision-making with estimated values using incomplete or uncertain 

information. 
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Figure 7: Rule viewer for determining ranking index of L1 
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4.3 Sensitivity Analysis 

This analysis is designed by increasing the positive criteria by 0.5 starting at 1 and decreasing 

the negative criteria by 0.5 starting at 10. Then we found 19 possible cases; among them, case 

number 1 is the least favorable and case number 19 is the most favorable for location 

selection. Then we observed how the ranking index changes with the case number. The 

changes of ranking index value are presented in Table 8 for 19 possible cases, and the most 

desirable is highlighted in bold. We observed that the ranking index value increases with the 

most favorable input criteria values and that this correlated increase is desirable. The 

relationship between individual input and output is also analyzed, as presented in Appendix B 

under supplementary materials. 
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Table 8: Changes of ranking index values with input criteria values 

Case 

number 

Input Ranking 

index 1 2 3 4 5 6 7 8 9 10 11 12 13 

1 10 10 10 1 1 1 1 1 10 1 10 1 1 0.218 

2 9.5 9.5 9.5 1.5 1.5 1.5 1.5 1.5 9.5 1.5 9.5 1.5 1.5 0.222 

3 9 9 9 2 2 2 2 2 9 2 9 2 2 0.227 

4 8.5 8.5 8.5 2.5 2.5 2.5 2.5 2.5 8.5 2.5 8.5 2.5 2.5 0.274 

5 8 8 8 3 3 3 3 3 8 3 8 3 3 0.315 

6 7.5 7.5 7.5 3.5 3.5 3.5 3.5 3.5 7.5 3.5 7.5 3.5 3.5 0.353 

7 7 7 7 4 4 4 4 4 7 4 7 4 4 0.387 

8 6.5 6.5 6.5 4.5 4.5 4.5 4.5 4.5 6.5 4.5 6.5 4.5 4.5 0.420 

9 6 6 6 5 5 5 5 5 6 5 6 5 5 0.453 

10 5.5 5.5 5.5 5.5 5.5 5.5 5.5 5.5 5.5 5.5 5.5 5.5 5.5 0.500 

11 5 5 5 6 6 6 6 6 5 6 5 6 6 0.547 

12 4.5 4.5 4.5 6.5 6.5 6.5 6.5 6.5 4.5 6.5 4.5 6.5 6.5 0.580 

13 4 4 4 7 7 7 7 7 4 7 4 7 7 0.613 

14 3.5 3.5 3.5 7.5 7.5 7.5 7.5 7.5 3.5 7.5 3.5 7.5 7.5 0.647 

15 3 3 3 8 8 8 8 8 3 8 3 8 8 0.685 

16 2.5 2.5 2.5 8.5 8.5 8.5 8.5 8.5 2.5 8.5 2.5 8.5 8.5 0.726 

17 2 2 2 9 9 9 9 9 2 9 2 9 9 0.773 

18 1.5 1.5 1.5 9.5 9.5 9.5 9.5 9.5 1.5 9.5 1.5 9.5 9.5 0.778 

19 1 1 1 10 10 10 10 10 1 10 1 10 10 0.782 
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4.4 A Real-Life Application  

We implemented the proposed FIS framework to select an appropriate location for a real-

world manufacturing plant location decision case. During the Delphi method studies, one of 

the experts from an apparel manufacturing company (termed Company-X in this discussion 

for privacy reasons) invited us to solve their plant location problem. The company owner 

explained that they were looking for a new site as part of the expansion of their current 

businesses.  

The head office of Company-X is located in Dhaka, Bangladesh. The current manufacturing 

plant is located in Gazipur, Bangladesh and produces knitwear, exporting to several countries 

including Australia, the USA and some within the EU. Recently, the firm decided to expand 

its business to woven wear. In order to establish a woven-wear unit, Company-X was looking 

for the best location from four options – Gazipur, Narayanganj, Savar, and Chittagong. 

Excluding Chittagong, all locations are close to Dhaka, where the central warehouse is 

located. While the company wanted to reduce the distance from the central warehouse to 

ensure better synchronization of material and prompt delivery of material from the warehouse 

to the plant, it also had to consider other plant location selection factors as listed in Table 3 

for selecting the best location. When the company considered all the selection criteria of all 

four locations, it is found that the selection of one location is not a straightforward decision as 

each location is preferred from others for some criteria but not for all. As a result, the 

company had to analyze the score of all 13 criteria of the four locations using an appropriate 

MCDM tool to ensure that the company selected the best location. However, the firm faced 

difficulties analyzing different variables and criteria to select the best location using the 

current MCDM tools due to their complexity and user unfriendliness. After developing the 

FIS framework, we took the opportunity to contact Company-X to apply the designed tool to 

select the most appropriate plant location for woven wear.  

Initially, we contacted the company owner about the nature of the data we needed for the 

input variables of the FIS. Since we needed quantitative (weight and input value for each 

criterion) data for each of the 13 choice criteria, the owner could not immediately provide 

this. He discussed the issue with company management and later provided us with the 

required data to solve the firm’s location selection problem. For some criteria, we were 

provided actual or approximate data, while, for other criteria, a judgmental score on a scale 

from 0 to 10 was provided for each of the four locations (Table 9). 
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Table 9: Nature of data provided by Company X for each criterion 

Criteria Nature of data provided 

Distance from central warehouse Actual distance in kilometer 

Production cost 
Approximate production cost per unit in Bangladeshi 

taka (BDT)  

Land price/Rent Approximate cost per square feet in BDT 

Transportation system facility Judgmental score  

Labor availability Judgmental score  

Security Judgmental score  

Power supply facility Judgmental score  

Raw material availability Judgmental score 

Raw material cost Approximate raw material cost per unit in BDT 

Water supply facility Judgmental score  

Environmental impact Judgmental score  

Suitability of climate and land Judgmental score  

Fuel/gas supply facility Judgmental score  

Because of the confidentiality and data-sharing agreement, the actual or approximate values 

of the criteria like distance from central warehouse, production cost, raw material cost, and 

price of land/rent were not disclosed. Therefore, the actual values of the criteria were 

converted on a scale from 0 to 10. This conversion also provided uniformity in the scale 

across all 13 criteria as the values of other criteria were provided on a scale from 0 to 10. The 

final input values of all 13 criteria are presented in Table 10. 

Table 10: Input data (for location criteria score) from Company-X  

Location Input value [input1, input2…input13] 

Gazipur [4, 6, 7, 8, 7.5, 8.5, 8.5, 7, 6.5, 8, 8, 7, 8.5] 

Narayanganj [6, 6, 7.5, 4.5, 6, 7, 7.5, 5, 6, 6, 7, 6.5, 7.5] 

Savar [1, 4, 6, 9, 9.5, 8, 9, 9, 7, 9, 8, 7, 9.5] 

Chittagong [4, 7, 7, 5.5, 5, 6, 5, 6, 7, 5, 6, 7, 6] 

 

Afterwards, we utilized the collected data to determine the rank of the four locations. The 

ranking index of each location is calculated based on the rule viewer of the developed FIS as 

discussed in 3.3.3 and 3.3.4. The ranking index was then normalized to determine the rank of 

the four locations as shown in Table 11.  
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Table 11: Ranking of four alternative locations  

Location Ranking Index Normalized value  Rank 

Gazipur 0.527 0.2599 2 

Narayanganj 0.487 0.2401 3 

Savar 0.537 0.2648 1 

Chittagong 0.477 0.2352 4 

 

Analysis showed that out of four location choices, Savar is the best location with the 

normalized ranking index value of 0.2648 for Company-X to establish a new plant, even 

though Gazipur receives a very similar value of 0.2599. However, the other two locations - 

Chittagong and Narayanganj – received much lower normalized ranking index values of 

0.2352 and 0.2401 respectively, and thus are not the right places for the firm to establish its 

new manufacturing plant.  

The owner of the company also said that management was very confused regarding Savar and 

Gazipur: 

“Even though we have considered four locations to establish our new plant, we knew 

ultimately we would be establishing our new plant either at Savar or Gazipur. 

However, we were so confused in regards to which one of Savar and Gazipur would 

be our best choice. We discussed the issue multiple times in our board meeting but we 

could not make any final decision”. 

5.  CONCLUSIONS AND MANAGERIAL IMPLICATIONS  

The main objective of this paper is to develop an intelligent FIS-based decision-making 

framework for evaluating the manufacturing plant locations. In our developed framework, we 

use the Delphi technique to identify important criteria for garment manufacturing location 

selection decisions. We found that experts’ inputs can reduce the unnecessary effort in 

searching for suitable location selection criteria. Managers and their input are critical to this 

evaluation process, but too many factors and relationships between the factors can easily 

cause fatigue in decision-making. Therefore, in order to make effective location selection 

decisions, a focus on the specific uses of industry and country-specific location selection 

criteria, as determined by experts, is necessary. Using the Delphi method, we identify 13 

critical criteria for garment manufacturing site selection and determine that these are essential 
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to address in order to select the most suitable manufacturing location. The most important 

criteria are related to categories such as cost; the availability of utilities (electricity supply, 

water supply, gas or fuel supply) and security; convenience in using logistics facilities such 

as labor and raw materials. It appears that when organizations look for new manufacturing 

locations they look at cost, resources available in the new location, service facilities, and 

safety and security issues. Comparing the criteria obtained by Capilla et al. (2016) and Dou 

and Sarkis (2010), it appears that our results are focusing more on the cost of production and 

access to utilities and facilities, and not much on community and business climate. 

Based on the collected information from Delphi, we developed a rule-based FIS framework 

to assist in plant location decision-making. The tool is capable of giving a ranking index 

value for each alternative location based on the input value of the 13 criteria. The best 

location was selected based on the highest normalized value of the ranking index. To further 

analyse the validity and applicability of the proposed FIS framework, a real-world application 

from an apparel manufacturing company in Bangladesh is analyzed. The proposed FIS 

framework is innovative in solving MCDM problems as it integrates both qualitative Delphi 

and quantitative FIS and considered both positive and negative influences of the selection 

criteria. The framework is developed based on a user-friendly graphical interface, which is 

easy to use by decision-makers, and for which the user doesn’t need knowledge of the FIS. 

Moreover, the proposed FIS framework can easily be implemented in any similar type of 

MCDM problem with no/minor adjustment. Once the input criteria and their respective 

weights and values are given, this tool can provide the ranking index for each option. 

Therefore, the practitioner can implement this tool to solve the multi-criteria problem, 

particularly for the location selection problem, without any difficulty. However, managers 

should focus on determining the key criteria and their respective weights and values 

accurately before using this tool because the ranking index (output value) fully depends on 

the input value. Also, the manager needs to scale the input criteria and output value using the 

Likert scale. Hence, we suggest using the proposed tool with care as the location selection 

problem is complex and determining qualitative and quantitative input values is challenging.  

In future, our approach can be extended to develop decision-making tools for other MCDM 

problems, such as distribution and other facility site selection, convenience store location 

selection, supplier selection, service location selection, and project site selection. Also, 

researchers should consider the impacts of large-scale disruptions, such as the recent COVID-

19 pandemic, while finalizing the criteria for manufacturing plant locations (Chowdhury et 
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al., 2021). In a methodological context, it also would be worthwhile to consider different 

types of membership functions such as trapezoidal and Gaussian membership functions for 

input and output variables in the FIS and compare the results for these. 
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Appendix A: The rules with corresponding weight 

i. If (Distance is Low) then (Ranking Index is High) (1)  

ii. If (Distance is Medium) then (Ranking Index is Medium) (1)  

iii. If (Distance is High) then (Ranking Index is Low) (1)  

iv. If (Production Cost is Low) then (Ranking Index is High) (1)  

v. If (Production Cost is Medium) then (Ranking Index is Medium) (1)  

vi. If (Production Cost is High) then (Ranking Index is Low) (1)  

vii. If (Land Price/Rent is Low) then (Ranking Index is High) (1)  

viii. If (Land Price/Rent is Medium) then (Ranking Index is Medium) (1)  

ix. If (Land Price/Rent is High) then (Ranking Index is Low) (1)  

x. If (Transport Facility is Low) then (Ranking Index is Low) (1)  

xi. If (Transport Facility is Medium) then (Ranking Index is Medium) (1)  

xii. If (Transport Facility is High) then (Ranking Index is High) (1)  

xiii. If (Labor Availability is Low) then (Ranking Index is Low) (0.8)  

xiv. If (Labor Availability is Medium) then (Ranking Index is Medium) (0.8)  

xv. If (Labor Availability is High) then (Ranking Index is High) (0.8)  

xvi. If (Security is Low) then (Ranking Index is Low) (0.7)  

xvii. If (Security is High) then (Ranking Index is High) (0.7)  

xviii. If (Power Supply is Low) then (Ranking Index is Low) (1)  

xix. If (Power Supply is Medium) then (Ranking Index is Medium) (1)  

xx. If (Power Supply is High) then (Ranking Index is High) (1)  

xxi. If (Raw Material Availability is Low) then (Ranking Index is Low) (0.8)  

xxii. If (Raw Material Availability is Medium) then (Ranking Index is Medium) (0.8)  

xxiii. If (Raw Material  Availability is High) then (Ranking Index is High) (0.8)  

xxiv. If (Raw Material  Cost is Low) then (Ranking Index is High) (0.5)  

xxv. If (Raw Material Cost is Medium) then (Ranking Index is Medium) (0.5)  

xxvi. If (Raw Material Cost is High) then (Ranking Index is Low) (0.5)  

xxvii. If (Water Supply is Low) then (Ranking Index is Low) (1)  

xxviii. If (Water Supply is Medium) then (Ranking Index is Medium) (1)  

xxix. If (Water Supply is High) then (Ranking Index is High) (1)  

xxx. If (Environmental Impact is Low) then (Ranking Index is High) (0.6)  

xxxi. If (Environmental Impact is Medium) then (Ranking Index is Medium) (0.6)  

xxxii. If (Environmental Impact is High) then (Ranking Index is Low) (0.6)  
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xxxiii. If (Suitability of Climate and Land is Low) then (Ranking Index is Low) (0.6)  

xxxiv. If (Suitability of Climate and Land is Medium) then (Ranking Index is Medium) (0.6)  

xxxv. If (Suitability of Climate and Land is High) then (Ranking Index is High) (0.6)  

xxxvi. If (Fuel/Gas Supply facility is Low) then (Ranking Index is Low) (0.7)  

xxxvii. If (Fuel/Gas Supply facility is Medium) then (Ranking Index is Medium) (0.7)  

xxxviii. If (Fuel/Gas Supply facility is High) then (Ranking Index is High) (0.7)  

xxxix. If (Distance is Low) and (Production Cost is Low) and (Land Price/Rent is Low) and 

(Transport Facility is High) and (Labor Availability is High) and (Security is High) 

and (Power Supply is High) and (Raw Material Availability is High) and (Raw 

Material  Cost is Low) and (Water Supply is High) and (Environmental Impact is 

Low) and (Suitability of Climate and Land is High) and (Fuel/Gas Supply facility is 

High) then (Ranking Index is Very High) (1)  

xl. If (Distance is High) and (Production Cost is High) and (Land Price/Rent is High) and 

(Transport Facility is Low) and (Labor Availability is Low) and (Security is Low) and 

(Power Supply is Low) and (Raw Material Availability is Low) and (Raw Material  

Cost is High) and (Water Supply is Low) and (Environmental Impact is High) and 

(Suitability of Climate and Land is Low) and (Fuel/Gas Supply facility is Low) then 

(Ranking Index is Very Low) (1)  

xli. If (Distance is Medium) and (Production Cost is Medium) and (Land Price/Rent is 

Medium) and (Transport Facility is Medium) and (Labor Availability is Medium) and 

(Security is Medium) and (Power Supply is Medium) and (Raw Material Availability 

is Medium) and (Raw Material  Cost is Medium) and (Water Supply is Medium) and 

(Environmental Impact is Medium) and (Suitability of Climate and Land is Medium) 

and (Fuel/Gas Supply facility is Medium) then (Ranking Index is Medium) (1)  

xlii. If (Raw Material Cost is Low) and (Water Supply is High) and (Environmental 

Impact is Low) and (Suitability of Climate and Land is High) and (Fuel/Gas Supply 

facility is High) then (Ranking Index is Very High) (0.6)  

xliii. If (Raw Material Cost is High) and (Water Supply is Low) and (Environmental 

Impact is High) and (Suitability of Climate and Land is Low) and (Fuel/Gas Supply 

facility is Low) then (Ranking Index is Very Low) (0.6)  

xliv. If (Raw Material Cost is Medium) and (Water Supply is Medium) and (Environmental 

Impact is Medium) and (Suitability of Climate and Land is Medium) and (Fuel/Gas 

Supply facility is Medium) then (Ranking Index is Medium) (0.6)  
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Appendix B: Relationship between input and output variables 

There is a relationship (either positive or negative) between input and output variables. This 

study shows how the ranking index changes with changing input criteria. In each study, one 

input criteria has changed and reminders are kept constant at a default value of 5. We have 

observed that the ranking index value increases with the increment of value of positive 

criteria and the ranking index value decreases with the increment of value of negative criteria. 

 

(a) Ranking Index vs Distance 

 

(b) Ranking Index vs Production Cost 

 

(c) Ranking Index vs Land Price/Rent 

 

(d) Ranking Index vs Transport Facility 

 

(e) Ranking Index vs Labor Availability 

 

(f) Ranking Index vs Security 
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(g) Ranking Index vs Power Supply Facility 

 

(h) Ranking Index vs Raw Material 

Availability 

 

(i) Ranking Index vs Raw Material Cost 

 

(j) Ranking Index vs Water Supply Facility 

 

(k) Ranking Index vs Environmental Impact 

 

(l) Ranking Index vs Suitability of Climate 

and Land 
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(m) Ranking Index vs Fuel/Gas Supply 

Facility 

 

Fig. B1: Relationship between different criteria and ranking index value 
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