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Abstract

The triangle structure, being a fundamental and significant element, underlies many theories

and techniques in studying complex networks. The formation of triangles is typically mea-

sured by the clustering coefficient, in which the focal node is the centre-node in an open

triad. In contrast, the recently proposed closure coefficient measures triangle formation from

an end-node perspective and has been proven to be a useful feature in network analysis.

Here, we extend it by proposing the directed closure coefficient that measures the formation

of directed triangles. By distinguishing the direction of the closing edge in building triangles,

we further introduce the source closure coefficient and the target closure coefficient. Then,

by categorising particular types of directed triangles (e.g., head-of-path), we propose four

closure patterns. Through multiple experiments on 24 directed networks from six domains,

we demonstrate that at network-level, the four closure patterns are distinctive features in

classifying network types, while at node-level, adding the source and target closure coeffi-

cients leads to significant improvement in link prediction task in most types of directed

networks.

1 Introduction

Networks, abstracting the interactions between components, are fundamental in studying

complex systems in a variety of domains ranging from social and economic networks to infor-

mational and technological networks [1, 2]. Small subgraph patterns (also known as motifs [3]

or graphlets [4]) that recur at a higher frequency than those in random networks are crucial in

understanding and analysing networks. Motifs underlie many descriptive and predictive appli-

cations such as community detection [5–7], anomaly detection [8], role analysis [9], and link

prediction [10, 11].

Among them, 3-node connected subgraphs, which are the building blocks for higher-order

motifs, are explored most often. Further, the triangle structure, or the triadic closure [12] from

a temporal perspective, has been revealed to be a natural phenomenon of networks across dif-

ferent areas [3, 13]. Nodes sharing a common neighbour are more likely to connect with each

other. For example, in an undirected friendship network, there is an increased likelihood for

two people having a common friend to become friends [14]; in a directed citation network, a

paper cites two papers where one tends to cite the other [15]; and in a signed directed trust net-

work, when Alice distrusts Bob, Alice discounts anything recommended by Bob [16].
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The classic measure of triangle formation is the local clustering coefficient [17], which is

defined by the percentage of the number of triangles formed with a node (referred to as node

i) to the number of triangles that i could possibly form with its neighbours. Note that in this

definition, the focal node i serves as the centre-node in an open triad [18]. To emphasise, an

open triad is an unordered pair of edges sharing one node. With a focus on node i, it describes

the extent to which edges congregate around it. As a standard metric to describe networks, the

clustering coefficient has been widely used in network analysis, such as the study of commu-

nity structure [19, 20], the discovery of structural role [21] and the detection of anomalous

objects [22]. The extensions of local clustering coefficient have been thoroughly discussed for

weighted networks [23–25], directed networks [26] and signed networks [27, 28]. Another

metric for triangle formation, with a focus on an edge (referred to as eij connecting node i and

j), is the edge clustering coefficient [29] which evaluates to what extent nodes cluster around

this edge.

A recent study has proposed another interesting triangle formation measure, i.e., the local
closure coefficient [30]. With the focal node i as the end-node of an open triad, it is quantified

as the percentage of two times the number of triangles containing i to the number of open tri-

ads with i as the end-node. Conceptually, the local clustering coefficient measures the phe-

nomenon that two friends of mine are also friends themselves, while the local closure

coefficient is focusing on a friend of my friend is also a friend of mine. This new metric has

been proven to be a useful tool in several network analysis tasks such as community detection

and link prediction [30]. Together with the two measures mentioned above, we propose a clas-

sification diagram of all three triangle formation measures (Fig 1). The closure coefficient is

originally defined for undirected binary networks. However, in real-world complex networks,

the relationships between components can be nonreciprocal (a follower is often not followed

back by the followee), heterogeneous (trade volumes between countries vary significantly),

and negative (an individual can be disliked or distrusted).

In this paper, from the end-node perspective, we propose the directed closure coefficient

[31] to measure triangle formation in binary directed networks, and we extend it for weighted

directed networks and weighted signed directed networks. Since each of the three edges can

Fig 1. Classification diagram of triangle formation measures. In each of the two node-based measures, the focal

node is painted in blue, and the dotted edge represents the potential closing edge in an open triad. In the edge-based

measure, the focal edge is in blue, and the dotted outline circle represents the potential node that forms a triangle.

https://doi.org/10.1371/journal.pone.0253822.g001
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take either direction in a directed triangle, there are eight different triangles in total. According

to the direction of the closing edge, i.e., the edge that closes an open triad and forms a triangle,

we classify them into two groups (emanating from or pointing to the focal node, as shown in

Fig 2a). Based on that, we propose the source closure coefficient and the target closure coeffi-

cient, respectively.

Further, from a transitive perspective, we categorise all directed triangles into four patterns:

(i) a head-of-path pattern, where the focal node is at the beginning of a length-2 path; (ii) a

mid-of-path pattern, where the focal node serves as an intermediate node in a length-2 path;

(iii) an end-of-path pattern, where the focal node is the endpoint of a length-2 path; (iv) a

cyclic pattern, where the focal node is in a cyclical path (Fig 2b). The definitions of the four clo-

sure patterns are given accordingly. Comparably, the classic directed clustering coefficient can

also be categorised into four patterns [26, 32], which are found to be useful features in classify-

ing directed networks.

Our evaluations have revealed some interesting properties of the proposed directed closure

coefficient and its patterns. Through a correlation analysis on various networks, it is shown

that the directed closure coefficient provides different information than the classic directed

clustering coefficient on measuring triangle formation. Besides, the correlations among the

eight patterns (four closure patterns and four clustering patterns) show that many types of

directed networks demonstrate distinctive characteristics.

We further apply the proposed coefficients into two machine learning tasks. First, at net-

work-level, it is shown that adding the four closure patterns in network classification improves

the accuracy significantly. Also, through an analysis of feature importance, we show that com-

pared to the four clustering patterns, the four closure patterns are more important features in

classifying networks. Second, in a link prediction task, we show that at node-level, the source

and target coefficients can be used together with common neighbours as effective predictors to

improve the performance, especially in food webs, software networks, web graphs and word

adjacency networks.

Fig 2. Taxonomy of directed triangles. Two solid edges connecting nodes i, j and k form an open triad, which is closed by a dotted edge connecting

nodes i and k. Focal node i, painted in blue, is the end-node of an open triad. (a) Eight triangles are classified into two groups according to the direction

of the closing edge. First row shows a group where the focal node serves as the source node of the closing edge; second row shows another group where

the focal node serves as the target. (b) Eight Triangles are classified into four groups from a transitive perspective. In six transitive triads, three different

patterns are distinguished by the position of node i in a length-2 path (emphasised by grey curved arrows): head-of-path, mid-of-path, and end-of-path

patterns. The remaining two non-transitive triads are classified as a cyclic pattern.

https://doi.org/10.1371/journal.pone.0253822.g002
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In summary, we propose 1) the directed closure coefficient as another measure of triangle

formation in directed networks (and the extension of it into weighted and signed networks);

2) the source closure coefficient and the target closure coefficient; and 3) the four closure pat-

terns from a transitive perspective. Through multiple experiments, we exhibit the intrinsic

properties of the proposed metrics and how they can be used to improve some common net-

work analysis tasks.

2 Preliminaries

This section introduces the preliminary knowledge of our work, including the classic cluster-

ing coefficient, its extension in directed networks, and the closure coefficient.

2.1 Clustering coefficient

The clustering coefficient was originally proposed to measure the cliquishness of a neighbour-

hood in an undirected graph [17].

Let G = (V,E) be an undirected graph on a node set V (the number of nodes is |V|) and an

edge set E, without multiple edges and self-loops. The adjacency matrix of G is denoted as A =

{aij}. aij = 1 if there is an edge between node i and node j, otherwise aij = 0. We denote the

degree of node i as di = ∑j aij.
For any node i 2 V, the local clustering coefficient is calculated as the number of triangles

formed with node i and its neighbours (labelled as T(i)), divided by the number of open triads

with i as the centre-node (labelled as OTC(i)):

CðiÞ ¼
TðiÞ
OTCðiÞ

¼

1

2

P
j

P
kaijaikajk

1

2
di di � 1ð Þ

: ð1Þ

We assume that C(i) is well defined. Clearly, C(i) 2 [0, 1].

In order to measure clustering or triangle formation at the network-level, the average clus-
tering coefficient is introduced by averaging the local clustering coefficient over all nodes (an

undefined local clustering coefficient is treated as zero): C ¼ 1

jVj

P
i2VCðiÞ:

Another option to measure triangle formation at the network-level is the global clustering
coefficient [33], which is defined as the fraction of open triads that form triangles in the entire

network:

C ¼
P

i

P
j

P
kaijaikajk

P
i2Vdiðdi � 1Þ

: ð2Þ

Note that the global clustering coefficient is not equivalent to the average clustering coeffi-

cient. On some occasions, they can be very distinct from each other.

2.2 Directed clustering coefficient

Fagiolo [26] proposed an extension of the local clustering coefficient to directed networks,

which considers all possible directed triangles formed around a focal node. In total, there are

eight different triangles (each of the three edges can have two directions). When a directed

open triad (or a directed triangle) contains bidirectional edges, they are treated as a combina-

tion of open triads (or triangles) with only unidirectional edges (Fig 3).

Let us denote A = {aij} as the adjacency matrix of a directed graph GD ¼ ðV; EÞ. aij = 1 if

there is an edge from node i to node j, otherwise aij = 0. The degree of node i is denoted as di,
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including both outgoing edges and incoming edges: di ¼ douti þ d
in
i ¼

P
jaij þ

P
jaji. d

$
i

denotes the degree of bidirectional edges of i: d$i ¼
P

jaijaji.
The local directed clustering coefficient is thus defined as the number of directed triangles

formed with node i and its neighbours (counted as unidirectional ones, labelled as TDðiÞ),
divided by twice the number of directed open triads with i as the centre-node (labelled as

OTCDðiÞ):

CDðiÞ ¼
TDðiÞ

2OTCDðiÞ
¼
ð1=2Þ

P
j

P
kðaij þ ajiÞðaik þ akiÞðajk þ akjÞ
diðdi � 1Þ � 2d$i

: ð3Þ

Note that OTCDðiÞ equals to ð1=2Þ½diðdi � 1Þ � 2d$i �. OTC
DðiÞ is multiplied by two because

the edge closes a directed open triad can take two directions.

Similarly, the average directed clustering coefficient of the entire network is defined as:

CD ¼ jVj� 1P
i2VC

DðiÞ: An expected alternative, i.e., the global directed clustering coefficient

has not appeared in literature. We therefore give a definition here:

Definition 2.1. The global directed clustering coefficient of a directed network, denoted

CD, is defined as the fraction of directed open triads that form triangles in the entire network:

CD ¼

1

2

P
i

P
j

P
k aij þ aji
� �

aik þ akið Þ ajk þ akj
� �

P
i2Vðdiðdi � 1Þ � 2d$i Þ

: ð4Þ

The numerator here equals three times the number of directed triangles in the entire net-

work (each node of a triangle contributes an open triad with it as the centre-node).

2.3 Closure coefficient

Recently Yin et al. [30] proposed the local closure coefficient and thus closed a gap in measuring

triangle formation on undirected networks. Different from the ordinary centre-node focus in

the local clustering coefficient, this definition is based on the end-node of an open triad. Recall

that an open triad is an unordered pair of edges sharing one node. For example, in an open

triad ijk with two edges ij and jk, there is no difference between (ij, jk) and (jk, ij).
Reusing the above notations for undirected graph, the local closure coefficient of node i is

defined as two times the number of triangles formed with i (labelled as T(i)), divided by the

Fig 3. Dealing with bidirectional edges. First row shows that an open triad with one bidirectional edge is counted as

two unidirectional open triads; second row shows that a triangle with two bidirectional edges is counted as four

unidirectional triangles.

https://doi.org/10.1371/journal.pone.0253822.g003
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number of open triads with i as the end-node. (labelled as OTE(i)):

EðiÞ ¼
2TðiÞ
OTEðiÞ

¼

P
j

P
kaijaikajk

P
j2NðiÞðdj � 1Þ

; ð5Þ

where N(i) denotes the set of neighbours of node i. T(i) is multiplied by two for the reason that

each triangle contains two open triads with i as the end-node. When a triangle is actually

formed (e.g., with nodes i, j and k), the focal node i can be viewed as the centre-node in one

open triad (jik) or as the end-node in two open triads (ijk and ikj). Obviously, E(i) 2 [0, 1].

At the network-level, the average closure coefficient is then defined as the mean of the local

closure coefficient over all nodes: E ¼ 1

jVj

P
i2VEðiÞ: Analogous to the global clustering coeffi-

cient (Eq 2), we can give a global version of the closure coefficient:

E ¼
2
P

i2VTðiÞP
i2V

P
j2NðiÞðdj � 1Þ

: ð6Þ

The numerator is equal to six times the number of triangles in the entire network (each

node of a triangle contributes two open triads with it as the end-node), divided by twice the

number of open triads constructed from the end-node in the entire network. However, this

definition is actually equivalent to the global clustering coefficient (Eq 2) as globally the differ-

ence of the position of the focal node will not surface.

Proposition 1. In any undirected network, E = C.

Proof. Since globally the neighbourhood relationship is reciprocal, ∑i2V ∑j2N(i)(dj − 1) can

be written as ∑j2V∑i2N(j)(dj − 1) which equals ∑j2V dj(dj − 1). Then we have ∑i2V∑j2N(i)(dj − 1) =

∑i2V di(di − 1). Thus, E = C.

3 Closure coefficient in directed networks

The local closure coefficient has been proven to be a useful metric in undirected networks

[30]. In this section, we first provide a general extension of it to directed networks, i.e., the

local directed closure coefficient. We further propose the closure coefficients of particular pat-

terns. Finally, we extend it into weighted (signed) directed networks.

3.1 Closure coefficient in binary directed networks

Motivated by the closure coefficient and the directed clustering coefficient, we aim to measure

the directed triangle formation from the end-node of an open triad. There are eight different

directed triangles, and similarly a triangle (or an open triad) with bidirectional edges is treated

as a combination of triangles (or open triads) with only unidirectional edges (Fig 3).

Reusing the notations in Section 2, we now give the definition of the closure coefficient in

directed networks.

Definition 3.1. The local directed closure coefficient of node i in a directed network,

denoted EDðiÞ, is defined as twice the number of directed triangles formed with node i (labelled

as TDðiÞ), divided by twice the number of directed open triads with i as the end-node (labelled

as OTEDðiÞ):

EDðiÞ ¼
2TDðiÞ

2OTEDðiÞ
¼

P
j

P
kðaij þ ajiÞðaik þ akiÞðajk þ akjÞ

2
P

j2NðiÞðaij þ ajiÞðdj � ðaij þ ajiÞÞ
: ð7Þ
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When the neighbours of i are solely connected to i, the local directed closure coefficient is

undefined. In real-world networks, however, nodes with undefined closure coefficients are

very rare.

TDðiÞ is multiplied by two since each triangle contains two open triads with i as the end-

node. OTEDðiÞ is multiplied by two because the closing edge of a directed open triad can take

two directions. Obviously, EDðiÞ 2 ½0; 1�. When the adjacency matrix A is symmetric (the net-

work becomes undirected), Eq 7 reduces to Eq 5, i.e., EDðiÞ ¼ EðiÞ.
Similarly, in order to measure at the network-level, we propose the definition of an average

directed closure coefficient and a global directed closure coefficient.

Definition 3.2. The average directed closure coefficient of a directed network, denoted ED ,

is defined as the average of the local directed closure coefficient over all nodes:

ED ¼
1

jVj

X

i2V

EDðiÞ; ð8Þ

in which an undefined local directed closure coefficient is treated as zero. In the case of a ran-

dom network, where each directed edge occurs with a probability p, one has that E½EDðiÞ� ¼ p.

Definition 3.3. The global directed closure coefficient of a directed network, denoted ED, is

defined as:

ED ¼
2
P

i2VT
DðiÞ

2
P

i2V

P
j2NðiÞðaij þ ajiÞðdj � ðaij þ ajiÞÞ

; ð9Þ

where the numerator equals six times the number of directed triangles in the entire network

(each node of a triangle contributes two open triads with it as the end-node), divided by twice

the number of directed open triads across the network.

Similar to Proposition 1 and its proof, the global directed closure coefficient is equivalent to

the global directed clustering coefficient (Eq 4).

Proposition 2. In any directed network, ED ¼ CD.

3.2 Closure coefficients of particular patterns

In addition to a general measure, we propose to have a closer look at the directed closure coef-

ficients of particular patterns in order to gain a deeper understanding and fully realise the

potential of this metric.

Recall that in Fig 2(a), when a directed triangle is constructed from an end-node-based

open triad, the closing edge is incident to the focal node. Therefore, we propose to classify

directed triangles into two groups according to the direction of the closing edge: one group

where the focal node serves as the source node of the closing edge, another group where the

focal node serves as the target. Two definitions are given accordingly.

Definition 3.4. For a given node i in a directed network, the source closure coefficient,
denoted Esrc(i), and the target closure coefficient, denoted Etgt(i) are defined as:

EsrcðiÞ ¼
TsrcðiÞ
OTEDðiÞ

¼

P
j

P
kðaij þ ajiÞðajk þ akjÞaik

P
j2NðiÞðaij þ ajiÞðdi � ðaij þ ajiÞÞ

; ð10Þ

EtgtðiÞ ¼
TtgtðiÞ
OTEDðiÞ

¼

P
j

P
kðaij þ ajiÞðajk þ akjÞaki

P
j2NðiÞðaij þ ajiÞðdi � ðaij þ ajiÞÞ

: ð11Þ

Tsrc(i) indicates the number of triangles where the focal node acts as the source node of the

closing edge. Since we view triangles as being built from an end-node perspective, certain
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triangles (the ones where the focal node has two outgoing edges) are counted twice. Thus, 0�

Tsrc(i)� 2TD(i). Similarly, Ttgt(i) denotes the number of triangles where the focal node acts as

the target node.

Comparing these two equations with the directed closure coefficient(Eq 7), the denomina-

tors are OTEDðiÞ instead of 2OTEDðiÞ. This is because the closing edge here can only take one

direction, either outgoing or incoming, thus ensuring the two definitions are in the range of

[0, 1]. It is obvious that Tsrc(i)+Ttgt(i) = 2TD(i), which then gives EsrcðiÞ þ EtgtðiÞ ¼ 2EDðiÞ. On

a small network, Fig 4 shows how the source closure coefficient and the target closure coeffi-

cient are calculated in a detailed table.

These two metrics evaluate the extent to which the focal node acts as the source node or the

target node of the closing edges in a triangle formation. Note that there are no analogous defi-

nitions for the clustering coefficient because the closing edge is not incident to the focal node

that serves as the centre-node of the open triad. In Section 4.3, we show how the source and

target closure coefficients can be used to improve the performance in a link prediction task.

Furthermore, several studies have shown that the three-node transitive closure (also called

the feedforward loop) prevails in many real-world networks [3, 13, 26, 32]. Thus, we propose

to categorize the eight directed triangles into four patterns from a transitive perspective: three

transitive patterns distinguished by the position of the focal node in a length-2 path, plus one

non-transitive pattern (Fig 2b). Before introducing the definitions of directed closure coeffi-

cients of these four patterns, we first characterize four types of directed open triads with the

focal node as the end-node; a comparison with centre-node focused triads is also provided

(Fig 5). Then we give the following definitions.

Definition 3.5. The directed closure coefficients of four patterns, i.e., the head closure coef-
ficient, denoted Ehead(i); the end closure coefficient, denoted Eend(i); the mid closure

Fig 4. An example of calculating the source closure coefficient and target closure coefficient.

https://doi.org/10.1371/journal.pone.0253822.g004

Fig 5. Two groups of directed open triads. (a). Four different open triads with the focal node i as the end-node. Two arrows on the superscript

describe the directions of two edges: First arrow depicts an edge from i to j (!) or from j to i ( ); second arrow depicts an edge from j to k (!) or

from k to j ( ). (b). Three different open triads with i as the centre-node. First arrow depicts the edge direction between i and j while second arrow

depicts the edge direction between i and k. There are three instead of four since when the focal node is in the centre, node j and k are symmetric to it.

https://doi.org/10.1371/journal.pone.0253822.g005
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coefficient, denoted Emid(i) and the cyclic closure coefficient, denoted Ecyc(i) are defined as:

EheadðiÞ ¼
2TheadðiÞ

OTE!!ðiÞ þ OTE! ðiÞ
¼

P
j

P
kaijaikðajk þ akjÞ

P
j2NðiÞaijðdj � ðaij þ ajiÞÞ

;

EendðiÞ ¼
2TendðiÞ

OTE  ðiÞ þ OTE !ðiÞ
¼

P
j

P
kajiakiðajk þ akjÞ

P
j2NðiÞajiðdj � ðaij þ ajiÞÞ

;

EmidðiÞ ¼
2TmidðiÞ

OTE! ðiÞ þ OTE !ðiÞ
¼

P
j

P
kðajiaikajk þ akiaijakjÞ

P
j2NðiÞðaijðdinj � aijÞ þ ajiðdoutj � ajiÞÞ

;

EcycðiÞ ¼
2TcycðiÞ

OTE!!ðiÞ þ OTE  ðiÞ
¼

P
j

P
kðajiaikakj þ akiaijajkÞ

P
j2NðiÞðajiðdinj � aijÞ þ aijðdoutj � ajiÞÞ

:

As shown above, the numerator of each coefficient equals twice the number of particular

triangles; the denominator can be calculated with the neighbourhood information of node i
and the degree information of i’s neighbours. Fagiolo [26] and Ahnert [32] also proposed four

patterns for the directed clustering coefficient. In order to better compare the four closure pat-

terns with the four clustering patterns, we briefly list their equations here:

CheadðiÞ ¼
TheadðiÞ

2OTC!!ðiÞ
; CendðiÞ ¼

TendðiÞ
2OTC  ðiÞ

;

CmidðiÞ ¼
TmidðiÞ

OTC! ðiÞ
; CcycðiÞ ¼

TcycðiÞ
OTC! ðiÞ

:

The significance of defining the four closure patterns is twofold. First, at node-level analysis,

they can be applied directly to measure whether a node of interest is more of an initiator

(higher value of the head closure coefficient), an intermediary (higher value of the mid closure

coefficient) or a target (higher value of the end coefficient). Secondly, after averaging over all

nodes, the four closure patterns can also serve as features at network-level. Section 4.2 shows

how the four closure patterns are used in a supervised learning task to classify different types

of directed networks.

3.3 Closure coefficient in weighted networks

So far, the study is focusing on binary networks, where the value of every edge is either one or

zero. In many networks, however, we need a more accurate representation of the relationships

between nodes, such as the frequency of contact in a social network, the traffic flow in a road

network, etc. This is why we are also interested in defining a closure coefficient for weighted

networks.

We begin with weighted undirected networks. Several versions of weighted clustering coef-

ficients have been summarised in [34]. Among them, a definition given by Onnela et al. [24]

and another given by Zhang and Horvath [25] are often employed. After normalisation (maxi-

mum weight normalised to one), the former takes a geometric average of weights of actually

formed triangles, divided by the number of potential triangles, which implies all edges taking

the maximum weight in the denominator. The latter chooses a simple product of weights of

formed triangles, divided by the product of two weights of an open triad, implying the poten-

tial triadic closing edge taking the maximum weight.
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In our definition of weighted closure coefficient, similar to the method proposed by Zhang

and Horvath [25], we choose to assign a maximum weight to the closing edge. In a weighted

graph GW described by its weight matrix W = {wij}, we suppose wij 2 [0, 1] (normalised by the

maximum weight), and the strength of node i is si = ∑j wij.
Definition 3.6. The weighted closure coefficient of node i in a weighted network, denoted

EWðiÞ, is defined as:

EWðiÞ ¼
P

j

P
kwijwikwjk

P
j2NðiÞwijðsj � wijÞ

: ð12Þ

Obviously, EWðiÞ 2 ½0; 1�. When the weight matrix becomes binary, Eq 12 degrades to Eq 5,

i.e., EWðiÞ ¼ EðiÞ.
In a similar approach, the definition of closure coefficient in weighted directed networks

can be extended from Eq 7. Let us denote W = {wij} as the weight matrix of a weighted directed

graph GW;D, wij 2 [0, 1]. The strength of node i is denoted by si (si = ∑j wij+∑j wji). Then we

have the following definition:

Definition 3.7.The weighted directed closure coefficient of node i, denoted EW;DðiÞ, is

defined as:

EW;DðiÞ ¼
P

j

P
kðwij þ wjiÞðwik þ wkiÞðwjk þ wkjÞ

2
P

j2NðiÞðwij þ wjiÞðsj � ðwij þ wjiÞÞ
: ð13Þ

This definition can also be used in weighted signed networks (wij 2 [−1, 1]), with a modi-

fied definition of si (si = ∑j|wij| + ∑j|wji|). In many settings, the weights of relationships can be

both positive and negative, as a person may trust or distrust others with different levels of

intensity. Clearly, EW;DðiÞ varies in [−1, 1]. It is positive when positive triangles formed around

the focal node outweigh negative ones. It equals zero when no triangles are formed with the

focal node or positive triangles and negative triangles are balanced.

Through a brief case study on the Bitcoin Alpha trust network (TR-BTCALPHA) [35], we

illustrate how the weighted directed closure coefficient can provide new understandings in

network analysis. TR-BTCALPHA is a trust network on a blockchain asset trading platform,

where users rate other traders in a range of [−10, 10] in steps of 1, from total distrust to total

trust. There are 3,783 nodes representing the users and 24,186 edges representing the ratings

in the network.

First, without considering weights on edges, we find in Fig 6a that the directed closure coef-

ficient is positively related to the node degree (Pearson correlation coefficient ρ equals to

0.714), implying big traders tend to form more trustful cliques. However, when weights are

put back, we see in Fig 6b that the correlation between the weighted directed closure coeffi-

cient and the node strength becomes very weak (ρ = 0.265): big traders are not significantly

better at forming trustful cliques. Also, we detect some nodes with negative closure coeffi-

cients, meaning the negative triangles outweigh the positive ones around them. In line with

the balance theory [36] suggesting that negative triangles are rare in a trust relationship, we

find only 138 out of 3783 nodes having formed overall distrustful cliques.

3.4 Computational efficiency

To end this section, we briefly discuss the computational efficiency of the proposed metrics.

Taking the local directed closure coefficient (Definition 3.1) as an example, for the purpose of

facilitating understanding and expression, we use the adjacency matrix of the network to pres-

ent the equation, which leads up to O(|V|2) in computation.
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In actual development, however, after conveniently obtaining the neighbourhood informa-

tion (both successors and predecessors in directed networks) of a given node, the average-case

computational cost is Oðk2Þ, where k is the average degree of the network. The average cost for

computing the local directed closure coefficient across the network is therefore OðjVj � k2Þ. As

in most real networks k � jVj, the computation is fast in large networks.

4 Experiments and analysis

In this section, we evaluate the proposed directed closure coefficient and its patterns in real-

world networks. First, we compare it with the classic directed clustering coefficient. Then, we

demonstrate that at network-level, the four closure patterns are discriminative in classifying

directed networks. Finally, at node-level, we show how the source and target closure coeffi-

cients can be applied in link prediction task. Our code is available at https://github.com/

MingshanJia/explore-local-structure.

4.1 Directed closure coefficient in real-world networks

4.1.1 Datasets. We run experiments on 24 directed networks from 6 different domains:

1. Four trust networks. TR-BTCALPHA and TR-BTC-OTC [37]: two who-trusts-whom net-

works of users on Bitcoin trading platforms Bitcoin Alpha and Bitcoin OTC; TR-ADVOGATO

[38]: a network of trust relationships among users on an online community Advogato;

TR-EPINIONS [39]: a who-trust-whom network of members on a general consumer review

site Epinions.com.

2. Four food webs. FW-MANGROVE [40]: a what-eats-what network among species found in

Florida’s mangroves during the wet season; FW-BAYWET and FW-BAYDRY [41]: two food

webs collected from the cypress wetlands of South Florida during the wet season and the

dry season; FW-LITTLEROCK [42]: a food web among the species found in Little Rock Lake

in Wisconsin.

Fig 6. Case study of the network TR-BTCALPHA. (a). The correlation between directed closure coefficient and node degree (weights ignored). All

nodes are plotted in black dots; (b). The correlation between weighted directed closure coefficient and node strength (weights taken into account). 3654

nodes with positive closure coefficients are plotted in red; 138 nodes with negative closure coefficients are plotted in blue.

https://doi.org/10.1371/journal.pone.0253822.g006
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3. Four citation networks. CITcORA [43]: citations among papers indexed by CORA; CITHEPPH

[44] and CITHEPPH [45]: citations among papers posted on arxiv.org under the hep-ph and

hep-th categories, between 1993 and 2003; CITCITESSER [46]: citations among papers indexed

by the CiteSeer digital library.

4. Four software networks. SW-WEKA [47]: a class dependency network of the Weka 3.6.6

framework; SW-LUCENE [48]: a class dependency network of the Lucene 4.1.0 framework;

SW-JUNG [47]: a class dependency network within the JUNG 2.0.1 and javax 1.6.0.7 library

namespaces; SW-JDK [47]: a class dependency network within the JDK 1.6.0.7 framework.

5. Four web graphs. WEB-STANFORD [49]: a hyperlink network of Stanford University; WEB-

NOTREDAME [50]: a hyper link network of the University of Notre Dame; WEB-BERKSTAN

[49]: a hyperlink network between UC Berkeley and Stanford University; WEB-GOOGLE

[49]: a hyperlink network of a portion of the general WWW released in 2002 by Google.

6. Four word adjacency networks. WA-JAPANESE, WA-ENGLISH, WA-FRENCH and WA-SPANISH

[51]: directed networks of word adjacency in texts of languages including Japanese, English,

French and Spanish.

Table 1 lists some key statistics of these datasets. We see that in all 24 networks, the average

directed closure coefficient is smaller than the average directed clustering coefficient. That is

to say, in all these types of networks, fewer triangles are built from end-node-based open triads

than from centre-node-based open triads. In food webs, the difference between them is not

very big; while in word adjacency networks and two software networks (SW-JUNG and JDK),

the directed closure coefficient is several dozen times smaller than the directed clustering

coefficient.

From the scatter plots of the local directed closure coefficient and the local directed cluster-

ing coefficient (Fig 7), we can see their relationship more clearly. First, in most networks cov-

ered in our study, the two coefficients have a positive Pearson correlation whereas only in five

networks they show negative correlation. However, neither positive nor negative correlations

are strong, ranging from −0.296 to 0.518, indicating the directed closure coefficient captures

different information on triangle formation than the classic directed clustering coefficient. Sec-

ondly, the same type of a network exhibits a similar relationship between the two variables. A

visual inspection of Fig 7 indicates that the plots within one type of network (in the same row)

are more similar to each other than the plots in between these types of networks (between

rows). For example, in citation networks, most points are congregated at the left bottom area;

and in word adjacency networks, most nodes have relatively small directed closure coefficient,

making most points very close to the horizontal axis.

We further explore the correlations amongst the eight patterns, i.e., the four closure pat-

terns and the four clustering patterns. In Fig 8, we observe that certain types of networks dem-

onstrate particular characteristics. Specifically, in trust networks, we find strong correlations

among almost all four closure patterns (except between Ehead and Eend). Also, Cmid and Ccyc are

strongly correlated. In citation networks, two mid-of-path patterns (Cmid and Emid) and two

cyclic patterns (Ccyc and Ecyc) are highly correlated. In software networks, two end-of-path pat-

terns (Cend and Eend) and two cyclic patterns (Ccyc and Ecyc) have higher correlations. In web

graphs, the correlation between Ehead and Emid and the correlation between Eend and Ecyc are

stronger. At last, in word adjacency networks, the four closure patterns are strongly correlated

with each other. These observations lead us to the following experiment, in which we utilise

these patterns as features to classify different types of directed networks.
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4.2 Network classification

This section presents the utility of the proposed four closure patterns in classifying different

types of directed networks. Previous works have shown that a normalised number of directed

triads and triangles, such as the triad significance profile [51] and the clustering signatures

[32], are effective attributes in a network classification task. It motivated us to use the four clo-

sure patterns in the network classification, as they represent a normalised number of directed

triangles from the end-node perspective.

In order to gain an intuitive understanding of the effect of the four closure patterns on

detecting different types of networks, we draw a parallel coordinates plot (Fig 9). Without

complicated conditional rules, it is clearly seen that some types of networks show discrimina-

tive profiles in terms of certain closure patterns. For example, food webs are better separated

from other types of networks with respect to their head closure coefficients, word adjacent net-

works with respect to their end or mid closure coefficients, and web graphs or trust networks

in respect of their cyclic closure coefficients.

4.2.1 Setup. To prepare the classification dataset, we calculate the average four clustering

patterns and the average four closure patterns of each network. We then choose Decision Tree

(DT) as the classifier, not only because it is a powerful algorithm, but also because it enables

convenient calculation of feature importance. We also include two tree-based ensemble mod-

els that are more stable and more powerful than a single DT, i.e., the Random Forest (RF) clas-

sifier and the Gradient Boosted Decision Tree (GBDT) classifier in the experiment.

Table 1. Statistics of datasets, showing the number of nodes (|V|), the number of edges (|E|), the average degree(k), the proportion of reciprocal edges (r), the aver-

age directed clustering coefficient (CD ), and the average directed closure coefficient (ED ). Datasets having timestamps on edge creation are superscripted by (τ).

Network |V| |E| k r CD ED

TR-BTCALPHA
τ 3,783 24,186 6.39 0.832 0.158 0.017

TR-BTC-OTCτ 5,881 35,592 6.05 0.792 0.151 0.013

TR-ADVOGATO 6,539 51,127 7.82 0.307 0.148 0.026

TR-EPINIONS 75,879 509K 6.71 0.405 0.110 0.016

FW-MANGROVE 97 1,492 15.38 0.062 0.261 0.185

FW-BAYWET 128 2,106 16.45 0.029 0.177 0.134

FW-BAYDRY 128 2,137 16.70 0.029 0.176 0.135

FW-LITTLEROCK 183 2,494 13.63 0.034 0.173 0.112

CITcORA 23,166 91,500 3.95 0.051 0.146 0.055

CIT-HEPTh 27,770 353K 12.70 0.003 0.157 0.061

CITHEPPH 34,546 422K 12.20 0.003 0.143 0.053

CITCITESSER 384K 1,751K 4.56 0.010 0.092 0.028

SW-WEKA 1,323 4,844 3.66 0.014 0.201 0.021

SW-LUCENE 2,956 10,872 3.68 0.005 0.217 0.029

SW-JUNG 6,120 50,535 8.26 0.010 0.454 0.006

SW-JDK 6,434 53,892 8.38 0.009 0.443 0.006

WEB-STANFORD 282K 2,312K 8.20 0.277 0.378 0.055

WEB-NOTREDAME 326K 1,497K 4.60 0.507 0.159 0.029

WEB-BERKSTAN 685K 7,601K 11.09 0.250 0.400 0.055

WEB-GOOGLE 876K 5,105K 5.83 0.307 0.370 0.097

WA-JAPANESE 2,704 8,300 3.07 0.073 0.139 0.004

WA-ENGLISH 7,381 46,281 6.27 0.090 0.252 0.005

WA-FRENCH 8,325 24,295 2.92 0.037 0.114 0.002

WA-SPANISH 11,586 45,129 3.90 0.091 0.249 0.002

https://doi.org/10.1371/journal.pone.0253822.t001
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In order to test how useful the four closure patterns are in classifying networks, we fit three

sets of features into these models: first set, the baseline, includes the traditional four clustering

patterns [26, 32]; second set includes the proposed four closure patterns; third set includes

both the clustering patterns and the closure patterns. As the dataset is small, we adopt the

Fig 7. Correlation between the directed clustering coefficient and the directed closure coefficient, together with the Pearson correlation

coefficient ρ. Each dot in the plot represents a node in the network.

https://doi.org/10.1371/journal.pone.0253822.g007
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Fig 8. Heatmap of the correlations among the eight patterns in 24 networks.

https://doi.org/10.1371/journal.pone.0253822.g008
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leave-one-out cross-validation [52] to evaluate the classification performance with different set

of features. Also, because tree-based models are naturally stochastic, we repeat 1000 times and

report the mean accuracy score.

4.2.2 Results and discussion. Table 2 shows the mean accuracy of three classifiers with

different sets of features. Comparing the first row and the second row, we have two classifiers

(DT and GBDT) performing better with the closure patterns and one classifier (RF) perform-

ing better with the clustering patterns. In order to further study how different features influ-

ence the classification results, we take Random Forest classifier as an example and report the

two average confusion matrices of using two different feature sets (Fig 10). We can see that the

clustering patterns are better at classifying software networks and web graphs, while the clo-

sure patterns are better at categorising food webs and word adjacency networks. It indicates

that the information contained in the closure patterns are complementary to the information

contained in the clustering patterns. Therefore, combining both would be expected to yield the

best classification accuracy as also illustrated in the third row of Table 2.

Indeed, comparing the first row and the third row, after adding the four closure patterns to

the four clustering patterns, we observe significant improvement in all three classifiers,

Fig 9. Parallel coordinates plot of 24 networks on eight features, including the four closure patterns and the four clustering patterns. Each vertical

axis represents one feature. In order to put all features on a similar scale, the value of each feature is standardised by removing the mean and scaling to

unit variance. Different types of networks are painted in different colours, as shown in the legend. Distinct braids of line segments are highlighted by

thin rectangles.

https://doi.org/10.1371/journal.pone.0253822.g009

Table 2. Leave-one-out cross-validation accuracy in classifying network types. Three sets of network features (rows)

are tested in three tree-based classifiers (columns).

DT RF GBDT

with four clustering patterns 0.557 0.734 0.667

with four closure patterns 0.631 0.716 0.708

with four clustering patterns & four closure patterns 0.672 0.765 0.797

https://doi.org/10.1371/journal.pone.0253822.t002
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especially in Decision Tree and Gradient Boosted Decision Tree classifiers (more than 19%).

The result demonstrates that the proposed four closure patterns are useful features in telling

apart different types of directed networks.

Naturally, the next question is how important each feature is in classifying these networks.

Adopting the common approach to measure feature importance in tree-based models [52], we

calculate the importance score by computing the normalised total decrease in impurity

brought by each feature. After repeating 1000 times, we report the average importance scores

of the eight features in Fig 11. We observe that in DT and RF classifiers, all four closure pat-

terns have larger importance scores than the four clustering patterns, and the most important

feature is Emid. In GBDT, although Cend has the second largest importance score, overall speak-

ing, the total score of the closure patterns is still larger than that of the clustering patterns. This

analysis illustrates further that the proposed four closure patterns are important features in

network classification.

4.3 Link prediction in directed networks

Many studies [53–58] have shown that future interactions among nodes can be extracted from

the network topology information. The key idea is to compare the proximity or similarity

between pairs of nodes, either from the neighbourhoods [54, 55], the local structures [56] or

the whole network [57, 58].

Fig 10. Average confusion matrices of Random Forest model with different feature sets.

https://doi.org/10.1371/journal.pone.0253822.g010

Fig 11. Importance scores of eight features in three tree-based models classifying network types. The scores of the four closure patterns are plotted

in blue bars while those of the four clustering patterns are plotted in red bars.

https://doi.org/10.1371/journal.pone.0253822.g011
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Most existing methods, however, focus solely on undirected networks. In this experiment,

we show whether the information provided by the local directed closure coefficient can be

used to enhance the performance of link prediction approaches for directed networks. As

shown in [53], the neighbourhood based methods are simple yet powerful. We choose three

classic similarity indices extended for directed networks as the baseline methods [59].

Let Nout(i) be the out-neighbour set of node i (consisting of i’s successors); Nin(i) be the in-

neighbour set (consisting of i’s predecessors). The set of all neighbours N(i) is the union of the

two: N(i) = Nout(i)[Nin(i). For an ordered pair of nodes (s, t), the three baseline indices are

defined below:

1. Directed Common Neighbours index: DiCN(s, t) = |Nout(s) \ Nin(t)|,

2. Directed Adamic-Adar index: DiAAðs; tÞ ¼
P

u2NoutðsÞ\NinðtÞ
1

logjNðuÞj,

3. Directed Resource Allocation index: DiRAðs; tÞ ¼
P

u2NoutðsÞ\NinðtÞ
1

jNðuÞj.

4.3.1 Proposed indices. Combining the idea of the Common Neighbours index and the

source and target closure coefficients (Definition 3.4), we propose two indices to measure the

directed closeness in directed networks.

Definition 4.1. For an ordered pair of nodes (s, t), the closure closeness index, denoted CCI
(s, t); and the extra closure closeness index, denoted ECCI(s, t) are defined as:

CCIðs; tÞ ¼ jNoutðsÞ \ NinðtÞj � ðEsrcðsÞ þ EtgtðtÞÞ;

ECCIðs; tÞ ¼ jNðsÞ \ NðtÞj � ðEsrcðsÞ þ EtgtðtÞÞ:

Unlike the closure closeness index, the extra closure closeness index uses the set of all neigh-

bours, because the source closure coefficient of node s and the target closure coefficient of

node t can also bring in the direction inclination.

4.3.2 Setup. We model a directed network as a graph GD ¼ ðV;EÞ. For networks having

timestamps on edges, we order the edges according to their appearing times and select the first

50% edges and related nodes to form an “old graph”, denoted Gold = (V�, Eold). For networks

not having timestamps, we randomly choose 50% edges and related nodes as Gold and repeat

10 times in the experiment. Apparently, the total number of potential links on node set V�

equals to |V�|2−|Eold|. Let Enew be the set of future edges among the nodes in V�. We apply each

prediction method to output a list containing the similarity scores for all potential links. Each

potential link either represents a positive link or a negative link, depending on whether it

appears in Enew. The PR-AUC value of the prediction is then calculated. Since in very large net-

works it is too expensive to compute all potential links, we randomly sample 3,000 connected

nodes on GD when |V|>10,000 and repeat the above procedures 10 times.

4.3.3 Results and discussion. We compare three baseline methods with two proposed

methods (Definition 4.1) in Table 3. We see that the closure closeness index (CCI) has

recorded the highest PR-AUC value in 12 networks, including all the food webs, all the soft-

ware networks, three web graphs and one citation network. The extra closure closeness index

(ECCI), on the other hand, has recorded the highest PR-AUC value in 6 networks, including

all the word adjacency networks and two trust networks. It suggests that in most directed net-

works, including the local structure information of the source and target closure coefficients

leads to improvement in link prediction. The improvement is remarkable in many networks:

CCI is over 25% better than the baselines in three software networks (SW-WEKA, SW-JUNG

and SW-JDK), and over 10% better in all four food webs and two web graphs (WEB-STANFORD

PLOS ONE Directed closure coefficient and its patterns

PLOS ONE | https://doi.org/10.1371/journal.pone.0253822 June 25, 2021 18 / 23

https://doi.org/10.1371/journal.pone.0253822


and WEB-NOTREDAME). Besides, ECCI is over 100% better than the three baselines in word

adjacency networks.

We also notice that in all four software networks and one citation network (CITCITESSER),

where CCI records the highest precision, ECCI is, however, worse than the baseline methods.

This suggests that sometimes the information provided by the extra neighbours without con-

sidering direction inclination conflicts with that provided by the source and target closure

coefficients. Finding a method that better combines the information of common neighbours

and closure coefficients is an interesting avenue for future study.

5 Related work

In this section, we summarise some additional related work that also measure directed triangle

formation from an end-node perspective. Similar to our work, Yin et al. [60] extended the

local closure coefficient in directed networks by proposing a family of eight coefficients. Their

definition of the local directed closure coefficients of node i are eight scalarsHz
xyðiÞ with x, y, z

2 {i, o} (i and o represent edge direction, incoming or outgoing). One major limitation of this

work is that it lacks a general characterisation that unifies all eight directed triangles con-

structed from end-node based open triads. Our work not only addressed this issue by giving

one general definition, but further proposed the taxonomies of end-node based directed trian-

gles, i.e., the source and target closure coefficients and the four closure patterns.

Table 3. Performance comparison of five methods on link prediction in directed networks (PR-AUC). The best performance in each network is in bold type, second

best in italic.

Network DiCN DiAA DiRA CCI ECCI

TR-BTCAlphaτ 0.0286 0.0291 0.0199 0.0283 0.0347

TR-BTC-OTCτ 0.0275 0.0308 0.0245 0.0265 0.0316

TR-Advogato 0.1076 0.1124 0.0899 0.1052 0.1107
TR-Epinions 0.1536 0.1559 0.1303 0.1520 0.1491

FW-Mangrove 0.2334 0.2438 0.2456 0.2760 0.2666
FW-BayWet 0.1669 0.1705 0.1719 0.1995 0.1903
FW-BayDry 0.1738 0.1771 0.1783 0.2058 0.1887
FW-LittleRock 0.2593 0.2520 0.2443 0.3117 0.2449

CIT-Cora 0.1084 0.1056 0.1007 0.1053 0.0819

CIT-HepTh 0.1742 0.1897 0.1769 0.1833 0.1708

CIT-HepPh 0.1428 0.1459 0.1324 0.1424 0.1339

CIT-Citeseer 0.1054 0.1063 0.1029 0.1221 0.0791

SW-Weka 0.1231 0.1394 0.1399 0.1901 0.0935

SW-Lucene 0.1853 0.1730 0.1678 0.1930 0.1026

SW-JUNG 0.3386 0.3277 0.2732 0.4385 0.1645

SW-JDK 0.3610 0.3377 0.2785 0.4551 0.1787

WEB-Stanford 0.3784 0.3875 0.3330 0.4159 0.2927

WEB-NotreDame 0.2226 0.2310 0.2104 0.2934 0.2703
WEB-BerkStan 0.4002 0.4026 0.3746 0.4784 0.3968

WEB-Google 0.4938 0.5211 0.4803 0.5046 0.3903

WA-Japanese 0.0240 0.0197 0.0154 0.0353 0.0568

WA-Darwin 0.0421 0.0451 0.0337 0.0654 0.0901

WA-French 0.0136 0.0152 0.0138 0.0262 0.0488

WA-Spanish 0.0571 0.0631 0.0537 0.1048 0.1368

https://doi.org/10.1371/journal.pone.0253822.t003
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Romero and Klenberg [61] developed a methodology for studying a particular type of

directed closure process (or “link copying” phenomenon) in information network. Lou et al.

[62] later proposed a graphical model TriFG to predict reciprocity and triadic closure in social

networks. Nevertheless, these two works chose not to take into account all directed triangles

by particularly focusing on the feed-forward triangle.

6 Conclusion

In this paper, we introduced the directed closure coefficient and its patterns to measure

directed triangle formation from an end-node perspective. Through experiments on 24 real-

world networks from six domains, we revealed that 1) in all networks, the average directed clo-

sure coefficient is smaller than the average directed clustering coefficient; 2) the correlation

between the directed closure coefficient and the directed clustering coefficient is weak; 3) dif-

ferent types of networks demonstrate different characteristics in the correlations of the eight

patterns.

We also showed that, at network-level, adding the four closure patterns leads to significant

improvement in classifying directed networks; while at node-level analysis, such as in link pre-

diction, the source and target coefficients can be used together with common neighbours as

effective predictors, especially in food webs, software networks, web graphs and word adja-

cency networks. Due to the simplicity and interpretability in the definitions, we anticipate that

the directed closure coefficient and its patterns will become standard descriptive features and

be incorporated in other network mining tasks.
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