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Measuring Quadrangle Formation in Complex
Networks
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Abstract—The classic clustering coefficient and the lately proposed closure coefficient quantify the formation of triangles from two
different perspectives, with the focal node at the centre or at the end in an open triad respectively. As many networks are naturally rich
in triangles, they become standard metrics to describe and analyse networks. However, the advantages of applying them can be
limited in networks, where there are relatively few triangles but which are rich in quadrangles, such as the protein-protein interaction
networks, the neural networks and the food webs. This yields for other approaches that would leverage quadrangles in our journey to
better understand local structures and their meaning in different types of networks. Here we propose two quadrangle coefficients, i.e.,
the i-quad coefficient and the o-quad coefficient, to quantify quadrangle formation in networks, and we further extend them to weighted
networks. Through experiments on 16 networks from six different domains, we first reveal the density distribution of the two quadrangle
coefficients, and then analyse their correlations with node degree. Finally, we demonstrate that at network-level, adding the average
i-quad coefficient and the average o-quad coefficient leads to significant improvement in network classification, while at node-level, the
i-quad and o-quad coefficients are useful features to improve link prediction.

Index Terms—clustering coefficient, closure coefficient, quadrangle coefficient, network classification, link prediction.
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1 INTRODUCTION

COMPLEX systems across various domains, such as biol-
ogy, ecology, physics and social science, can be mod-

elled as networks that abstract the interactions between
system’s components [1], [2], [3]. Different from a simple
grid graph or a line graph for image or text modelling
respectively, the complexity of networks comes from their
intricate topological structures. Therefore, the study of net-
work structure, especially local structure, underlies a num-
ber of representative and analytical applications such as
representation learning of graphs [4], [5], node-type classifi-
cation [6], [7], link prediction [8], [9] and anomaly detection
[10], [11].

One fundamental and classic statistical metric to assess
the local structure of complex networks is the local clustering
coefficient [12], [13]. It is defined as the percentage of the
number of triangles formed with a focal node to the number
of triangles that the focal node could form with all its
neighbours. Note that the focal node here serves as the
centre node in an open triad (the middle of a length-2 path).
Since many of the real-world networks are triangle-rich, the
clustering coefficient — a measure of triangle formation —
has become a standard metric to describe networks. It has
also been used in numerous applications such as malware
detection [14], language learning [15] and structural role
discovery [16].

A recent study has proposed another interesting measure
of triangle formation, i.e., the local closure coefficient [17]. With
the focal node as the end node of an open triad (the head of
a length-2 path), it is quantified as the percentage of twice
the number of triangles containing the focal node to the
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Fig. 1: The i-quad coefficient and the o-quad coefficient in
comparison with the clustering coefficient and the closure
coefficient. Letters c, e, i and o denote centre node, end
node, inner node and outer node respectively. Node in green
colour is the focal node in each subfigure. Number on node
indicates the node’s distance from the focal node in the open
triad or the open quadriad, which might be closed by an
edge in dotted green line style.

number of all length-2 paths starting from the focal node.
Specifically, the classic local clustering coefficient measures
the extent to which the 1-hop neighbours of a given node
connect to each other, while the local closure coefficient
measures the extent to which the 2-hop neighbours of a
given node connect to the given node itself. This new metric
has been proven to be a useful feature in network analysis
tasks such as community detection and link prediction [17].

In many types of networks, however, quadrangles ap-
pear at a much higher frequency than triangles, and thus
become the most dominant motifs [18]. For instance, in gene
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Fig. 2: An example of the i-quad coefficient and the o-quad
coefficient in a movie recommender network. Circle nodes
represent users, and square nodes represent movies. Node
x1, marked in green, is the focal node. Four nodes and three
solid links form an open quadriad, which if is closed by a
dotted link will form a quadrangle.

regulatory networks, logical circuits networks and neuron
networks, the over-represented ”bi-fan” structure (a specific
directed quadrangle) serves to carry information or signals
from previous units to following ones; while in food webs,
the highly recurring ”bi-parallel” structure (another type
of directed quadrangle) describes how energy flows in an
ecosystem.

In order to better describe and analyse the local structure
of networks, we propose two metrics quantifying the forma-
tion of quadrangles, i.e., the i-quad coefficient and the o-quad
coefficient. There are two definitions in that two categories
of nodes — the inner node or the outer node — can be
distinguished from the node’s position in an open quadriad
(also called intransitive quadriad in some works [19]). The
i-quad coefficient, with the focal node functioning as the
inner node of an open quadriad, measures the extent to
which the focal node’s 2-hop neighbours connect to its 1-hop
neighbours. The o-quad coefficient, having the focal node as
the outer node of an open quadriad, measures the extent to
which the focal node’s 3-hop neighbours connect to itself
(Figure 1).

Although the focus in this paper lies on the general
unipartite networks, the proposed i-quad and o-quad coeffi-
cients provide interesting insights into bipartite networks as
well. Suppose that in a recommender network where node
type x denotes users and node type y denotes movies, an
edge between xi and yi represents user xi likes movie yi.
Take the i-quad coefficient for instance (Figure 2a), given
x1, the focal user, likes movies y1 and y2, while x2 likes
y1, it measures whether x2 likes y2. In other words, the i-
quad coefficient gives the extent to which other users have
a similar preference as the focal user. Likewise, for the o-
quad coefficient, given x2 likes y1 and y2, while x1, the focal
node, likes y1, it measures whether x1 likes y2 (Figure 2b).
That is to say, the o-quad coefficient gives the extent to
which the focal user shares a similar opinion with other
users. Interestingly, this explanation coincides with the idea
of collaborative filtering [20], [21].

In addition to the basic network structure, a deeper un-
derstanding of complex systems sometimes requires taking
into account the intensity or the strength of interactions
between components. This is achieved by assigning weights
to links. For instance, in unipartite networks, weighted links
are used to represent the frequency of contact in a com-
munication network, or the intensity of the traffic flow in

a transportation network; in bipartite networks, especially
recommender networks, weights are added to indicate how
much a person likes a product or how often he or she
purchases it. Accordingly, we introduce the weighted i-quad
coefficient and the weighted o-quad coefficient in order to unveil
the quadrangle formation in real weighted networks.

Our empirical study on 16 real-world networks from six
domains has revealed several basic and interesting proper-
ties of the two proposed coefficients. First, we find that in
most types of networks, the average o-quad coefficient is
smaller than the average i-quad coefficient, which is also
demonstrated through their cumulative density distribu-
tions. Secondly, we show that the o-quad coefficient has a
strong positive correlation with node degree, whereas the
correlation between the i-quad coefficient and node degree
is very weak. We then provide a theoretical justification of
this phenomenon under the configuration model.

Last but not least, we illustrate how the proposed quad-
rangle coefficients can be powerful features for network
analysis and inference tasks. In a network classification task,
we show that different types of real-world networks are
significantly better clustered by adding the two quadrangle
coefficients. Furthermore, in a link prediction task, we also
show that the i-quad and o-quad coefficients can be used as
effective predictors to improve the performance, especially
in food webs, protein-protein interaction networks and in-
frastructure networks.

To sum up, in order to measure the formation of quad-
rangles in networks, we propose the i-quad coefficient and
the o-quad coefficient, based on the inner node and the outer
node of an open quadriad respectively. We further extend
them to weighted networks. Through extensive experiments
on real-world networks, we show not only the intrinsic
properties of the two coefficients, but also investigate how
they can be utilised in common network analysis task and
machine learning tasks. The remainder of this paper is
organised as follows. Section 2 introduces notations and
background knowledge of clustering coefficient and closure
coefficient. Section 3 presents and exemplifies the proposed
quadrangle coefficients, whereas Section 4 provides details
of the evaluation, including the datasets, experiment setups,
performance measures, experiment results and our findings.
Section 5 briefly contemplates the related works, and finally
we conclude this paper in Section 6.

2 BACKGROUND AND MOTIVATING EXAMPLE

This section first introduces the basic concepts such as
the classic clustering coefficient and the recently proposed
closure coefficient. We then illustrate how these coefficients
are calculated in the case of a small-scale network that serves
as an example.

2.1 Clustering Coefficient

The clustering coefficient, or more specifically the local
clustering coefficient, was originally proposed in order to
measure the cliquishness of a neighbourhood in networks
[12]. It has since become one of the most commonly used
metrics for network structure, together with such measures
as degree distribution, path length, connected components,
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etc. Let G = (V,E) be an undirected graph on a node set V
(the number of nodes is |V |) and an edge set E (the number
of edges is m), without self-loops and multiple edges. We
denote the set of neighbours of node i as N(i), and thus
the degree of node i, denoted as di, equals to |N(i)|. An
open triad is a directionless length-2 path. For example, in
an open triad ijk, where an edge connects node i and j, and
another edge connects node j and k, we do not distinguish
between path i→ j → k and path k → j → i.

For any node i ∈ V , its local clustering coefficient, denoted
C(i), is defined as the number of triangles containing node
i (denoted T (i)), divided by the number of open triads with
i as the centre node (denoted OTC(i)):

C(i) =
T (i)

OTC(i)
=

1
2

∑
j∈N(i) |N(i) ∩N(j)|

1
2di (di − 1)

. (1)

In other words, it is the fraction of open triads, where the
focal node serves as the centre node, that actually form
triangles. By definition, C(i) ∈ [0, 1].

In order to get a network-level measurement, the average
clustering coefficient is introduced by averaging the local
clustering coefficient over all nodes (an undefined local
clustering coefficient is treated as zero):

C =
1

|V |
∑
i∈V

C(i). (2)

An alternative way to measure clustering at the network-
level is the global clustering coefficient [22], which is defined
as the fraction of open triads that form triangles in the entire
network:

C =

∑
i∈V

∑
j∈N(i) |N(i) ∩N(j)|∑
i∈V di (di − 1)

. (3)

Note that the global clustering coefficient is not equivalent
to the average clustering coefficient. In Equation 3, we
calculate the number of triangles in the entire network, then
divided by the number of open triads across the network.
Since a node with high degree forms more open triads
and also tends to form more triangles, the global clustering
coefficient thus puts more weight on hub nodes. On the
contrary, in Equation 2, we first calculate the sum of local
clustering coefficient of each node, then average over the
number of nodes, which gives equal weight on each node.

2.2 Closure Coefficient
Different from the ordinary centre node based perspective
in the clustering coefficient, another interesting measure
of triangle formation, i.e., the local closure coefficient, has
recently been proposed [17]. The focal node in the closure
coefficient serves as the end node of an open triad. As Yin et
al. [17] has revealed, this subtle difference in measurement
leads to very different properties from those of the cluster-
ing coefficient.

Adopting the notations of Section 2.1, the local closure
coefficient of node i, denoted E(i), is defined as twice the
number of triangles formed with i, divided by the number
of open triads with i as the end node. (denoted OTE(i)):

E(i) =
2T (i)

OTE(i)
=

∑
j∈N(i) |N(i) ∩N(j)|∑

j∈N(i)(dj − 1)
. (4)
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(a). One open triad with the focal 
node serving as the central node 

(b). Two open triads with the focal 
node serving as the end node 

Fig. 3: Two types of open triads in triangle formation.
Among three nodes i, j and k, node i, painted in green,
is the focal node.

In other words, it is the fraction of open triads, where
the focal node serves as the end node, that actually form
triangles. T (i) is multiplied by two for the reason that each
triangle contains two open triads with i as the end node.
When a triangle is actually formed, the focal node can be
viewed as the centre node in one open triad or as the end
node in two open triads (Figure 3). Obviously, E(i) ∈ [0, 1].

At the network-level, the average closure coefficient is then
defined as the mean of the local closure coefficient over all
nodes (an undefined local closure coefficient is treated as
zero):

E =
1

|V |
∑
i∈V

E(i). (5)

Analogous to the global clustering coefficient (Equa-
tion 3), the global closure coefficient, denoted E, is defined
as:

E =

∑
i∈V

∑
j∈N(i) |N(i) ∩N(j)|∑

i∈V
∑
j∈N(i)(dj − 1)

. (6)

The global closure coefficient (Equation 6) is actually
equivalent to the global clustering coefficient (Equation 3),
as globally the difference of the position of the focal node
will not surface.

2.3 A motivating example

We illustrate how the two coefficients of triangle formation
are calculated via a small yet real network. Figure 4a shows
a simplified food web of the backwaters of Kerala, India
[23]. It is composed of 9 nodes and 18 edges. Each node
represents a species and each edge represents the flow of
food energy from one species to another.

Figure 4b gives a detailed table of the number of tri-
angles T (i), the number of centre-node-based open tri-
ads OTC(i), the number of end-node-based open triads
OTE(i), the local clustering coefficient C(i) and the local
closure coefficient E(i) for each node. Also, the last row
gives the average clustering coefficient, the average closure
coefficient and the global clustering/closure coefficient, all
of which are around 0.20.

Different from some triangle-rich networks, we find
many more quadrangles than triangles in this food web
(23 versus 4), which motivates us to propose measuring
quadrangle formation instead. In the next section, new mea-
sures to quantify information about quadrangles in complex
networks are proposed, and we show how we can leverage
the fact that some networks are quadrangle and not triangle
rich.



JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2015 4

1 2

6543

7 8 9

1: basic food
2: detritus
3: prawns and shrimps
4: benthos
5: zooplankton herbivores

T(i) OTC(i) OTE(i) C(i) E(i)

 0 6 12 0 0

 0 6 12 0 0

 2 10 15 0.2 0.27

 0 3 9 0 0

 1 6 13 0.17 0.15

 1 6 12 0.17 0.17

 2 6 13 0.33 0.31

 4 10 15 0.40 0.53

 2 3 11 0.67 0.36

�̅� = 0.21  𝐸 = 0.20  C = E = 0.21 

Q(i) OQI(i) OQO(i) I(i) O(i)

 13 36 37 0.72 0.70

 13 36 37 0.72 0.70

 16 56 39 0.57 0.82

 7 18 31 0.78 0.45

 12 37 38 0.65 0.63

 10 34 36 0.59 0.56

 8 35 36 0.46 0.44

 9 52 36 0.35 0.50

 4 18 32 0.44 0.25

𝐼 ̅ = 0.59 𝑂 = 0.56 I = O = 0.57

(b). Calculation of clustering/closure coef. (c). Calculation of i-quad/o-quad coef.

6: fish herbivores
7: other carnivores
8: fish carnivores
9: human

(a). A small food web

Fig. 4: A motivating example.

3 TWO QUADRANGLE COEFFICIENTS

The clustering coefficient and the closure coefficient provide
us two ways of measuring triangle formation. In some
networks however, we care more about the formation of
quadrangles. Also, triangles do not exist in bipartite net-
works and the most basic enclosed structure in this repre-
sentation of networks is quadrangle. In this section, we first
propose two coefficients measuring quadrangle formation,
based on two different positions of the focal node in an
open quadriad. Then, we further extend them to weighted
networks.

3.1 I-quad coefficient
Recall that an open quadriad is a directionless length-3 path
(Figure 1d). In an open quadriad ijkl, for instance, where
three edges exist between node pairs (i, j), (j, k) and (k, l),
we name nodes j and k as inner nodes. In contrast, nodes i
and l are outer nodes. Obviously, an inner node has a degree
of two, and an outer node has a degree of one. Further, an
open quadriad with the focal node acting as the inner node
is called inner-node-based open quadriad of that node; an
open quadriad with the focal node acting as the outer node
is named outer-node-based open quadriad of that node.

Conforming with the definition of the classic clustering
coefficient which measures whether the two endpoints of
a centre-node-based open triad are connected by a clos-
ing edge, we propose the i-quad coefficient that measures
whether the two endpoints of an inner-node-based open
quadriad are connected by a closing edge. It is quantified
as the fraction of inner-node-based open quadriads that
actually form quadrangles. Concretely, the i-quad coefficient
of node i, denoted I(i), is defined as twice the number of
quadrangles formed with i (denoted asQ(i)), divided by the
number of open quadriads with i as the inner node (denoted
as OQI(i)):

I(i) =
2Q(i)

OQI(i)

=

∑
j∈N(i)

∑
k∈(N(j)−i) |N(k) ∩N(i)− j|∑

j∈N(i)

∑
k∈(N(j)−i) |N(i)− j − k|

.

(7)

In the above equation, j is in i’s neighbour set, and k is
in j’s neighbour set excluding i. Q(i) is multiplied by two
because each quadrangle can be viewed as constructed from
two open quadriads with i as the inner node. By definition,
it is obvious that I(i) ∈ [0, 1].

Then, we define the average i-quad coefficient at the
network-level, as the mean of the i-quad coefficient over
all nodes (undefined ones are treated as zeros):

I =
1

|V |
∑
i∈V

I(i). (8)

In the case of a random network where each pair of nodes
is connected with a probability p, the expected value of the
average i-quad coefficient is also p, i.e., E[I] = p.

An alternative way of measuring quadrangle formation
at the network-level is the global i-quad coefficient, which is
defined as the fraction of inner-node-based open quadriads
that form quadrangles in the entire network:

I =

∑
i∈V

∑
j∈N(i)

∑
k∈(N(j)−i) |N(k) ∩N(i)− j|∑

i∈V
∑
j∈N(i)

∑
k∈(N(j)−i) |N(i)− j − k|

. (9)

The numerator of the above equation can be viewed as eight
times the number of quadrangles in the entire network (each
node of a quadrangle contributes two counts), then divided
by twice the number of open quadriads with each node
acting as the inner node.

Although both the average i-quad coefficient and the
global i-quad coefficient can be used as metrics to describe
quadrangle formation in the entire network, they are cal-
culated differently. The average i-quad coefficient adds up
the i-quad coefficient of every node then divides it by
the number of nodes, giving each node equal weight. In
contrast, the global i-quad coefficient gives nodes that form
numerous quadrangles more weight, by first totalling the
numerator of the i-quad coefficient then dividing it by the
sum of the denominator of the i-quad coefficient.

3.2 O-quad coefficient
Inspired by the closure coefficient in measuring triangle
formation, we move the focal node from the inner node
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(b). Two inner-node-based open quadriads

(c). Two outer-node-based open quadriads

(a). A quadrangle

Fig. 5: Two types of open quadriads in a quadrangle. Node
i, depicted in green, is the focal node, among four nodes i,
j, k and l.

to the outer node of an open quadriad, thus proposing
the o-quad coefficient in order to measure the formation of
quadrangle from a different perspective.

The significance of introducing the o-quad coefficient
is twofold. First, the o-quad coefficient takes into account
length-3 paths emanating from the focal node, and therefore
has a larger scope of the network structure. Second, when a
quadrangle is formed, the closing edge (the edge that closes
the outer-node-based open quadriad) is incident to the focal
node. This leads to some special properties, comparing to
the i-quad coefficient where the closing edge is not incident
to the focal node. We show in Section 4 that the cumulative
distribution curve of the o-quad coefficient is above that of
the i-quad coefficient, and that the o-quad coefficient tends
to increase with node degree.

In a similar way, the o-quad coefficient of node i, de-
noted as O(i), is defined as the fraction of open quadriads
with i as the outer node that are closed:

O(i) =
2Q(i)

OQO(i)

=

∑
j∈N(i)

∑
k∈(N(j)−i) |N(k) ∩N(i)− j|∑

j∈N(i)

∑
k∈(N(j)−i) |N(k)− j − i|

,

(10)

where OQO(i) is the number of outer-node-based open
quadriads of node i, and Q(i) is the number of quadran-
gles containing i. Q(i) is multiplied by two because each
quadrangle contains two open quadriads with i as the outer
node. In a quadrangle, the focal node can serve as the inner
node in two open quadriads or as the outer node in another
two open quadriads (Figure 5). Obviously, O(i) ∈ [0, 1].

In order to measure at the network level, the average
o-quad coefficient is defined by averaging the o-quad co-
efficient over all nodes (an undefined o-quad coefficient is
treated as zero):

O =
1

|V |
∑
i∈V

O(i). (11)

Analogous to the global i-quad coefficient, the global o-
quad coefficient can be defined as the fraction of outer-node-

based open quadriads that form quadrangles in the entire
network:

O =

∑
i∈V

∑
j∈N(i)

∑
k∈(N(j)−i) |N(k) ∩N(i)− j|∑

i∈V
∑
j∈N(i)

∑
k∈(N(j)−i) |N(k)− j − i|

. (12)

As the equivalence between the global clustering coefficient
and the global closure coefficient, this definition of global
o-quad coefficient is actually not different from the global
i-quad coefficient (Equation 9) since globally the difference
of the position of the focal node will not arise.

Revisiting the motivating example, Figure 4c gives a
detailed table of the number of quadrangles Q(i), the num-
ber of inner-node-based open quadriads OQI(i) and the
number of outer-node-based open quadriads OQO(i) of
each node, based on which the i-quad coefficient I(i) and
the o-quad coefficient O(i) are calculated. Also, the last row
of this table gives the three network-level measures, i.e., the
average i-quad coefficient, the average o-quad coefficient
and the global i-quad/o-quad coefficient, which are more
than 2.5 times larger than those metrics measuring triangles
formation.

3.3 Quadrangle coefficients in weighted networks

Until now, the discussion has been focused on binary net-
works, where the value of each link is either one or zero.
In many networks, however, we need a more accurate
representation of the relationships between nodes, such as
the frequency of contact in a communication network, or the
rating of a product given by a consumer in a recommender
network, etc. This kind of information is usually expressed
as a strength of the relationship and we use weighted
networks to represent it. Therefore, we are interested in
extending the two quadrangle coefficients to networks that
allow for weights of the relationships.

Several versions of weighted clustering coefficient have
been proposed in order to measure triangle formation in
weighted networks [24], [25], [26], [27]. For example, Onnela
et al. [25] proposed to sum over the geometric averages
of the three weights in formed triangles, divided by the
number of potential triangles. Alternatively, Zhang and
Horvath. [26] chose to sum simply over the products of the
three weights in formed triangles, divided by the total of
products of the two weights of all open triads, implying the
triadic closing edges taking the maximum weight.

Adopting a strategy similar to the one proposed by
Zhang and Horvath [26], we introduce the weighted i-
quad coefficient and the weighted o-quad coefficient to
measure quadrangles formation in weighted networks. Let
GW = (V,E) be a weighted graph without self-loops and
multiple edges. The weight of a link between any node i
and j is denoted wij (wij ∈ [0, 1] after normalisation by
the maximum weight). For any node i ∈ V , the weighted i-
quad coefficient, denoted as IW(i), and the weighted o-quad
coefficient, denoted as OW(i), are defined as:

IW(i) =

∑
j∈N(i)

∑
k∈(N(j)−i)

∑
l∈(N(i)∩N(k)−j)

wijwjkwilwlk∑
j∈N(i)

∑
k∈(N(j)−i)

∑
l∈(N(i)−j−k)

wijwjkwil
,

(13)
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 = 0.619
(d). C-elegans 
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Fig. 6: Correlation of quadrangle coefficients and weighted
quadrangle coefficients in three different networks. First
row is the correlation of i-quad coefficient I(i) and weighted
i-quad coefficient IW(i), second row is the correlation of
o-quad coefficient O(i) and weighted o-quad coefficient
OW(i). The weighted networks are: (1) C-elegans, the neural
network of the Caenorhabditis elegans worm [12]; (2) US-
Airport, the network of the 500 busiest commercial airports
in the United States [28]; (3) Soc-UCI, the social network of
online community for students at University of California,
Irvine [29].

OW(i) =

∑
j∈N(i)

∑
k∈(N(j)−i)

∑
l∈(N(i)∩N(k)−j)

wijwjkwilwlk∑
j∈N(i)

∑
k∈(N(j)−i)

∑
l∈(N(k)−j−i)

wijwjkwkl
.

(14)
When the graph becomes binary (unweighted), i.e.,

wij = 1, the above two weighted quadrangle coefficients
degrade to their unweighted versions (Equation 7 and Equa-
tion 10). The average weighted i-quad coefficient and the av-
erage weighted o-quad coefficient are then defined respec-
tively as: IW = 1

|V |
∑
i∈V I

W(i), OW = 1
|V |

∑
i∈V O

W(i).
We can see from Figure 6 that in different weighted

networks, the correlation of i-quad coefficient and weighted
i-quad coefficient (and the correlation of o-quad coefficient
and weighted o-quad coefficient) is also different. In other
words, when weights are considered in calculating quad-
rangle coefficients, the weighted i-quad coefficient and the
weighted o-quad coefficient capture different information
compared to their unweighted counterparts.

3.4 Computational cost
At the end of this section, we give a brief discussion about
the computational efficiency of the above mentioned met-
rics. From Equation 7 and Equation 10, we can see that
to compute the i-quad coefficient or the o-quad coefficient
for a single node, the worst-case cost is O((kmax)3), where
kmax is the maximum degree of the network. Therefore, the
worst-case cost for computing the two coefficients for every
node in a network is O(|V | · (kmax)3), which is not cheap.
Fortunately, however, since most real-world networks are
scale-free and exhibit heavy-tailed degree distribution, the

actual cost is far less expensive than this. For example, it
takes about 22.5 seconds to compute the average i-quad
coefficient on the CORA citation network which contains
23, 166 nodes and 89, 157 edges (test on Intel Xeon Gold
6238R @ 2.2GHz with 180GB of RAM).

4 EXPERIMENTS AND ANALYSIS

In this section, we analyse the proposed quadrangle co-
efficients on different types of real-world networks and
demonstrate their usage in some common applications1.

4.1 Quadrangle coefficients in real-world networks
Datasets. We run experiments on 16 networks of six cate-
gories (collected from Konect [30] and Snap [31]):

1) Food webs. FW-FLORIDADRY [32] and FW-
LITTLEROCK [33]: energy transfer relationships col-
lected from the cypress wetlands of South Florida
and the Little Rock Lake of Wisconsin. Nodes repre-
sent species and an edge denotes that one species
feeds on another (edge direction and weight are
ignored).

2) Social networks. EMAILEU [34]: a temporal email
network from a European research institution (a
temporal edge denotes that an email is exchanged
between two persons at a certain time); CLGMSG
[35]: temporal online message interactions between
UCIrvine college students (a temporal edge means
that a message is exchanged between two students
at a certain time); BTCALPHA [36]: a temporal who-
trusts-whom network of users on a Bitcoin trading
platform Bitcoin Alpha (edge direction and weight
are ignored); TWITCHFR [37]: a network of gamers
who stream in French, where nodes are the users
and edges are mutual friendships between them.

3) Protein-protein interaction (PPI) networks. STELZL
[38], FIGEYS [39], VIDAL [40] and INTACT [41]: four
networks of interactions between proteins in Homo
sapiens. Nodes represent proteins and an edge de-
notes the physical contact between two proteins in
the cell.

4) Citation networks. DBLP [42] and CORA [43]: two
academic publication citation networks. DBLP con-
tains temporal information on edges. Nodes repre-
sent papers, and an edge means that one paper cites
another paper (direction is ignored).

5) Infrastructure networks. RD-NEWYORK and RD-
BAYAREA [30]: two road networks for New York
City and San Francisco Bay Area. Nodes represent
intersections and endpoints, and the roads connect-
ing them are represented by edges.

6) Q&A networks. MATHOVFL. and ASKUBUNTU [34]:
two temporal Q&A networks derived from Stack
Exchange. Nodes represent users, and a temporal
edge means that one user answers another user’s
question at a certain time (edge direction is ignored).

Observations. Table 1 lists some key statistics including the
proposed coefficients of these networks. We observe that in

1. Our code is available at https://github.com/MingshanJia/
explore-local-structure.

https://github.com/MingshanJia/explore-local-structure
https://github.com/MingshanJia/explore-local-structure
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TABLE 1: Statistics of datasets, showing the number of nodes (|V |), the number of edges (|E|), the average degree (〈k〉),
the average clustering coefficient (C), the average closure coefficient (E), the average i-quad coefficient (I) and the average
o-quad coefficient (O). In order to facilitate comparison, the last four columns give the quotient of C and E, the quotient of
I and O, the quotient of I and C , and the quotient of O and E respectively. Datasets having timestamps on edge creation
are superscripted by (τ ).

Network |V | |E| 〈k〉 C E I O C/E I/O I/C O/E

FW-FLORIDADRY 128 2,106 32.91 0.335 0.261 0.428 0.353 1.280 1.213 1.280 1.351
FW-LITTLEROCK 183 2,452 26.80 0.323 0.208 0.550 0.339 1.553 1.622 1.704 1.631

SOC-EMAILEUτ 986 16,064 32.58 0.407 0.153 0.231 0.102 2.659 2.267 0.568 0.667
SOC-CLGMSGτ 1,899 13,838 14.57 0.109 0.022 0.081 0.029 5.082 2.806 0.744 1.347
SOC-BTCALPHAτ 3,783 14,124 7.47 0.177 0.020 0.058 0.013 8.937 4.448 0.326 0.655
SOC-TWITCHFR 6,549 113K 34.41 0.222 0.029 0.109 0.034 7.557 3.202 0.493 1.163

PPI-STELZL 1,706 3,191 3.74 0.006 0.002 0.038 0.021 3.827 1.806 6.332 13.416
PPI-FIGEYS 2,239 6,432 5.75 0.040 0.005 0.082 0.043 7.321 1.908 2.064 7.918
PPI-VIDAL 3,133 6,726 4.29 0.064 0.025 0.040 0.018 2.531 2.291 0.632 0.698
PPI-INTACT 8,077 26,085 6.46 0.083 0.016 0.063 0.021 5.101 2.993 0.750 1.278

CIT-DBLPτ 12,590 49,651 7.89 0.117 0.026 0.060 0.014 4.529 4.175 0.510 0.553
CIT-CORA 23,166 89,157 7.70 0.266 0.100 0.107 0.047 2.667 2.285 0.402 0.469

RD-NEWYORK 264K 365K 2.76 0.021 0.021 0.068 0.069 1.012 0.990 3.291 3.365
RD-BAYAREA 321K 397K 2.47 0.017 0.016 0.038 0.038 1.020 0.992 2.284 2.350

QA-MATHOVFL.τ 21,688 88,956 8.20 0.094 0.005 0.031 0.004 17.956 7.305 0.333 0.817
QA-ASKUBUNTUτ 138K 262K 3.81 0.015 5e-4 0.004 5e-4 31.708 7.867 0.243 0.981

most types of networks (except road networks), the aver-
age o-quad coefficient is smaller than the average i-quad
coefficient. That is to say, for the majority of nodes in these
types of networks, fewer quadrangles are built from the
outer-node-based open quadriads, compared to the number
of quadrangles constructed from the inner-node-based open
quadriads. This phenomenon is better revealed through the
cumulative distribution function (CDF) in Figure 7: the CDF
curve of the o-quad coefficient is above that of the i-quad
coefficient when the coefficient value is small (except in RD-
NEWYORK).

We can also observe that in all food webs, two PPI
networks (PPI-STELZL and PPI-FIGEYS) and all road net-
works, the average i-quad coefficient is larger than the
average clustering coefficient (I > C); and the average o-
quad coefficient is larger than the average closure coefficient
(O > E). In other words, these networks are more inclined
to form quadrangles than to form triangles, which leads us
to the following experiments.

4.2 Correlation with node degree
Since node degree is one of the most important and widely
used concepts in network science, we study how the two
quadrangle coefficients vary with it. We start by conduct-
ing an empirical analysis in real networks, followed by a
theoretical justification under the degree-preserving random
graph model.

We choose one network in each category and plot the
correlation of quadrangle coefficients and degree (Figure 8).
We observe a strong positive correlation between the o-quad
coefficient and the node degree: the average o-quad coeffi-
cient is small among nodes with small degree and becomes
larger as the average node degree increases. In contrast, the
correlation between the i-quad coefficient and the degree
is weak: the average i-quad coefficient is large (compared
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Fig. 7: Cumulative distribution curve of the i-quad coeffi-
cient I(i) (in green colour) and the o-quad coefficient O(i)
(in purple colour) in six real-world networks of different
types.

to the average o-quad coefficient) when the average node
degree is small and does not change too much as the average
degree increases. Since most real-world networks are scale-
free and exhibit heavy-tailed degree distribution, it also
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Fig. 8: Correlation of two quadrangle coefficients with node
degree in six real-world networks. Nodes are grouped into
logarithmic bins in ascending order by degree, then average
i-quad and o-quad coefficients are calculated in each bin.

explains why the average i-quad coefficient is bigger than
the average o-quad coefficient in most networks studied in
our work (Table 1).

To better understand the correlation between the quad-
rangle coefficients and the node degree, we give a the-
oretical explanation under the configuration model [44].
Constrained by a given degree sequence, the configuration
model generates a network by placing edges between nodes
uniformly at random. This can be achieved through a stub-
matching process, in which the probability of forming an
edge between node i and node j equals di ·dj/2m (assuming
d2i 6 2m for all i). Now we give the following proposition.

Proposition 1. Let V be a set of n nodes with specific degrees
d1, d2, ..., dn, on which graph G is generated from the configu-
ration model. Let m = 1

2

∑n
i=1 di denote the number of edges

and k̄ = (
∑
i d

2
i )/(

∑
i di) be the expected degree when a node is

chosen with probability proportional to its degree. As n→∞, for
any node i ∈ V , its local i-quad coefficient satisfies:

E[I(i)] =
(k̄ − 1)2

2m
,

and its local o-quad coefficient satisfies:

E[O(i)] =
(di − 1) · (k̄ − 1)

2m
.

Proof. For any open quadriad with node i as an inner node,
we denote one outer node by k and another outer node by l
(Figure 9a). The probability that this open quadriad is closed
equals the probability of having an edge between node k
and l, which is (dk − 1) (dl − 1) /2m in the configuration

(a). Node i as an inner node  (b). Node i as an outer node 

i

j

k

l

i

j

k

l

Fig. 9: Two types of quadrangle formation via stub match-
ing. (a) Quadrangle is potentially formed with the focal
node i acting as the inner node. The closing edge is between
node k and l. (b) Quadrangle is potentially formed with the
focal node i acting as the outer node. The closing edge is
between node i and l.

mode. The reason of subtracting 1 from dk and dl is that
one stub of node k (and node l) has already been used in
forming the open quadriad.

Now, we show that as n → ∞, E [dk] = E [dl] = k̄.
Via stub matching, any node, other than node i and j, can
form an edge with node j and thus become one outer node
of the open quadriad. The probability of node k being this
node is proportional to its degree, which is dk∑

k∈V,k 6=i,j dk
.

Therefore, we have E [dk] =
∑
k∈V,k 6=i,j dk ·

dk∑
k∈V,k 6=i,j dk

.

When n → ∞, E [dk] =
∑
k∈V dk ·

dk∑
k∈V dk

= k̄. Similarly,
we have E [dl] = k̄.

In short, we have:

E[I(i)] = E [(dk − 1) (dl − 1) /(2m)]

=
(E [dk]− 1) · (E [dl]− 1)

2m
=

(k̄ − 1)2

2m
.

Likewise, for any open quadriad with node i as an outer
node, we denote the other outer node by l (Figure 9b). And
we have:

E[O(i)] = E [(di − 1) (dl − 1) /(2m)]

=
(di − 1) · (E [dl]− 1)

2m
=

(di − 1) · (k̄ − 1)

2m
.

Although Proposition 1 is given under the configuration
model, we see from Figure 8 that this property is well
preserved in most real-world networks. Only that in road
networks, i.e., RD-NEWYORK and RD-BAYAREA, the aver-
age i-quad coefficient and the average o-quad coefficient are
very similar (Table 1), and they exhibit similar correlations
with node degree. This is because the variance of node
degree is extremely small (less than one) in this type of
network, resulting in di close to k̄, and thus E[O(i)] close
to E[I(i)].

4.3 Network classification
In this section, we exhibit how useful the proposed quadran-
gle coefficients are in classifying different types of networks.
Previous works have shown that normalized number of
triads and triangles (triad significance profile [45] and clus-
tering signatures [46]) are effective attributes in a network
classification task. It motivated us to use the two quadrangle
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Fig. 10: Two-dimensional visualisation of K-means clustering on PCA-reduced data, without and with quadrangle
coefficients (left figure and right figure respectively). Six clusters are labelled from 1 to 6, and painted in different colours.
Centroids of clusters are marked as black crosses. Data points are plotted in different shapes and colours representing their
ground truth categories, as shown in the legend.

coefficients in the network classification, as they represent a
normalized number of quadrangles.

We can see in Table 1 that the quotient of the average i-
quad coefficient and the average clustering coefficient (I/C),
and the quotient of the average o-quad coefficient and the
average closure coefficient (O/E) are contrasting in different
types of networks. It is intuitive to expect the two quad-
rangle coefficients will be able to add useful discriminative
information to a set of features, in addition to the average
clustering coefficient and the average closure coefficient, for
improving of the network classification accuracy.

Setup. We first prepare the data by using the three classic
topological features of undirected networks, i.e., the average
node degree 〈k〉, the average clustering coefficient C and
the average closure coefficient E. We then employ a K-
means clustering algorithm to partition the 16 networks
into 6 clusters. The initial centroids are chosen randomly,
and we repeat the algorithm with different sets of initial
centroids for 1000 times, returning the best results in terms
of homogeneity, completeness and V-measure score [47].
The maximum number of iterations for a single run is
set to 300. To compare, we keep the experiment setting
unchanged, but add the proposed quadrangle coefficients
(i.e., the average i-quad coefficient I and the average o-quad
coefficient O) to the baseline features.

Results and discussion. The classification results are
given in Table 2. Homogeneity measures whether the sam-
ples from a single class belong to a single cluster; complete-
ness measures whether all members of a class are assigned
to the same cluster; V-measure score is the harmonic mean
between homogeneity and completeness. After adding the
two quadrangle coefficients, we observe significant im-
provement in all three measures (13% increase in homo-
geneity, 10% increase in completeness and 15% increase in
V-measure score). It indicates that the information contained
in the quadrangle coefficients are complementary to the
information contained in the clustering and closure coeffi-
cients, making them discriminative features in classifying

networks.

TABLE 2: Homogeneity (Homo.), completeness (Compl.)
and V-measure score of the K-means clustering on 16 real-
world networks, without and with the quadrangle coeffi-
cients (first row and second row respectively).

Features Homo. Compl. V-measure

without quadrangle coefs. 0.700 0.764 0.707

with quadrangle coefs. 0.793 0.841 0.816

In order to further analyse the results, we adopt the Prin-
cipal Component Analysis (PCA) algorithm to compress the
data to a two-dimensional space, and thus visualise the clas-
sification results (Figure 10). We can see from Figure 10(a)
that the networks are poorly classified by just using three
classic topological features (without the two quadrangle co-
efficients). Only two road networks are correctly allocated to
cluster 2. Four PPI networks are separated into two clusters,
resulting in a low completeness score; and two food webs
are grouped together with two social networks, leading to
a low homogeneity score. In contrast, when the quadrangle
coefficients are included in the feature set, these networks
are better clustered, especially the types of networks that are
relatively rich in quadrangles (Figure 10(b)). Two food webs
and two road networks are perfectly allocated to cluster 6
and cluster 2, respectively. In addition to that, four PPI net-
works are kept together within the same cluster, increasing,
therefore, the completeness score. We observe, however, no
obvious improvement in clustering social networks, citation
networks and Q&A networks. This is because quadrangles
are relatively underrepresented in these types of networks
(for example, their average i-quad coefficients are less than
their average clustering coefficients).

Since two more dimensions are added in the comparison,
is the result statistically significant, i.e., would any added
features lead to the same level of improvement? To answer
this question, we conduct a significance test on V-measure
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score. First, we state the null hypothesis: adding two ran-
dom features to the baseline feature set will achieve at
least the performance of adding two quadrangle coefficients.
Then we generate two random features from a uniform
distribution over 0 to 1, and append them to the baseline
feature set. As previously, we employ the same algorithm
and the same setup to group these networks and report the
best V-measure score.

To get the distribution, we repeat the experiment 1, 000
times with 1, 000 different sets of randomly generated fea-
tures. There are only 26 out of 1, 000 sets that achieve a
score higher than 0.816. Thus, we have the p-value of the
null hypothesis equal to 0.026, meaning the probability of
achieving such a result with random features is 0.026. As
this p-value is lower than the default threshold of 0.05,
the null hypothesis is confidently rejected and the statistical
significance of the improvement brought by adding quad-
rangle coefficients is proved.

4.4 Link prediction

As two new metrics measuring quadrangle formation, the
i-quad coefficient and the o-quad coefficient provide addi-
tional topological features for a node-level network analysis
and inference. As an example, we show their utilities in
missing link prediction, where significant improvement is
brought by adding them.

Many studies have shown that common neighbours
index and its variations such as Adamic-Adar index and
resource allocation index perform well in the link prediction
problem [48], [49], [50]. Besides, the clustering coefficient
and the closure coefficient are proven to be useful features to
improve the performance [17], [51]. Therefore, we use these
five features as the baseline features in our prediction model,
and then test the performance by adding the proposed i-
quad and o-quad coefficients. XGBoost, the gradient boosted
trees, is used as the prediction model due to its speed and
performance.

Setup. We model a network as a graph G = (V,E).
For networks having timestamps on edges, we order the
edges according to their appearing times and select the
first 70% edges and related nodes to form an “old graph”,
denoted Gold = (V ∗, Eold). The remaining 30% edges fil-
tered by node set V ∗ will form a “new graph”, denoted
Gnew = (V ∗, Enew). For networks not having timestamps,
we randomly shuffle the edges then perform the partition,
and we repeat 100 times in order to assess variance and
reduce the impact of a single partition on the possible
conclusions. The test set is built by node pairs, that appear
in the old graph, but do not form a link. Each such pair of
nodes indicates a positive or a negative example depending
on whether a link between them appears in the new graph.

The training set is built on the old graph, on which we fit
four XGBoost models with four sets of features: 1) baseline
feature set which includes common neighbours, Adamic-
Adar, resource allocation, clustering coefficient and closure
coefficient; 2) baseline features plus i-quad coefficient; 3)
baseline features plus o-quad coefficient; 4) baseline features
plus both i-quad coefficient and o-quad coefficients. Then
we evaluate their prediction performances on the test set.
For large networks (|V | > 10K), we perform a randomised

TABLE 3: Test set performance comparison measured in
ROC-AUC score of four XGBoost classifiers with different
features. Second column lists the scores with baseline fea-
tures (BL) , third column adds i-quad coefficient to baseline
features, fourth column adds o-quad coefficient to baseline
features, and fifth column adds both i-quad and o-quad co-
efficients to baseline features. An improvement of more than
2% is put in bold type, and an improvement of more than
5% is indicated by dagger. Last row gives the average (over
the datasets) ranking of the four classifiers for comparison,
where smaller is better. A classifer receives rank 1 if it has
the highest ROC-AUC score, rank 2 if it has the second
highest, and so on. If two classifiers share the best score,
they both get rank 1.5, and so on. The best ranking is put in
bold italic.

Network
w/ baseline
features (BL)

add I(i)
to BL

add O(i)
to BL

add I(i) &
O(i) to BL

FW-FLORIDADRY 0.6703 0.6779 0.6834 0.6886
FW-LITTLEROCK 0.8077 0.8357 0.8421 0.8521†

SOC-EMAILEUτ 0.9076 0.9070 0.9090 0.9084
SOC-CLGMSGτ 0.7831 0.7873 0.7879 0.7920
SOC-BTCALPHAτ 0.8588 0.8601 0.8679 0.8697
SOC-TWITCHFR 0.9160 0.9176 0.9192 0.9202

PPI-STELZL 0.6565 0.7778† 0.7809† 0.7764†

PPI-FIGEYS 0.8171 0.8644† 0.8668† 0.8650†

PPI-VIDAL 0.7566 0.7973† 0.8009† 0.7992†

PPI-INTACT 0.8524 0.8808 0.8839 0.8842

CIT-DBLPτ 0.7294 0.7261 0.7336 0.7310
CIT-CORA 0.8700 0.8705 0.8726 0.8734

RD-NEWYORK 0.5268 0.5529 0.5538† 0.5538†

RD-BAYAERA 0.5218 0.5353 0.5353 0.5356

QA-MATHOVFL.τ 0.8546 0.8554 0.8541 0.8551
QA-ASKUBUNTUτ 0.8746 0.8791 0.8765 0.8777

Avg. ranking 3.8 2.8 1.9 1.5

breadth first search sampling [52] of 3K nodes on the
original graph and repeat 10 times.

Results and discussion. Since network link prediction
is a highly unbalanced task, we choose the Area Under
the ROC Curve (ROC-AUC) as the metric and report the
prediction result on the test set, as shown in Table 3. First,
we discover that adding the i-quad (3rd column) or the
o-quad coefficient (4th column) leads to improvement in
most networks. Furthermore, we find that adding the o-
quad coefficient outperforms adding the i-quad coefficient
in 14 out of 16 networks. One possible explanation of this
phenomenon is that the o-quad coefficient looks 3-hop away
from the focal node, which is in line with the recent discov-
ery that 3-hop paths are more powerful predictors in link
prediction [9], [53]. When both quadrangle coefficients are
added to the baseline features (5th column), the performance
is improved in all networks. The average ranking (last row)
also shows that adding both i-quad and o-quad coefficients
at the same time leads to the best overall performance,
closely followed by just adding the o-quad coefficient.

Second, we find that the improvement is particularly sig-
nificant in food webs, protein-protein interaction networks
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and road networks (more than 2% in all eight networks
of these three types, and more than 5% in five networks
when both quadrangle coefficients are added). The com-
mon characteristic of these types of networks is that they
tend to have larger quadrangle coefficients compared to
the clustering and closure coefficients. In other words, the
extra information brought by the proposed coefficients is
particularly useful in networks that are rich in quadrangles.

To give more statistical insight into these results, we
adopt the non-parametric Wilcoxon Signed-Rank Test [54]
to quantify the difference between classifiers with different
feature sets, reporting the p-value where applicable. Note
that this method is rank-based and essentially tests the
null hypothesis that two paired samples come from the
same distribution. In our setting, paired samples are paired
columns from the result table, and rejected null hypothesis
means that we would expect one approach to outperform
another in a new dataset.

We find that adding the i-quad coefficient, adding the
o-quad coefficient, and adding both of them to the baseline
features all provide statistically significant gains over only
using the baseline feature set (p-values are far less than
0.001 for all three). Moreover, the gains of adding the o-
quad coefficient and adding both quadrangle coefficients
to baseline features over adding the i-quad coefficient to
baseline features are also critically different (p = 0.005, com-
paring adding the o-quad coefficient with adding the i-quad
coefficient; p = 0.003 comparing adding both quadrangle
coefficients with adding the i-quad coefficient). However,
there is no significant difference between adding the o-
quad coefficient and adding both quadrangle coefficients
(p = 0.35). Accordingly, we create the critical difference
diagram in Figure 11.

1234

3.812clf1
2.781clf2 1.875clf3

1.531clf4

Fig. 11: Critical difference diagram of four classifiers with
different feature sets. Classifier 1 (clf1) uses baseline fea-
tures; classifier 2 (clf2) uses baseline features plus i-quad
coefficient; classifier 3 (clf3) uses baseline features plus o-
quad coefficient; classifier 4 (clf4) uses baseline features plus
i-quad and o-quad coefficients.

4.5 Limitations and Future Directions

Now, we describe several limitations of our work and
outline how these might be overcome in future studies.

Directed edges. Our work currently is limited to undi-
rected networks (unweighted or weighted). A natural ex-
tension is to further propose the directed quadrangle coef-
ficients in a similar approach as in extending the clustering
coefficient and closure coefficient to directed networks [13],
[55]. The complexity of this approach comes from the 16
different directed quadrangles. Another possible direction is
to focus on one or two directed quadrangles that are proved
to be more important in many types of networks, such as
the bi-fan or the bi-parallel structures [56], [57].

Network dynamics. Both the i-quad coefficient and the o-
quad coefficient are motivated by the view of network evo-
lution — a closing edge appears between the two endpoints
of an existing open quadriad and forms a quadrangle. Their
definitions, however, do not take into consideration the
dynamics of the network. An interesting future direction is
to develop the notion of temporal open quadriad, meaning
that an open quadriad is present at a certain timestamp
while its two endpoints are not connected by a closing edge.
Then we can define the temporal quadrangle coefficients as
the fraction of temporal open quadriads that are closed at
a later time point. With extra temporal information, these
counterparts could therefore be more powerful in predicting
future links.

Potential applications. Being new metrics of measuring
quadrangle formation, the proposed coefficients could be
promising in studying networks that are rich in quad-
rangles — discovering similarities among protein-protein
interaction networks [58], detecting compartments in food
webs [59], and exploring how robust ecological systems
are in the face of species loss [60]. More generally, the
quadrangle coefficients also have the potential to be applied
in community detection, as shown by the clustering and
closure coefficients [17], [61]. Plus, although Graph Neural
Networks have achieved state-of-the-art results in various
applications, a recent study has exposed their shortcomings
in capturing network structures [62]. Therefore, an inter-
esting avenue is to incorporate the structural information
brought by the proposed coefficients in the message passing
scheme.

5 RELATED WORK

We here recapitulate some related works that proposed
other metrics to measure quadrangle formations in net-
works. Fronczak et al. [63] proposed a higher order clus-
tering coefficient for random networks. It is defined as
Ci(x) = 2Ei(x)

ki(ki−1) , where i is the focal node and x is
the length of path. Ei(x) denotes the number of x-length
paths between the neighbours of i. When x equals 2, this
definition deals with the formation of quadrangles. The
limitation of this definition is that the normalisation only
takes the degree of the focal node i into account while
neglects the degree of i’s neighbours. Since each pair of
neighbours could have multiple length-2 paths between
them, the clustering value can be larger than one.

Aiming to measure the formation of 4-cycles, Caldarelli
et al. [64] proposed two grid coefficients, i.e., the primary
grid coefficient and the secondary grid coefficient. The for-
mer is defined as: Gp(i) = Qp(i)

Zp(i) , where Qp(i) is the number
of actual “primary quadrilaterals” containing node i, and
Zp(i) is calculated by: Zp(i) = ki(ki−1)(ki−2)(ki−1)

2 . With
this definition, however, it actually deals with the formation
of 4-cycle with an extra diagonal edge. The secondary grid
coefficient is defined as: Gs(i) = Qs(i)/Zs(i), where Qs(i)
is the number of actual “secondary quadrilaterals” contain-
ing node i, and Zs(i) is calculated by: Zs(i) =

ki,2ndki(ki−1)
2 .

A potential problem within this definition is that it does not
rule out the possibility that the 2-hop neighbour connects to
two other 1-hop neighbours, making the formed structure
containing five nodes.
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Fig. 12: An example of the coefficients proposed in re-
lated works, compared with our proposed quadrangle co-
efficients. H(i) is the higher order clustering coefficient
proposed by Fronczak et al. [63]; Gp(i) and Gs(i) are the
primary grid coefficient and the secondary grid coefficient
proposed by Caldarelli et al. [64]; SL(i) is the square cluster-
ing coefficient proposed by Lind et al. [65]; SZ(i) is another
square clustering coefficient proposed by Zhang et al. [66];
I(i) and O(i) are the two quadrangle coefficients proposed
by us.

Lind et al. [65] later proposed a square clustering co-
efficient in the context of bipartite networks by taking
into consideration the degree of the neighbours, in other
words, the length-2 paths starting from the focal node. It
is defined as C4,mn(i) = qimn

(km−ηimn)(kn−ηimn)+qimn
, where

m and n are a pair of neighbours of the focal node i, and
qimn denotes the number of squares containing the three
nodes. What is uncommon about this definition is that it
deems squares are formed via node overlapping, which is
not a standard approach. Zhang et al. [66] then modified
the equation and proposed another more standard square
clustering coefficient for bipartite networks. Their definition
is: C4,mn(i) = qimn

(km−ηimn)+(kn−ηimn)+qimn
. However, in both

of these definitions, there is no notion of open quadriad
introduced, and the scope is limited within 2-hop distance
from the focal node.

The proposed i-quad and o-quad coefficients are dif-
ferent from previous works in that 1) the scope of the o-
quad coefficient is larger since it takes into account length-3
paths emanating from the focal node, whereas the square
clustering coefficients or the grid coefficients only calculates
length-2 paths in the normalisation; 2) the quadrangle coef-
ficients proposed by us view a formed quadrangle as being
built from open quadriads via connecting two endpoints
with one edge, which conform with the classic clustering
and closure coefficients (in their definitions a formed trian-
gle is viewed as being built from open triads). In contrast,
two edges are required to form a quadrangle in the grid co-
efficients; 3) the quadrangle coefficients are proposed for the
general unipartite networks on which multiple experiments
are conducted. In Figure 12, we provide a simple example
to illustrate the five coefficients proposed by previous works
and the two quadrangle coefficients proposed by us.

6 CONCLUSION

In this paper, we introduced the i-quad coefficient and the
o-quad coefficient to measure quadrangle formation in net-
works, according to the different location of the focal node
in an open quadriad. We also extended them to weighed
networks. Through experiments on 16 real-world networks
from six domains, we revealed that 1) in most types of

networks, the average o-quad coefficient is smaller than the
average i-quad coefficient; 2) in food webs, protein-protein
interaction networks and road networks, the i-quad and o-
quad coefficients are larger than the clustering and closure
coefficients respectively; 3) the o-quad coefficient tends to
increase with node degree while the i-quad coefficient does
not change too much as the node degree increases.

We also demonstrated that including the two coefficients
leads to improvement in both network-level and node-
level analysis tasks, such as network classification and link
prediction. The improvement is especially significant in
food webs, protein-protein interaction networks and road
networks in link prediction task. Additionally, we plan to
further consider the dynamics of time-varying networks
and link directions of directed networks when measuring
quadrangle formation in the future. Due to the simplicity
and interpretability in the definitions, we anticipate that
the i-quad and o-quad coefficients will become standard
descriptive features and be incorporated in other network
mining tasks.
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[43] L. Šubelj and M. Bajec, “Model of complex networks based on
citation dynamics,” in Proceedings of the 22nd international conference
on World Wide Web, 2013.

[44] B. K. Fosdick, D. B. Larremore, J. Nishimura, and J. Ugander,
“Configuring random graph models with fixed degree sequences,”
SIAM Review, 2018.

[45] R. Milo, S. Itzkovitz, N. Kashtan, R. Levitt, S. Shen-Orr, I. Ayzen-
shtat, M. Sheffer, and U. Alon, “Superfamilies of evolved and
designed networks,” Science, 2004.

[46] S. E. Ahnert and T. M. Fink, “Clustering signatures classify di-
rected networks,” Physical Review E, 2008.

[47] A. Rosenberg and J. Hirschberg, “V-measure: A conditional
entropy-based external cluster evaluation measure,” in EMNLP-
CoNLL, 2007.

[48] D. Liben-Nowell and J. Kleinberg, “The link-prediction problem
for social networks,” Journal of the American society for information
science and technology, 2007.

[49] L. A. Adamic and E. Adar, “Friends and neighbors on the web,”
Social networks, 2003.
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