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Abstract—This paper proposes an improved deadbeat 
predictive controller for permanent magnet synchronous motor 
(PMSM) drive systems. It can eliminate the influence of 
parameter mismatch of inductance, resistance and flux linkage. 
First, the performance of the conventional predictive current 
method is investigated to analyze sensitivities of the electric 
parameters. Then, a composite sliding mode disturbance 
observer (SMDO) based on stator current and lumped 
disturbance is proposed, which can simultaneously estimate the 
future current value and lumped disturbance caused by the 
parameter mismatch of inductance, resistance and flux linkage. 
Based on the discrete-time SMDO, currents are estimated and 
used to replace the sampled values to compensate one-step delay 
caused by calculation and sampling delay. Both simulation and 
experimental performances of the proposed method have been 
validated and compared with the conventional control methods 
under different conditions. The comparison results show the 
superiority of the proposed predictive current control method 
based on the composite SMDO. 

Index Terms—Permanent magnet synchronous motor 
(PMSM), deadbeat predictive control, sensitivity, sliding mode 
disturbance observer. 

I.  INTRODUCTION 
A. Motivation 

UE to the inherent features of high efficiency, high power 
density and fast control response, permanent magnet 

synchronous motors (PMSMs) have been widely applied in 
electric vehicles [1]-[5]. The classical field-oriented control 
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(FOC) has been widely adopted in the PMSM drive system to 
achieve desired servo control performance for its effective and 
reliable control methodology [6]-[8]. 

In FOC-based PMSM drive control, a double cascade loop 
controller is typically employed. High-performance electrical 
drives require efficient inner current control loops due to the 
intrinsic relationship between current quality response and 
torque control. In order to achieve high transient performance 
and steady-state precision, many current control schemes have 
been investigated including proportional-integral (PI) control 
[9], hysteresis control [10], and predictive control [11]-[13]. 

Among them, the predictive control has coherent and 
advantageous characteristics such as improved rotational 
speed response. The main principle of predictive control is to 
predict the future behavior of the state variables through drive 
system model [14]-[16]. And hysteresis-based, trajectory-
based, deadbeat predictive control (DBPC) and finite-set 
model predictive control are known as the main four types of 
predictive control, which are applied to motor control. Among 
them, the DBPC and model predictive control are the most 
widely researched predictive control schemes [17]-[18]. 

B. Related Research 

Model predictive control can predict the future behavior of 
states through the system discrete model and inherent discrete 
characteristics of inverter. Then it determines future voltage 
vector based on the optimization of the cost function. The 
selected voltage vector is one of seven basic voltage vectors 
and can minimize the cost function, which is used for the 
output of control system. Model predictive control has good 
ability to handle constraints of system variables, such as the 
maximum output voltage limits from the inverter. 
Furthermore, the advantages of robustness ensure that the 
model predictive control provides excellent control of overall 
system performance. However, an inevitable drawback of the 
model predictive control is that the switching frequency may 
vary, as the state of switches depends on the sequence of 
inputs, leading to a suboptimal current ripple [19]-[22]. 

Compared to model predictive control and other predictive 
control approaches, the DBPC combines good dynamic 
performance with constant switching frequency, which can 
force the control error to zero in a short time. Thus, DBPC has 
been widely used in many applications, including pulsewidth 
modulation (PWM) rectifiers, active filter control [23], and 
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motor drive control [24]. Since the DBPC does not need a cost 
function minimization algorithm, it is less computationally 
complex than model predictive control [25]-[27]. The method 
forecasts voltage reference values based on the motor discrete 
model and then converts them into corresponding switch 
configurations by space vector PWM. Based on the above idea, 
the DBPC includes predictive current control and deadbeat 
control (DB) direct torque control. Accurate current control 
with working flux estimation may still lead to inaccurate 
torque control of the motor, which results in adoption of DB 
direct torque control. In [28], an advanced deadbeat direct 
torque and flux control strategy was proposed to improve the 
operation performance, in which a decouple control strategy of 
torque and stator flux was proposed by constructing the 
algorithm model in the stator flux oriented coordinate system, 
which shows superiority in torque control. 

Both transient and steady-state performances of the DBPC 
method crucially depends on the accuracy of the stator 
resistance, inductance, as well as permanent magnet flux 
linkage parameter. However, the electric parameters, including 
flux linkage, resistance and inductance may change due to 
temperature rise and magnetic saturation, especially under 
high-temperature operation conditions [29]. In [19], a new 
discrete-time robust predictive current controller was 
presented for PMSM drives, in which a discrete-time integral 
term is added to the deadbeat current prediction to provide the 
robustness against normbounded parametric uncertainties and 
unmodeled dynamics. In [30], a composite control method 
combining deadbeat predictive current control part and current 
prediction and feedforward compensation part was proposed 
to promote control performance. In the designed stator current 
and disturbance observer, a novel sliding-mode exponential 
reaching law was introduced to further suppress the chattering 
of the observer. The composite control method is a creative 
deadbeat current control method, which solves parameters 
mismatch problem through feedforward compensation part 
and further suppresses the chattering of voltage compensation 
significantly. However, there are still some problems with the 
reference. The performance of the sliding mode disturbance 
observer is dependent on the design of the new approach law, 
which requires a smaller reaching time and sliding mode 
ripples. Additionally, it is necessary to make a reasonable 
balance between the computational load caused by the design 
of the complex reaching law and the performance of the law. 
Due to the digital implementation of predictive control, 
computing and sampling delay are inevitable [31]. However, 
the reference does not consider the delay in controller design, 
which will lead to system performance degradation. 

In order to overcome the above problems, some methods 
have been proposed. In [21], a robust high bandwidth discrete-
time predictive current control scheme for voltage-source 
pulsewidth-modulated (VS-PWM) converters was presented, 
in which a digital predictive current controller with delay 
compensation is adopted based on a current observer with an 
adaptive internal model. In [32], an oversampling deadbeat 

current control approach was presented to achieve a constant 
switching frequency and an optimal current ripple along with a 
high current loop bandwidth and robust behavior to parameter 
variation. In [33], a robust predictive current control was 
proposed to eliminate the influence of inductance parameter 
mismatch. However, the influence caused by the mismatch of 
permanent magnet flux linkage and resistance is ignored. In 
[34], an improved deadbeat-based predictive current control 
scheme based unified high-order sliding-mode disturbance 
observer was proposed to promote speed robustness and 
current tracking accuracy. It is a creative deadbeat control 
method, which essentially solves the mismatch problem of 
mechanical and electrical parameters through disturbance 
compensation with feedback to the designed control system. 

C. Contributions 

An improved deadbeat predictive controller is developed to 
guarantee the performance of PMSM drives regardless of 
parameter mismatch and one-step delay in digital control in 
this work. Compared with the conventional predictive current 
controller, the proposed method can achieve lower control 
currents ripples based on current and lumped disturbance 
discrete-time sliding mode observer (SMO). Furthermore, 
compensation of calculation time delay is considered and the 
second-order expansion of the rotor speed is adopted to 
improve the current reference accuracy. 

The main contributions of this paper are listed as follows. 
1) This paper proposes a different disturbance observer to 

applied in the improved deadbeat predictive current 
controller, which is designed through analyzing the 
structure of current state space equations to effectively 
eliminate the coupling terms. Therefore, the design idea 
is completely different from the high-order sliding 
mode structure or new reaching law-based method in 
the mentioned references. 

2) The design method based on the state space structure of 
the control plant reduces the calculation complexity of 
the observation value for the nonlinear model, which is 
conducive to achieving higher control accuracy. 

3) In order to suppress the influence of the control delay, 
one-step delay compensation is considered to calculate 
the voltage vector udq(k+1). Furthermore, the 
compensation inevitably causes a two-sample delay in 
the reference tracking of the reference currents i* 

dq(k), 
which can be ignored by appropriate design of control 
parameters. 

4) In order to improve the current reference accuracy, the 
second-order expansion of the rotor speed is adopted in 
the method, which further improves the control 
performance. 

D. Paper Organization 

The remainder of this paper is organized as follows. Section 
II describes the mathematical model of a surface-mounted 
PMSM (SPMSM) and develops the model under parameter 



disturbance. In Section III, based on the discrete-time model 
of the SPMSM, parameter sensitivity of the conventional 
predictive current control to inductance, resistance and flux 
linkage is analyzed. In Section IV, a discrete-time SMDO 
based on stator current and disturbance is designed to 
eliminate the influence of parameter mismatch and 
compensate one-step delay. Simulation and experimental 
results are provided in Section V. Finally, Section VI gives the 
summary and draws the main conclusions of the study. 
 

II. MATHEMATICAL MODEL 
 

The dynamical model of the SPMSM can be described in 
the dq synchronously rotating reference frame as follows: 
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where ud,, uq, id,, and iq are the d- and q-axis components of the 
stator voltage and current, respectively. Rs and Ls represent the 
stator resistance and inductance, respectively. ψf is permanent 
magnet flux linkage. ωe is electrical angular speed. 

The system model can be written in the standard state-
space form as 
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The electromagnetic torque and mechanical equations of 
SPMSM are shown as follows: 
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where J is the moment of inertia. pn is the number of pole 
pairs. Te and TL are the electromagnetic torque and the load 
torque, respectively. 

According to (3) and (4), when the mismatch of three 
machine parameters exists, the dynamical model can be 
written as 
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where rd, rq and
e

rω represent the parameter perturbances, 

which consist of flux linkage error, resistance error and 
induction error. And the perturbances can be described as 
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 (6) 
And = +Δs s sR R R , = +Δs s sL L L and = +Δf f fψ ψ ψ are the nominal 
values of system parameters. ΔRs, ΔLs, and Δψf are the 
parameters errors between the nominal values and the actual 
values. 
 

III. PARAMETER SENSITIVITY ANALYSIS 
 

A. Conventional DBPC Method 
In order to digitally implement the model-based controller, 

the discretization of the plant equations is necessary. The 
discretized state-space form of the plant (3) around a generic 
time instant k is presented as 
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and Ts denotes the sampling period of the control system. 
Taylor expansion is carried out on M and N, and the 

quadratic and higher order terms are ignored. Then the 
matrices of the state-space model are as follows: 
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According to (7), the output voltage vector of the DBPC is 
expressed as follows: 
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where i* 
d (k+1) and i* 

q (k+1) are the reference currents in dq-
axes reference rotor frame. It can be seen that the future 
reference current value i*(k+1) is needed, which can be 
assumed to be equal to the actual value i*(k), for Ts is short 
enough compared with the dynamic behavior of the system. 
Therefore, the reference current value can be considered 
constant over Ts. 

The output stator voltage vector enables the actual current 
vector to approach the expected values. The block diagram of 
the conventional DBPC is illustrated in Fig. 1. The voltage 



vector is obtained through the predictive mode (8), which is 
converted to switching signals through modulation process. 

B. Parameter Sensitivity Analysis 
The DBPC is a predictive control method based on 

mathematical model of PMSM due to the existence of three 
machine parameters in a current prediction model. This means 
that deadbeat predictive controller is subject to parameter 
sensitivity, and the accuracy of the prediction model will 
directly influence the control performance. In order to evaluate 
the relationship between the prediction error and three 
parameters mismatch, parameter sensitivity analysis is 
discussed. 

According to (7), the discrete current model under 
parameters disturbance can be expressed as follows: 
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Therefore, the errors between the current response values 
and the current reference values subjected to parameter 
perturbation can be obtained as 
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Differentiating (11) yields 
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Equations (11) and (12) indicate that d-axis current is not 
affected by flux linkage error Δψf , while dq-axes currents are 
under influence of resistance error ΔRs and inductance error 

ΔLs. Therefore, the uncertainty of any system parameter will 
cause errors in the current response. Meanwhile, the current 
response errors and error variation rates are related to 
mechanical parameters, speed and currents. 
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Fig. 1.  Block diagram of the conventional DBPC. 

The relationship of the dq-axes current response errors and 
parameter mismatch of inductance Ls, resistance Rs and flux 
linkage ψf are shown in Figs. 2 and 3. The speed reference is 
set as 360 rpm and the load torque is set as 0 The SPMSM and 
system parameters are listed in Table I. 
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Fig. 2.  Current prediction errors under inductance and resistance parameter 
mismatch. (a) d-axis current error, and (b) q-axis current error. 
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Fig. 3.  Current prediction errors under inductance and flux linkage parameter 
mismatch. (a) d-axis current error, and (b) q-axis current error. 
 

Fig. 2 shows the dq-axes current response errors under 
inductance Ls and resistance Rs parameter mismatch. As 
shown, the resistance error has little effect on dq-axes current 
response errors when parameter mismatch of inductance 
remains unchanged. While inductance error has a great 
influence on the current prediction error. Fig. 3 illustrates the 
dq-axes current prediction errors under parameter mismatch of 
inductance Ls and flux linkage fψ . It can be seen that the 
parameter mismatch of flux linkage has no effect on d-axis 
current response error. As shown in Fig. 3(b), the flux linkage 
error produces remarkable influence on q-axis current 
prediction errors. 

According to the analysis above, the conclusion can be 
made that the conventional predictive current control method 



is sensitive to inductance, resistance and flux linkage 
parameters. Therefore, robustness design based on the 
predictive current controller should be considered. 

 
IV.  DPCC METHOD WITH PERTURBANCE OBSERVER 

A. Composite Sliding Mode Disturbance Observer (SMDO) 
Design 

According to (5), the state equation can be expressed as 
follows when parameter variations are taken into 
consideration: 
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are the state variables, system output, flux linkage term and 
lumped disturbance, respectively. 

The coefficient matrixes of the state equations are as 
follows: 
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In order to implement the proposed deadbeat predictive 
current controller, it is necessary to estimate the disturbance 
caused by parameter variation. Since the sliding mode 
observer can estimate the uncertainty, the SMDO can be 
designed as follows based on (13) 

ˆ ˆ sgn( )a
d
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= + + + +
x Ax Bu f Fe G e             (14) 

where x̂  is the estimated value of state variables x, sgn() is 
the symbolic function, and F and G are the gain matrixes. 

According to sliding-mode control theory, sliding-mode 
design procedure can be divided into two steps: the first step is 
sliding-mode surface design, and the second step is to design 
the sliding-mode control function, which can force the state 
trajectory to converge to the sliding-mode surface. In this 
paper, the sliding-mode surface is defined as 
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According to (13) and (14), the error equation can be 
obtained as follows: 
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In order to guarantee the convergence of current errors and 
disturbance estimation errors of the proposed composite 
SMDO, the Lyapunov candidate function is selected as 
follows: 

1
2
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Deriving (17) and combining with (16) yields 

( )

( )

sgn( )

sgn( )

T
b

T T T
b

d
dt

= + − −

= − + −

V e Ae f Fe G e

e A F e e f e G e
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Substituting the gain matrixes into (18) yields 
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(19) 
Simplifying (19), one can obtain 
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(20) 
Since the disturbance function is bounded, the boundary 

values are introduced, that is, disturbance values satisfy 
|rd|<G1, |rq|<G2, |

e
rω |<G3. And the elements of gain matrix G 

satisfy that g1>G1, g2>G2, g3>G3, then the Lyapunov candidate 
function satisfies dV/dt≤0. Therefore, the proposed SMDO 
with matrix G can reach the sliding mode surface in finite time 
and remains stable, which ensures the asymptotic stability of 
the proposed composite SMDO and the parameter 
observations will approach the actual values. 

B. Discrete Expression of Composite SMDO 
Because the proposed composite SMDO will be only 

computed with discrete form and applied to control system 
within the sampling period, it is necessary to deduce the 
discrete expression of the composite observer. Assuming that 
the sampling period is sufficiently small for the discrete time 
system, the composite discrete-time observer can be 
discretized as (21) according to (14) 
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(21) 
where ( )ˆ 1di k + and ( )ˆ 1qi k +  are the predictive values of dq-

axes currents, and ( )ˆ 1e kω + represents the predictive values of 
electrical angular speed. 

In order to suppress predictive current ripple caused by sign 
function, it is necessary to replace the sign function with 
smoothing function such as hyperbolic tangent function with 
smooth continuity. Then the discrete block diagram of the 
proposed composite SMDO is shown in Fig. 4. 

When the system trajectory reaches the sliding-mode 
surface and enters the sliding-mode state, it can be obtained 
that 

0d
dt

= =
e e .                               (22) 

Combining state equation of observer and (22) yields 
tanh( )b =f G e .                             (23) 

Therefore, the variation rate of disturbance can be obtained 
as follows 
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( ) ( )( )

1 1

2 2

3 3

tanh

tanh

tanh
e

d

q

r k g e k

r k g e k

r k g e kω

 =
 =
 =

.                       (24) 

Combining (6) and (24), the estimated flux linkage can be 
obtained as 
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Fig. 4.  Discrete block diagram of proposed composite SMDO. 

C. Predictive Current Control with Composite SMDO 
According to (5) and (8), the discrete expression of voltage 

equation can be described as 
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( ) ( )
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.   (26) 

When the control scheme based on predictive current 
control is implemented experimentally, it is worth to highlight 
that the calculation and sampling delay is unavoidable due to 
the digital implementation mode of the prediction control. 
This delay can deteriorate the performance of the system if it 
is not considered in the design of the controller. In order to 
suppress the influence of the delay, it is necessary to calculate 
the voltage vector udq(k+1) by using delay compensated 
currents idq(k+1). Since the electromagnetic time constant is 
smaller than the mechanical time constant in the motor system, 
the rotor speed can be considered as constant during one 
sampling period. These compensated currents are employed to 
replace the measured currents idq(k) of the model (26), which 
indicates that the voltage equation can be updated with one-
step delay compensation as 
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(27) 
When compensation of calculation time delay is considered, 

the future reference can be assumed to be i* 
dq(k+2) = i* 

dq(k). The 
current reference approximation will lead to a two-sampling 
delay in the reference tracking of the reference currents. 
Fortunately, the sampling time used in this paper is small 
enough that the delay introduced by the approximation of 
future references can be ignored. 

In order to improve the current reference accuracy, the 
second-order expansion of the rotor speed is adopted in the 
method, which is expressed as 

( ) ( ) 2

2

+1
=

2
e e e ek k d d T

T dt dt
ω ω ω ω−

+ ⋅                 (28) 

where T is the external loop sampling time, much larger than 
the sampling time Ts. 

Combining (4) and (28) and considering flux linkage error, 
it can be obtained that 

( )22
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Substituting (4) and (29) into (28) yields 
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The values for *
eω and ( )*

qi k are used as the rotor speed and 

current reference in (30) by considering ( )* * 1e e kω ω= + and 

( ) ( )*
q qi k i k= . 

From (30), the reference current can be obtained as 
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(31

) 
The control diagram of the proposed deadbeat predictive 

current controller is shown in Fig. 5. The proposed SMDO is 
used to compensate parameter disturbances with the estimated 
lumped disturbance value, which overcomes the influence of 
parameter mismatch on DBPC method. In order to reduce the 
influence of sampling and calculation due to the digital 
implementation of the control system, one-step delay is 
compensated. 
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Fig. 5. Control diagram of the proposed deadbeat predictive current controller. 
 

V.  SIMULATION AND EXPERIMENTAL RESULTS 
 

For the purpose of verifying the effectiveness of the 
proposed method, simulations and experiments for comparison 
between the proposed method and the conventional DBPC 
have been conducted at a laboratory platform.  

Simulations are established in MATLAB/Simulink. The 
experiments are performed on the platform of dSPACE 1401 
test bench, through which the experimental measurements can 
be exported to MATLAB and plotted.  

 A: Host computer           B: dSPACE             C: Inverter  
 D: PMSM         E: Torque sensor      F: Magnetic powder brake

A
B

C

D
E F

 
Fig. 6.  Experimental setup used to verify the purposed DBPC method. 
 

Since the parameters of the motor body cannot be set 
arbitrarily, the parameters in the control program are changed 
to achieve the corresponding parameter mismatch. The 
experimental setup consists of an SPMSM, a torque sensor, 

and a magnetic powder brake, as shown in Fig. 6. The 
parameters of the SPMSM system are listed in Table I. 

TABLE I 
SPMSM AND SYSTEM PARAMETERS 

Parameters Symbol Value 
Number of pole pairs Pn 22 

Stator resistance Rs 0.8 Ω 
Stator inductance Ls 4.5 mH 

Permanent-magnet flux linkage ψf 0.215 Wb 
Inertia J 0.03 kgm2 

Viscous friction coefficient ν 0.0006 N·m·s 
Rated speed N 360 rpm 
Rated power PN 30 kW 

 
The parameters of the composite SMDO are g1=72000, 

g2=72000, and g3=48000, which ensure the asymptotic 
stability of composite SMDO. The speed reference is set as 
360 rpm, and the sampling frequency used in simulation and 
experiment is 50 kHz while the external loop sampling 
frequency is 5 kHz. At the time instants t1 =0.06 s and t2 =0.08 
s, step changes in the load torque from 0 to 20 Nm and from 
20 Nm to 0 have been applied to the system, respectively. 
Parameter variations are set at 0.03 s to show the simulation 
results. 

Under different parameter mismatch conditions, the 
simulation results of dq-axes current responses and current 
references are shown in Figs. 7 and 8. The blue line is the 
current response while the brown line is the current reference. 
In Fig. 7, the simulation results of the conventional DBPC are 
illustrated. It is seen that the parameter mismatch of 
inductance Ls and flux linkage ψf produces great influence on 
dq-axes current responses. In contrast, the variation of 
resistance Rs has little effect on current response when other 
parameters remain unchanged, which is similar to the 
parameter sensitivity analysis in Section III. Furthermore, 
different parameter variations cause current response error, 
which can be calculated by (11). Additionally, Fig. 8 presents 
the simulation results of the proposed DBPC method with 
compensation voltage based on composite SMDO, which can 
exactly track the current references under parameters 
mismatch compared with traditional strategy. 
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Fig. 7. Simulation performance of conventional DBPC method under different 
parameter mismatch conditions. (a) ΔRs=-0.9Rs (b) ΔRs=9Rs (c) ΔLs=-0.9Ls 
(d)ΔLs=9Ls (e) Δψf=-0.9ψf (f) Δψf=9ψf (g) ΔRs=-0.9Rs, ΔLs=-0.9Ls, Δψf=-0.9ψf 
(h) ΔRs=9Rs, ΔLs =9Ls, Δψf=9ψf. 
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Fig. 8. Simulation performance of proposed DBPC method under different 
parameter mismatch condition. (a) ΔLs=-0.9Ls (b) ΔLs=9Ls (c) Δψf=-0.9ψf (d) 
Δψf=9ψf (e) ΔRs=-0.9Rs,ΔLs=-0.9Ls,Δψf=-0.9ψf (f)ΔRs=9Rs, ΔLs =9Ls, Δψf=9ψf. 

Fig. 9 shows the compensation voltages of the proposed 
DBPC method under different parameter mismatch conditions, 
respectively. The blue line is the d-axis current compensation 
voltage while the red line is the q-axis compensation voltage. 
Due to little effect of resistance variation ΔRs on current 
responses, parameter mismatch of resistance Rs is not studied 
in following analysis. As shown in Fig. 9, compensation 
voltages are produced to eliminate the influence of 
parameters variation when parameter mismatch exists after 
0.03 s. Furthermore, compensation voltage is related to load 
torque, because variation of load torque causes current 
response to change, which further affects the compensation 
voltage in parameter mismatch condition. 
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Fig. 9.  Compensation voltage of proposed DBPC method under different 
parameter mismatch conditions. (a) ΔLs=-0.9Ls (b) ΔLs=9Ls (c) Δψf=-0.9ψf (d) 
Δψf=9ψf (e) ΔRs=-0.9Rs, ΔLs =-0.9Ls, Δψf=-0.9ψf (f)ΔRs=9Rs, ΔLs =9Ls, 
Δψf=9ψf. 

The control system is implemented on a dSPACE 1401 
real-time platform with Control Desk. The Rapid Control 
Prototype (RCP) is realized based on the dSPACE. The 
experimentally measured currents are available via analog to 
digital converter board. The experimental results are shown in 
Figs. 10-13. Parameter mismatch is set at 0.05 s. At the time 
instants t1 =0.1 s and t2 =0.15 s, step changes in the load 
torque from 0 to 20 Nm and from 20 Nm to 0 are applied to 
the system, respectively. 
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Fig. 10.  Experimental results of the conventional DBPC method. (a) ΔLs=9Ls 
(b)Δψf=9ψf (c) ΔRs=-0.9Rs, ΔLs=-0.9Ls, Δψf=-0.9ψf. 
 

As shown in Fig. 10, reference currents have a step change 
and the ripple of currents response becomes larger when 
parameter mismatch exists at 0.05 s. In particular, the 
variation of permanent flux produces significant effect on 
currents response, which results in q-axis current error of 1.8 
A. Furthermore, when three parameters variation exists 
simultaneously, q-axis current of conventional DBPC fails to 
track the reference value accurately with an error about 2 A, 
while d-axis current response produces large fluctuations of 
1.6 A thanks to the coupling in motor model.  
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Fig.11 Experimental results of the proposed DBPC method. (a) ΔLs=9Ls (b) 
Δψf=9ψf (c) ΔRs=-0.9Rs, ΔLs=-0.9Ls, Δψf=-0.9ψf. 
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Fig. 12.  Compensation voltage of the proposed DBPC method. (a) ΔLs=9Ls 
(b) Δψf=9ψf (c) ΔRs=-0.9Rs, ΔLs=-0.9Ls, Δψf=-0.9ψf. 
 

Compared with the conventional method, the currents 
tracking error is smaller except for the acceptable ripple at the 
original instant of parameter mismatch. From Figs. 11 (b) and 
(c), the transient ripples of current response are about -1.2 A 



and 0.9A, respectively, which converge to stable reference 
values quickly. Meanwhile the compensation voltages are 
given in Fig. 12, which is used to eliminate the influence of 
parameter mismatch. Different parameter mismatch conditions 
cause different perturbance, which results in different voltage 
compensation according to (6) and (13). 

Figs. 13 illustrates the control performance of both methods 
when three parameters mismatch occurs during operation, in 
which step changes in the reference speed from 360 to 365 
rpm and 365 to 360 rpm have been applied at 0.1 s and 0.15 s, 
respectively. Under the conventional predictive control 
method, the existing parameters mismatch affects the 
current response and produces permanent q-axis current 
tracking error of 4.8 A and d-axis current fluctuation of 1.1 
A, which deteriorates the control performance. Compared 
with the conventional method, the proposed DBPC method 
produces obvious current errors only at 0.05 s, 0.1 s and 
0.15 s, which converges to stable reference quickly. 
Therefore, the improved method ensures the control 
performance is not subject to parameter variation. The 
ripples and errors of the current response can be suppressed 
effectively. 
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Fig. 13.  Experimental results in reference speed step-change conditions. (a) 
conventional DBPC method, and (b) the proposed DBPC method. 

 
VI. CONCLUSION 

In this paper, an improved deadbeat predictive current 
controller was proposed and experimentally applied to a 
PMSM drive system to enhance the robust performance of the 
drive system. In order to evaluate the relationship between the 
current response and mismatch of three parameters, parameter 
sensitivity analysis was discussed first. Then an SMDO based 
on stator current and lumped disturbance was designed to 
simultaneously estimate the future current value and lumped 
disturbance caused by the parameter mismatch, which can 
effectively eliminate the influence of parameters mismatch. 
Furthermore, considering the influence of the calculation and 
sampling delay, currents are estimated by discrete expression 
of composite SMDO and used to replace the sampled values to 
compensate one-step delay.  

Compared with related references, which adopt high-order 
sliding mode structure or new reaching law-based method, this 
design method based on the state space structure of the control 
plant reduced the calculation complexity of the observation 
value for the nonlinear model. Additionally, the second-order 
expansion of the rotor speed was applied to improve the 
current reference accuracy. Simulation and experimental 
results confirmed the performance of the proposed control 
strategy.  

In future work, the composite observation system will be 
further studied, which comprehensively considers the variation 
of mechanical parameters. Meanwhile, the balance of 
calculation burden and control performance will be 
considered. 
 

REFERENCES 
[1] Z. Shi, et al., “Robust design optimization of a five-phase PM hub motor 

for fault-tolerant operation based on Taguchi method,” IEEE Trans. 
Energy Convers., vol. 35, no. 4, pp. 2036-2044. Dec. 2020. 

[2] X. Sun, C. Hu, G. Lei, Y. Guo, and J. Zhu, “State feedback control for a 
PM hub motor based on grey wolf optimization algorithm,” IEEE Trans. 
Power Electron., vol. 35, no. 1, pp. 1136-1146, Jan. 2020. 

[3] X. Sun, Z. Shi, G. Lei, Y. Guo, and J. Zhu, “Multi-objective design 
optimization of an IPMSM based on multilevel strategy,” IEEE Trans. 
Ind. Electron., vol. 68, no. 1, pp. 139-148, Jan. 2021. 

[4] W. Hu, C. Ruan, H. Nian, and D. Sun, “An improved modulation 
technique with minimum switching actions within one PWM cycle for 
open-end winding PMSM system with isolated DC bus,” IEEE Trans. 
Ind. Electron., vol. 67, no. 5, pp. 4259-4264, May 2020. 

[5] X. Sun, J. Cao, G. Lei, Y. Guo, and J. Zhu, “Speed sensorless control for 
permanent magnet synchronous motors based on finite position set,” 
IEEE Trans. Ind. Electron., vol. 67, no. 7, pp. 6089-6100, July 2020. 

[6] S. Li and Z. Liu, “Adaptive speed control for permanent-magnet 
synchronous motor system with variations of load inertia,” IEEE Trans. 
Ind. Electron., vol. 56, no. 8, pp. 3050–3059, Aug. 2009. 

[7] X. Sun, Z. Jin, Y. Cai, Z. Yang, and L. Chen, “Grey wolf optimization 
algorithm based state feedback control for a bearingless permanent 
magnet synchronous machine,” IEEE Trans. Power Electron., vol. 35, 
no. 12, pp. 13631-13640, Dec. 2020. 

[8] J. Hang, J. Zhang, M. Xia, S. Ding and W. Hua, “Interturn fault 
diagnosis for model-predictive-controlled-PMSM based on cost function 
and wavelet transform,”IEEE Trans. Power Electron., vol. 35, no. 6, pp. 
6405-6418, June 2020. 

[9] D. Casadei, F. Profumo, G. Serra, and A. Tani, “FOC and DTC: two 
viable schemes for induction motors torque control,” IEEE Trans. Power 
Electron., vol. 17, no. 5, pp. 779-787, Sept. 2002. 

[10] L. Malesani, P. Mattavelli, and P. Tomasin, “Improved constant-
frequency hysteresis current control of VSI inverters with simple 
feedforward bandwidth prediction,” IEEE Trans. Ind. Appl., vol. 33, no. 
5, pp. 1194-1202, Sept.-Oct. 1997. 

[11] O. Sandre-Hernandez, J. Rangel-Magdaleno, and R. Morales-Caporal, 
“A comparison on finite-set model predictive torque control schemes for 
PMSMs,” IEEE Trans. Power Electron., vol. 33, no. 10, pp. 8838-8847, 
Oct. 2018. 

[12] M. Wu, et al, “Improved model predictive torque control for PMSM 
drives based on duty cycle optimization,” IEEE Trans. Magn., 2021, 
57(2), Art. no.: 8200505. 

[13] W. Tu, G. Luo, Z. Chen, L. Cui, and R. Kennel, “Predictive cascaded 
speed and current control for PMSM drives with multi-timescale 
optimization,” IEEE Trans. Power Electron., vol. 34, no. 11, pp. 11046-
11061, Nov. 2019. 

[14] P. Kakosimos and H. Abu-Rub, “Predictive speed control with short 
prediction horizon for permanent magnet synchronous motor drives,” 
IEEE Trans. Power Electron., vol. 33, no. 3, pp. 2740–2750, Mar. 2018. 

[15] X. Sun, et al, “MPTC for PMSMs of EVs with multi-motor driven 
system considering optimal energy allocation,” IEEE Trans. Magn., vol. 
55, no. 7, pp. 1-6, Jul. 2019, Art. no. 8104306. 



[16] M. Siami, D. A. Khaburi, M. Rivera, and J. 
Rodríguez, “An experimental evaluation of 
predictive current control and predictive torque 
control for a PMSM fed by a matrix converter,” 
IEEE Trans. Ind. Electron., vol. 64, no. 11, pp. 
8459-8471, Nov. 2017. 

[17] J. Rodriguez, et al., “State of the art of finite 
control set model predictive control in power 
electronics,” IEEE Trans. Ind. Inform., vol. 9, 
no. 2, pp. 1003–1016, May 2013. 

[18] L. Rovere, A. Formentini, A. Gaeta, P. 
Zanchetta, and M. Marchesoni, “Sensorless 

finite-control set model predictive control for IPMSM drives,” IEEE 
Trans. Ind. Electron., vol. 63, no. 9, pp. 5921–5931, Sep. 2016. 

[19] T. Trker, U. Buyukkeles, and A. F. Bakan, “A robust predictive current 
controller for PMSM drives,” IEEE Trans. Ind. Electron., vol. 63, no. 6, 
pp. 3906–3914, Jun. 2016. 

[20] X. Sun, L. Chen, Z. Yang, and H. Zhu, “Speed-sensorless vector control 
of a bearingless induction motor with artificial neural network inverse 
speed observer,” IEEE/ASME Trans. Mechatron., vol. 18, no. 4, pp. 
1357-1366, Aug. 2013. 

[21] Y. A.-R. I. Mohamed, and E. F. El-Saadany, “Robust high bandwidth 
discrete-time predictive current control with predictive internal model: A 
unified approach for voltage-source PWM converters,” IEEE Trans. 
Power Electron., vol. 23, no. 1, pp. 126–136, Jan. 2008. 

[22] L. Chen, et al, “Three-vector-based model predictive torque control for a 
permanent magnet synchronous motor of EVs,” IEEE Trans. Transport. 
Electrific., 2021, DOI: 10.1109/TTE.2021.3053256, to be published. 

[23] L. Malesani, P. Mattavelli, and S. Buso, “Robust dead-beat current 
control for PWM rectifiers and active filters,” IEEE Trans. Ind. Appl., 
vol. 35, no. 3, pp. 613–620, May 1999. 

[24] H.-T. Moon, H.-S. Kim, and M.-J. Youn, “A discrete-time predictive 
current control for PMSM,” IEEE Trans. Power Electron., vol. 18, no. 1, 
pp. 464–472, Jan. 2003. 

[25] H. Liu and S. Li, “Speed control for PMSM servo system using 
predictive functional control and extended state observer,” IEEE Trans. 
Ind. Electron., vol. 59, no. 2, pp. 1171–1183, Feb. 2012. 

[26] X. Sun, M. Wu, G. Lei, Y. Guo, and J. Zhu, “An improved model 
predictive current control for PMSM drives based on current track 
circle,” IEEE Trans. Ind. Electron., 2021, 68(5): 3782-3793. 

[27] X. Sun, Z. Shi, G. Lei, Y. Guo, and J. Zhu, “Analysis and design 
optimization of a permanent magnet synchronous motor for a campus 
patrol electric vehicle,” IEEE Trans. Veh. Technol, vol. 68, no. 11, pp. 
10535-10544, Nov. 2019. 

[28] X. Lin, W. Huang, W. Jiang, Y. Zhao and S. Zhu, “Deadbeat direct 
torque and flux control for permanent magnet synchronous motor based 
on stator flux oriented,” IEEE Trans. Power Electron., vol. 35, no. 5, pp. 
5078-5092, May 2020. 

[29] A. M. Aljehaimi and P. Pillay, “Novel flux linkage estimation algorithm 
for a variable flux PMSM,” IEEE Trans. Ind. Appl., vol. 54, no. 3, pp. 
2319–2335, May 2018. 

[30] X. Zhang, B. Hou, and Y. Mei, “Deadbeat predictive current control of 
permanent-magnet synchronous motors with stator current and 
disturbance observer,” IEEE Trans. Power Electron., vol. 32, no. 5, pp. 
3818-3834, 2017. 

[31] L. Tong, et al., “An SRF-PLL-based sensorless vector control using the 
predictive deadbeat algorithm for the direct-driven permanent magnet 
synchronous generator,” IEEE Trans. Power Electron., vol. 29, no. 6, 
pp. 2837–2849, Jun. 2014. 

[32] L. Rovere, A. Formentini, and P. Zanchetta, “FPGA implementation of a 
novel oversampling deadbeat controller for PMSM drives,” IEEE Trans. 
Power Electron., vol. 66, no. 5, pp. 3731-3741, May 2019. 

[33] P. Wipasuramonton, Z. Q. Zhu, and D. Howe, “Predictive current 
control with current-error correction for PM brushless AC drives,” IEEE 
Trans. Ind. Appl., vol. 42, no. 4, pp. 1071-1079, Jul. 2006. 

[34] Y. Jiang, W. Xu, C. Mu, and Y. Liu, “Improved deadbeat predictive 
current control combined sliding mode strategy for PMSM drive 
system,” IEEE Trans. Veh. Technol., vol. 67, no. 1, pp. 251-263, Jan. 
2018. 

 
 
 

 
 
 
Xiaodong Sun (M’12-SM’18) received the B.Sc. degree in electrical 

engineering, and the M.Sc. and Ph.D. degrees in control engineering 
from Jiangsu University, Zhenjiang, China, in 2004, 2008, and 2011, 
respectively. 

Since 2004, he has been with Jiangsu University, where he is currently a 
Professor in Vehicle Engineering with the Automotive Engineering Research 
Institute. From 2014 to 2015, he was a Visiting Professor with the School of 
Electrical, Mechanical, and Mechatronic Systems, University of Technology 
Sydney, Sydney, Australia. His current teaching and research interests include 
electrified vehicles, electrical machines, electrical drives, and energy 
management. He is the author or coauthor of more than 100 refereed technical 
papers and one book, and he is the holder of 42 patents in his areas of interest. 
Dr. Sun is an Editor of the IEEE TRANSACTIONS ON ENERGY 
CONVERSION. 

 
Junhao Cao was born in Huaian, Jiangsu, China, in 
1994. He received the B.S. degree in vehicle 
engineering from Jiangsu University, Zhenjiang, 
China, in 2018, and he is currently working toward 
the M.E. degree in vehicle engineering in Jiangsu 
University, Zhenjiang, China. 
His current research interests include control of 
electrical drive systems and advanced control 
strategy of electric machine. 
 
 
 

 
 
 

Gang Lei (M’14) received the B.S. degree in 
Mathematics from Huanggang Normal University, 
China, in 2003, the M.S. degree in Mathematics and 
Ph.D. degree in Electrical Engineering from 
Huazhong University of Science and Technology, 
China, in 2006 and 2009, respectively. He is 
currently a senior lecturer in Electrical Engineering 
at the School of Electrical and Data Engineering, 
University of Technology Sydney (UTS), Australia. 
His research interests include design optimization 
and control of electrical drive systems and 
renewable energy systems. He is an Associate 

Editor of the IEEE TRANSACTIONS ON INDUSTRIAL ELECTRONICS 
and an Editor of the IEEE TRANSACTIONS ON ENERGY CONVERSION. 
 
 
 

 
 
Youguang Guo (S’02-M’05-SM’06) received the 
B.E. degree from Huazhong University of Science 
and Technology, China in 1985, the M.E. degree 
from Zhejiang University, China in 1988, and the 
Ph.D. degree from University of Technology, 
Sydney (UTS), Australia in 2004, all in electrical 
engineering. He is currently an associate professor 
in Electrical Engineering at the School of Electrical 
and Data Engineering, University of Technology 
Sydney (UTS). His research fields include 

measurement and modeling of properties of magnetic 
materials, numerical analysis of electromagnetic field, electrical machine 
design optimization, power electronic drives and control.  
 
 
 
Jianguo Zhu (S’93–M’96–SM’03) received the B.E. degree in 1982 from 
Jiangsu Institute of Technology, Jiangsu, China, the M.E. degree in 1987 from 



Shanghai University of Technology, Shanghai, China, and the Ph.D. degree in 
1995 from the University of Technology Sydney (UTS), Sydney, Australia, all 
in electrical engineering. He was appointed a lecturer at UTS in 1994 and 
promoted to full professor in 2004 and Distinguished Professor of Electrical 
Engineering in 2017. At UTS, he has held various leadership positions, 
including the Head of School for School of Electrical, Mechanical and 
Mechatronic Systems and Director for Centre of Electrical Machines and 
Power Electronics. In 2018, he joined the University of Sydney, Australia, as 
a full professor and Head of School for School of Electrical and Information 
Engineering. His research interests include computational electromagnetics, 
measurement and modelling of magnetic properties of materials, electrical 
machines and drives, power electronics, renewable energy systems and smart 
micro grids. 


	Clipboard Data(1)
	Sun_Cao_Robust Deadbeat PC.pdf
	A. Conventional DBPC Method
	B. Parameter Sensitivity Analysis
	A. Composite Sliding Mode Disturbance Observer (SMDO) Design
	B. Discrete Expression of Composite SMDO
	C. Predictive Current Control with Composite SMDO


