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Discovering Significant Communities on
Bipartite Graphs: An Index-based Approach

Kai Wang, Shuting Wang, Wenjie Zhang, Ying Zhang, Lu Qin, and Yuting Zhang

Abstract—Bipartite graphs are widely used to model relationships between two types of entities. Community search retrieves densely
connected subgraphs containing a query vertex, which has been extensively studied on unipartite graphs. However, it remains largely
unexplored on bipartite graphs. Moreover, all existing cohesive subgraph models on bipartite graphs only measure the structure
cohesiveness while overlooking the edge weight. In this paper, we study the significant (α, β)-community search problem on weighted
bipartite graphs. Given a query vertex q, we aim to find the significant (α, β)-communityR of q which adopts (α, β)-core to characterize
the engagement level of vertices, and maximizes the minimum edge weight (significance) within R. To support fast retrieval of R, we
first obtain the maximal connected subgraph of (α, β)-core containing q (the (α, β)-community), and the search space is limited to this
subgraph with a much smaller size than the original graph. A novel index structure is presented to support retrieving the (α,
β)-community in optimal time. Efficient index maintenance techniques are also proposed to handle dynamic graphs. To further obtain
R, we develop peeling and expansion algorithms. The experimental results on real graphs validate the effectiveness and efficiency of
our proposed techniques.

Index Terms—Bipartite graph, Cohesive subgraph, Community search, Indexing

F

1 INTRODUCTION

In many real-world applications, relationships between two
different types of entities are modeled as bipartite graphs,
such as customer-product networks [1], user-page networks
[2] and collaboration networks [3]. Community structures
naturally exist in these practical networks and community
search has been extensively explored and proved useful on
unipartite graphs [4], [5], [6], [7], [8], [9], [10], [11]. Given
a query vertex q, community search aims to find commu-
nities (connected subgraphs) containing q which satisfy
specific cohesive constraints. In the literature, fair cluster-
ing methods [12], [13], [14] are used to find communities
(i.e., clusters) under fairness constraints on bipartite graphs.
However, they aim to find a set of clusters under a global
optimization goal and do not aim to search a personalized
community for a specific user. Nevertheless, no existing
work has studied the community search problem on bipartite
graphs. On bipartite graphs, various dense subgraph mod-
els are designed (e.g., (α, β)-core [15], [16], bitruss [17], [18],
[19] and biclique [20]) which can be used as the cohesive
measurement of a community. However, simply applying
these cohesive measurements only ensures the structure
cohesiveness of communities but ignores another important
characteristic, the weight (or significance) of interactions
between the two sets of vertices. For example, (α, β)-core
is defined as the maximal subgraph where each vertex in
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Fig. 1: A user-movie network

upper layer has at least α neighbors and each vertex in
lower layer has at least β neighbors. In the customer-movie
network shown in Figure 1, each edge has a weight denoting
the rating of a user to a movie. If the (α, β)-core model is
applied to search a community of “Eric”, e.g., the maximal
connected subgraph of (3, 2)-core containing “Eric”, we will
get the community formed by the four users and the five
movies on the left side. Note that, this community includes
“Alien” (not liked by “Andy” or “Kane”) and “Taylor” (who
has less interest in this genre of movies).

In this paper, we study the significant community search
problem on weighted bipartite graphs, which is the first
to study community search on bipartite graphs. Here, in
a weighted bipartite graph G, each edge is associated with
an edge weight. In addition, the weight (significance) of a
community is measured by the minimum edge weight in it.
A community with a high weight value indicates that every
edge in the community represents a highly significant inter-
action. We propose the significant (α, β)-community model,
which is the maximal connected subgraph containing the
query vertex q that satisfies the vertex degree constraint
from (α, β)-core, and has the highest graph significance.
The intuition behind the new significant (α, β)-community
model is to capture structure cohesiveness as well as in-
teractions (edges) with high significance. In addition, if we
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maximize the weight value under given α and β, we can
find the most significant subgraph while preserving the
structure cohesiveness. For example, in Figure 1, the sub-
graph in blue color, which excludes “Alien” and “Taylor”,
is the significant (3, 2)-community of “Eric”.
Applications. Finding the significant (α, β)-community has
many applications and we list some of them below.
• Personalized Recommendation. In user-item networks, users
leave reviews for items with ratings. Examples include
viewer-movie network in IMDB, reader-book network in
goodreads. The platforms can utilize the significant (α,
β)-community model to provide personalized recommen-
dations. For example, based on the community found in
Figure 1, we can put the people who give common high
ratings (“Andy” and “Kane”) on the recommended friend
list of the query user (“Eric”). We can also recommend the
movie (“Avatar”) which the user is likely to be interested in
to the query user (“Eric”).
• Fraud Detection. In e-commerce platforms such as Amazon
and Alibaba, customers and items form a customer-item
bipartite graph in which an edge represents a customer pur-
chased an item, and the edge weight measures the number
of purchases or the total transaction amount. Fraudsters
and the items they promote are prone to form cohesive
subgraphs [15], [17]. Since the cost of opening fake accounts
is increased with the improvement of fraud detection tech-
niques, frauds cannot rely on many fake accounts [2]. Thus,
the number of purchases or the total transaction amount per
account is increased. Given a suspicious item or customer
as the query vertex, our significant (α, β)-community model
allows us to find the most suspicious fraudsters and related
items in the customer-item bipartite graphs.
• Team Formation. In a bipartite graph formed by developers
and projects, an edge between a developer and a project
indicates that the developer participates in the project, and
the edge weight shows the corresponding contribution (e.g.,
number of tasks accomplished). A developer may wish to
assemble a team with a proven track record of contributions
in related projects, which can be supported by a significant
(α, β)-community search over the bipartite graph.
Challenges. To obtain the significant (α, β)-community, we
can iteratively remove the vertices without enough neigh-
bors and the edges with small weights from the graph.
However, when the graph size is large and there are many
vertices and edges that need to be removed, this approach is
inefficient. For example, Figure 2(a) shows the graph G with
2,003 edges. We need to remove 1,999 edges from G to get
the significant (2, 2)-community of u3 with only 4 edges.

In this paper, we focus on indexing-based approaches.
Our intuition is to reduce the search space of the query
algorithms by indexing necessary results. A straightforward
idea is precomputing all the significant (α, β)-communities
for all α, β, and q combinations. This idea is impractical
since both structure cohesiveness and significance need to
be considered. For different query vertex q and α, β values,
the significant (α, β)-communities can be different and there
does not exist hierarchical relationships among them. There-
fore, we resort to a two-step approach. In the first step, we
observe that the (α, β)-community always contains the sig-
nificant (α, β)-community for a query vertex q. Here, (α, β)-
community is the maximal connected subgraph containing

u1 u2 u3 u4 u998 u999

v1 v2 v3 v4 v998 v999

U(G)
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u1 u2 u3 u4

v1 v2 v3 v4
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(a) A weighted bipartite graph G, 
w(u, v) = 5 u.id − v.id.

(b) The (2, 2)-community
of u3 in G.

Fig. 2: An example graph, the significant (2, 2)-community of
u3 is marked in red color

q in the (α, β)-core (without considering the edge weights).
For example, Figure 2(b) shows the (2, 2)-community of u3
which contains the significant (2, 2)-community of u3 and is
much smaller than the original graph G. Therefore, we try
to index all (α, β)-communities and use the one containing
q as the starting point when querying w.r.t. q. In the second
step, we compute the significant (α, β)-community based
on the (α, β)-community obtained in the first step. To make
our ideas practically applicable, we need to address the
following challenges.

1) How to build an index to cover all (α, β)-communities.
2) How to bound the index size and the indexing time.
3) How to efficiently maintain the index when the ver-

tices/edges are dynamically updated.
4) How to efficiently obtain the significant (α, β)-

community from the (α, β)-community of a vertex q.
Our approaches. To address Challenge 1, we first propose
the index Iαbs to store all the (α, β)-communities. It is ob-
served that the model of (α, β)-core has a hierarchical prop-
erty. In other words, (α, β)-core ⊆ (α′, β′)-core if α ≥ α′

and β ≥ β′. Motivated by this observation, all the (1, β)-
community with β ≥ 1 can be organized hierarchically in
the (1, 1)-core. Then, when querying a (1, β)-community
with β ≥ 1, we only need to take the vertices and edges
in this community using breath-first search. By organizing
all the (α, 1)-cores where α ∈ [1, αmax], Iαbs can cover all the
(α, β)-communities. Similarly, we can also build the index
Iβbs which stores all the (1, β)-core where β ∈ [1, βmax] to
cover all the (α, β)-communities. Here αmax and βmax are
the maximal valid α and β values in G respectively.

Reviewing Iαbs and Iβbs, we observe that Iαbs(I
β
bs) can be

very large when high degree vertices exist in U(G)(L(G)).
For example, Iαbs needs to store 999 copies of neighbors of u1
since u1 is contained in (999, 1)-core. The same issue occurs
when Iβbs stores v1’s neighbors. To handle this issue and
address Challenge 2, we further propose the degeneracy-
bounded index Iδ . Here, the degeneracy (δ) is the largest
number where the (δ, δ)-core is nonempty in G. Note that
for each nonempty (α, β)-core (or (α, β)-community), we
must have min(α, β) ≤ δ. This is because it contradicts the
definition of δ if an (α, β)-core with α > δ and β > δ exists.
In addition, according to the hierarchical property of the
(α, β)-core model, all (α, β)-communities with α ≤ β can be
organized in the (α, α)-core and all (α, β)-communities with
β < α can be organized in the (β, β)-core. In this manner, Iδ
only needs to store all the (τ, τ)-cores for each τ ∈ [1, δ] to
cover all the (α, β)-communities. For example, in Figure 2,
unlike Iαbs which needs to store (1, 1)-core to (999, 1)-core,
Iδ only needs to store (1, 1)-core, (2, 2)-core and (3, 3)-core
since δ=3. Since the size of each (τ, τ)-core (τ ∈ [1, δ]) is
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bounded by O(m), Iδ can be built in O(δ · m) time and
takes O(δ ·m) space to index all the (α, β)-communities. We
also propose a size-aware index whose size can be adjusted
under a given space budget.

To address Challenge 3, we propose effective index
maintenance techniques to handle scenarios where graphs
are dynamically updated. Specifically, we discuss how the
index Iδ is updated when inserting or deleting an edge. We
theoretically show that all the affected vertices are limited
in a small subgraph and techniques are devised to update
the affected index entries efficiently.

To address Challenge 4, after retrieving the (α, β)-
community Cα,β(q), we first propose the peeling algorithm
SCS-Peel which iteratively removes the edge with the mini-
mal weight from Cα,β(q) to obtainR. Observing thatR can
be much smaller than Cα,β(q) in many cases, we also pro-
pose the expansion algorithm SCS-Expand which iteratively
adds the edge with maximal weights into an empty graph
until R is found. In SCS-Expand, we derive several rules to
avoid excessively validating R.
Contribution. Our main contributions are listed as follows.
• We propose the model of significant (α, β)-community

which is the first to study community search problem
on (weighted) bipartite graphs.

• We develop a new two-step paradigm to search the
significant (α, β)-community. Under this two-step
paradigm, novel indexing techniques are proposed to
support the retrieval of the (α, β)-community in opti-
mal time. The index Iδ can be built in O(δ ·m) time and
takes O(δ · m) space where δ is bounded by

√
m and

is much smaller in practice. Note that, the proposed
indexing techniques can also be directly applied to
retrieve the (α, β)-community on unweighted bipartite
graphs in optimal time.

• We propose effective index maintenance techniques to
handle dynamic graphs.

• We propose efficient query algorithms to extract the sig-
nificant (α, β)-community from the (α, β)-community.

• We conduct comprehensive experiments on 11 real
weighted bipartite graphs to evaluate the effectiveness
and the efficiency of the proposed techniques.

2 PROBLEM DEFINITION

TABLE 1: The summary of notations

Notation Definition
G a bipartite graph

V (G)/E(G) the vertex/edge set of G
U(G), L(G) the upper layer and lower layer of G
u, v, x a vertex in a bipartite graph
(u, v), e an edge in a bipartite graph
Rα,β the (α, β)-core of G
Cα,β(q) (α, β)-community
R significant (α, β)-community

N(u,G) the set of neighbors of u on G
n,m the number of vertices and edges in G (m > n)

Our problem is defined over an undirected weighted
bipartite graphG(V =(U,L), E), whereU(G) denotes the set
of vertices in the upper layer, L(G) denotes the set of ver-
tices in the lower layer, U(G) ∩ L(G) = ∅, V (G) = U(G) ∪
L(G) denotes the vertex set, E(G) ⊆ U(G)× L(G) denotes

the edge set. An edge e between two vertices u and v in G is
denoted as (u, v) or (v, u). The set of neighbors of a vertex u
in G is denoted as N(u,G) = {v ∈ V (G) | (u, v) ∈ E(G)},
and the degree of u is denoted as deg(u,G) = |N(u,G)|. We
use n and m to denote the number of vertices and edges in
G, respectively, and we assume each vertex has at least one
incident edge. Each edge e = (u, v) has a weight w(e) (or
w(u, v)). The size of G is denoted as size(G) = |E(G)|.

Before formally defining the problem, we introduce the
following critical concepts.

Definition 1. ((α, β)-core) Given a bipartite graph G and degree
constraints α and β, a subgraphRα,β is the (α, β)-core ofG if (1)
deg(u,Rα,β) ≥ α for each u ∈ U(Rα,β) and deg(v,Rα,β) ≥ β
for each v ∈ L(Rα,β); (2) Rα,β is maximal, i.e., any supergraph
G′ ⊃ Rα,β is not an (α, β)-core.

Definition 2. ((α, β)-Connected Component) Given a bipar-
tite graph G and its (α, β)-core Rα,β , a subgraph Cα,β is a
(α, β)-connected component if (1) Cα,β ⊆ Rα,β and Cα,β is
connected; (2) Cα,β is maximal, i.e., any supergraph G′ ⊃ Cα,β
is not a (α, β)-connected component.

Definition 3. ((α, β)-Community) Given a vertex q, we call the
(α, β)-connected component containing q the (α, β)-community,
denoted as Cα,β(q).

Definition 4. (Bipartite Graph Weight) Given a bipartite
graph G, the weight value of G denoted by f(G) is defined as
the minimum edge weight in G.

Definition 5. (Significant (α, β)-Community) Given a
weighted bipartite graph G, degree constraints α, β and query
vertex q, a subgraph R is the significant (α, β)-community of G
if it satisfies the following constraints:

1) Connectivity Constraint. R is a connected subgraph
which contains q;

2) Cohesiveness Constraint. Each vertex u ∈ U(R) satis-
fies deg(u,R) ≥ α and each vertex v ∈ L(R) satisfies
deg(v,R) ≥ β;

3) Maximality Constraint. There exists no other G′ ⊆
Cα,β(q) satisfying constraints 1) and 2) with f(G′) >
f(R). In addition, there exists no other supergraph G′′ ⊃ R
satisfying constraints 1) and 2) with f(G′′) = f(R).

Problem Statement. Given a weighted bipartite graph G,
parameters α, β and a query vertex q, the significant (α, β)-
community search problem aims to find the significant (α,
β)-community (SC) in G.
Solution Overview. According to Definition 3 and Defini-
tion 5, we have the following lemma.

Lemma 1. Given a weighted bipartite graph G, the significant
(α, β)-community is unique, which is a subgraph of the (α, β)-
community.

Following the above lemma, we can use indexing tech-
niques to efficiently find the (α, β)-community first. In this
manner, the search space is limited to a much smaller sub-
graph compared to G. Then, we further search on the (α, β)-
community to identify the significant (α, β)-community. Ac-
cording to this two-step algorithmic framework, we present
our techniques in the following sections.
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3 TIME-OPTIMAL (α, β)-COMMUNITY RETRIEVAL

In this section, we explore indexing techniques to retrieve
the (α, β)-community in an efficient way.

3.1 Basic Indexes
In [15], the authors propose the bicore index which can
obtain the vertex set of the (α, β)-core (i.e., V (Rα,β)) in opti-
mal time. However, to obtain Cα,β(q) after having V (Rα,β),
we still need to traverse all the neighbors of each vertex
in Cα,β(q) (starting from the query vertex) including those
neighbors which are not in Cα,β(q). This process needs
O(|V (Cα,β(q))| ·

∑
v∈V (Cα,β(q))

deg(v,G)) time and when
|size(Cα,β(q))|∑

v∈V (Cα,β(q)) deg(v,G) is small, it may need to access many

additional edges not in the queried community. Motivated
by this, we explore how to construct an index to support
optimal retrieval of the (α, β)-community (i.e., optimal
retrieval of (α, β)-connected components).

By Definition 1, we have the following lemma.

Lemma 2. (α, β)-core ⊆ (α′, β′)-core if α ≥ α′ and β ≥ β′.

We also define the α-offset and the β-offset of a vertex as
follows.

Definition 6. (α-/β-offset) Given a vertex u ∈ V (G) and an
α value, its α-offset denoted as sa(u, α) is the maximal β value
where u can be contained in an (α, β)-core. If u is not contained
in (α, 1)-core, sa(u, α) = 0. Symmetrically, the β-offset sb(u, β)
of u is the maximal α value where u can be contained in an (α,
β)-core.

-offset

4 34 2 1 1

v1 v2 v3 v4 v5 v999

4 3999 2 1 1

v1 v2 v3 v4 v5 v999

1 11 1 1 1

v1 v2 v3 v4 v5 v999

1 2 3 4 999

u1

3 33 2 1 1
v1 v2 v3 v4 v5 v999

v1 v2 v3 v4 v5 v999

2 12 1 1 1

௦
ఈ

ଵ

Fig. 3: Iαbs[u1] of G, edge weights are omitted

Algorithm 1: Index Construction of Iαbs
Input: G
Output: Iαbs

1 α← 1;
2 αmax ← the maximal vertex degree in U(G);
3 while α ≤ αmax do
4 compute sa(u, α) for each vertex u ∈ V (G);
5 foreach u ∈ (α, 1)-core do
6 foreach v ∈ N(u,G) do
7 if sa(v, α) ≥ 1 then
8 Iαbs[u][α]← {v, w(u, v), sa(v, α)};
9 sort Iαbs[u][α] in decreasing order of their

α-offsets;
10 α← α+ 1;
11 return Iαbs;

Since (α, β)-core follows a hierarchical structure ac-
cording to Lemma 2, an index can be constructed in the
following way. For each vertex u, its α-offset indicates that
u is contained in the (α, sa(u, α))-core and is not contained
in the (α, sa(u, α)+1)-core. According to Lemma 2, if u is
contained in the (α, sa(u, α))-core, it is also contained in the

ఋ
ఈ

ఋ
ఉ

)

௫

௫

௦
ఈ

௦
ఉ

(a) Illustrating indexes ௦
ఈ and ௦

ఉ . (b) Illustrating the index ఋ .

ఋ

Fig. 4: Illustrating the ideas of indexing techniques

(α, β)-core with β ≤ sa(u, α). As shown in Figure 4(a), the
shaded area represents all the valid combinations of α and
β where an (α, β)-community exists. As illustrated, we can
organize the (α, β)-cores hierarchically and construct the
basic index Iαbs as shown in Algorithm 1. Firstly, we obtain
αmax which is the maximal α value such that an (α, 1)-core
exists and it is equal to the maximal vertex degree in U(G).
We then compute the α-offset for each vertex. For each
vertex u and α combination (where u exists in (α, 1)-core),
we create an adjacent list Iαbs[u][α] to store its neighbors. In
Iαbs[u][α], we sort u’s neighbors in non-increasing order of
their α-offsets and remove these neighbors with α-offsets
equal to zero. Figure 3 is an example which shows Iαbs[u1]
of G in Figure 2(a). We can see that Iαbs[u1] contains the
neighbors of u1 of different α values.

Algorithm 2: Query based on Iαbs
Input: G, q, α, β, Iαbs;
Output: Cα,β(q)

1 Q← q;
2 visited(q)← true;
3 while Q is not empty do
4 u← Q.pop();
5 foreach v ∈ Iαbs[u][α] do
6 if sa(v, α) ≥ β then
7 Cα,β(q)← (u, v) if u ∈ L(G);
8 if visited(v) = false then
9 Q.push(v);

10 visited(v)← true;
11 else
12 break;
13 return Cα,β(q);

Optimal retrieval of Cα,β(q) based on Iαbs. Given a query
vertex q, Algorithm 2 illustrates the query process of the (α,
β)-community (i.e., Cα,β(q)) based on Iαbs. When querying
Cα,β(q), we first put the query vertex into the queue. Then,
we pop the vertex u from the queue, and visit the adjacent
list Iαbs[u][α] to obtain the neighbors of u with α-offset
≥ β. For each valid neighbor v, we add the edge (u, v)
into Cα,β(q) if u ∈ L(G) to avoid duplication. Then, we
put these valid neighbors into the queue and repeat this
process until the queue is empty. Since the neighbors are
sorted in non-increasing order of their α-offsets, we can
early terminate the traversal of the adjacent list when the
α-offset of a vertex is smaller than the given β.

Lemma 3. Given a bipartite graph G and a vertex q, Algorithm
2 computes Cα,β(q) in O(size(Cα,β(q))) time, which is optimal.

Proof. In Algorithm 2, for each u ∈ Q, since there is no du-
plicate vertex in Iαbs[u][α] and only its neighbor v ∈ Iαbs[u][α]
with sa(v, α) ≥ β can be accessed, each u and v combination
corresponds to an edge in Cα,β(q). In addition, since each
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vertex can be only added once into Q according to lines 8 -
10, Algorithm 2 computes Cα,β(q) in O(size(Cα,β(q))) time,
which is optimal as it is linear to the result size.

Example 1. Considering the graph in Figure 2 and Iαbs[u1] in
Figure 3, if we want to get the (3, 3)-community of u1 C3,3(u1),
we first traverse Iαbs[u1][3] to get all the neighbors with α-offsets
≥ 3 which are v1, v2 and v3. The edges (u1, v1), (u1, v2) and
(u1, v3) will be added into C3,3(u1). Then, we go to the index
nodes Iαbs[v1][3], I

α
bs[v2][3] and Iαbs[v3][3] to get unvisited vertices

u2 and u3 with α-offsets ≥ 3. The edges (u2, v1), (u2, v2),
(u2, v3), (u3, v1), (u3, v2), (u3, v3) will be added into C3,3(u1)
when accessing Iαbs[u2][3] and Iαbs[u3][3].

In addition, apart from Iαbs, we can construct an index
Iβbs similarly based on β-offsets which also achieves optimal
query processing. For each vertex u and β combination, we
create an adjacent list to store its neighbors and we sort its
neighbors in non-increasing order of their β-offsets (remov-
ing these neighbors with β-offsets = 0). When querying the
Cα,β(q), we first go to the adjacent list indexing by q and
β, and obtain the neighbors of q with β-offset ≥ α. Then
we run a similar breadth-first search as Algorithm 2 shows.
Using Iβbs, we can also achieve optimal retrieval of Cα,β(q)
which can be proved similarly as Lemma 3.
Complexity analysis of basic indexes. Storing Iαbs
needs size(Iαbs) = O(

∑αmax
α=1 (size((α, 1)-core)) space. Since∑αmax

α=1 (size((α, 1)-core) ≤
∑αmax
α=1 (size((1, 1)-core)),

size(Iαbs) is also bounded by O(αmax · m). Similarly, Iβbs
needs O(

∑βmax
β=1 (size((1, β)-core)) = O(βmax ·m) space. In

addition, the time complexity of constructing Iαbs is TC(Iαbs)
= O(αmax ·m) as discussed in [21].

3.2 The Degeneracy-bounded Index Iδ
Reviewing Iαbs and Iβbs, we can see that it is hard to handle
high degree vertices in U(G)(L(G)) using Iαbs(I

β
bs). This is

because if these vertices exist in an (α, β)-core with large
α (or β) value, according to Lemma 2, Iαbs or Iβbs may need
large space to store several copies of the neighbors of these
high degree vertices. For example, in Figure 3, Iαbs needs to
store multiple copies of neighbors of u1 since u1 is contained
in (999, 1)-core. The same issue occurs when Iβbs stores v1’s
neighbors. Thus, in this part, we explore how to effectively
handle these high degree vertices and build an index with
smaller space consumption.

Firstly, we give the definition of degeneracy as follows.

Definition 7. (Degeneracy) Given a bipartite graph G, the
degeneracy of G denoted as δ is the largest number where (δ, δ)-
core is nonempty in G.

Note that, δ is bounded by
√
m and in practice, it is much

smaller than
√
m [15].

Lemma 4. Given a bipartite graph G, a nonempty (α, β)-core in
G must have min(α, β) ≤ δ.
Proof. The detailed proof can be found in [21].

Based on Lemma 4, we can observe that, given query
parameters α and β, a partial index of Iαbs which only stores
adjacent lists of u for each u and α combinations with α ≤ δ
is enough to handle queries when α = min(α, β). Similarly,
a partial index of Iβbs which only stores adjacent lists under

(u, β) combinations with β ≤ δ is enough to handle queries
when β = min(α, β). Based on the above observation, we
propose the index Iδ as follows.

1 2 3

1 2 3

3 33
v1 v2 v3 v4 v5 v999

4 3999 2 1 1

v1 v2 v3

4 34
v1 v2 v3 v4

2

ఋ
ఈ

ଵ

ఋ
ఉ

ଵ

u1

u1

-offset

v1 v2 v3 v4 v5 v999

4 44
v1 v2 v3 v4

4999 999999 999999 999-offset

Fig. 5: Iδ[u1] of G, edge weights are omitted

Index Overview. Iδ contains two parts Iαδ and Iβδ to cover
all the (α, β)-communities as illustrated in Figure 4(b).

In Iαδ , for each vertex u and α ≤ δ where u exists in
the (α, α)-core, we create an adjacent list Iαδ [u][α] to store
its neighbors. Note that, the neighbors are sorted in non-
increasing order of their α-offsets and the neighbors with
α-offsets less than α are removed.

In Iβδ , for each vertex u and β ≤ δ where u exists in
the (β, β)-core, we create an adjacent list Iβδ [u][β] to store
its neighbors with β-offsets larger than β. The neighbors
are sorted in non-increasing order of their β-offsets and the
neighbors with β-offsets less or equal than β are removed.
Figure 5 is an example of Iδ[u1] of G in Figure 2(a). We can
see that it consists of two parts Iαδ [u1] and Iβδ [u1].
Optimal retrieval of Cα,β(q) based on Iδ . The query
processing of Cα,β(q) based on Iδ is similar to the query
processing based on the basic indexes. The difference is that
we need to choose to use Iαδ or Iβδ at first. If the query
parameter α ≤ δ, we use Iαδ to support the query process.
Otherwise, we go for Iβδ to obtain the Cα,β(q). Since only
valid edges are touched using Iδ , we can also obtain Cα,β(q)
in O(size(Cα,β(q))) time which is optimal. The proof of
optimality is similar as Lemma 3 and we omit it here due to
the space limit.

Example 2. Considering G in Figure 2 and Iδ[u1] in Figure
5, if we want to get the (3, 3)-community of u1 C3,3(u1), since
α = β, we first traverse Iαδ [u1][3] to get all the neighbors with α-
offsets ≥ 3, which are v1, v2 and v3. The edges (u1, v1), (u1, v2)
and (u1, v3) will be added into C3,3(u1). Then, we go to the index
nodes Iαδ [v1][3], I

α
δ [v2][3] and Iαδ [v3][3] to get unvisited vertices

u2 and u3 with α-offsets ≥ 3. The edges (u2, v1), (u2, v2),
(u2, v3), (u3, v1), (u3, v2), (u3, v3) will be added into C3,3(u1)
when accessing Iαδ [u2][3] and Iαδ [u3][3].

Lemma 5. The space complexity of Iδ denoted as size(Iδ) is
O(2 ·

∑δ
τ=1 size(Rτ,τ )) = O(δ ·m).

Proof. For each α ∈ [1, δ] and u ∈ Rα,α, we
need to store at most deg(u,Rα,α) u′s neighbors in
Iαδ . Thus, Iαδ needs O(

∑δ
α=1

∑
u∈Rα,α deg(u,Rα,α)) =

O(
∑δ
α=1 size(Rα,α))=O(δ·m) space. Similarly, Iβδ also needs

O(
∑δ
β=1(size(Rβ,β)) = O(δ ·m) space. In total, the space for

storing Iδ is O(δ ·m).
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Algorithm 3: Index Construction of Iδ
Input: G
Output: Iδ

1 τ ← 1;
2 compute δ using the k-core decomposition algorithm;
3 while τ ≤ δ do
4 compute α-offset sa(u, τ) and β-offset sb(u, τ) for

each vertex u ∈ V (G);
5 foreach u ∈ (τ, τ)-core do
6 foreach v ∈ N(u,G) do
7 if sa(v, τ) ≥ τ then
8 Iαδ [u][τ ]← {v, w(u, v), sa(v, τ )};
9 if sb(v, τ) > τ then

10 Iβδ [u][τ ]← {v, w(u, v), sb(v, τ )};
11 sort Iαδ [u][τ ] in decreasing order of their

α-offsets;
12 sort Iβδ [u][τ ] in decreasing order of their

β-offsets;
13 τ ← τ + 1;
14 return Iδ ;

Index Construction. The construction algorithm of Iδ is
shown in Algorithm 3. We first compute δ using the k-
core decomposition algorithm in [22] since δ is equal to
the maximum core number in G. Then, for each vertex u,
we compute its α-offset for each α ≤ δ and its β-offset for
each β ≤ δ. These values can be obtained by the peeling
algorithm in [16]. Then, we loop τ from 1 to δ and add the
valid neighbors of the vertices in the (τ, τ)-core into Iδ .

Lemma 6. The time complexity of Algorithm 3 is O(δ ·m).

Proof. The detailed proof can be found in [21].

3.3 Size-aware Indexing Techniques
In this part, we discuss how to construct a size-aware index
to handle the scenario where a space budget is given. Based
on the three indexes proposed in the above parts, we have
the following lemmas.

Lemma 7. In a bipartite graph G,
∑δ
τ=1(size((τ, τ)-core) ≤

min(
∑αmax
α=1 (size((α, 1)-core)),

∑βmax
β=1 (size((1, β)-core)).

Proof. From Lemma 4, we have δ ≤ αmax. From Lemma
2, for each 1 ≤ τ ≤ δ, (τ, τ)-core) ⊆ (τ, 1)-core).
Thus, we can have

∑δ
τ=1(size((τ, τ)-core) ≤∑αmax

α=1 (size((α, 1)-core). We can also prove∑δ
τ=1(size((τ, τ)-core) ≤

∑βmax
β=1 (size((1, β)-core) in a

similar way. Thus, we can get
∑δ
τ=1(size((τ, τ)-core) ≤

min(
∑αmax
α=1 (size((α, 1)-core)),

∑βmax
β=1 (size((1, β)-core)).

Lemma 8. size(Iδ) ≤ 2 ·min(size(Iαbs), size(Iαbs)).

Proof. This lemma directly follows from Lemma 5 and
Lemma 7.

According to Lemma 6 and 8, the size of Iδ is bounded
by O(δ ·m) and it is at most two times of the minimal size
of the basic indexes. In some circumstances, when αmax
or βmax is not much larger than δ, the naive indexes may
have a smaller size than Iδ . Thus, we propose the size-aware
indexing technique which can not only choose to construct
an index with the minimal size among Iαbs, I

β
bs and Iδ , but

also can determine the number of entries constructed in the
index if a space limitation is given.
Choose the index with the minimal size in O(m) time.
To compute which index is the one with the minimal size
among Iαbs, I

β
bs and Iδ , we have the following lemma.

Lemma 9. Given a bipartite graph G, the values of∑αmax
α=1 (size((α, 1)-core),

∑βmax
β=1 (size((1, β)-core) and∑δ

τ=1(size((τ, τ)-core) can be computed in O(m) time.

Proof. Since a vertex u ∈ U(G) is contained in
(deg(u,G), 1)-core, all of neighbors of u are also contained
in (deg(u,G), 1)-core. Thus, u contributes deg(u,G) edges
to the (deg(u,G), 1)-core. In addition, according to Lemma
2, u also contributes deg(u,G) edges for each (α, 1)-core
where α ∈ [1, deg(u,G)]. According to Definition 1, an
(α, 1)-core is formed by all the incident edges of vertices
in U(G) with degree larger than or equal to α. Thus, we
can get that

∑αmax
α=1 (size((α, 1)-core)=

∑
u∈U(G) deg(u,G)

2

which can be easily computed in O(m) time.
Similarly,

∑βmax
β=1 (size((1, β)-core)=

∑
v∈L(G) deg(v,G)

2

which can also be easily computed in O(m) time.
In addition, using the core decomposition algorithm

proposed in [22], we can compute the size of each (τ, τ)-core
where τ ∈ [1, δ]. Thus,

∑δ
τ=1(size((τ, τ)-core) can be com-

puted in O(m) time.

Based on Lemma 9, we can pre-compute the sizes of
indexes Iαbs, I

β
bs and Iδ with a very small overhead (i.e.,

O(m) time), and construct the one with the minimal size
denoted as I∗.
Fit into limited space. In most real-world applications,
the query for less cohesive communities is rare. Also, as
evaluated in our experiments, the bicore index can effi-
ciently support the retrieval of these less cohesive connected
components since only a small number of vertices are not
in the (α, β)-core when the query parameters α and β are
small. Thus, we propose the hybrid indexing techniques
which combine I∗ and the bicore index Iv to handle these
scenarios when the space budget is given.

Note that all our proposed indexes have high flexibility,
that is, given a parameter τ , we only need to build I∗,≥τ
to support optimal queries of Cα,β(q) when parameters α
and/or β are larger than a threshold. When I∗ = Iδ , I∗,≥τ
can support optimal queries when parameters α ≥ τ and
β ≥ τ which requires O((δ−τ) ·m) space and O((δ−τ) ·m)
construction time. Because of the hierarchical structure of
(α, β)-cores, size (I∗,≥τ ) can be much smaller than size(I∗) ·
δ−τ
δ . Similarly, when I∗ = Iαbs, I∗,≥τ can support optimal

queries when parameters α ≥ τ which needs O((αmax −
τ) · m) space and construction time. When I∗ = Iβbs, I∗,≥τ
can support optimal queries when parameters β ≥ τ which
needs O((βmax − τ) · m) space and construction time. In
addition, we build bicore index to handle the other queries.
Note that, the bicore index needsO(m) space and takesO(δ·
m) construction time [15].

Lemma 10. Given a space budget D which is enough to
store the bicore index Iv , we can choose the largest integer
τ to construct I∗,≥τ which can fit in D − size(Iv) space in
O(m · log(max(αmax, βmax)).
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Proof. According to Lemma 9, the index size of I∗ can be
computed in O(m) time. Thus, we can use binary search
to find the largest τ where I∗,≥τ can be fitted in the given
space. Since τ ∈ [0,max(αmax, βmax)], the binary search
algorithm needs O(m · log(max(αmax, βmax)) time.

Remark. Since we are dealing with the weighted bipartite
graphs in this paper, the weights of edges can be dynam-
ically changed in some circumstances. Note that changing
the edge weights does not affect the α/β-offsets of the
vertices, so We only need to find and update the index
entries related to the edge with the changed weight.

4 INDEX MAINTENANCE FOR DYNAMIC GRAPHS

When graphs are updated dynamically (i.e., vertices/edges
are inserted or removed), it is inefficient to reconstruct the
indexes from scratch. In this section, we present incremental
algorithms to maintain Iδ . Other indexes in this paper can
be maintained similarly. Note that we mainly discuss the
insertion/removal of one edge since the insertion/removal
of vertices can be considered as inserting/removing a se-
quence of edges.

4.1 Edge insertion
Suppose an edge (u, v) is inserted into G and we denote
the graph after insertion as G+. Firstly, we need to track the
changes of α-offsets and β-offsets of the affected vertices.
Then, we adjust the index according to the new α/β-offsets.
Tracking the changes of α/β-offsets. By the definition of (α,
β)-community, we have the following lemmas.

Lemma 11. Suppose an edge (u, v) is inserted into G. For each
α, only the α-offsets of the vertices in S+

α = V (Cα,sa(u,α)(u))∪
V (Cα,sa(v,α)(v)) can be increased. Similarly, for each β, only
the β-offsets of the vertices in S+

β = V (Csb(u,β),β(u)) ∪
V (Csb(v,β),β(v)) can be increased.

Proof. When fixing α, for each vertex /∈ S+
α , it either does

not connect to u(v) or u(v) already exists in some (α, β)-
connected component it belongs to. Similarly, only the ver-
tices in S+

β can be affected when fixing β.

Lemma 12. Suppose an edge (u, v) is inserted into G. For each
α, the α-offset of a vertex w ∈ S+

α \{u} can be increased by at
most 1. For each β, the β-offset of a vertex w ∈ S+

β \{v} can be
increased by at most 1.

Proof. Since there is only one edge inserted, by the structure
of (α, β)-core, this lemma holds.

The above lemmas provide a search scope of affected
vertices and how much their offsets can be increased except
u (or v). Note that, as proved in [23], when inserting an
edge (u, v), for each α, the α-offset of u can be increased to
bα or bα+1 where bα = max x s.t. |{w ∈ NG+(u) ∩ w ∈
Cα,x(u)}| ≥ α. For each β, the β-offset of v can be increased
to bβ or bβ+1 where bβ = max x s.t. |{w ∈ NG+(v) ∩ w ∈
Cx,β(v)}| ≥ β. In addition, the following lemma is proved
in [23] by the definition of (α, β)-core.

Lemma 13. [23] Suppose an edge (u, v) is inserted into G. For
each α, except u, only the α-offsets of the vertices in the (α, φα)-
core can be increased, where φα = min{bα, sa(v, α)}. Similarly,

for each β, except v, only the β-offsets of the vertices in the
(φβ , β)-core can be increased, where φβ = min{sb(u, β)}, bβ}.

According to all the above lemmas, we can have the
following lemma.

Lemma 14. Suppose an edge (u, v) is inserted into G. For each
α, if sa(v, α) ≤ sa(u, α), only the α-offsets of the vertices in
Cα,sa(v,α)(v) can be increased by at most 1; otherwise, except u,
only the α-offsets of the vertices in Cα,φα(u) can be increased by
at most 1. For each β, if sb(u, β) ≤ sb(v, β), only the β-offsets
of the vertices in Csb(u,β),β(u) can be increased by at most 1;
otherwise, except v, only the β-offsets of the vertices in Cφβ ,β(v)
can be increased by at most 1.

Proof. This lemma directly follows from Lemma 12, Lemma
13 and Lemma 14.

According to the above lemma, the scope of the af-
fected vertices can be significantly reduced. Clearly, the ver-
tices with changed offsets exist in a connected component
containing u (or v). Therefore, the local search algorithm
proposed in [23] can be adopted here to find the affected
vertices and their changed offsets.
Adjusting the index entries. After obtaining all the affected
vertices and their changed offsets, now we discuss how to
adjust the index entries. We denote the increased α-offset
(β-offset) of a vertex w as s+a (w,α) (s+b (w, β)). Suppose an
edge (u, v) is inserted into G. According to the structure of
Iδ , for each α and a vertex w with s+a (w,α) ≥ α, if Iαδ [w][α]
is empty, we need to create Iαδ [w][α] to store each of its
neighbor x with s+a (x, α) ≥ α in Iαδ . For each β and a vertex
w with s+b (w, β) ≥ β, if Iαδ [w][β] is empty, we need to create
Iβδ [w][β] to store each of its neighbor x with s+b (x, α) ≥ β in
Iβδ . The existing index entries need to be changed based on
the following lemma.

Lemma 15. Suppose an edge (u, v) is inserted into G. For each
α and a vertex w with s+a (w,α) ≥ α ∧ s+a (w,α) > sa(w,α),
we only need to update the existing index entries in Iαδ [x][α] if
x ∈ N(w,G+) and s+a (x, α) ≥ α. For each β and a vertex w
with s+b (w, β) ≥ β ∧ s+b (w, β) > sb(w, β), we only need to
update the existing index entries in Iβδ [x][β] if x ∈ N(w,G+)
and s+b (x, β) ≥ β.

Proof. By the construction process of Iδ (i.e., Algorithm 3),
the above lemma holds.

According to the above lemma, we can create new index
entries and adjust all the affected existing index entries for
each α and w with changed offsets. However, it is cost-
prohibitive if we process each of the vertices with a changed
offset and update the corresponding affected index entries.
Note that, for one adjacent list of the index (e.g., Iαδ [x][α]),
it can be updated more than once. Motivated by this obser-
vation, we try to update the index entries in a batch way.
We take the updating of Iαδ as an example and the updating
of Iβδ can be performed in a similar way. For each α, we
process each vertex w with s+a (w,α) ≥ α, and add w into
an array P [x] if x ∈ N(w,G+) and s+a (x, α) ≥ α. After that,
for each vertex x with non-empty P [x], we adjust Iδ[x][α].
By Lemma 14, we know that the vertices in P [x] (except u)
are with the same α-offsets which are increased by exactly
1. In addition, since the index entries of Iδ[x][α] are sorted
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in descending order of their α-offsets, we can perform a
binary search on Iδ[x][α] to find the range of index entries
which have the same α-offset as the vertices in P [x] (before
increasing). Then, we update these index entries of Iδ[x][α]
according to each vertex in P [x]. For each index entry with
increased α-offset after updating, we exchange it with the
first index entry in this range to keep Iδ[x][α] sorted.

Algorithm 4: Maintaining Iδ for Edge Insertion
Input: G, Iδ , and (u, v)
Output: Iδ of G+

1 δ ← the largest number where (δ, δ)-core is nonempty
in G;

2 G+ ← insert (u, v) into G;
3 for α = 1 to δ do
4 if sa(u, α) ≥ α ∧ sa(v, α) ≥ α then
5 add u into Iαδ [v][α];
6 add v into Iαδ [u][α];
7 compute the vertices with increased α-offsets and

put them into Y ;
8 initialize an array P with empty;
9 foreach w ∈ Y do

10 if s+a (w,α) ≥ α then
11 if Iαδ [w][α] is not constructed then
12 construct Iαδ [w][α];
13 P [x]← w;
14 foreach vertex x with nonempty P [x] do
15 update Iαδ [x][α] for each w ∈ P [x];
16 update Iβδ similarly as lines 3 - 15;
17 if (δ + 1, δ + 1)-core exists in G+ then
18 compute the index entries Iδ[·][δ + 1] according to

Algorithm 3 lines 4 - 13;
19 return Iδ ;

The IM-Ins algorithm. According to the above discussions,
we propose the IM-Ins algorithm as shown in Algorithm 4
to handle the edge insertion case. Note that for each vertex
u, we keep its α-offset sa(u, τ) and β-offset sb(u, τ) for
each τ ≤ δ in the memory for efficient index maintenance.
Suppose an edge (u, v) is inserted into G. We first add u(v)
into the adjacent lists of v(u) in Iδ , respectively. Specifically,
for each α ≤ δ, we add u(v) into Iαδ [v][α] (Iαδ [u][α]) if
sa(u, α) ≥ α and sa(v, α) ≥ α. Iβδ is updated in a similar
way. After that, we track the changes of the α-offsets of the
vertices according to Lemma 14. Then, we get the new α/β-
offset of each affected vertex by adopting the local search
algorithm in [23]. According to Lemma 16, for each α(β) and
w with increased s+a (w,α) ≥ α (s+b (w, β) ≥ β), we update
the adjacent lists in Iαδ (Iβδ ) as discussed before. Finally, we
check whether δ is increased by 1 after inserting (u, v). If
it is, we construct the index entries for each vertices in the
(δ, δ)-core similarly as Algorithm 1. Note that this can only
happen when u and v are both contained in the (δ, δ)-core
according to Lemma 12.

4.2 Edge removal

Suppose an edge (u, v) is removed from G and we denote
the graph after removal as G−. Similar as the insertion
case, for each α, only the α-offsets of the vertices in S−α =
V (Cα,1(u)\Cα,sa(u,α)+1(u)) ∪ V (Cα,1(v)\Cα,sa(v,α)+1(v))
can be decreased. For each β, only the β-offsets of
the vertices in S−β = V (C1,β(u)\Csb(u,β)+1,β(u)) ∪
V (C1,β(v)\Csb(v,β)+1,β(v))) can be decreased. In addition,

we can further shrink the search scope similarly as Lemma
16. Thus, we can also adopt the local search approach in [23]
to compute the changes of α/β-offsets. The new α-offset(β-
offset) for a vertex w is denoted as s−a (w,α) (s−b (w, β)),
respectively. After that, we can update the existing index
entries based on the following lemma.

Lemma 16. Suppose an edge (u, v) is removed from G. For each
α and a vertex w with sa(w,α) ≥ α∧s−a (w,α) < sa(w,α), we
need to update the index entries in Iαδ [x][α] if x ∈ N(w,G) and
sa(x, α) ≥ α. If s−a (w,α) < α, we remove Iαδ [w][α]. For each
β and a vertex w with sb(w, β) ≥ β ∧ s−b (w, β) < sb(w, β), we
need to update the index entries in Iβδ [x][β] if x ∈ N(w,G) and
sb(x, β) ≥ β. If s−b (w, β) < β, we remove Iβδ [w][β].

Proof. By the construction of Iδ , this lemma holds.

The IM-Rem algorithm. Suppose an edge (u, v) is removed
from G. We first remove u(v) from the adjacent lists of
v(u) in Iδ , respectively. Specifically, for each α ≤ δ, we
first remove u(v) from Iαδ [v][α] (Iαδ [u][α]) if sa(u, α) ≥ α
and sa(v, α) ≥ α. Iβδ is updated in a similar way. After
that, we get the new α/β-offset of each affected vertex by
adopting the local search algorithm in [23]. Then, similar as
the insertion case, for each α(β) and an affected vertex w
with decreased offset s−a (w,α) ≥ α− 1 (s−b (w, β) ≥ β − 1),
we update the adjacent lists in Iαδ (Iβδ ). Finally, we check
whether δ is decreased by 1 after removing (u, v). If it is, we
remove the index entries in each adjacent list Iδ[·][δ]. Note
that this can only happen when u and v are both contained
in the (δ, δ)-core.
Complexity Analysis. The time complexity of both IM-Ins
and IM-Rem is approximately the same as Algorithm 3 since
they need to update the whole index in the worst case.
However, they are much faster in practice since they do not
need to access and update most of the index entries. As
shown in our experiments, they can achieve up to 2 orders
of magnitude faster than Algorithm 3.

5 QUERY THE SIGNIFICANT (α, β)-COMMUNITY

According to the definition of significant (α, β)-community,
the subgraph Cα,β(q) obtained from the index already
satisfies the connectivity constraint and the cohesiveness
constraint. Thus, here we introduce two query algorithms
to obtain the significant (α, β)-community from Cα,β(q) to
further satisfy the maximality constraint. The first algorithm
is the peeling approach SCS-Peel which iteratively removes
the edge with the minimal weight from Cα,β(q), and SCS-
Expand follows an expansion way which iteratively adds the
edge with the maximal weight into an empty graph until the
significant (α, β)-community is found.

5.1 Peeling Approach
Here, we introduce the peeling approach. Firstly, we retrieve
Cα,β(q) based on the indexes proposed in Section 3. Note
that if all the edge weights are equal in Cα,β(q), we can
just return Cα,β(q) as the result. Otherwise, we sort the
edges inCα,β(q) in non-decreasing order by weights and we
initialize an edge set S and a queue Q to empty. After that,
we run the peeling process on Cα,β(q). In each iteration,
we remove each edge (u, v) with the minimal weight in
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Cα,β(q). Also, we add (u, v) into an edge set S which
records the edges removed in this iteration. Due to the
removal of (u, v), there may exist many vertices which
do not have enough degree to stay in Cα,β(q) (i.e., for
vertex u ∈ U(Cα,β(q)), deg(u,Cα,β(q)) < α or for vertex
v ∈ L(Cα,β(q)), deg(v, Cα,β(q)) < β), we also remove the
edges of these vertices and add the edges into S. We run the
peeling process until q does not satisfy the degree constraint.
Then, we create G′= S ∪ Cα,β(q) since the edges removed
in this iteration need to be recovered to form the R. Finally,
we remove the vertices without enough degree in G′ and
run a breath-first search from q on G′ to get the connected
subgraph containing q which is R.
Analysis of the SCS-Peel algorithm. Below we show the
correctness and complexity analysis of SCS-Peel.

Theorem 1. The SCS-Peel algorithm correctly solves the signif-
icant (α, β)-community search problem.

Proof. According to Lemma 1, R is a subgraph of Cα,β(q).
Suppose there is a G′ ⊆ Cα,β(q) satisfying the con-
nected constraint and the cohesiveness constraint and has
f(G′) > f(R). Since we always peel the edge with the
minimal weight, G′ will be found after R. Since we peel
Cα,β(q) until the degree of q is not enough, q ∈ G′ will
not have enough degree which contradicts the cohesiveness
constraint. For the same reason, there exists noG′′ ⊃ Rwith
f(G′′) = f(R). Thus, this theorem holds.

Time complexity. SCS-Peel has three phases. Retrieving
Cα,β(q) based on the index needs (size(Cα,β(q))) time.
Then, sorting the edges in Cα,β(q) needs sort(Cα,β(q)) time
which will be O(size(Cα,β(q)) · (log(size(Cα,β(q))))) if we
use quick sort orO(m′) if we use bin sort wherem′ equals to
the maximal weight inCα,β(q). After that, the whole peeling
process requires O(size(Cα,β(q)) time. In total, the time
complexity of SCS-Peel is O(sort(Cα,β(q)) + size(Cα,β(q))).
Space complexity. In the SCS-Peel algorithm, we need only
O(size(Cα,β(q))) space to store the edges in Cα,β(q) apart
from the space used by the indexes.

5.2 Expansion Approach

Unlike the peeling approach which iteratively removes the
edge with the minimal weight from Cα,β(q), in this part,
we introduce the expansion approach SCS-Expand. SCS-
Expand first initializes a subgraph G∗ as empty. Then it
iteratively adds the edges with the maximal weight to
G∗ (from Cα,β(q)) until G∗ contains R. In this manner, if
size(R) is much smaller than size(Cα,β(q)), SCS-Expand can
retrieve R in a more efficient way compared to SCS-Peel.

Following the above idea, we add edges with the max-
imal weight in Cα,β(q) to G∗ (and remove them from
Cα,β(q)) in each iteration. However, when adding an edge
into G∗, it may not connect to q. Note that, we cannot dis-
card these edges immediately since they may be connected
to q due to the later coming edges. Thus, the connected sub-
graphs in G∗ should be maintained in each iteration. With
the help of union-find data structure [24], the connected
subgraphs in G∗ can be maintained in constant amortized
time, and we can efficiently obtain the connected subgraph
containing q in G∗.

Checking the existence of R in C∗. Suppose C∗ is the
connected subgraph containing q in G∗, we can easily
observe that R can only be found in the iteration where
C∗ is changed. In addition, we have the following bounds
which can let us know whether R is contained in C∗.

Lemma 17. Given a connected subgraph C∗, if R ⊆ C∗, we
have:

αβ − α− β ≤ |E(C∗)| − |U(C∗)| − |L(C∗)|

Proof. The detailed proof can be found in [21].

Lemma 18. Given a connected subgraph C∗ ⊆ G, if R ⊆ C∗,
it must contain α vertices where each vertex u of them has
deg(u,C∗) ≥ β, and it must contain β vertices where each
vertex v of them has deg(v, C∗) ≥ α. In addition, the query
vertex should be one of these vertices.

Proof. This lemma directly follows from Definition 5.

Based on the above lemmas, we can skip checking the
existence of R if the constraints are not satisfied. It is still
costly if we check each C∗ satisfies the constraints since
we need to perform the peeling algorithm on C∗ using
O(size(C∗)) time. To mitigate this issue, we set an expansion
parameter ε > 1 to control the number of checks. Firstly,
we check C∗ when it first satisfies the constraints in the
Lemma 17 and Lemma 18. After that, we only check C∗

if its size is at least ε times than the size of its last check.
Here we choose ε = 2 as analyzed in [21]. The details of the
expansion algorithm SCS-Expand can be found in [21].
Analysis of the SCS-Expand algorithm. Below we show the
correctness and time/space complexities of SCS-Expand.

Theorem 2. The SCS-Expand algorithm correctly solves the
significant (α, β)-community search problem.

Proof. The proof is similar as Theorem 1.

Time complexity. In SCS-Expand, retrieving Cα,β(q) based
on the index needs O(size(Cα,β(q))) time. Then, sorting the
edges in Cα,β(q) needs O(sort(Cα,β(q))) time. After that,
the whole expansion process requires O(

∑d
i=1 size(C

∗
i ))

time where d is the number of subgraphs need to be
peeled. In total, the time complexity of SCS-Expand is
O(sort(Cα,β(q)) + σdi=1size(C

∗
i )).

Space complexity. In the SCS-Expand algorithm, we need
O(size(Cα,β(q))) space to store the edges in Cα,β(q) except
the space used by indexes.

TABLE 2: Summary of Datasets
Dataset |E| |U | |L| δ αmax βmax |Rδ,δ|

BS 433K 77.8K 186K 13 8,524 707 13.6K
GH 440K 56.5K 121K 39 884 3,675 21.5K
SO 1.30M 545K 96.6K 22 4,917 6,119 13.0K
LS 4.41M 992 1.08M 164 55,559 773 177K
DT 5.74M 1.62M 383 73 378 160,047 30.5K
AR 5.74M 2.15M 1.23M 26 12,180 3,096 36.6K
PA 8.65M 1.43M 4.00M 10 951 119 639
ML 25.0M 162K 59.0K 636 32,202 81,491 2.12M
DUI 102M 833K 33.8M 183 24,152 29,240 2.30M
EN 122M 3.82M 21.5M 254 1,916,898 62,330 1.03M
DTI 137M 4.51M 33.8M 180 1,057,753 6,382 242K
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6 EXPERIMENTS

In this section, we first evaluate the effectiveness of the sig-
nificant (α, β)-community model. Then, we evaluate the ef-
ficiency of the techniques for retrieving (α, β)-communities
and significant (α, β)-communities.

6.1 Experiments setting

Algorithms. Our empirical studies are conducted against
the following designs:
• Techniques to retrieve the (α, β)-community. The query
algorithms: 1) the online query algorithm Qo in [16], and
the query algorithms based on the following indexes: 2) Qv
based on the bicore index Iv proposed in [15], 3) Qopt based
on Iδ in Section 3.2. The indexes: 1) the bicore index Iv ,
2) basic indexes Iαbs and Iβbs, 3) Iδ and 4) the size-aware
index I∗. In addition, we evaluate the index maintenance
algorithms IM-Ins and IM-Rem.
• Algorithms to retrieve the significant (α, β)-community. 1)
the peeling algorithm SCS-Peel, 2) the expansion algorithm
SCS-Expand in Section 5 and 3) a baseline algorithm SCS-
Baseline which iteratively expands the edges (with larger
weight value) from the connected component containing q
of the whole graph rather than from Cα,β(q).

The algorithms are implemented in C++ and the exper-
iments are run on a Linux server with Intel Xeon 2650 v3
2.3GHz processor and 768GB main memory. We terminate an
algorithm if the running time is more than 104 seconds.
Datasets. We use 11 real datasets in our experiments which
are Bookcrossing (BS), Github (GH), StackOverflow
(SO), Lastfm (LS), Discogs (DT), Amazon (AR),
DBLP (PA), MovieLens (ML), Delicious-ui (DUI),
Wikipedia-en (EN) and Delicious-ti (DTI). All
the datasets we use can be found in KONECT
(http://konect.uni-koblenz.de). Note that, for the datasets
without weights (i.e., DT and PA), we use the random walk
with restart model [25] to compute the node relevance and
generate the weights.

The summary of datasets is shown in Table 2. U and
L are vertex layers, |E| is the number of edges. δ is the
degeneracy. αmax and βmax are the largest value of α and β
where a (α, 1)-core or (1, β)-core exists, respectively. |Rδ,δ|
denotes the number of edges in Rδ,δ in each dataset. In
addition, M denotes 106 and K denotes 103.

6.2 Effectiveness evaluation

In this section, we evaluate the effectiveness of our model
on MovieLense which contains 25M ratings (ranging from
1 to 5) from 162K users (U ) on 59K movies (L).

We compare the significant (α, β)-community model
with the (α, β)-core, k-bitruss (setting k = α · β) [18] and
maximal biclique [20] models. We also add a community
C4? which is the induced subgraph of all the movies with
average ratings at least 4. Note that, we use the connected
components of the query vertex as the result when consid-
ering different models.
Evaluating the community quality. Suppose a user wants
to find some friends who are also fans of comedy movies.
We extract the subgraph formed by the ratings on comedy
movies and perform community search algorithms. Figure
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Fig. 6: Evaluating the community quality, varying α, β = t

6(a) shows the bipartite graph density which is computed
as d(G) = |E(G)|/

√
|U(G)||L(G)| [26]. We can see that

the communities produced by (α, β)-core, bitruss, biclique
and SC all have high densities comparing with C4? since
the structure cohesiveness is considered in these models.
Thus, the users in C4? are loosely connected with each
other and have fewer interactions. In addition, the average
ratings (i.e., the numbers on the top of each bar) indicate
that SC can always return a group of users with higher
average ratings than (α, β)-core, bitruss and biclique. We
also show the number of dislike users in Figure 6(b). A user
is a dislike user if he/she gives fewer than 0.6α good ratings
(i.e., rating ≥ 4), who is not likely to be a fan of comedies.
We can see that SC contains fewer number of dislike users
comparing with all the other models because both weight
and structure cohesiveness are considered. Thus, the users
in SC are considered as good candidates to be recommended
to the query user. Note that the percentage of dislike users in
bitruss and C4? is very high. This is because bitruss ensures
the structure cohesiveness using the butterfly (i.e., 2 × 2-
biclique) and a user can exist in a k-bitruss with a large k
value if he/she only watched a few number of hot movies.
In addition, C4? does not ensure the structure cohesiveness
and there exist many users who only watched few high
rating movies.
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Monsters

Back to the Future

Moonrise Kingdom

Aladdin

Back to the Future

Monsters

Fig. 7: Representative components of real-life communities

TABLE 3: Statistics of query results, q = 6,778

Models |U | |M | Ravg Rmin Mavg Sim (%)
SC 2,127 670 4.81 4.50 63.47 100

(α, β)-core 34,466 2491 3.39 0.5 110.03 7.57
bitruss 158,183 2,985 3.48 0.5 35.87 1.74

biclique 65 45 3.45 0.5 45 2.39
C4? 114,915 387 4.16 0.5 2.39 1.82

Case study. We conduct queries using parameters q =
6778, α = 45, β = 45 on comedy movies. The statistics of
query results are shown in Table 3. |U | and |M | denote
the total number of users and movies in the community, re-
spectively. Ravg and Rmin denote the average and minimal
rating in the community, respectively. Mavg is the average
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number of movies a user watched in the community and
Sim is the jaccard similarity between each community and
SC. For the biclique model, here we use a maximal biclique
containing q with at least 45 vertices in each layer. We can
see that SC contains reasonable number of users and ver-
tices with higher average rating and minimal rating in the
community than the others. We also show the representative
components of the communities using (α, β)-core and SC in
Figure 7. We can see that (α, β)-core contains users who
do not like such movies and movies that are not liked
by such users. This is because (α, β)-core only considers
structure cohesiveness and ignores the edge weights. We
can observe that Mavg of C4? is only 2.39 since the structure
cohesiveness is not considered in C4?. Thus, C4? contains
many users who only watched a few number of high rating
movies and these users are loosely connected with the query
user. Among these models, only SC considers both weight
and structure cohesiveness, which is not similar to other
communities compared here. In SC, the quality of the users
and movies found can be guaranteed.
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Fig. 9: Retrieving the (α, β)-communities, varying α and β

6.3 Retrieving (α, β)-communities

In this part, we evaluate the proposed indexing techniques
to retrieve (α, β)-communities.
Query time. 1) Performance on all the datasets. We first eval-
uate the performance on all the datasets by setting α and β
to 0.7δ. In Figure 8, we can observe that Qopt significantly
outperforms Qo and Qv on all the datasets. This is because
Qopt is based on Iδ which can achieve optimal retrieval of
(α, β)-communities. Especially, on large datasets such as
DUI, EN and DTI, the Qopt algorithm is one to two orders of
magnitude faster than Qo and is up to 20× faster than Qv .

2) Varying α and β. We also vary α and β to assess the
performance of these algorithms. In Figure 9(a) and (b), α
and β are varied simultaneously. We can observe that when
α and β are small, the performance of these algorithms is
similar. This is because only a few number of edges are
removed from the original graph when the query param-
eters are small. When α and β are large, the resulting (α,
β)-communities are much smaller than the original graph.
Thus, Qopt is much faster than Qo and Qv . In Figure 9(c)
and (d), we fix α (or β) and the trends are similar.
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Evaluating index construction time and index size. In this
part, we evaluate the index size and index construction time.
We omit the index I∗ here as it will always choose the index
with the minimal size between Iαbs, I

β
bs and Iδ under a very

small overhead.

1) Index construction time. In Figure 10, we can see that Iδ
can be efficiently constructed on all the datasets since it
only needs the same low constructing time complexity as Iv
(O(δm)). In addition, constructing Iδ is slightly slower than
constructing Iv which is reasonable since Iv only contains
vertex information of (α, β)-cores while Iδ contains edge
information which can support optimal retrieval of (α, β)-
communities. The time for constructing Iαbs and Iβbs highly
depends on αmax and βmax. Thus, it is very slow (or even
unaccomplished) on the datasets where these two values are
large such as DUI and EN.

2) Index size. In Figure 11, we evaluate the size of these
indexes. If an index cannot be built within the time limit,
we report the expected size of it. We can see that size(Iδ)
is smaller than size(Iαbs) and size(Iβbs) on almost all the
datasets. Iv is the index with the minimal size since it only
contains vertex information. This result also validates that
size(Iδ) ≤ 2×min(size(Iαbs), size(I

β
bs)).

Evaluating the effect of τ in I∗. In Figure 12, we evaluate
the effect of τ in I∗ on four datasets. We can see that the
size of I∗,≥0.5 and I∗,≥0.2 are much smaller than I∗ on
these datasets. However, it can still support the optimal
query when the given query parameters are larger than the
threshold. Also as validated in Figure 9, when the query
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Fig. 12: Evaluating the effect of τ

parameters α and β are small, Iv is efficient enough to
handle these queries.
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Fig. 13: Edge insertion and removal, varying scalability

Evaluating the scalability of index maintenance. In Fig-
ure 13, we evaluate the scalability of index maintenance
algorithms. When varying m, we randomly sample 20% to
100% edges of the original graphs. Here IC denotes the index
construction algorithm of Iδ . We randomly insert or remove
200 distinct edges and report the average processing time.
We can observe that our proposed algorithms are scalable.
In addition, we can see that the processing time of our index
maintenance algorithms IM-Ins and IM-Rem is much smaller
than reconstructing the index. This is because our proposed
solutions do not need to modify the whole index, and a lot
of unnecessary computation is reduced.

6.4 Retrieving significant (α, β)-communities
Here we evaluate the performance of the algorithms (SCS-
Baseline, SCS-Peel, and SCS-Expand) for querying signifi-
cant (α, β)-communities. In these algorithms, we use Qopt to
support the optimal retrieval of (α, β)-community. In each
test, we randomly select 100 queries and take the average.
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Fig. 14: Query performance on different datasets

Evaluating the performance on all the datasets. In Figure
14, we evaluate the performance of SCS-Baseline, SCS-Peel,

and SCS-Expand on all the datasets. We also report the
standard deviation on the top of each bar. We can see
that SCS-Expand and SCS-Peel are significantly faster than
SCS-Baseline, especially on large datasets. This is because,
with the help of the two-step framework, the search space
of SCS-Peel and SCS-Expand is limited in Cα,β(q), while
SCS-Baseline needs to consider all edges in the connected
component containing q of the whole graph. We can also
see in Table 2 that |Rδ,δ| is much smaller than |E|. Since
Cδ,δ(q) ⊆ Rδ,δ , when we choose relatively larger parame-
ters, the search space of SCS-Peel and SCS-Expand is much
smaller than SCS-Baseline. In addition, we can see that on
most datasets, SCS-Expand is on average more efficient than
SCS-Peel. However, the standard deviations of SCS-Expand
and SCS-Peel are large. This is because SCS-Peel and SCS-
Expand both need more time to handle the cases when α
and β are small and SCS-Expand is usually much faster than
SCS-Peel in these cases.
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Fig. 15: Effect of α and β

Evaluating the effect of query parameters α and β. In
Figure 15, we vary α and β on two datasets DT and ML.
From Figure 15(a) and (b), we can see that, when α and
β are small, SCS-Expand is more efficient than SCS-Peel.
In addition, the running time of SCS-Peel and SCS-Expand
decreases as α (or β) increases. Note that the efficiency of
these two algorithms largely depends on the size of the
(α, β)-community containing q (i.e., size(Cα,β(q)), which
determines the search space) and the size of the final result
(i.e., size(R), which relates to the actual computation cost).
In most cases, when α and β are large, the size of Cα,β(q)
is small and R is expected to be large since more edges
are needed in R to satisfy the cohesiveness constraints.
Thus, the edges need to be peeled are usually few and SCS-
Peel is more efficient than SCS-Expand. When α and β are
small, the search space (i.e., Cα,β(q)) can be large and R
is expected to be small. Thus, SCS-Expand is usually more
efficient than SCS-Peel in these cases. In most cases, we can
determine to use SCS-Peel or SCS-Expand according to the
choice of α and β.

Evaluate the effect of weight distribution. In Table 4, we
evaluate the effect of weight distribution on DT dataset. We
test four weight distributions: (1) AE: the weights are all
equal; (2) RW: the weights are generated using the random
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TABLE 4: Running time under different weight distribution

Algorithms AE RW UF SK
SCS-Baseline 0.03s 3.12s 4.42s 4.31s
SCS-Peel 0.03s 0.34s 0.48s 0.45s

SCS-Expand 0.03s 0.31s 0.41s 0.36s

walk with restart model [25]; (3) UF: the weights follow
uniform distribution; (4) SK: the weights follow skewed
normal distribution with skewness = 1.02. When all the
edge weights are equal (AE) which can be considered as a
special case, all three algorithms can just returnCα,β(q) after
efficiently scanning Cα,β(q). Note that the performances of
these three algorithms are not very sensitive to the other
three distributions. This is because both weight and struc-
ture cohesiveness are considered in our problem and the
impact of RW/SK/UF weight distributions are limited.

7 RELATED WORK
To the best of our knowledge, this paper is the first to study
community search over bipartite graphs. Below we review
two closely related areas, community search on unipartite
graphs and cohesive subgraph models on bipartite graphs.
Community search on unipartite graphs. On unipartite graphs,
community search is conducted based on different cohesive-
ness models such as k-core [4], [5], [6], [7], [27], [28], k-truss
[8], [9], [10], [29], [30], k-clique [31]. Interested readers can
refer to [11] for a recent comprehensive survey.

Based on k-core, [4] and [5] study online algorithms
for k-core community search on unipartite graphs. In [6],
Barbieri et al. propose a tree-like index structure for the k-
core community search. Using k-core, Fang et al. [7] further
integrate the attributes of vertices to identify community
and the spatial locations of vertices are considered in [27],
[28]. An core-based index is proposed in [27], and the index
maintenance technique is studied in [32]. In [33], [34], [35],
the algorithms for core number maintenance are studied.
For the truss-based community search, [8], [29] study the
triangle-connected model and [9] studies the closest model.
In addition, a truss-based community search solution is
proposed in [10] for attributed graphs. In [31], the authors
study the problem of densest clique percolation community
search. However, the edge weights are not considered in
any of the above works and their techniques cannot be
easily extended to solve our problem. On edge-weighted
unipartite graphs, the k-core model is applied to find cohe-
sive subgraphs in [36], [37]. They use a function to associate
the edge weights with vertex degrees and the edge weights
are not considered as a second factor apart from the graph
structure. Thus, these works do not aim to find a cohesive
subgraph with both structure cohesiveness and high weight
(significance). Under their settings, a subgraph with loose
structure can be found in the result. For example, a vertex
can be included in the result if it is only incident with one
large-weight edge. In [30], the k-truss model is adopted on
edge-weighted graphs to find communities. However, the
k-truss model is based on the triangle structure which does
not exist on bipartite graphs. The graph projection method
[38] is not appropriate to be used here as discussed in [21].
Finding cohesive subgraphs on bipartite graphs. On bipartite
graphs, several existing works [15], [16] extend the k-core

model on unipartite graph to the (α, β)-core model. An
effective index is proposed in [15] to retrieve the (α, β)-
core, and the index maintenance technique is studied in [23]
to handle dynamic graphs. [17], [18], [19] study the bitruss
model in bipartite graphs which is the maximal subgraph
where each edge is contained in at least k butterflies. [20]
studies the biclique enumeration problem. However, the
above works only consider the structure cohesiveness and
ignore the edge weights which are important as validated in
the experiments. In the literature, fair clustering problems
[12], [13], [14] are studied to find communities (i.e., clusters)
under fairness constraints on bipartite graphs. The problem
is inherently different and the techniques are not applicable
to the problem studied in this paper. An interesting work in
[39] studies the paper matching problem in peer-review pro-
cess which also finds dense subgraphs on bipartite graphs.
However, their flow-based techniques are often used to
solve a matching problem which can not be used here.

8 CONCLUSION
In this paper, we study the significant (α, β)-community
search problem. To solve this problem efficiently, we fol-
low a two-step framework which first retrieves the (α,
β)-community, and then identifies the significant (α, β)-
community from the (α, β)-community. We develop a novel
index Iδ to retrieve the (α, β)-community in optimal time.
In addition, we propose efficient peeling and expansion
algorithms to obtain the significant (α, β)-community. We
conduct extensive experiments on real-world graphs, and
the results demonstrate the effectiveness of the significant
(α, β)-community model and the proposed techniques.
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Çatalyürek, “Streaming algorithms for k-core decomposition,”
Proceedings of the VLDB Endowment, vol. 6, no. 6, pp. 433–444, 2013.
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Abstract—Bipartite graphs are widely used to model relation-
ships between two types of entities. Community search retrieves
densely connected subgraphs containing a query vertex, which
has been extensively studied on unipartite graphs. However, com-
munity search on bipartite graphs remains largely unexplored.
Moreover, all existing cohesive subgraph models on bipartite
graphs can only be applied to measure the structure cohesiveness
between two sets of vertices while overlooking the edge weight in
forming the community. In this paper, we study the significant
(α, β)-community search problem on weighted bipartite graphs.
Given a query vertex q, we aim to find the significant (α, β)-
community R of q which adopts (α, β)-core to characterize the
engagement level of vertices, and maximizes the minimum edge
weight (significance) within R.

To support fast retrieval of R, we first retrieve the maximal
connected subgraph of (α, β)-core containing the query vertex
(the (α, β)-community), and the search space is limited to this
subgraph with a much smaller size than the original graph. A
novel index structure is presented which can be built in O(δ ·m)
time and takes O(δ ·m) space where m is the number of edges in
G, δ is bounded by

√
m and is much smaller in practice. Utilizing

the index, the (α, β)-community can be retrieved in optimal
time. To further obtain R, we develop peeling and expansion
algorithms to conduct searches by shrinking from the (α, β)-
community and expanding from the query vertex, respectively.
The experimental results on real graphs not only demonstrate
the effectiveness of the significant (α, β)-community model but
also validate the efficiency of our query processing and indexing
techniques.

I. INTRODUCTION

In many real-world applications, relationships between two
different types of entities are modeled as bipartite graphs, such
as customer-product networks [1], user-page networks [2] and
collaboration networks [3]. Community structures naturally
exist in these practical networks and community search has
been extensively explored and proved useful on unipartite
graphs [4]–[11]. Given a query vertex q, community search
aims to find communities (connected subgraphs) containing
q which satisfy specific cohesive constraints. In the literature,
fair clustering methods [12]–[14] are used to find communities
(i.e., clusters) under fairness constraints on bipartite graphs.
However, they aim to find a set of clusters under a global
optimization goal and do not aim to search a personalized
community for a specific user. Nevertheless, no existing
work has studied the community search problem on bipartite
graphs. On bipartite graphs, various dense subgraph models
are designed (e.g., (α, β)-core [15], [16], bitruss [17]–[19] and
biclique [20]) which can be used as the cohesive measurement
of a community. However, simply applying these cohesive
measurements only ensures the structure cohesiveness of
communities but ignores another important characteristic, the
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Fig. 1: A user-movie network

weight (or significance) of interactions between the two sets
of vertices. For example, (α, β)-core is defined as the maximal
subgraph where each vertex in upper layer has at least α
neighbors and each vertex in lower layer has at least β
neighbors. In the customer-movie network shown in Figure 1,
each edge has a weight denoting the rating of a user to a movie.
If the (α, β)-core model is applied to search a community of
“Eric”, e.g., the maximal connected subgraph of (3, 2)-core
containing “Eric”, we will get the community formed by the
four users and the five movies on the left side. Note that, this
community includes “Alien” (not liked by “Andy” or “Kane”)
and “Taylor” (who has less interest in this genre of movies).

In this paper, we study the significant community search
problem on weighted bipartite graphs, which is the first
to study community search on bipartite graphs. Here, in a
weighted bipartite graph G, each edge is associated with
an edge weight. In addition, the weight (significance) of a
community is measured by the minimum edge weight in it. A
community with a high weight value indicates that every edge
in the community represents a highly significant interaction.
We propose the significant (α, β)-community model, which is
the maximal connected subgraph containing the query vertex
q that satisfies the vertex degree constraint from (α, β)-core,
and has the highest graph significance. The intuition behind
the new significant (α, β)-community model is to capture
structure cohesiveness as well as interactions (edges) with high
significance. In addition, if we maximize the weight value
under given α and β, we can find the most significant subgraph
while preserving the structure cohesiveness. For example, in
Figure 1, the subgraph in blue color, which excludes “Alien”
and “Taylor”, is the significant (3, 2)-community of “Eric”.
Applications. Finding the significant (α, β)-community has
many real-world applications and we list some of them below.
• Personalized Recommendation. In user-item networks, users
leave reviews for items with ratings. Examples include viewer-
movie network in IMDB (https://www.imdb.com), reader-book
network in goodreads (https://www.goodreads.com), etc.

Page 16 of 27Transactions on Knowledge and Data Engineering

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60



The platforms can utilize the significant (α, β)-community
model to provide personalized recommendations. For example,
based on the community found in Figure 1, we can put the
people who give common high ratings (“Andy” and “Kane”)
on the recommended friend list of the query user (“Eric”). We
can also recommend the movie (“Avatar”) which the user is
likely to be interested in to the query user (“Eric”).
• Fraud Detection. In e-commerce platforms such as Amazon
and Alibaba, customers and items form a customer-item bipar-
tite graph in which an edge represents a customer purchased an
item, and the edge weight measures the number of purchases
or the total transaction amount. Fraudsters and the items they
promote are prone to form cohesive subgraphs [15], [17].
Since the cost of opening fake accounts is increased with the
improvement of fraud detection techniques, frauds cannot rely
on many fake accounts [2]. Thus, the number of purchases or
the total transaction amount per account is increased. Given a
suspicious item or customer as the query vertex, our significant
(α, β)-community model allows us to find the most suspicious
fraudsters and related items in the customer-item bipartite
graphs and reduce false positives.
• Team Formation. In a bipartite graph formed by developers
and projects, an edge between a developer and a project
indicates that the developer participates in the project, and
the edge weight shows the corresponding contribution (e.g.,
number of tasks accomplished). A developer may wish to
assemble a team with a proven track record of contributions
in related projects, which can be supported by a significant
(α, β)-community search over the bipartite graph.
Challenges. To obtain the significant (α, β)-community, we
can iteratively remove the vertices without enough neighbors
and the edges with small weights from the original graph.
However, when the graph size is large and there are many
vertices and edges that need to be removed, this approach is
inefficient. For example, Figure 2(a) shows the graph G with
2,003 edges. We need to remove 1,999 edges from G to get
the significant (2, 2)-community of u3 with only 4 edges.

In this paper, we focus on indexing-based approaches. A
straightforward idea is precomputing all the significant (α, β)-
communities for all α, β, and q combinations. This idea is
impractical since both structure cohesiveness and significance
need to be considered. For different q and α, β values, the
significant (α, β)-communities can be different and there does
not exist hierarchical relationships among them. Therefore, we
resort to a two-step approach. In the first step, we observe
that the (α, β)-community always contains the significant (α,
β)-community for a query vertex q. Here, (α, β)-community
is the maximal connected subgraph containing q in the (α,
β)-core (without considering the edge weights). For example,
Figure 2(b) shows the (2, 2)-community of u3 which contains
the significant (2, 2)-community of u3 and is much smaller
than the original graph G. Therefore, we try to index all
(α, β)-communities and use the one containing q as the
starting point when querying w.r.t. q. In the second step,
we compute the significant (α, β)-community based on the
(α, β)-community obtained in the first step. To make our
ideas practically applicable, we need to address the following
challenges.

u1 u2 u3 u4 u998 u999

v1 v2 v3 v4 v998 v999

U(G)

L(G)

u1 u2 u3 u4

v1 v2 v3 v4

4 3
2

1 9 8 7
6 14

13
12 19

18

(a) A weighted bipartite graph G, 
w(u, v) = 5 u.id − v.id.

(b) The (2, 2)-community
of u3 in G.

Fig. 2: An example graph, the significant (2, 2)-community of u3 is
marked in red color

1) How to build an index to cover all (α, β)-communities.
2) How to bound the index size and the indexing time.
3) How to efficiently obtain the significant (α, β)-

community from the (α, β)-community of a query vertex.
Our approaches. To address Challenge 1, we first propose the
index Iαbs to store all the (α, β)-communities. It is observed
that the model of (α, β)-core has a hierarchical property. In
other words, (α, β)-core ⊆ (α′, β′)-core if α ≥ α′ and β ≥
β′. For example, in Figure 2, G itself is the (1, 1)-core, the
induced subgraph of {u1, ..., u999, v1, v2, v3, v4} is the (1, 2)-
core and we can obtain the (1, 3)-core from the (1, 2)-core
by excluding v4. Motivated by this observation, all the (1, β)-
community with β ≥ 1 can be organized hierarchically in the
(1, 1)-core. For each vertex existing in (1, 1)-core, we sort
its neighbors according to the maximal β value where they
exist in the (1, β)-core in non-increasing order. Then, when
querying a (1, β)-community with β ≥ 1, we only need to
take the vertices and edges in this community using breath-first
search. For example, if we want to query the (1, 2)-community
of u1, we first take the neighbors {v1, v2, v3, v4} of u1 and
get u1 to u999 after searching from v1. By organizing all the
(α, 1)-cores where α ∈ [1, αmax] in this manner, Iαbs can cover
all the (α, β)-communities. Similarly, we can also build the
index Iβbs which stores all the (1, β)-core where β ∈ [1, βmax]
to cover all the (α, β)-communities. Here αmax and βmax are
the maximal valid α and β values in G respectively.

Reviewing Iαbs and Iβbs, we observe that Iαbs(I
β
bs) can be very

large when high degree vertices exist in U(G)(L(G)). For
example, Iαbs needs to store 999 copies of neighbors of u1 since
u1 is contained in (999, 1)-core. The same issue occurs when
Iβbs stores v1’s neighbors. To handle this issue and address
Challenge 2, we further propose the degeneracy-bounded index
Iδ . Here, the degeneracy (δ) is the largest number where the
(δ, δ)-core is nonempty in G. Note that for each nonempty (α,
β)-core (or (α, β)-community), we must have min(α, β) ≤ δ.
This is because it contradicts the definition of δ if an (α, β)-
core with α > δ and β > δ exists. In addition, according
to the hierarchical property of the (α, β)-core model, all (α,
β)-communities with α ≤ β can be organized in the (α, α)-
core and all (α, β)-communities with β < α can be organized
in the (β, β)-core. In this manner, Iδ only needs to store all
the (τ, τ)-cores for each τ ∈ [1, δ] to cover all the (α, β)-
communities. For example, in Figure 2, unlike Iαbs which needs
to store (1, 1)-core to (999, 1)-core, Iδ only needs to store
(1, 1)-core, (2, 2)-core and (3, 3)-core since δ = 3. Since the
size of each (τ, τ)-core (τ ∈ [1, δ]) is bounded by O(m), Iδ
can be built in O(δ ·m) time and takes O(δ ·m) space to index
all the (α, β)-communities.
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To address Challenge 3, after retrieving the (α, β)-
community Cα,β(q), we first propose the peeling algorithm
SCS-Peel which iteratively removes the edge with the minimal
weight from Cα,β(q) to obtain R. For example, in Figure 2(b),
to obtain the significant (2, 2)-community of u3, the edge (u1,
v4) is the first edge to be removed in SCS-Peel. Observing
that R can be much smaller than Cα,β(q) in many cases,
we also propose the expansion algorithm SCS-Expand which
iteratively adds the edge with maximal weights into an empty
graph until R is found. In SCS-Expand, we derive several
rules to avoid excessively validating R.
Contribution. Our main contributions are listed as follows.
• We propose the model of significant (α, β)-community

which is the first to study community search problem on
(weighted) bipartite graphs.

• We develop a new two-step paradigm to search the signif-
icant (α, β)-community. Under this two-step paradigm,
novel indexing techniques are proposed to support the
retrieval of the (α, β)-community in optimal time. The
index Iδ can be built in O(δ ·m) time and takes O(δ ·m)
space where δ is bounded by

√
m and is much smaller in

practice. Note that the proposed indexing techniques can
also be directly applied to retrieve the (α, β)-community
on unweighted bipartite graphs in optimal time.

• We propose efficient query algorithms to extract the
significant (α, β)-community from the (α, β)-community.

• We conduct comprehensive experiments on 11 real
weighted bipartite graphs to evaluate the effectiveness of
the proposed model and the efficiency of our algorithms.

II. PROBLEM DEFINITION

Our problem is defined over an undirected weighted bipar-
tite graph G(V =(U,L), E), where U(G) denotes the set of
vertices in the upper layer, L(G) denotes the set of vertices
in the lower layer, U(G)∩L(G) = ∅, V (G) = U(G)∪L(G)
denotes the vertex set, E(G) ⊆ U(G) × L(G) denotes the
edge set. An edge e between two vertices u and v in G is
denoted as (u, v) or (v, u). The set of neighbors of a vertex u
in G is denoted as N(u,G) = {v ∈ V (G) | (u, v) ∈ E(G)},
and the degree of u is denoted as deg(u,G) = |N(u,G)|. We
use n and m to denote the number of vertices and edges in
G, respectively, and we assume each vertex has at least one
incident edge. Each edge e = (u, v) has a weight w(e) (or
w(u, v)). The size of G is denoted as size(G) = |E(G)|.

Definition 1. ((α, β)-core) Given a bipartite graph G and
degree constraints α and β, a subgraph Rα,β is the (α, β)-
core of G if (1) deg(u,Rα,β) ≥ α for each u ∈ U(Rα,β) and
deg(v,Rα,β) ≥ β for each v ∈ L(Rα,β); (2) Rα,β is maximal,
i.e., any supergraph G′ ⊃ Rα,β is not an (α, β)-core.

Definition 2. ((α, β)-Connected Component) Given a bi-
partite graph G and its (α, β)-core Rα,β , a subgraph Cα,β
is a (α, β)-connected component if (1) Cα,β ⊆ Rα,β and
Cα,β is connected; (2) Cα,β is maximal, i.e., any supergraph
G′ ⊃ Cα,β is not a (α, β)-connected component.

Definition 3. ((α, β)-Community) Given a vertex q, we call
the (α, β)-connected component containing q the (α, β)-
community, denoted as Cα,β(q).

Definition 4. (Bipartite Graph Weight) Given a bipartite
graph G, the weight value of G denoted by f(G) is defined
as the minimum edge weight in G.

After introducing the (α, β)-core and bipartite graph weight,
we define the significant (α, β)-community as below.

Definition 5. (Significant (α, β)-Community) Given a
weighted bipartite graph G, degree constraints α, β and query
vertex q, a subgraph R is the significant (α, β)-community of
G if it satisfies the following constraints:

1) Connectivity Constraint. R is a connected subgraph
which contains q;

2) Cohesiveness Constraint. Each vertex u ∈ U(R) satis-
fies deg(u,R) ≥ α and each vertex v ∈ L(R) satisfies
deg(v,R) ≥ β;

3) Maximality Constraint. There exists no other G′ ⊆
Cα,β(q) satisfying constraints 1) and 2) with f(G′) >
f(R). In addition, there exists no other supergraph G′′ ⊃
R satisfying constraints 1) and 2) with f(G′′) = f(R).

Problem Statement. Given a weighted bipartite graph G,
parameters α, β and a query vertex q, the significant (α, β)-
community search problem aims to find the significant (α, β)-
community (SC) in G.

Example 1. Consider the bipartite graph G in Figure 2(a).
Figure 2(b) shows the (2,2)-community of u3. In addition, the
significant (2,2)-community of u3 is shown in Figure 2(b) (in
red color) which is formed by the edges (u3, v1), (u3, v2),
(u4, v1) and (u4, v2).

Solution Overview. According to Definition 3 and Definition
5, we have the following lemma.

Lemma 1. Given a weighted bipartite graph G, the significant
(α, β)-community is unique, which is a subgraph of the (α, β)-
community.

Proof. Suppose there exist two different significant (α, β)-
communities R1 and R2 where f(R1) = f(R2), R1 6⊆ R2

and R2 6⊆ R1. Then R3 = R1 ∪ R2 satisfies constraints 1)
and 2) in Definition 5 with f(R3) = f(R1) = f(R2). This
violates the maximality constraint in Definition 5. Thus, the
significant (α, β)-community is unique and is a subgraph of
the (α, β)-community by definition.

Following the above lemma, we can use indexing techniques
to efficiently find the (α, β)-community first. In this manner,
the search space is limited to a much smaller subgraph com-
pared to G. Then, we further search on the (α, β)-community
to identify the significant (α, β)-community. According to this
two-step algorithmic framework, we present our techniques in
the following sections.

III. RETRIEVE THE (α, β)-COMMUNITY IN OPTIMAL TIME

In this section, we explore indexing techniques to retrieve
the (α, β)-community in an efficient way.

A. Basic Indexes

In [15], the authors propose the bicore index which can
obtain the vertex set of the (α, β)-core (i.e., V (Rα,β))
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in optimal time. However, to obtain Cα,β(q) after having
V (Rα,β), we still need to traverse all the neighbors of each
vertex in Cα,β(q) (starting from the query vertex) including
those neighbors which are not in Cα,β(q). This process needs
O(|V (Cα,β(q))| ·

∑
v∈V (Cα,β(q))

deg(v,G)) time and when
|size(Cα,β(q))|∑

v∈V (Cα,β(q)) deg(v,G) is small, it may need to access many

additional edges not in the queried community. Motivated by
this, we explore how to construct an index to support optimal
retrieval of the (α, β)-community (i.e., optimal retrieval of (α,
β)-connected components).

By Definition 1, we have the following lemma.

Lemma 2. (α, β)-core ⊆ (α′, β′)-core if α ≥ α′ and β ≥ β′.

We also define the α-offset and the β-offset of a vertex as
follows.

Definition 6. (α-/β-offset) Given a vertex u ∈ V (G) and an
α value, its α-offset denoted as sa(u, α) is the maximal β
value where u can be contained in an (α, β)-core. If u is not
contained in (α, 1)-core, sa(u, α) = 0. Symmetrically, the β-
offset sb(u, β) of u is the maximal α value where u can be
contained in an (α, β)-core.

-offset

4 34 2 1 1

v1 v2 v3 v4 v5 v999

4 3999 2 1 1

v1 v2 v3 v4 v5 v999

1 11 1 1 1

v1 v2 v3 v4 v5 v999

1 2 3 4 999

u1

3 33 2 1 1
v1 v2 v3 v4 v5 v999

v1 v2 v3 v4 v5 v999

2 12 1 1 1

௦
ఈ

ଵ

Fig. 3: Iαbs[u1] of G, edge weights are omitted

Algorithm 1: Index Construction of Iαbs
Input: G
Output: Iαbs

1 α← 1;
2 αmax ← the maximal vertex degree in U(G);
3 while α ≤ αmax do
4 compute sa(u, α) for each vertex u ∈ V (G);
5 foreach u ∈ (α, 1)-core do
6 foreach v ∈ N(u,G) do
7 if sa(v, α) ≥ 1 then
8 Iαbs[u][α]← {v, w(u, v), sa(v, α)};
9 sort Iαbs[u][α] in decreasing order of their α-offsets;

10 α← α+ 1;
11 return Iαbs;

Since (α, β)-core follows a hierarchical structure according
to Lemma 2, an index can be constructed in the following
way. For each vertex u, its α-offset indicates that u is
contained in the (α, sa(u, α))-core and is not contained in the
(α, sa(u, α)+1)-core. According to Lemma 2, if u is contained
in the (α, sa(u, α))-core, it is also contained in the (α, β)-
core with β ≤ sa(u, α). As shown in Figure 4(a), the shaded
area represents all the valid combinations of α and β where
an (α, β)-community exists. As illustrated, we can organize
the (α, β)-cores hierarchically and construct the basic index
Iαbs as shown in Algorithm 1. Firstly, we obtain αmax which
is the maximal α value such that an (α, 1)-core exists and

ఋ
ఈ

ఋ
ఉ

)

௫

௫

௦
ఈ

௦
ఉ

(a) Illustrating indexes ௦
ఈ and ௦

ఉ . (b) Illustrating the index ఋ .

ఋ

Fig. 4: Illustrating the ideas of indexing techniques

it is equal to the maximal vertex degree in U(G). We then
compute the α-offset for each vertex. For each vertex u and
α combination (where u exists in (α, 1)-core), we create an
adjacent list Iαbs[u][α] to store its neighbors. In Iαbs[u][α], we
sort u’s neighbors in non-increasing order of their α-offsets
and remove these neighbors with α-offsets equal to zero.
Figure 3 is an example which shows Iαbs[u1] of G in Figure
2(a). We can see that Iαbs[u1] contains the neighbors of u1 of
different α values.

Algorithm 2: Query based on Iαbs
Input: G, q, α, β, Iαbs;
Output: Cα,β(q)

1 Q← q;
2 visited(q)← true;
3 while Q is not empty do
4 u← Q.pop();
5 foreach v ∈ Iαbs[u][α] do
6 if sa(v, α) ≥ β then
7 Cα,β(q)← (u, v) if u ∈ L(G);
8 if visited(v) = false then
9 Q.push(v);

10 visited(v)← true;
11 else
12 break;
13 return Cα,β(q);

Optimal retrieval of Cα,β(q) based on Iαbs. Given a query
vertex q, Algorithm 2 illustrates the query process of the (α,
β)-community (i.e., Cα,β(q)) based on Iαbs. When querying
Cα,β(q), we first put the query vertex into the queue. Then,
we pop the vertex u from the queue, and visit the adjacent
list Iαbs[u][α] to obtain the neighbors of u with α-offset ≥
β. For each valid neighbor v, we add the edge (u, v) into
Cα,β(q) if u ∈ L(G) to avoid duplication. Then, we put these
valid neighbors into the queue and repeat this process until
the queue is empty. Since the neighbors are sorted in non-
increasing order of their α-offsets, we can early terminate the
traversal of the adjacent list when the α-offset of a vertex is
smaller than the given β.

Lemma 3. Given a bipartite graph G and a query vertex
q, Algorithm 2 computes Cα,β(q) in O(size(Cα,β(q))) time,
which is optimal.

Proof. In Algorithm 2, for each u ∈ Q, since there is no du-
plicate vertex in Iαbs[u][α] and only its neighbor v ∈ Iαbs[u][α]
with sa(v, α) ≥ β can be accessed, each u and v combination
corresponds to an edge in Cα,β(q). In addition, since each
vertex can be only added once into Q according to lines 8 -
10, Algorithm 2 computes Cα,β(q) in O(size(Cα,β(q))) time,
which is optimal as it is linear to the result size.
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Example 2. Considering the graph in Figure 2 and Iαbs[u1]
in Figure 3, if we want to get the (3, 3)-community of u1
C3,3(u1), we first traverse Iαbs[u1][3] to get all the neighbors
with α-offsets ≥ 3 which are v1, v2 and v3. The edges (u1, v1),
(u1, v2) and (u1, v3) will be added into C3,3(u1). Then, we
go to the index nodes Iαbs[v1][3], I

α
bs[v2][3] and Iαbs[v3][3] to

get unvisited vertices u2 and u3 with α-offsets ≥ 3. The edges
(u2, v1), (u2, v2), (u2, v3), (u3, v1), (u3, v2), (u3, v3) will be
added into C3,3(u1) when accessing Iαbs[u2][3] and Iαbs[u3][3].

In addition, apart from Iαbs, we can construct an index Iβbs
similarly based on β-offsets which also achieves optimal query
processing. For each vertex u and β combination, we create
an adjacent list to store its neighbors and we sort its neighbors
in non-increasing order of their β-offsets (removing these
neighbors with β-offsets = 0). When querying the Cα,β(q),
we first go to the adjacent list indexing by q and β, and obtain
the neighbors of q with β-offset ≥ α. Then we run a similar
breadth-first search as Algorithm 2 shows. Using Iβbs, we can
also achieve optimal retrieval of Cα,β(q) which can be proved
similarly as Lemma 3.
Complexity analysis of basic indexes. Storing Iαbs needs
size(Iαbs) = O(

∑αmax
α=1 (size((α, 1)-core)) space. Since∑αmax

α=1 (size((α, 1)-core) ≤
∑αmax
α=1 (size((1, 1)-core)),

size(Iαbs) is also bounded by O(αmax · m). Similarly, Iβbs
needs O(

∑βmax
β=1 (size((1, β)-core)) = O(βmax ·m) space.

In addition, the time complexity of constructing Iαbs is
TC(Iαbs) = O(αmax · m). This is because for α from 1 to
αmax, we can perform the peeling algorithm on each (α, 1)-
core to get the α-offset for each vertex first. This process
needs O(αmax ·m) time. Then, for each vertex u, we create
at most αmax adjacent lists to store its neighbors which
needs O(αmax · m) time. Similarly, the time complexity of
constructing Iβbs is TC(Iαbs) = O(βmax ·m).

B. The Degeneracy-bounded Index Iδ
Reviewing Iαbs and Iβbs, we can see that it is hard to handle

high degree vertices in U(G)(L(G)) using Iαbs(I
β
bs). This is

because if these vertices exist in an (α, β)-core with large
α (or β) value, according to Lemma 2, Iαbs or Iβbs may need
large space to store several copies of the neighbors of these
high degree vertices. For example, in Figure 3, Iαbs needs to
store multiple copies of neighbors of u1 since u1 is contained
in (999, 1)-core. The same issue occurs when Iβbs stores v1’s
neighbors. Thus, in this part, we explore how to effectively
handle these high degree vertices and build an index with
smaller space consumption.

Firstly, we give the definition of degeneracy as follows.

Definition 7. (Degeneracy) Given a bipartite graph G, the
degeneracy of G denoted as δ is the largest number where
(δ, δ)-core is nonempty in G.

Note that, δ is bounded by
√
m and in practice, it is much

smaller than
√
m [15].

Lemma 4. Given a bipartite graph G, a nonempty (α, β)-core
in G must have min(α, β) ≤ δ.
Proof. We prove this lemma by contradiction. Suppose a
nonempty (α, β)-core exists in G with α < β and α > δ.

Then we will have α ≥ δ+1 and β ≥ δ+1 which contradicts
to the definition of δ. Similarly, we cannot have an nonempty
(α, β)-core existing in G with β < α and β > δ. Thus, a
nonempty (α, β)-core in G must have min(α, β) ≤ δ.

Based on Lemma 4, we can observe that, given query
parameters α and β, a partial index of Iαbs which only stores
adjacent lists of u for each u and α combinations with α ≤ δ
is enough to handle queries when α = min(α, β). Similarly,
a partial index of Iβbs which only stores adjacent lists under
(u, β) combinations with β ≤ δ is enough to handle queries
when β = min(α, β). Based on the above observation, we
propose the index Iδ as follows.

1 2 3

1 2 3

3 33
v1 v2 v3 v4 v5 v999

4 3999 2 1 1

v1 v2 v3

4 34
v1 v2 v3 v4

2

ఋ
ఈ

ଵ

ఋ
ఉ

ଵ

u1

u1

-offset

v1 v2 v3 v4 v5 v999

4 44
v1 v2 v3 v4

4999 999999 999999 999-offset

Fig. 5: Iδ[u1] of G, edge weights are omitted

Index Overview. Iδ contains two parts Iαδ and Iβδ to cover all
the (α, β)-communities as illustrated in Figure 4(b).

In Iαδ , for each vertex u and α ≤ δ where u exists in
the (α, α)-core, we create an adjacent list Iαδ [u][α] to store
its neighbors. Note that, the neighbors are sorted in non-
increasing order of their α-offsets and the neighbors with α-
offsets less than α are removed.

In Iβδ , for each vertex u and β ≤ δ where u exists in
the (β, β)-core, we create an adjacent list Iβδ [u][β] to store
its neighbors with β-offsets larger than β. The neighbors
are sorted in non-increasing order of their β-offsets and the
neighbors with β-offsets less or equal than β are removed.
Figure 5 is an example of Iδ[u1] of G in Figure 2(a). We can
see that it consists of two parts Iαδ [u1] and Iβδ [u1].
Optimal retrieval of Cα,β(q) based on Iδ . The query process-
ing of Cα,β(q) based on Iδ is similar to the query processing
based on the basic indexes. The difference is that we need to
choose to use Iαδ or Iβδ at first. If the query parameter α ≤ δ,
we use Iαδ to support the query process. Otherwise, we go for
Iβδ to obtain the Cα,β(q). Since only valid edges are touched
using Iδ , we can also obtain Cα,β(q) in O(size(Cα,β(q))) time
which is optimal. The proof of optimality is similar as Lemma
3 and we omit it here due to the space limit.

Example 3. Considering G in Figure 2 and Iδ[u1] in Figure
5, if we want to get the (3, 3)-community of u1 C3,3(u1), since
α = β, we first traverse Iαδ [u1][3] to get all the neighbors with
α-offsets ≥ 3, which are v1, v2 and v3. The edges (u1, v1),
(u1, v2) and (u1, v3) will be added into C3,3(u1). Then, we
go to the index nodes Iαδ [v1][3], I

α
δ [v2][3] and Iαδ [v3][3] to get

unvisited vertices u2 and u3 with α-offsets ≥ 3. The edges
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(u2, v1), (u2, v2), (u2, v3), (u3, v1), (u3, v2), (u3, v3) will be
added into C3,3(u1) when accessing Iαδ [u2][3] and Iαδ [u3][3].

Lemma 5. The space complexity of Iδ denoted as size(Iδ) is
O(2 ·

∑δ
τ=1 size(Rτ,τ )) = O(δ ·m).

Proof. For each α ∈ [1, δ] and u ∈ Rα,α, we
need to store at most deg(u,Rα,α) u′s neighbors in
Iαδ . Thus, Iαδ needs O(

∑δ
α=1

∑
u∈Rα,α deg(u,Rα,α)) =

O(
∑δ
α=1 size(Rα,α))=O(δ ·m) space. Similarly, Iβδ also needs

O(
∑δ
β=1(size(Rβ,β)) = O(δ ·m) space. In total, the space for

storing Iδ is O(δ ·m).

Algorithm 3: Degeneracy-bounded Index Construction
Input: G
Output: Iδ

1 τ ← 1;
2 compute δ using the k-core decomposition algorithm;
3 while τ ≤ δ do
4 compute α-offset sa(u, τ) and β-offset sb(u, τ) for each

vertex u ∈ V (G);
5 foreach u ∈ (τ, τ)-core do
6 foreach v ∈ N(u,G) do
7 if sa(v, τ) ≥ τ then
8 Iαδ [u][τ ]← {v, w(u, v), sa(v, τ )};
9 if sb(v, τ) > τ then

10 Iβδ [u][τ ]← {v, w(u, v), sb(v, τ )};
11 sort Iαδ [u][τ ] in decreasing order of their α-offsets;
12 sort Iβδ [u][τ ] in decreasing order of their β-offsets;
13 τ ← τ + 1;
14 return Iδ;

Index Construction. The construction algorithm of Iδ is
shown in Algorithm 3. We first compute δ using the k-
core decomposition algorithm in [21] since δ is equal to the
maximum core number in G. Then, for each vertex u, we
compute its α-offset for each α ≤ δ and its β-offset for
each β ≤ δ. These values can be obtained by the peeling
algorithm in [16]. Then, we loop τ from 1 to δ and add the
valid neighbors of the vertices in the (τ, τ)-core into Iδ .

Lemma 6. The time complexity of Algorithm 3 is O(δ ·m).

Proof. For each τ , we can first obtain the (τ, 1)-core and the
α-offsets of all the vertices can be computed using the core
decomposition algorithm [21] in O(m) time. The β-offsets of
all the vertices can also be computed in O(m) time similarly.
Then, sorting Iαδ [u][τ ] and Iβδ [u][τ ] for each vertex u also
needs O(m) time in total by using bin sort [21]. Since τ ∈
[1, δ], the time complexity of Algorithm 3 is O(δ ·m).

Discussion of index maintenance. When graphs are updated
dynamically, it is inefficient to reconstruct the indexes from
scratch. Thus, we discuss the main idea of the incremental
algorithms for maintaining Iδ . Other indexes in this paper can
be maintained in a similar way.
Edge insertion. Suppose an edge (u, v) is inserted into G. For
each α ≤ δ, we first add u(v) into Iαδ [v][α] (Iαδ [u][α]) if
sa(u, α) ≥ α (sa(v, α) ≥ α). Then, for each α ≤ δ, we
track changes of the α-offsets of the vertices. Note that, only
the α-offsets of the vertices in S+

α = V (Cα,sa(u,α)(u)) ∪
V (Cα,sa(v,α)(v)) can be changed. This is because for each
vertex not in S+

α , it either does not connect to u(v) or u(v)

already exists in any (α, β)-connected component it belongs
to when fixing α. Thus, we obtain the induced subgraph of
S+
α from Iδ and compute the new α-offsets of the vertices

in S+
α by peeling the subgraph. If the α-offset of the vertex

u′ ∈ S+
α is changed, we only need to update Iαδ [v

′][α] where
v′ ∈ N(u′, G). Similarly, for each β ≤ δ, only the β-offsets of
the vertices in S+

β = V (Csb(u,β),β(u))∪V (Csb(v,β),β(v)) can
be changed. We compute the new β-offsets of these vertices
and update Iβδ in a similar way. Note that after the new edge is
inserted, the value of δ can be increased by 1. If δ is increased,
we compute the new index elements for δ + 1.
Edge removal. Suppose an edge (u, v) is removed from G. For
each α ≤ δ, we first remove u(v) from Iαδ [v][α] (Iαδ [u][α])
if sa(u, α) ≥ α (sa(v, α) ≥ α). Similar as the insertion
case, for each α, only the α-offsets of the vertices in S−α =
V (Cα,1(u)\Cα,sa(u,α)+1(u)) ∪ V (Cα,1(v)\Cα,sa(v,α)+1(v))
can be changed. Thus, we recompute the α-offsets of these
vertices and update Iαδ . Iβδ can also be updated similarly.
Remark. Although we are dealing with the weighted bipartite
graph in this work, the indexing techniques proposed in this
section can directly support finding the (α, β)-community on
unweighted bipartite graph.

IV. QUERY THE SIGNIFICANT (α, β)-COMMUNITY

According to the definition of significant (α, β)-community,
the subgraph Cα,β(q) obtained from the index already satisfies
the connectivity constraint and the cohesiveness constraint.
Thus, in this section, we introduce two query algorithms
to obtain the significant (α, β)-community from Cα,β(q) to
further satisfy the maximality constraint.

A. Peeling Approach

Algorithm 4: SCS-Peel
Input: G, q, α, β;
Output: R

1 get Cα,β(q) from the index;
2 S ← ∅; Q← ∅;
3 sort edges of Cα,β(q) in non-decreasing order by weights;
4 while Cα,β(q) is not empty do
5 wmin ← the minimal edge weight in Cα,β(q)
6 foreach (u, v) ∈ Cα,β(q) with w(u, v) = wmin do
7 remove (u, v) from Cα,β(q);
8 S.add((u, v));
9 if deg(u,Cα,β(q)) < α ∧ u /∈ Q then

10 Q.push(u);
11 if deg(v, Cα,β(q)) < β ∧ v /∈ Q then
12 Q.push(v);
13 while Q is not empty do
14 u′ ← Q.pop();
15 foreach v′ ∈ N(u′, Cα,β(q)) do
16 remove (u′, v′) from Cα,β(q);
17 S.add((u′, v′));
18 if v′ does not have enough degree then
19 Q.push(v′);
20 if v′=q then
21 G′ ← S ∪ Cα,β(q);
22 Obtain R from G′

23 return R;
24 S = ∅;

Here, we introduce the peeling approach as shown in
Algorithm 4. Firstly, we retrieve Cα,β(q) based on the indexes
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proposed in Section III. Note that if all the edge weights are
equal in Cα,β(q), we can just return Cα,β(q) as the result.
Otherwise, we sort the edges in Cα,β(q) in non-decreasing
order by weights and we initialize an edge set S and a
queue Q to empty. After that, we run the peeling process on
Cα,β(q). In each iteration, we remove each edge (u, v) with
the minimal weight in Cα,β(q). Also, we add (u, v) into an
edge set S which records the edges removed in this iteration.
Due to the removal of (u, v), there may exist many vertices
which do not have enough degree to stay in Cα,β(q) (i.e., for
vertex u ∈ U(Cα,β(q)), deg(u,Cα,β(q)) < α or for vertex
v ∈ L(Cα,β(q)), deg(v, Cα,β(q)) < β), we also remove the
edges of these vertices and add the edges into S. We run the
peeling process until q does not satisfy the degree constraint.
Then, we create G′= S ∪Cα,β(q) since the edges removed in
this iteration need to be recovered to form the R. Finally, we
remove the vertices without enough degree in G′ and run a
breath-first search from q on G′ to get the connected subgraph
containing q which is R.

Theorem 1. The SCS-Peel algorithm correctly solves the
significant (α, β)-community search problem.

Proof. According to Lemma 1, R is a subgraph of Cα,β(q).
Suppose there is a G′ ⊆ Cα,β(q) satisfying the connected
constraint and the cohesiveness constraint and has f(G′) >
f(R). Since we always peel the edge with the minimal weight,
G′ will be found after R. Since we peel Cα,β(q) until the
degree of q is not enough, q ∈ G′ will not have enough degree
which contradicts the cohesiveness constraint. For the same
reason, there exists no G′′ ⊃ R with f(G′′) = f(R). Thus,
this theorem holds.

Time complexity. SCS-Peel has three phases. Retrieving
Cα,β(q) based on the index needs (size(Cα,β(q))) time. Then,
sorting the edges in Cα,β(q) needs sort(Cα,β(q)) time which
will be O(size(Cα,β(q))·(log(size(Cα,β(q))))) if we use quick
sort or O(m′) if we use bin sort where m′ equals to the
maximal weight in Cα,β(q). After that, the whole peeling
process requires O(size(Cα,β(q)) time. In total, the time
complexity of SCS-Peel is O(sort(Cα,β(q))+ size(Cα,β(q))).
Space complexity. In the SCS-Peel algorithm, we need only
O(size(Cα,β(q))) space to store the edges in Cα,β(q) apart
from the space used by the indexes.

B. Expansion Approach
Unlike the peeling approach which iteratively removes the

edge with the minimal weight from Cα,β(q), in this part, we
introduce the expansion approach SCS-Expand. SCS-Expand
first initializes a subgraph G∗ as empty. Then it iteratively adds
the edges with the maximal weight to G∗ (from Cα,β(q)) until
G∗ containsR. In this manner, if size(R) is much smaller than
size(Cα,β(q)), SCS-Expand can retrieve R in a more efficient
way compared to the peeling approach.

Following the above idea, we add edges with the maximal
weight in Cα,β(q) to G∗ (and remove them from Cα,β(q)) in
each iteration. However, when adding an edge into G∗, it may
not connect to q. Note that, we cannot discard these edges
immediately since they may be connected to q due to the later
coming edges. Thus, the connected subgraphs in G∗ should

be maintained in each iteration. With the help of union-find
data structure [22], the connected subgraphs in G∗ can be
maintained in constant amortized time, and we can efficiently
obtain the connected subgraph containing q in G∗.
Checking the existence of R in C∗. Suppose C∗ is the
connected subgraph containing q in G∗, we can easily observe
that R can only be found in the iteration where C∗ is changed.
In addition, we have the following bounds which can let us
know whether R is contained in C∗.

Lemma 7. Given a connected subgraph C∗, if R ⊆ C∗, we
have:

αβ − α− β ≤ |E(C∗)| − |U(C∗)| − |L(C∗)|

Proof. Since C∗ is a connected subgraph, we have |E(C∗)| ≥
|U(C∗)| + |L(C∗)| − 1. According to the cohesiveness con-
straint of R, R has at least max{α · |U(R)|, β · |L(R)|}
edges. In addition, the number of incident edges of vertices in
V (C∗)\V (R) is at least |U(C∗)|+|L(C∗)|−|U(R)|−|L(R)|
to ensure C∗ is connected.

Hence, when α·|U(R)| ≥ β ·|L(R)|, |E(C∗)| ≥ |U(C∗)|+
|L(C∗)| − |U(R)| − |L(R)|+α · |U(R)|. It is immediate that
α ≤ |L(R)| and β ≤ |U(R)|. Thus, we have (α−1)·|U(R)|−
|L(R)| ≤ |E(C∗)| − |U(C∗)| − |L(C∗)|. By transformation,
we have (α − 1) · β − α ≤ |E(C∗)| − |U(C∗)| − |L(C∗)|.
Then, we get αβ − α− β ≤ |E(C∗)| − |U(C∗)| − |L(C∗)|.

When α · |U(R)| < β · |L(R)|, |E(C∗)| ≥ |U(C∗)| +
|L(C∗)| − |U(R)| − |L(R)| + β · |L(R)|, we can also get
αβ − α− β ≤ |E(C∗)| − |U(C∗)| − |L(C∗)|.

Lemma 8. Given a connected subgraph C∗ ⊆ G, if R ⊆ C∗,
it must contain α vertices where each vertex u of them has
deg(u,C∗) ≥ β, and it must contain β vertices where each
vertex v of them has deg(v, C∗) ≥ α. In addition, the query
vertex should be one of these vertices.

Proof. This lemma directly follows from Definition 5.

Based on the above lemmas, we can skip checking the
existence of R if the constraints are not satisfied. It is still
costly if we check each C∗ satisfies the constraints since
we need to perform the peeling algorithm on C∗ using
O(size(C∗)) time. To mitigate this issue, we set an expansion
parameter ε > 1 to control the number of checks. Firstly, we
check C∗ when it first satisfies the constraints in the Lemma 7
and Lemma 8. After that, we only check C∗ if its size is at least
ε times than the size of its last check. Here we choose ε = 2
and the reasons are as follows. Suppose for each C∗i (i ∈ [1, d],
d is the total number of checks) which needs to be checked,
size(C∗i ) is exactly ε times of size(C∗i−1). Since we can find R
in the final check, we have size(C∗d) < ε(size(R)). The time
complexity of using the peeling algorithm to check all these
connected subgraphs is O(σdi=1size(C

∗
i )), and σdi=1size(C

∗
i )

= size(Cd) + 1
ε size(C

d) + 1
ε2 size(C

d) + ...+ 1
εd
size(Cd), we

can have O(σdi=1size(C
∗
i )) = O(ε( 1

ε−1 )size(R)). We choose
ε = 2 since 1

ε−1 achieves the smallest value at ε = 2.
The SCS-Expand Algorithm. We present the SCS-Expand al-
gorithm as shown in Algorithm 5. Firstly, we retrieve Cα,β(q)
based on the indexes proposed in Section III. We can return
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Cα,β(q) if all the edge weights are equal in Cα,β(q). Other-
wise, we sort the edges in Cα,β(q) in non-increasing order
by weights and we initialize G∗ and C∗ to empty. After that,
we iteratively add each edge (u, v) with the maximal weight
(in Cα,β(q)) to G∗ and remove the added edge from Cα,β(q).
Note that the size and edges of the connected subgraphs in
G∗ will be maintained using the union-find structure. If C∗ is
changed, we will check whether C∗ satisfies the constraints in
the Lemma 7 and Lemma 8. After that, we will check if its size
grows at least ε times. If it is, we run the peeling process to
check whether R is contained by C∗. In this peeling process,
we iteratively remove all the vertices without enough degree
from C∗. If q is not removed from C∗, we run Algorithm 4
to obtain R. The algorithm finishes if it finds R in C∗.

Algorithm 5: SCS-Expand
Input: G, q, α, β, ε;
Output: R

1 G∗ ← ∅; C∗ ← ∅; pre size = 0;
2 get Cα,β(q) from the index;
3 sort edges of Cα,β(q) in non-increasing order by weights;
4 while Cα,β(q) is not empty do
5 wmax ← the maximal edge weight in Cα,β(q)
6 foreach (u, v) ∈ Cα,β(q) with w(u, v) = wmax do
7 remove (u, v) from Cα,β(q);
8 G∗.add((u, v));
9 maintain the connected subgraphs in G∗;

10 if C∗ is not changed or violates constraints in Lemma 7
and Lemma 8 then

11 continue;
12 if size(C∗) ≥ pre size · ε then
13 pre size← size(C∗);
14 else
15 continue;
16 Remove the vertices without enough degree from C∗;
17 if q ∈ C∗ then
18 run Algorithm 4 lines 3 - 23, replace Cα,β(q) with a

copy of C∗

Theorem 2. The SCS-Expand algorithm correctly solves the
significant (α, β)-community search problem.

Proof. According to Definition 5, R is a subgraph of Cα,β(q).
Since we always expand the edge with the maximal weight,
the connected subgraph C∗ will always contain all the edges in
Cα,β(q) which is connected to q with weights ≥ f(C∗). Ac-
cording to Theorem 1, SCS-Peel can correctly check whether
R exists in C∗. Thus, this theorem holds.

Time complexity. In SCS-Expand, retrieving Cα,β(q) based
on the index needs O(size(Cα,β(q))) time. Then, sorting
the edges in Cα,β(q) needs O(sort(Cα,β(q))) time. After
that, the whole expansion process requires O(

∑d
i=1 size(C

∗
i ))

time where d is the number of subgraphs which survive to
Algorithm 5 line 16. In total, the time complexity of SCS-
Expand is O(sort(Cα,β(q)) + σdi=1size(C

∗
i )).

Space complexity. In the SCS-Expand algorithm, we need
O(size(Cα,β(q))) space to store the edges in Cα,β(q) except
the space used by indexes.
Remark. One may also consider using binary search over the
weights to find R. To validate each weight, it still needs to run
the peeling process which needs O(m) time. In addition, if the

result is found under a weight threshold, the algorithm stops
and the search space does not need to be reduced anymore.
Thus, this binary search method only needs to expand the
search space which is similar to SCS-Expand. We implement
the binary search approach and find its running time is similar
to that of SCS-Expand (0.86×-1.08×) on all the datasets. Note
that when the number of distinct weight values are small, SCS-
Binary can have better performance than SCS-Expand.

TABLE I: Summary of Datasets
Dataset |E| |U | |L| δ αmax βmax |Rδ,δ|

BS 433K 77.8K 186K 13 8,524 707 13.6K
GH 440K 56.5K 121K 39 884 3,675 21.5K
SO 1.30M 545K 96.6K 22 4,917 6,119 13.0K
LS 4.41M 992 1.08M 164 55,559 773 177K
DT 5.74M 1.62M 383 73 378 160,047 30.5K
AR 5.74M 2.15M 1.23M 26 12,180 3,096 36.6K
PA 8.65M 1.43M 4.00M 10 951 119 639
ML 25.0M 162K 59.0K 636 32,202 81,491 2.12M
DUI 102M 833K 33.8M 183 24,152 29,240 2.30M
EN 122M 3.82M 21.5M 254 1,916,898 62,330 1.03M
DTI 137M 4.51M 33.8M 180 1,057,753 6,382 242K

V. EXPERIMENTS

In this section, we first evaluate the effectiveness of the
significant (α, β)-community model. Then, we evaluate the
efficiency of the techniques for retrieving (α, β)-communities
and significant (α, β)-communities.

A. Experiments setting

Algorithms. Our empirical studies are conducted against the
following designs:
• Techniques to retrieve the (α, β)-community. The query
algorithms: 1) the online query algorithm Qo in [16], and the
query algorithms based on the following indexes: 2) Qv based
on the bicore index Iv proposed in [15], 3) Qopt based on the
degeneracy-bounded index Iδ in Section III-B. The indexes:
1) the bicore index Iv , 2) basic indexes Iαbs and Iβbs, 3) Iδ .
• Algorithms to retrieve the significant (α, β)-community. 1)
the peeling algorithm SCS-Peel, 2) the expansion algorithm
SCS-Expand in Section IV and 3) a baseline algorithm SCS-
Baseline which iteratively expands the edges (with larger
weight value) from the connected component containing q of
the whole graph rather than from Cα,β(q).

The algorithms are implemented in C++ and the experi-
ments are run on a Linux server with Intel Xeon 2650 v3
2.3GHz processor and 768GB main memory. We terminate an
algorithm if the running time is more than 104 seconds.
Datasets. We use 11 real datasets in our experiments which are
Bookcrossing (BC), Github (GH), StackOverflow
(SO), Lastfm (LS), Discogs (DT), Amazon (AR),
DBLP (PA), MovieLens (ML), Delicious-ui (DUI),
Wikipedia-en (EN) and Delicious-ti (DTI). All the
datasets we use can be found in KONECT (http://konect.uni-
koblenz.de). Note that, for the datasets without weights (i.e.,
DT and PA), we choose the random walk with restart model
[23] to compute the node relevance and generate the weights.
Here several other models [24], [25] can also be applied.

The summary of datasets is shown in Table I. U and L are
vertex layers, |E| is the number of edges. δ is the degeneracy.
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αmax and βmax are the largest value of α and β where a
(α, 1)-core or (1, β)-core exists, respectively. |Rδ,δ| denotes
the number of edges in Rδ,δ in each dataset. In addition, M
denotes 106 and K denotes 103.

B. Effectiveness evaluation

In this section, we evaluate the effectiveness of our model
on MovieLense which contains 25M ratings (ranging from
1 to 5) from 162K users (U ) on 59K movies (L).

We compare the significant (α, β)-community model with
the (α, β)-core, k-bitruss (setting k = α ·β) [18] and maximal
biclique [20] models. We also add a community C4? which is
the induced subgraph of all the movies with average ratings
at least 4. Note that, we use the connected components of the
query vertex as the result when considering different models.
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Fig. 6: Evaluating the community quality, varying α, β = t

Evaluating the community quality. Suppose a user wants
to find some friends who are also fans of comedy movies.
We extract the subgraph formed by the ratings on comedy
movies and perform community search algorithms. Figure
6(a) shows the bipartite graph density which is computed
as d(G) = |E(G)|/

√
|U(G)||L(G)| [26]. We can see that

the communities produced by (α, β)-core, bitruss, biclique
and SC all have high densities comparing with C4? since the
structure cohesiveness is considered in these models. Thus, the
users in C4? are loosely connected with each other and have
fewer interactions. In addition, the average ratings (i.e., the
numbers on the top of each bar) indicate that SC can always
return a group of users with higher average ratings than (α,
β)-core, bitruss and biclique. We also show the number of
dislike users in Figure 6(b). A user is a dislike user if he/she
gives fewer than 0.6α good ratings (i.e., rating ≥ 4), who
is not likely to be a fan of comedies. We can see that SC
contains fewer number of dislike users comparing with all the
other models because both weight and structure cohesiveness
are considered. Thus, the users in SC are considered as good
candidates to be recommended to the query user. Note that the
percentage of dislike users in bitruss and C4? is very high. This
is because bitruss ensures the structure cohesiveness using the
butterfly (i.e., 2×2-biclique) and a user can exist in a k-bitruss
with a large k value if he/she only watched a few number of
hot movies. In addition, C4? does not ensure the structure
cohesiveness and there exist many users who only watched
few high rating movies.
Case study. We conduct queries using parameters q =
6778, α = 45, β = 45 on comedy movies. The statistics
of query results are shown in Table II. |U | and |M | denote
the total number of users and movies in the community,
respectively. Ravg and Rmin denote the average and minimal
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Fig. 7: Representative components of real-life communities

TABLE II: Statistics of query results, q = 6,778

Models |U | |M | Ravg Rmin Mavg Sim (%)
SC 2,127 670 4.81 4.50 63.47 100

(α, β)-core 34,466 2491 3.39 0.5 110.03 7.57
bitruss 158,183 2,985 3.48 0.5 35.87 1.74

biclique 65 45 3.45 0.5 45 2.39
C4? 114,915 387 4.16 0.5 2.39 1.82

rating in the community, respectively. Mavg is the average
number of movies a user watched in the community and Sim
is the jaccard similarity between each community and SC. For
the biclique model, here we use a maximal biclique containing
q with at least 45 vertices in each layer. We can see that SC
contains reasonable number of users and vertices with higher
average rating and minimal rating in the community than the
others. We also show the representative components of the
communities using (α, β)-core and SC in Figure 7. We can
see that (α, β)-core contains users who do not like such movies
and movies that are not liked by such users. This is because (α,
β)-core only considers structure cohesiveness and ignores the
edge weights. We can observe that Mavg of C4? is only 2.39
since the structure cohesiveness is not considered in C4?. Thus,
C4? contains many users who only watched a few number
of high rating movies and these users are loosely connected
with the query user. Among these models, only SC considers
both weight and structure cohesiveness, which is not similar to
other communities compared here. In SC, each user has given
at least 45 times 4.5-star ratings on these comedy movies and
the movies are reviewed as 4.5-star at least 45 times by the
users. Thus, the quality of the users and movies found by SC
can be guaranteed and highly recommended to the query user.
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Fig. 8: Retrieving the (α, β)-communities

C. Evaluation of retrieving (α, β)-community

In this part, we evaluate the proposed indexing techniques
to retrieve the (α, β)-community.
Query time. 1) Performance on all the datasets. We first
evaluate the performance on all the datasets by setting α and
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Fig. 9: Retrieving the (α, β)-communities, varying α and β

β to 0.7δ. In Figure 8, we can observe that Qopt significantly
outperforms Qo and Qv on all the datasets. This is because
Qopt is based on Iδ which can achieve optimal retrieval of (α,
β)-communities. Especially, on large datasets such as DUI, EN
and DTI, the Qopt algorithm is one to two orders of magnitude
faster than Qo and is up to 20× faster than Qv .

2) Varying α and β. We also vary α and β to assess the
performance of these algorithms. In Figure 9(a) and (b), α
and β are varied simultaneously. We can observe that when α
and β are small, the performance of these algorithms is similar.
This is because only a few number of edges are removed from
the original graph when the query parameters are small. When
α and β are large, the resulting (α, β)-communities are much
smaller than the original graph. Thus, Qopt is much faster than
Qo and Qv . In Figure 9(c) and (d), we fix α (or β) and vary
the other one and the trends are similar.

BS GH SO LS DT AR PA ML DUI EN DTI
Datasets

10 1

100
101

102
103
104
INF

Ti
m

e(
s)

Iv Ibs Ibs I

Fig. 10: Index construction time

BS GH SO LS DT AR PA ML DUI EN DTI
Datasets

100
101
102
103
104
105
106
107

In
de

x 
siz

e(
M

B)

Iv Ibs Ibs I

Fig. 11: Index size

Evaluating index construction time and index size. In this
part, we evaluate the index size and index construction time.

1) Index construction time. In Figure 10, we can see that Iδ can

be efficiently constructed on all the datasets since it only needs
the same low constructing time complexity as Iv (O(δm)). In
addition, constructing Iδ is slightly slower than constructing Iv
which is reasonable since Iv only contains vertex information
of (α, β)-cores while Iδ contains edge information which can
support optimal retrieval of (α, β)-communities. The time for
constructing Iαbs and Iβbs highly depends on αmax and βmax.
Thus, it is very slow (or even unaccomplished) on the datasets
where these two values are large such as DUI and EN.
2) Index size. In Figure 11, we evaluate the size of these
indexes. If an index cannot be built within the time limit,
we report the expected size of it. We can see that size(Iδ) is
smaller than size(Iαbs) and size(Iβbs) on almost all the datasets.
Iv is the index with the minimal size since it only contains
vertex information.

D. Evaluation of retrieving significant (α, β)-community
Here we evaluate the performance of the algorithms (SCS-

Baseline, SCS-Peel, and SCS-Expand) for querying significant
(α, β)-communities. In these algorithms, we use Qopt to
support the optimal retrieval of (α, β)-community. In each
test, we randomly select 100 queries and take the average.
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Fig. 12: Query performance on different datasets

Evaluating the performance on all the datasets. In Fig-
ure 12, we evaluate the performance of SCS-Baseline, SCS-
Peel, and SCS-Expand on all the datasets. We also report
the standard deviation on the top of each bar. We can see
that SCS-Expand and SCS-Peel are significantly faster than
SCS-Baseline, especially on large datasets. This is because,
with the help of the two-step framework, the search space
of SCS-Peel and SCS-Expand is limited in Cα,β(q), while
SCS-Baseline needs to consider all edges in the connected
component containing q of the whole graph. We can also
see in Table I that |Rδ,δ| is much smaller than |E|. Since
Cδ,δ(q) ⊆ Rδ,δ , when we choose relatively larger parameters,
the search space of SCS-Peel and SCS-Expand is much smaller
than SCS-Baseline. In addition, we can see that on most
datasets, SCS-Expand is on average more efficient than SCS-
Peel. However, the standard deviations of SCS-Expand and
SCS-Peel are large. This is because SCS-Peel and SCS-Expand
both need more time to handle the cases when α and β are
small and SCS-Expand is usually much faster than SCS-Peel.
Evaluating the effect of query parameters α and β. In
Figure 13, we vary α and β on two datasets DT and ML.
From Figure 13(a) and (b), we can see that, when α and
β are small, SCS-Expand is more efficient than SCS-Peel.
In addition, the running time of SCS-Peel and SCS-Expand
decreases as α (or β) increases. Note that the efficiency of
these two algorithms largely depends on the size of the (α, β)-
community containing q (i.e., size(Cα,β(q)), which determines
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Fig. 13: Effect of α and β

the search space) and the size of the final result (i.e., size(R),
which relates to the actual computation cost). In most cases,
when α and β are large, the size of Cα,β(q) is small and R
is expected to be large since more edges are needed in R to
satisfy the cohesiveness constraints. Thus, the edges need to
be peeled are usually few and SCS-Peel is more efficient than
SCS-Expand. When α and β are small, the search space (i.e.,
Cα,β(q)) can be large and R is expected to be small. Thus,
SCS-Expand is usually more efficient than SCS-Peel in these
cases. In most cases, we can determine to use SCS-Peel or
SCS-Expand according to the choice of α and β.

TABLE III: Running time under different weight distribution

Algorithms AE RW UF SK
SCS-Baseline 0.03s 3.12s 4.42s 4.31s
SCS-Peel 0.03s 0.34s 0.48s 0.45s

SCS-Expand 0.03s 0.31s 0.41s 0.36s

Evaluate the effect of weight distribution. In Table III, we
evaluate the effect of weight distribution on DT dataset. We test
four weight distributions: (1) AE: the weights are all equal;
(2) RW: the weights are generated using the random walk
with restart model [23]; (3) UF: the weights follow uniform
distribution; (4) SK: the weights follow skewed normal dis-
tribution with skewness = 1.02. When all the edge weights
are equal (AE) which can be considered as a special case,
all three algorithms can just return Cα,β(q) after efficiently
scanning Cα,β(q). Note that the performances of these three
algorithms are not very sensitive to the other three distribu-
tions. This is because both weight and structure cohesiveness
are considered in our problem and the impact of RW/SK/UF
weight distributions are limited.

VI. RELATED WORK

To the best of our knowledge, this paper is the first to study
community search over bipartite graphs. Below we review two
closely related areas, community search on unipartite graphs
and cohesive subgraph models on bipartite graphs.
Community search on unipartite graphs. On unipartite graphs,
community search is conducted based on different cohesive-
ness models such as k-core [4]–[7], [27]–[35], k-truss [8], [9],

[36]–[39], clique [40], [40], [41]. Interested readers can refer
to [11] for a recent comprehensive survey.

Based on k-core, [4] and [5] study online algorithms for k-
core community search on unipartite graphs. In [6], Barbieri
et al. propose a tree-like index structure for the k-core com-
munity search. Using k-core, Fang et al. [7] further integrate
the attributes of vertices to identify community and the spatial
locations of vertices are considered in [27], [28]. For the truss-
based community search, [8], [36] study the triangle-connected
model and [9] studies the closest model. In [40], the authors
study the problem of densest clique percolation community
search. However, the edge weights are not considered in any of
the above works and their techniques cannot be easily extended
to solve our problem. On edge-weighted unipartite graphs, the
k-core model is applied to find cohesive subgraphs in [42],
[43]. They use a function to associate the edge weights with
vertex degrees and the edge weights are not considered as
a second factor apart from the graph structure. Thus, these
works do not aim to find a cohesive subgraph with both
structure cohesiveness and high weight (significance). Under
their settings, a subgraph with loose structure can be found
in the result. For example, a vertex can be included in the
result if it is only incident with one large-weight edge. In
[37], the k-truss model is adopted on edge-weighted graphs to
find communities. However, the k-truss model is based on the
triangle structure which does not exist on bipartite graphs. One
may also consider using the graph projection technique [44] to
generate a unipartite projection from the original (weighted)
bipartite graph. The drawback of this approach is twofold.
Firstly, it can cause information loss and edge explosion [19].
Secondly, it is not easy to project a weighted bipartite graph
and handle the projected graph using existing methods. This
is because we need to consider two kinds of weights (i.e., the
original edge weight and the structure weight generated from
another layer) on the projected graph.
Finding cohesive subgraphs on bipartite graphs. On bipartite
graphs, several existing works [15], [16], [45], [46] extend the
k-core model on unipartite graph to the (α, β)-core model.
Based on the butterfly structure [47], [17]–[19] study the bi-
truss model in bipartite graphs which is the maximal subgraph
where each edge is contained in at least k butterflies. [20]
studies the biclique enumeration problem. However, the above
works only consider the structure cohesiveness and ignore
the edge weights which are important as validated in the
experiments. In the literature, fair clustering problems [12]–
[14] are studied to find communities (i.e., clusters) under fair-
ness constraints on bipartite graphs. The problem is inherently
different and the techniques are not applicable to the problem
studied in this paper. An interesting work in [48] studies the
paper matching problem in peer-review process which also
finds dense subgraphs on bipartite graphs. However, their flow-
based techniques are often used to solve a matching problem
while our problem is not modeled as a matching problem.

VII. CONCLUSION

In this paper, we study the significant (α, β)-community
search problem. To solve this problem efficiently, we fol-
low a two-step framework which first retrieves the (α,
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β)-community, and then identifies the significant (α, β)-
community from the (α, β)-community. We develop a novel
index Iδ to retrieve the (α, β)-community in optimal time.
In addition, we propose efficient peeling and expansion al-
gorithms to obtain the significant (α, β)-community. We
conduct extensive experiments on real-world graphs, and the
results demonstrate the effectiveness of the significant (α, β)-
community model and the proposed techniques.
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