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Abstract—Graph similarity search retrieves from a database
all graphs whose edit distance (GED) to a query graph is
within a threshold. As GED computation is NP-hard, the existing
works adopt the filtering-and-verification paradigm to reduce
the number of GED verifications, and they mainly focus on
designing filtering techniques while using the now out-dated
algorithm A∗GED for verification. In this paper, we aim to
speed up GED verification, which is orthogonal to the index
structures used in the filtering phase. We propose a best-
first search algorithm AStar+-LSa which improves A∗GED by
(1) reducing memory consumption, (2) tightening lower bound
estimation, and (3) improving the time complexity for lower
bound computation. We formally show that AStar+-LSa has a
lower space and time complexity than A∗GED. We further modify
AStar+-LSa into a depth-first search algorithm to contrast these
two search paradigms, and we extend our algorithms for exact
GED computation. We conduct extensive empirical studies on
real graph datasets, and show that our algorithm AStar+-LSa
outperforms the state-of-the-art algorithms by several orders of
magnitude for both GED verification and GED computation.

I. Introduction

Graph model is ubiquitous and has been used to model the
relationship/interaction between entities in a wide spectrum
of applications, such as chemical compounds and biological
structures. With the proliferation of graph data, one of the
fundamental query types is graph search, which aims to
retrieve all occurrences of a query graph in a graph database
consisting of thousands or millions of small- and medium-
sized graphs. Due to erroneous data entry, data noise, and/or
the nature of the applications, it is not unusual that exact graph
search returns no or very few results and thus does not serve
the applications well. As a result, a recent trend is to find from
the database all graphs that are similar to the query graph [8],
[10], [11], [18], [21], [22], [23].

Various (dis-)similarity measures have been studied in the
literature, such as graph edit distance [8], [17], maximum
common subgraph [4], [7], and the number of miss-matching
edges [24]. Among them, graph edit distance (GED) has
been popularly adopted by the existing works on graph
search queries [8], [10], [11], [18], [21], [22], [23]. This is
because GED is a metric applicable to all types of graphs
and it captures the structural difference between graphs.
Specifically, the GED between graphs q and g, denoted
ged(q, g), is the minimum number of edit operations that
are needed to transform q into g, where the edit oper-
ations are edge insertion/deletion/relabeling and vertex in-
sertion/deletion/relabeling. Thus, GED gives the minimum

amount of distortion needed to transform one graph into the
other. Note that ged(q, g) = ged(g, q).

Given a graph database D, a query graph q and a threshold
τ, the problem of graph similarity search is to find all
graphs in D whose GED to q is within the threshold τ, i.e.,
result = {g ∈ D | ged(q, g) ≤ τ}. As computing GED (as
well as other graph similarity measures) is NP-hard [19], the
existing works adopt the filtering-and-verification paradigm
to reduce the number of GED verifications [22]. That is, an
offline-constructed index is probed online to generate a set of
candidate graphs cand ⊆ D such that result ⊆ cand, i.e., no
true result is filtered; this is the filtering phase. Then, the GED
between q and each candidate graph g ∈ cand is verified to
identify the true results; this is the verification phase. The
existing studies mainly focus on designing effective index
structures — such as q-gram-based index [21], star structure-
based index [18], and subgraph-based index [11], [22] —
aiming to reduce the size of cand, while using the now out-
dated algorithm A∗GED [15] for GED verification.

GED Verification. In this paper, we aim to speed up GED
verification for graph similarity search, which is orthogonal
to the index structures used in the filtering phase and is the
bottleneck in the existing graph similarity search algorithms.
Besides the application in graph similarity search, GED ver-
ification/computation is also a key building block in graph
classification [12] and graph clustering [16]. In addition, it
also assists to identify functionally related enzyme clusters
in biochemistry [13], to compare electroencephalogram in
medicine [2], and to retrieve similar objects in videos [6].

The existing GED algorithms are branch-and-bound algo-
rithms [1], [3], [8], [14], [15]. They enumerate mappings from
vertices of q′ to vertices of g′, where q′ and g′ are obtained
from q and g, respectively, by adding dummy vertices to cope
with vertex insertion/deletion. Specifically, if a dummy vertex
of q′ is mapped to a non-dummy vertex u of g′ in a mapping
f , then it means that u is inserted into q to match g regarding
mapping f . Similarly, mapping a non-dummy vertex v of q′ to
a dummy vertex of g′ corresponds to deleting vertex v from q
to match g. Then, ged(q, g) equals the minimum cost among
all the mappings from V(q′) to V(g′).

As there is an exponential number of mappings, these
mappings are implicitly organized into a prefix-shared search
tree T (see Figure 2) such that branches of T can be pruned
based on lower bound computations. Specifically, each node



TABLE I: A summary of the existing vertex mapping-based algorithms A∗GED and DF GED, and our algorithms AStar+-LS,
DFS+-LS, AStar+-LSa, and DFS+-LSa

Algorithms Add dummy Search strategy Lower bound estimation Time complexity of extending
vertices a partial mapping

A∗GED [14], [15] Yes Best-first search Label set-based O(|V(g)| × (|E(q)| + |E(g)|))
DF GED [1], [3] Yes Depth-first search Label set-based O(|V(g)| × (|E(q)| + |E(g)|))

AStar+-LS No Best-first search Label set-based O(|E(q)| + |E(g)|)
DFS+-LS No Depth-first search Label set-based O(|E(q)| + |E(g)|)

AStar+-LSa No Best-first search Anchor-aware label set-based O(|E(q)| + |E(g)|)
DFS+-LSa No Depth-first search Anchor-aware label set-based O(|E(q)| + |E(g)|)

of T corresponds to a partial mapping f that is shared by all
full mappings that are its descendants in T . The lower bound
cost of f , denoted lb f , is computed as a lower bound of the
costs of all full mappings that are descendants of f , and the
branch rooted at f is pruned if lb f > τ. There are two key
components in branch-and-bound algorithms.
• Search Strategy: the first GED algorithm, A∗GED [14],

[15], adopts the best-first search strategy, while recent
algorithms, DF GED [1], [3] and CSI GED [8], suggest
conducting a depth-first search.

• Lower Bound Estimation: A∗GED and DF GED use
label set-based lower bound, while CSI GED uses
degree-based lower bound.

It is reported in [8] that CSI GED outperforms A∗GED by
over two orders of magnitude. However, it is unclear whether
this is due to the different search strategies or the different
lower bound estimations or anything else, used by CSI GED.

Contributions. A summary of our algorithms against the
existing algorithms is shown in Table I. Our main contributions
are summarized as follows.
1 We show that ged(q, g) can be computed via enumer-

ating mappings from V(q) to V(g) without adding dummy
vertices (Section III). Thus, the total number of mappings is
≈ |V(g)||V(q)|. In contrast, the existing algorithms as discussed
above need to enumerate mappings from V(q′) to V(g′), and
there are approximately (|V(q)| + |V(g)|)|V(q)|+|V(g)| mappings in
total as |V(q′)| = |V(g′)| = |V(q)| + |V(g)|. We significantly
improve the worst-case behaviour of GED algorithms.
2 We propose a best-first search algorithm AStar+-LSa for

efficient GED verification (Section IV). AStar+-LSa improves
the existing best-first search algorithm A∗GED from the
following aspects. Firstly, AStar+-LSa reduces the memory
consumption by storing each partial mapping (i.e., search state)
in constant memory space. Secondly, AStar+-LSa reduces
the search space by using a tighter lower bound estimation.
Thirdly, we propose an efficient algorithm to extend a partial
mapping (i.e., compute the lower bound cost for all of its
children) in linear time, which improves the time complexity
of the existing techniques by a factor of |V(g)| (see the last
column of Table I). As a result, AStar+-LSa has both a lower
space and a lower time complexity than A∗GED.
3 We modify AStar+-LSa into a depth-first search algorithm
DFS+-LSa to contrast these two search paradigms, and we
extend our algorithms for GED computation (Section V).
DFS+-LSa differs from AStar+-LSa only in the definition of
priority for the queues used by these two algorithms. We

quantitatively show that DFS+-LSa has a lower time complex-
ity than the existing depth-first search algorithm DF GED.
We also show that AStar+-LSa in general has a smaller
search space and thus lower time complexity than DFS+-LSa,
which becomes more profound when conducting exact GED
computation.
4 We conduct extensive performance studies and have the

following findings (Section VII). (1) Our algorithm AStar+-LSa
outperforms the state-of-the-art algorithms CSI GED [8] and
Inves [10] for index-free graph similarity search (i.e., di-
rectly verifying GED) by up-to two orders of magnitude,
and outperforms CSI GED for GED computation by up-
to four orders of magnitude. (2) The state-of-the-art index-
based filtering algorithm Pars [20], [22] for graph similarity
search has limited effectiveness; that is, the improvement of
AStar+-LSa by using Pars for filtering will be at most 52%
than directly verifying all graphs by AStar+-LSa. (3) Our
best-first search algorithm AStar+-LSa runs faster than its
depth-first search variant DFS+-LSa (which outperforms both
CSI GED and DF GED) for both GED verification and GED
computation; this invalidates the recent claims in [3], [8] that
depth-first search is more suitable than best-first search for
GED verification/computation.

II. Preliminaries

In this paper, we focus our discussions on labeled and
undirected simple graphs while our techniques can be straight-
forwardly extended to handle other types of graphs. A labeled
and undirected graph is represented by g = (V(g), E(g), l),
where V(g) is the set of vertices, E(g) is the set of edges,
and l : V(g) ∪ E(g) → Σ is a labelling function that assigns
each vertex and/or edge a label from Σ. Specifically, l(u) and
l(u, u′) are the label of vertex u and the label of edge (u, u′),
respectively. The number of vertices and the number of edges
in g are denoted by |V(g)| and |E(g)|, respectively. Given a
vertex subset S ⊆ V(g), the subgraph of g induced by S is
gS = (S , {(u, u′) ∈ E(g) | u, u′ ∈ S }, l). In the following, for
presentation simplicity we refer to a labeled and undirected
graph simply as a graph.

A graph edit operation on a graph is an operation that
transforms the graph. Specifically, it includes the follow-
ing six edit operations: inserting/deleting an isolated vertex
into/from the graph (vertex insertion and vertex deletion),
inserting/deleting an edge between two vertices (edge insertion
and edge deletion), and changing the label of a vertex/edge
(vertex relabeling and edge relabeling).
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Fig. 1: Sample graphs

Definition 2.1: The graph edit distance (GED) between
graphs q and g, denoted ged(q, g), is the minimum number
of edit operations that are needed to transform q into g.

Note that, ged(q, g) = ged(g, q) and ged(·, ·) is a met-
ric [17]. Consider the two graphs q and g in Figure 1, where
vertex labels are illustrated inside circles (i.e., A, B,C) and
edge labels are illustrated beside edges (i.e., a, b). One possible
sequence of edit operations for transforming q into g is as
follows: (1) change the label of vertex v1 from A to B, (2)
change the label of edge (v2, v3) from a to b, (3) insert an
isolated vertex v5 with label C, (4) add an edge with label b
between v1 and v5, and (5) add an edge with label a between
v4 and v5. Thus, the GED between q and g is at most 5.
Nevertheless, computing the exact GED is NP-hard [19].

Problem Statement. Given two graphs, q and g, and a
threshold τ, we study the problem of GED verification that
outputs true if ged(q, g) ≤ τ, and outputs false otherwise.

In the following, we use v and its variants, v′, v1, v2, . . ., to
denote vertices in q, and use u and its variants, u′, u1, u2, . . ., to
denote vertices in g. Frequently used notations are summarized
in Table II.

TABLE II: Frequently used notations

Notation Description

ged(q, g) The GED between graphs q and g
Υ(S 1, S 2) Edit distance between multi-sets S 1 and S 2, i.e.,

Υ(S 1, S 2) = max {|S 1|, |S 2|} − |S 1 ∩ S 2|
T The search tree of all mappings from V(q) to V(g)

f , h (Partial) mapping from V(q) to V(g)
f (v) The vertex of V(g) to which v ∈ V(q) maps

f −(u) The vertex of V(q) that maps to u ∈ V(g)
mc f The mapping cost of a (possibly partial) mapping f

edc f The editorial cost of a full mapping f
lb f Lower bound of the editorial costs of all full mappings

that extend f

q f The subgraph of q induced by vertices of f
q f̄ The remaining subgraph of q by removing q f

LV (q f̄ ) Multi-set of vertex labels of q f̄
LE(q f̄ ) Multi-set of edge labels of q f̄

LEI (q f̄ ) Multi-set of labels of inner edges of q f̄
LEC (v) Multi-set of labels of v’s cross adjacent edges

III. Compute GED via VertexMapping

As GED is a metric, any of the two graphs can be regarded
as q. We choose q to be the graph with fewer vertices.
We prove in Lemma 3.1 that there then is no vertex deletion
in the optimal sequence (i.e., the sequence with the minimum
number) of edit operations that transform q into g.

Lemma 3.1: Given graphs q and g with |V(q)| ≤ |V(g)|, there
is no vertex deletion in the optimal sequence of edit operations
that transform q into g.

Proof: We prove the lemma by contradiction. Assume there is
such a sequence of edit operations, P = (o1, . . . , oi, . . . , on) of
length n = ged(q, g), that contains a vertex deletion. Without
loss of generality, let oi be the operation of deleting vertex v
from q. Then, there must also exist a vertex insertion operation
since |V(q)| ≤ |V(g)|; let o j be the operation of inserting vertex
v′ with label a, where j can be either smaller or larger than
i. Now consider another sequence P′ of edit operations that
differs from P by removing oi and changing o j from vertex
insertion to vertex relabeling (i.e., change the label of v to a);
note that, we may also need to replace the occurrences of v′

in P with v. It is easy to verify that |P′| = |P| − 1 and P′ also
transforms q into g, which contradicts that P is optimal. Thus,
the lemma holds. �

Following Lemma 3.1, we do not need to add dummy
vertices to g for encoding vertex deletion from q. Recall that
existing algorithms need to add dummy vertices to both q and
g to cope with vertex insertion/deletion (see Section I).

Computing GED via Enumerating Vertex Mappings. It can
be verified that if |V(q)| < |V(g)|, then ged(q, g) = ged(q′, g)
where q′ is obtained from q by adding |V(g)| − |V(q)| isolated
dummy vertices with label ⊥ < Σ. Thus, we can assume that
|V(q)| = |V(g)|; we will remove this assumption shortly. Then,
we can prove in a similar way to the proof of Lemma 3.1
that there is no vertex deletion nor vertex insertion in the
optimal sequence of edit operations that transform q into g.
That is, we only need to consider four edit operations, i.e.,
edge insertion/deletion, and vertex/edge relabeling. As a result,
there is a natural one-to-one mapping from V(q) to V(g) that
is preserved in the final isomorphism between the transformed
graph q′′ — obtained from q by applying the edit operations
— and g. For simplicity, we refer to one-to-one mapping as
mapping in the following. We define the editorial cost of a
full mapping (i.e., involving all vertices of q) as follows.

Definition 3.1: For a full mapping f from V(q) to V(g), the
editorial cost of f , denoted edc f (q, g) and abbreviated as
edc f , is the number of edit operations that are required to
transform q into g by obeying the mapping f (i.e., v ∈ V(q)
maps to f (v) ∈ V(g)).

The editorial cost of a full mapping from V(q) to V(g) can
be computed in O(|E(q)| + |E(g)|) time;1 such an algorithm is
shown in Algorithm 1. Following the above discussions, the
GED can be computed from mappings as follows.

Lemma 3.2: The GED between q and g equals the minimum
editorial cost among all full mappings F (q, g) from V(q) to
V(g); that is, ged(q, g) = min f∈F (q,g) edc f .

Thus, ged(q, g) can be computed by enumerating all full
mappings from V(q) to V(g) and computing their editorial

1In this paper, without loss of generality, we assume that |V(q)| ≤ |E(q)|
and |V(g)| ≤ |E(g)| for time complexity analysis.
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Algorithm 1: EditorialCost
Input: Graphs q and g with |V(q)| = |V(g)|, and a full mapping

f from V(q) to V(g)

1 edc f ← 0;
/* Vertex relabeling */

2 for each vertex v ∈ V(q) do
3 if l(v) , l( f (v)) then edc f ← edc f + 1;

/* Edge deletion or relabeling */
4 for each edge (v, v′) ∈ E(q) do
5 if ( f (v), f (v′)) < E(g) or l(v, v′) , l( f (v), f (v′)) then
6 edc f ← edc f + 1;

/* Edge insertion */
7 for each edge (u, u′) ∈ E(g) do
8 if ( f −(u), f −(u′)) < E(q) then edc f ← edc f + 1;

9 return edc f ;

costs. Then, the minimum editorial cost is the result. It is worth
mentioning that, however, there is an exponential number of
full mappings from V(q) to V(g).

Removing the Assumption of |V(q)| = |V(g)|. Now, we show
that even if |V(q)| < |V(g)|, we still do not need to add dummy
vertices to q. Note that, if |V(q)| < |V(g)|, then a full mapping
may not involve all vertices of g. We define the mapping
cost of a (possibly partial) mapping f by considering only the
subgraphs q f and g f of q and g that are induced by vertices
of f , respectively.

Definition 3.2: For a (possibly partial) mapping f from
V(q) to V(g), the mapping cost of f , denoted mc f (q, g) and
abbreviated as mc f , is the number of edit operations required
to transform q f into g f by obeying the mapping f .

Note that, if f is a full mapping and |V(q)| = |V(g)|,
then mc f = edc f ; otherwise mc f , edc f . In particular,
if f is a full mapping and |V(q)| < |V(g)|, then edc f =

mc f + (|V(g)|+ |E(g)| − |V(g f )| − |E(g f )|), i.e., edc f equals mc f

plus the number of vertices and edges of g that are not in g f .
For example, consider the full mapping f = {v1 7→ u1, v2 7→
u2, v3 7→ u3, v4 7→ u4} for graphs q and g in Figure 1, an
edit operation is needed to relabel vertex v1 to B, and an edit
operation is needed to relabel edge (v2, v3) to b; thus, mc f = 2.
It can be verified that edc f = mc f +3 as it needs another three
edit operations to transform q into g, i.e., insert vertex v5 and
add edges (v1, v5) and (v4, v5) into q.

Based on the above discussions, it is easy to verify that
Lemma 3.2 still holds even if |V(q)| < |V(g)|. Thus, dummy
vertices are not needed for q either. As a result, the total
number of full mappings is approximately |V(g)||V(q)|. Note
that, although vertex mapping has been used in the existing
GED algorithms (e.g., in [9], [14], [15], [1], [3]), they all
need to add dummy vertices to enlarge q and g to q′ and g′

(see Section I) such that |V(q′)| = |V(g′)| = |V(q)| + |V(g)| to
cope with possible vertex insertion and deletion of q. That is,
they may enumerate approximately (|V(q)| + |V(g)|)|V(q)|+|V(g)|

full mappings in the worst-case. We significantly reduce the
worst-case number of full mappings, and thus improve the
worst-case behaviour of GED algorithms.

IV. Our AStar+-LSa Approach

In this section, we propose a best-first search algorithm
AStar+-LSa for efficient GED verification. We present our
AStar+ search framework in Section IV-A, and our LSa lower
bound estimation technique in Section IV-B. We analyze the
time and space complexity of AStar+-LSa in Section IV-C.

A. Our AStar+ Search Framework

Given graphs q and g, the set of all full mappings from V(q)
to V(g) — according to a matching order π = (v1, . . . , v|V(q)|)
of V(q) — can be compactly represented in a prefix-shared
search tree T , see Figure 2. A node at level i of T represents
a partial mapping from (v1, . . . , vi) to V(g), which extends the
partial mapping of its parent (at level i − 1) by additionally
mapping vi to a vertex of V(g). All the full mappings are at
level |V(q)| of T . To distinguish nodes of the search tree T
from vertices of graphs q and g, we refer to the former as
nodes. Based on the parent-child relationships of nodes in T ,
parent-child (as well as ancestor-descendant) relationships are
also defined for mappings.

f26 f27 f28 f29 f30 f31

f20 f21 f22 f23 f24 f25

f14 f15 f16 f17 f18 f19

f6 f7 f8 f9 f10 f11 · · · · · ·
f1 f2 f3 · · · · · ·

f0

. . . . . . . . .

. . . . . . . . .

level

1

2
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4

5

π

v1

v2

v3

v4

v5
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(u3, 5) (u4,-) (u5,-)
(u2, 4) (u1,-) (u5,-)

(u2, 5) (u4, 5) (u3,-) (u5,-) (u3, 4) (u1, 6)

(u1, 4) (u4, 4) (u3, 4)

(∅, 0)

Fig. 2: The search tree T for computing ged(q, g) for graphs
in Figure 3: fi is a partial mapping, and beside f at level j is
a pair (u, lb f ) where u ∈ V(g) is the vertex to which v j maps
and lb f is a lower bound of f

Figure 2 shows a snippet of the search tree T for the graphs
q and g in Figure 3. The root node of T is at level 0, and
represents an empty mapping ∅. Beside each node f at level
i in T , we show two values: the vertex u ∈ V(g) to which
vi maps in the mapping f , and a lower bound cost lb f of
f which is defined in Definition 4.1; note that, we use f to
denote both a mapping and its corresponding node in T . The
vertex to which v j maps in the mapping f for j < i can be
obtained from the corresponding ancestor of f at level j in T .
For example, the partial mapping f6 is {v1 7→ u1, v2 7→ u2} and
has a lower bound cost 5, and f6’s parent is f1 = {v1 7→ u1}.

To avoid enumerating all full mappings which are of expo-
nential quantity, we compute a lower bound cost for a partial
mapping for the purpose of pruning, as follows.

Definition 4.1: The lower bound cost of a mapping f from
V(q) to V(g), denoted lb f (q, g) and abbreviated as lb f , is a
value that is at least the mapping cost mc f of f and at most the
minimum editorial cost among all full mappings that extend
(i.e., are descendants of) f .
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Algorithm 2: AStar+(q, g, τ)
Input: Graphs q and g s.t. |V(q)| ≤ |V(g)|, and a threshold τ
Output: true if ged(q, g) ≤ τ, and false otherwise

1 Compute a matching order π = (v1, . . . , v|V(q)|) of V(q);
2 Q← {(∅, 0, nil, 0, 0)}; /* Push the root of the search
tree into the priority queue Q */;

3 while Q , ∅ do
4 ( f , i, pa,mc f , lb f )← pop the top entry from Q;

/* Lines 5-8 extend f */
5 Compute the lower bound cost lbh for each child h of f ;
6 for each child h of f s.t. lbh ≤ τ do
7 if i + 1 = |V(q)| then return true;
8 else Push (h, i + 1, f ,mch, lbh) into Q;

9 return false;

Thus, for GED verification, we can prune the search branch
rooted at f (i.e., all mappings that extend f ) if lb f is larger than
the threshold τ. Based on this, the pseudocode of conducting
a pruned best-first search on T for GED verification is shown
in Algorithm 2, denoted AStar+. We first compute a matching
order of V(q) which defines the search tree T , and let it be
π = (v1, . . . , v|V(q)|) (Line 1). To conduct a best-first search on
T , we use a priority queue Q to maintain the search frontier
which is initialized by the root of T (Line 2). Each entry
of Q stores a partial mapping f to be extended, its level i
and its parent pa in T , its mapping cost mc f and its lower
bound cost lb f . As long as Q is not empty (Line 3), we pop
the top entry ( f , i, pa,mc f , lb f ) (i.e., with the minimum lb f )
from Q (Line 4), and then extend f by computing the lower
bound cost lbh for each child h of f (Line 5). For each child
h with lbh ≤ τ, we push it into Q if it is not a full mapping
(i.e., |h| = i + 1 < |V(q)|) (Line 8), and we otherwise return
true indicating that ged(q, g) ≤ τ (Line 7). If the algorithm
does not return true, then we finally return false indicating
that ged(q, g) > τ (Line 9). It is easy to see that during the
execution of the algorithm, we maintain the invariant that all
mappings in Q are partial mappings and have lower bound
cost no larger than τ.

Theorem 4.1: Algorithm 2 correctly verifies the GED between
graphs q and g, if lb f = edc f for every full mapping f .
Proof: It is easy to see that if Algorithm 2 returns true
at Line 7, then it must be the case that ged(q, g) ≤ τ as
lb f = edc f for every full mapping f . The only possible
case that Algorithm 2 goes wrong is that it returns false
while ged(q, g) ≤ τ. We prove that this cannot happen. From
Lemma 3.2, we know that ged(q, g) equals the minimum
editorial cost among all full mappings from V(q) to V(g).
Thus, there is a full mapping f ∗ with editorial cost ged(q, g).
Then, the lower bounds of all ancestors of f ∗ in T will be no
larger than ged(q, g) ≤ τ, and thus all ancestors of f ∗ will be
pushed into Q at Line 8. Consequently, the parent of f ∗ will
be popped from Q at Line 4, the lower bound cost of f ∗ will
be computed as ged(q, g) ≤ τ, and the algorithm will return
true at Line 7. Thus, the theorem holds. �

Compared with Existing Best-First Search Framework.
Although the existing algorithm A∗GED [14], [15] also uses

the best-first search strategy, there are two features that dis-
tinguish AStar+ (Algorithm 2) from A∗GED. Firstly, AStar+

reduces the memory consumption by storing each partial
mapping (i.e., search state) in a constant memory space, see
the description of Q. Secondly, AStar+ computes the lower
bound cost for all children of a partial mapping at the same
time (see Line 5), which enables an improved time complexity
(see Section IV-B). As a result, AStar+ has both a lower space
and a lower time complexity than A∗GED, see Section IV-C
for the analysis. Moreover, we have shown in Section III that
AStar+ does not need to add dummy vertices to q or g, while
A∗GED needs to which increases the search space.

A Frequency-Aware Matching Order. For completeness, we
briefly describe our matching order selection algorithm in the
following. It is mainly based on two intuitions: (1) a connected
matching order is preferred; and (2) infrequent part of a graph
should be mapped first. To quantify the infrequency of a
subgraph, we compute an infrequency weight w(·) for each
vertex and each edge of q, which is one minus its frequency
in g for the corresponding vertex label or edge label. The first
vertex v1 is chosen as the one with the largest total weight for
the vertex and its adjacent edges. Then, we iteratively append,
to the end of π, the vertex that has the largest total weight for
the vertex and its adjacent edges to vertices of π.

B. Efficient LSa Lower Bound Computation

In the following, we first introduce the anchor-aware label
set-based lower bound LSa in Section IV-B1, and then propose
linear-time algorithms for computing the lower bound cost for
all children of a partial mapping in Section IV-B2

1) Anchor-aware Label Set-based Lower Bound: Given
a partial mapping f , we decompose q into two parts: the
subgraph q f of q induced by vertices of f , and the remaining
subgraph of q, denoted q f̄ . Similarly, we decompose g into g f

and g f̄ . Note that, q f̄ contains none of the vertices of q f but
includes edges that have exactly one end-point in q f . That is,
q f̄ contains both inner edges whose both end-points are in
q f̄ , and cross edges between vertices of q f̄ and vertices of q f .

Example 4.1: Consider the partial mapping f = {v1 7→
u1, v2 7→ u2} for the graphs q and g in Figure 3. q f and
g f are the parts in the shadowed rectangle, while q f̄ and
g f̄ are the remaining parts; specifically, q f̄ consists of three
vertices {v3, v4, v5}, one inner edge {(v3, v4)} and two cross
edges {(v5, v1), (v3, v2)}. �

Let LV (q f̄ ) and LV (g f̄ ) denote the multi-sets of vertex labels
of q f̄ and g f̄ , respectively, and let LE(q f̄ ) and LE(g f̄ ) denote
the multi-sets of edge labels. The lower bound that has been
extensively used in the existing algorithms A∗GED [14], [15]
and DF GED [1], [3] is defined as follows.

Definition 4.2: [3] The label set-based lower bound of a
mapping f is lbLSf = mc f + LS f (q f̄ , g f̄ ) where LS f (q f̄ , g f̄ ) is
the difference between vertex labels of q f̄ and g f̄ plus the
difference between edge labels of q f̄ and g f̄ ,

LS f (q f̄ , g f̄ ) = Υ
(
LV (q f̄ ), LV (g f̄ )

)
+ Υ

(
LE(q f̄ ), LE(g f̄ )

)
(1)
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Here Υ(·, ·) denotes the edit distance between two multi-sets
and Υ(S 1, S 2) = max

{|S 1|, |S 2|} − |S 1 ∩ S 2|. 2

Example 4.2: For the partial mapping f in Example 4.1,
LV (q f̄ ) = {A, B,C}, LV (g f̄ ) = {A, A, E}, LE(q f̄ ) = {a, a, b}, and
LE(g f̄ ) = {a, a, a}. Thus, LS f (q f̄ , g f̄ ) = 2 + 1 = 3. As mc f = 1,
we have lbLSf = 4. �

Recently, Kim et al [10] and we (in our early draft [5]) in-
dependently proposed the anchor-aware label set-based lower
bound, by making use of the information of the mapped
vertices, called anchored vertices, of q f .3 The general idea
is that the set of cross adjacent edges of v must be edited to
map to that of f (v) in every full mapping that extends f , as
each anchored vertex v in q f must map to f (v) ∈ V(g f ).

Definition 4.3: [5], [10] The anchor-aware label set-based
lower bound of a mapping f is lbLSaf = mc f + LSa f (q f̄ , g f̄ )

LSa f (q f̄ , g f̄ ) =Υ
(
LV (q f̄ ), LV (g f̄ )

)
+ Υ

(
LEI (q f̄ ), LEI (g f̄ )

)
+

∑
v∈q f

Υ
(
LEC (v), LEC ( f (v))

)
(2)

where LEC (v) is the multi-set of labels of v’s cross adjacent
edges, and LEI (q f̄ ) and LEI (g f̄ ) are the multi-sets of labels of
inner edges of q f̄ and g f̄ , respectively.

Example 4.3: For the partial mapping f in Example 4.1, we
have LEI (q f̄ ) = {a}, LEI (g f̄ ) = {a, a}, LEC (v1) = {b}, LEC (v2) =

{a}, LEC (u1) = ∅, and LEC (u2) = {a}. Thus, LSa f (q f̄ , g f̄ ) =

2 + 1 + 1 = 4, and lbLSaf = 5 > lbLSf . �

We prove in Lemma 4.1 that lbLSaf ≥ lbLSf holds in general.
Note that, for lower bound estimation, the larger the tighter.

Lemma 4.1: For any mapping f , we have lbLSaf ≥ lbLSf .

Proof: We can see that LEI (q f̄ ) and LEC (v) for anchored
vertices v ∈ q f refine LE(q f̄ ), and LEI (g f̄ ) and LEC (u) for u ∈ g f

refine LE(g f̄ ). That is, LE(q f̄ ) = LEI (q f̄ ) ∪
(⋃

v∈q f
LEC (v)

)
and

LE(g f̄ ) = LEI (g f̄ )∪
(⋃

u∈g f
LEC (u)

)
. Thus, Υ

(
LEI (q f̄ ), LEI (g f̄ )

)
+∑

v∈q f
Υ
(
LEC (v), LEC ( f (v))

)
≥ Υ

(
LE(q f̄ ), LE(g f̄ )

)
and the

lemma holds. �

It is easy to verify that, for full mappings f , we have lbLS =

lbLSa = edc f . Thus, Algorithm 2 correctly verifies GED if any
one of these two lower bounds is used.

2Note that, all unions ∪ and intersections ∩ in this paper follow the multi-
set-based semantics.

3Note that, techniques for efficiently computing the anchor-aware label set-
based lower bound for all children of a partial mapping are not discussed
in [10].

2) Linear-time Lower Bound Computation: For extending
a partial mapping f in Algorithm 2, we need to compute
the lower bound cost for all children of f . Assuming that
f is at level i of the search tree T (i.e., f maps vertices
v1, . . . , vi of q to g f ), then f has |V(g f̄ )| children and each
child extends f by mapping vi+1 to a vertex of g f̄ . We use
f ∪ {vi+1 7→ u} to denote a child of f . In the following, we
propose techniques to efficiently compute these lower bound
costs, and for presentation simplicity we focus our discussions
for the label set-based lower bound lbLSf .

A straightforward approach is to independently compute
the lower bound cost lbLSh for each child h of f , which is
the strategy adopted by the existing algorithms A∗GED [14],
[15] and DF GED [1], [3]. As computing lbLSh for a specific
child takes O(|E(q)| + |E(g)|) time, the time complexity of
this straightforward approach for computing the lower bound
cost for all children of f is O (|V(g)| × (|E(q)| + |E(g)|)). This
is inefficient in viewing that such computation needs to be
conducted for a lot of partial mappings.

To improve the efficiency for extending a partial mapping,
we propose to first online build a data structure in linear time
such that the lower bound cost of f ∪ {vi+1 7→ u} can be
obtained in O(d(u)) time, where d(u) is the degree of u in g. Let
h be f ∪ {vi+1 7→ u}. The data structure simply maintains, for
each vertex label and each edge label, the difference between
its number of occurrences in qh̄ and g f̄ . Specifically,
• for each vertex label A ∈ LV (g f̄ ) ∪ LV (qh̄), we store a

count cntV (A) which equals the number of occurrences
of A in g f̄ minus the number of its occurrences in qh̄;

• for each edge label a ∈ LE(g f̄ )∪ LE(qh̄), we store a count
cntE(a) which equals the number of occurrences of a in
g f̄ minus the number of its occurrences in qh̄.

We can see that, the data structure is independent to u, the
vertex that vi+1 maps to in h, as qh̄ is not related to u.

TABLE III: Data structure (Vlabel: Vertex label)
Vlabel cntV (·) Vlabel cntV (·) Edge label cntE(·)

A 2 C -1 a 2
B -1 E 1 b -1

Example 4.4: Consider the graphs q and g in Figure 3 and
f = {v1 7→ u1, v2 7→ u2}. The data structure constructed is
shown in Table III, where LV (g f̄ ) = {A, A, E}, LV (qh̄) = {B,C},
LE(g f̄ ) = {a, a, a}, and LE(qh̄) = {a, b}. �

Based on the data structure, we now show how to compute
the lower bound lbLSh of h in O(d(u)) time. Recall that, h =

f ∪ {vi+1 7→ u} and

lbLSh = mch + Υ
(
LV (qh̄), LV (gh̄)

)
+ Υ

(
LE(qh̄), LE(gh̄)

)
We discuss the three components one-by-one.

Firstly, mch can be obtained from mc f by adding the cost
of editing edges of E(vi+1, q f ) to map to edges of E(u, g f )
according to the mapping h, where E(vi+1, q f ) denotes the
edges between vi+1 and q f and E(u, g f ) is defined similarly.
Specifically, we have

mch = mc f + Il(vi+1),l(u) + |E(vi+1, q f )| + |E(u, g f )| − c1 − 2 · c2
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where Iφ is an indicator function that evaluates to 1 if φ is true
and evaluates to 0 otherwise, c1 is the number of matched
edges with different labels between E(vi+1, q f ) and E(u, g f )
(i.e., edge relabeling is required), and c2 is the number of
matched edges with the same labels between E(vi+1, q f ) and
E(u, g f ) (i.e., no edit operation is required). For example,
continuing Example 4.4 and u = u3, then Il(v3),l(u3) = 0,
E(v3, q f ) = {(v2, v3)} and E(u3, g f ) = {(u2, u3)}. As (u2, u3)
matches with (v2, v3) with the same edge label, we have c1 = 0
and c2 = 1. Thus, mch = mc f + 0. Note that, among the above
quantities, mc f is directly obtained from Algorithm 2 (see Line
4) and |E(vi+1, q f )| can be precomputed when building the data
structure online, while |E(u, g f )|, c1 and c2 can be computed
online in O(d(u)) time. Consequently, mch can be computed
online in O(d(u)) time.

Secondly, recall that Υ
(
LV (qh̄), LV (gh̄)

)
equals

max
{|LV (qh̄)|, |LV (gh̄)|} − ∣∣∣LV (qh̄) ∩ LV (gh̄)

∣∣∣ .
As LV (gh̄) is obtained from LV (g f̄ ) by removing the label l(u),
we have max{|LV (qh̄)|, |LV (gh̄)|} = max{|LV (qh̄)|, |LV (g f̄ )| − 1}.
Moreover, |LV (qh̄) ∩ LV (gh̄)| differs from |LV (qh̄) ∩ LV (g f̄ )|
by at most one which happens exactly when the number of
occurrences of the vertex label l(u) in g f̄ is no more than its
number of occurrences in qh̄ (i.e., when cntV (l(u)) ≤ 0). Thus,
we have

Υ
(
LV (qh̄), LV (gh̄)

)
= max

{
|LV (qh̄)|, |LV (g f̄ )| − 1

}
−(

|LV (qh̄) ∩ LV (g f̄ )| − IcntV (l(u))≤0

)
(3)

For example, continuing Example 4.4 and u = u3, then
|LV (qh̄)| = 2, |LV (g f̄ )| = 3, LV (qh̄) ∩ LV (g f̄ ) = ∅, and
cntV (l(u3)) = 2. We have Υ

(
LV (qh̄), LV (gh̄)

)
= 2 − 0 = 2.

Note that, among the above quantities, |LV (qh̄)|, |LV (g f̄ )|, and
|LV (qh̄) ∩ LV (g f̄ )| can be precomputed online when building
the data structure. Consequently, Υ

(
LV (qh̄), LV (gh̄)

)
can be

computed online in constant time.
Similarly, we have

Υ
(
LE(qh̄), LE(gh̄)

)
= max

{
|LE(qh̄)|, |LE(g f̄ )| − |E(u, g f )|

}
−(

|LE(qh̄) ∩ LE(g f̄ )| − cE

)
(4)

where cE is the decrease in |LE(qh̄) ∩ LE(g f̄ )| when labels
of edges E(u, g f̄ ) are removed from LE(g f̄ ). Note that, cE

can be computed from the data structure in O(d(u)) time.
Consequently, Υ

(
LE(qh̄), LE(gh̄)

)
can be computed online in

O(d(u)) time. For example, continuing Example 4.4 and
u = u3, then LE(qh̄) = {a, b}, LE(g f̄ ) = {a, a, a}, and
E(u3, g f ) = {(u2, u3)} where l(u2, u3) = {a}. Thus, cE = 0 and
Υ

(
LE(qh̄), LE(gh̄)

)
= 2 − (1 − 0) = 1.

Based on the above ideas, the pseudocode of our algorithm
for computing the lower bound costs of all children of f is
shown in Algorithm 3. Line 1 constructs the data structure in
linear time, Lines 4–9 compute mch in O(d(u)) time, Line 10
computes Υ

(
LV (qh̄), LV (gh̄)

)
in constant time, Lines 11-15

compute Υ
(
LE(qh̄), LE(gh̄)

)
in O(d(u)) time, and Line 16 sums

these values to get lbLSh in constant time. The following lemma
immediately follows from the above discussions.

Algorithm 3: Compute lower bound for all f ’s children
Input: Graphs q and g, a partial mapping f , and mc f
Output: Lower bound cost lbLSh for all children h of f

1 Construct the data structure cntV (·) and cntE(·) for qh̄ and g f̄ ;
2 for each vertex u ∈ V(g f̄ ) do
3 h← f ∪ {vi+1 7→ u};
4 c1 ← 0, c2 ← 0;
5 for each edge (u, u′) ∈ E(u, g f ) (i.e., between u and g f ) do
6 if (vi+1, f −(u′)) ∈ E(q) then
7 if l(u, u′) , l(vi+1, f −(u′)) then c1 ← c1 + 1;
8 else c2 ← c2 + 1;

9 mch ← mc f + Il(vi+1),l(u) + |E(vi+1, q f )|+ |E(u, g f )| − c1 − 2 · c2;
10 Calculate Υ (LV (qh̄), LV (gh̄)) by Equation (3);
11 cE ← 0;
12 for each edge (u, u′) ∈ E(u, g f ) do
13 a← l(u, u′); cntE(a)← cntE(a) − 1;
14 if cntE(a) < 0 then cE ← cE − 1;

15 Calculate Υ (LE(qh̄), LE(gh̄)) by Equation (4);
16 lbLSh ← mch + Υ (LV (qh̄), LV (gh̄)) + Υ (LE(qh̄), LE(gh̄));

/* The following lines restore cntE(·) */
17 for each edge (u, u′) ∈ E(u, g f ) do
18 a← l(u, u′); cntE(a)← cntE(a) + 1;

Lemma 4.2: Algorithm 3 correctly computes the lower bound
cost for all children of f regarding lbLS in O(|E(q)| + |E(g)|)
total time.

Similar to Algorithm 3, we can compute the lower bound
cost for all children of f regarding lbLSa in O(|E(q)| +

|E(g)|) total time. Note that, in order to efficiently compute∑
v∈q f

Υ
(
LEC (v), LEC ( f (v)

)
in O(d(u)) time, we will also need

to maintain such a data structure cntE(·) for every vertex of
q f . We omit the details.4

C. Analysis of AStar+-LSa

Let T≤x be the set of non-leaf nodes/partial mappings in
T whose lower bound costs are no larger than a threshold x,
and |T≤x| be its cardinality. Note that, T≤x1 ⊆ T≤x2 if x1 ≤ x2.
Then, we have the following lemma.

Lemma 4.3: The total numbers of partial mappings that
were ever popped out the priority queue Q and pushed
into Q, when running AStar+, are min{|T≤τ|, |T≤ged(q,g)|} and
min{|T≤τ|, |V(g)| · |T≤ged(q,g)|}, respectively.

Proof: Firstly, if τ < ged(q, g), then q is dissimilar to g
and Algorithm 2 terminates when Q = ∅. Then, every partial
mapping whose lower bound cost is no larger than τ must
be pushed into Q and then popped out from Q. Moreover,
only the partial mappings whose lower bound costs are no
larger than τ are pushed into Q (see Line 6). Thus, the sets of
partial mappings that are pushed into and popped out from Q
are exactly T≤τ.

Secondly, if ged(q, g) ≤ τ, then Algorithm 2 will return
true at Line 7. Let f be the partial mapping popped from
Q at Line 4 when the algorithm terminates at Line 7. Then,

4Details can be found in our C++ source code, which will be available in
GitHub along the publication of the paper.
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the lower bound cost of f must be no larger than ged(q, g).
Thus, every partial mapping that is popped from Q must have a
lower bound cost no larger than that of f , due to the strategy of
always popping from Q the partial mapping with the smallest
lower bound cost. Consequently, the set of partial mappings
that are popped out from Q is a subset of T≤ged(q,g). For each
partial mapping that is popped from Q, we push at most |V(g)|
new partial mappings into Q at Line 8 as each partial mapping
has at most |V(g)| children. Moreover, all partial mappings that
were pushed into Q have lower bound costs ≤ τ (Line 6). Thus,
the lemma holds. �

Note that, the above two lemmas hold for any lower
bound estimation. In the following, we use the superscripts
LS and LSa to denote the two lower bounds discussed in Sec-
tion IV-B1. Recall that, the tighter the lower bound estimation,
the smaller the size of T≤x. Thus, following from Lemma 4.1,
we have T LSa≤x ⊆ T LS≤x for any x.

Space Complexity of AStar+-LSa. We prove the space com-
plexity of AStar+-LSa by the theorem below.

Theorem 4.2: The space complexity of AStar+-LSa is
O

(
min

{
|T LSa≤τ |, |V(g)| · |T LSa≤ged(q,g)|

})
.

Proof: The space consumption of AStar+-LSa is dominated by
the priority queue Q. Firstly, we have proved in Lemma 4.3
that the total number of partial mappings that were ever
pushed into Q is min{|T LSa≤τ |, |V(g)| · |T LSa≤ged(q,g)|}. Secondly, the
information of each partial mapping (i.e., each entry in Q) is
stored in constant space as follows. (1) For a partial mapping
f at level i, we only store the vertex of V(g) to which vi ∈ V(q)
maps, while other parts of f can be retrieved from its ancestors
in the search tree T . (2) The other information — such as its
level number i, its parent pa, its mapping cost mc f , and its
lower bound cost lbLSaf — each take constant space. Thus, the
space complexity of AStar+-LSa follows. �

The existing best-first search algorithm A∗GED uses the
label set-based lower bound lbLS, and explicitly stores the
partial mappings in Q where each partial mapping takes
space O(|V(q)|). Thus, the space complexity of A∗GED is
O

(
|V(q)| ×min

{
|T LS≤τ |, |V(g)| · |T LS≤ged(q,g)|

})
, which is at least

|V(q)| times larger than that of AStar+-LSa by noting the
following two facts. (1) |T LS≤x | ≥ |T LSa≤x | for any x. (2) A∗GED
adds dummy vertices to q and g (see Section I), which further
enlarges the search tree T .

Time Complexity of AStar+. We define the search space
of AStar+-LSa as the number of partial mappings that are
extended. Then, following Lemma 4.3, the search space of
AStar+-LSa is min

{
|T LSa≤τ |, |T LSa≤ged(q,g)|

}
. We prove the time

complexity of AStar+-LSa by the following theorem.

Theorem 4.3: The time complexity of AStar+-LSa is
O
(

min
{
|T LSa≤τ |, |T LSa≤ged(q,g)|

}
× (|E(q)|+ |E(g)|+ |V(q)| · log |V(g)|)).

Proof: Following from Lemma 4.3, AStar+-LSa runs for at
most min{|T LSa≤τ |, |T LSa≤ged(q,g)|} iterations (i.e., Lines 4–8). Each
iteration consists of one pop operation (Line 4) and at most
|V(g)| push operations (Line 8) of Q, and one invocation

of lower bound computation (Line 5). The time complexity
of pop is O(log |Q|) which is O(|V(q)| · log |V(g)|) as |Q| ≤
|V(g)||V(q)|, the time complexity of push is O(1), and the time
complexity of lower bound computation is O(|E(q)| + |E(g)|).
Thus, the theorem holds. �

As |V(q)| · log |V(g)| usually is smaller than |E(q)| + |E(g)|,
we can simply regard the time complexity of AStar+-LSa
as O

(
min

{
|T LSa≤τ |, |T LSa≤ged(q,g)|

}
× (|E(q)| + |E(g)|)). As A∗GED

extends a partial mapping in O(|V(g)| · (|E(q)| + |E(g)|)) time,
the time complexity of A∗GED is O

(
min

{
|T LS≤τ |, |T LS≤ged(q,g)|

}
×

|V(g)| × (|E(q)| + |E(g)|)), which is at least |V(g)| times larger
than that of AStar+-LSa.

V. Extensions

In this section, we modify our best-first search algorithm
AStar+-LSa into a depth-first search algorithm DFS+-LSa to
contrast these two search paradigms in Section V-A, and then
extend our algorithms for GED computation in Section V-B.

A. Our DFS+-LSa Approach

Algorithm 2 works in a depth-first search fashion if at
Line 4, we pop from the priority queue Q the partial mapping
that has the largest level number in the search tree T ; if there
is a tie, then we prefer the one with a smaller lower bound
cost. As the level numbers are integers in the range from 1 to
|V(q)|, we can simulate the priority queue by an array of size
|V(q)|. We denote this variant of Algorithm 2 as DFS+. By
combining DFS+ with our lower bound estimation algorithm
for LSa, we have the algorithm DFS+-LSa.

Analysis of DFS+-LSa. The space complexity of DFS+-LSa is
O(|V(q)|×|V(g)|). Firstly, the number of distinct levels is |V(q)|.
Secondly, for each level, there can have up-to |V(g)| partial
mappings stored in the priority queue at each moment. Thus,
the total number of partial mappings in the priority queue at
each moment is at most |V(q)| × |V(g)|, where each partial
mapping takes constant space.

Let TDFS be the set of partial mappings that are extended
by DFS+, which is also the search space of DFS+. Then, the
time complexity of DFS+-LSa is O(|T LSaDFS|× (|E(q)| + |E(g)|)).5
Note that if τ < ged(q, g), then it can be proved in a similar
way to the proof of Lemma 4.3 that TDFS = T≤τ. However,
for the case τ ≥ ged(q, g), it is possible that |TDFS| is larger
than |T≤ged(q,g)|, and it is also possible that |TDFS| < |T≤ged(q,g)|.

Compared with the Existing Depth-First Search Algo-
rithms. The strategy of depth-first search has been used
in the existing GED algorithms DF GED [1], [3] and
CSI GED [8]. DF GED is similar to A∗GED but uses
depth-first search. Thus, the time complexity of DF GED is
O(|V(g)| × |T LSDFS| × (|E(q)| + |E(g)|)), which is at least |V(g)|
times larger than that of our algorithm DFS+-LSa.

On the other hand, CSI GED enumerates edge mappings
rather than vertex mappings. Moreover, CSI GED uses a
different lower bound, the degree-based lower bound lbDE,

5Note that, for simplicity, we here ignore the time for breaking ties.
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which is similar to Definition 4.3 but revises Υ(S 1, S 2) to be∣∣∣|S 1| − |S 2|
∣∣∣. Due to entirely ignoring the edge labels of q f̄ and

g f̄ , lbDEf is no larger than and could be much smaller than lbLSaf .
Our experimental results in Section VII show that DFS+-LSa
significantly outperforms CSI GED.

Compared with Our Best-First Search AStar+-LSa. It is
obvious that best-first search algorithms have a larger and
usually much larger space complexity than depth-first search
algorithms. As a result, a best-first search algorithm may run
out-of-memory if it has a very large search space, which is
the case for A∗GED. This motivates the recent algorithms
DF GED and CSI GED to adopt the depth-first search
paradigm. We show in the following that best-first search and
depth-first search have different behaviours for similar and
dissimilar graph pairs, for GED verification.
• If q and g are dissimilar (i.e., ged(q, g) > τ), then

the search spaces of AStar+-LSa and DFS+-LSa are the
same, i.e., T≤τ = TDFS as discussed above. Thus, they
will perform similarly for dissimilar graph pairs, with
AStar+-LSa being slightly slower due to the overhead of
priority queue.

• If ged(q, g) ≤ τ, then the search space of AStar+-LSa is
a subset of T LSa≤ged(q,g) (see Lemma 4.3), while DFS+-LSa
may extend any partial mapping in T≤τ ⊇ T LSa≤ged(q,g) and
terminates once finding a full mapping with editorial cost
at most τ. Our experimental results in Section VII-C
show that AStar+-LSa performs better than DFS+-LSa
for similar graph pairs.

Moreover, AStar+-LSa largely solves the out-of-memory issue
of A∗GED by (1) not adding dummy vertices to q or g,
(2) storing each search state in constant memory, and (3) using
a tighter lower bound estimation. Thus, AStar+-LSa is suitable
for GED verification.

B. GED Computation
Both our algorithms AStar+-LSa and DFS+-LSa can be

easily extended for computing the GED value. For example,
we modify AStar+-LSa for GED computation as follows: set
τ to be ∞, remove Line 7 from Algorithm 2, and terminate
the algorithm when the mapping popped at Line 4 is a full
mapping. Then, the editorial cost of this mapping is ged(q, g).

In the following, we show that AStar+-LSa is likely to
have a smaller search space (and thus time complexity) than
DFS+-LSa for GED computation. Firstly, the search space
of AStar+-LSa is a subset of T LSa≤ged(q,g) (see Lemma 4.3).
Secondly, we have the following for the search space of
DFS+-LSa.

1) It can be verified that every partial mapping whose lower
bound cost is smaller than ged(q, g) must be extended
by DFS+-LSa, i.e., TDFS ⊇ T<ged(q,g).

2) DFS+-LSa usually also extends many partial mappings
whose lower bound costs are larger than ged(q, g), due
to the depth-first search strategy.

Our empirical studies in Section VII-D show that DFS+-LSa
has a significantly larger search space than AStar+-LSa. Thus,
AStar+-LSa is better than DFS+-LSa for GED computation.

VI. RelatedWork

Graph Similarity Search. GED-based graph similarity search
has been studied in [11], [18], [20], [21], [22], [23]. All these
works focus on designing effective index structures — such
as q-gram-based index [21], star structure-based index [18],
and subgraph-based index [11], [20], [22] — to filter out
as many false-positive graphs (i.e., dissimilar to the query
graph) as possible, while all remaining candidates are verified
by the now out-dated algorithm A∗GED. In this paper, we
propose a significantly improved GED verification algorithm
AStar+-LSa, which is index-free and can be incorporated
to speed up GED verification for any index-based graph
similarity search algorithm.

GED Verification and Computation. The notion of GED is
defined in [17], and is proved to be NP-hard in [19]. A best-
first search algorithm A∗GED is developed in [15], and depth-
first search algorithms DF GED [1], [3] and CSI GED [8]
are recently proposed and shown to outperform A∗GED.
All these algorithms can compute as well as verify GED
between two graphs. Recently, Inves [10] conducts online
graph partitioning-based filtering for GED verification, which
extends and enhances the offline graph partitioning-based
index method in Pars [22]. In this paper, we propose a
best-first search algorithm AStar+-LSa which outperforms all
existing algorithms by several orders of magnitude for both
GED verification and GED computation.

VII. Experiments

In this section, we conduct extensive empirical studies
aiming to answer the following major questions.

1) How does AStar+-LSa perform compared to the existing
index-free algorithms CSI GED and Inves for graph
similarity search?
We show in Eval-I that AStar+-LSa outperforms both
CSI GED and Inves by up-to two orders of magnitude
for graph similarity search (Section VII-B).

2) Are the existing index-based filtering techniques such as
Pars useful for graph similarity search?
We show in Eval-II that for our index-free algo-
rithm AStar+-LSa, the potential improvement brought
by the filtering technique of Pars is at most 52%
(Section VII-B).

3) How does AStar+-LSa perform compared to CSI GED
for exact GED computation?
We show in Eval-VI that AStar+-LSa outperforms
CSI GED by up-to four orders of magnitude for GED
computation (Section VII-D).

4) Is best-first search suitable for GED verification and/or
computation?
We show in Eval-IV and Eval-VII that AStar+-LSa
outperforms its depth-first search variant DFS+-LSa for
both GED verification and GED computation.

A. Experimental Setting

We compare the following algorithms.
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• Our Algorithms. We implemented our best-first search
algorithms AStar+-LSa and AStar+-LS, and our depth-
first search algorithm DFS+-LSa.

• Existing Algorithms. We obtained the binary code of
CSI GED from the authors of [8], the source code of
Pars from the authors of [22], and the source code of
Inves from https://github.com/JongikKim/Inves.

The algorithms are implemented in C/C++ and compiled with
GNU GCC with the -O3 flag.
Real Graphs. We evaluate the algorithms on two sets of
widely-used real graphs [8], [10], [22]: AIDS and PubChem.
AIDS is an antivirus screen chemical compound dataset
published by the Developmental Therapeutics Program at
NCI/NIH6, and contains 42, 689 graphs. PubChem is a chemi-
cal compound dataset7, and contains 23, 903 graphs. Statistics
of the two datasets are illustrated in Table IV, which shows
the number |D| of graphs, the average number of vertices, the
average number of edges, the number of distinct vertex labels
(#vlabels), and the number of distinct edge labels (#elabels).

TABLE IV: Statistics of real graphs
Database D |D| Avg |V | Avg |E| #vlabels #elabels
AIDS 42,689 25.6 27.5 66 3
PubChem 23,903 48.3 50.8 10 3

Synthetic Graphs. We also generate synthetic graphs by
the graph generator GraphGen8, to evaluate the scalability
of our algorithm AStar+-LSa. We generate 10 groups of
random graphs GR, with the number of vertices chosen from
{64, 128, 256, 512, 1024}. Each group of GR contains 51 graphs
with the same number of vertices, and is generated as fol-
lows. We first generate a graph with i vertices by invoking
GraphGen, and then randomly apply x edit operations on
the graph 10 times to get 10 graphs, where x is chosen from
{2, 5, 10, 20, 40}. Each graph generated by GraphGen has an
edge density of 20%, 5 distinct vertex labels, and 2 distinct
edge labels, similar to that used in [8].

Evaluation Metrics. For each testing, we report the processing
time of the algorithms. In addition, we also report the search
space for our algorithms, which is defined as the number of
invocations of Line 5 of Algorithm 2 and roughly estimates the
space consumption of our AStar+ algorithms. All experiments
are conducted on a machine with an Intel Core-i7 3.20GHz
CPU and 64GB main memory.

B. Results for Graph Similarity Search
Our first set of experiments is to evaluate the algorithms

for graph similarity search. For both AIDS and PubChem, we
randomly sample 100 graphs as query graphs. Most of the
query graphs for AIDS have vertex numbers in the range from
10 to 46, with one query graph containing 59 vertices and
another query graph containing 63 vertices. Most of the query
graphs for PubChem have vertex numbers in the range from
27 to 65, with one query graph containing 80 vertices.

6https://cactus.nci.nih.gov/download/nci/AID2DA99.sdz
7http://pubchem.ncbi.nlm.nih.gov: Compound 000975001 001000000.sdf
8http://www.cse.cuhk.edu.hk/∼jcheng/graphgen1.0.zip

TABLE V: Number of candidates generated by label filter
(LabelF) and Inves v.s. number of true results

AIDS PubChem
τ LabelF Inves Results LabelF Inves Results
1 1,165 165 135 551 199 183
3 26,456 7,866 213 8,496 668 243
5 138,139 111,419 480 52,804 13,149 358
7 354,983 342,073 1,852 152,299 98,496 529
9 632,786 - 9,220 291,524 - 931

11 929,581 - 38,425 447,103 - 1,707

Same as Inves [10] and Pars [22], we also firstly apply
label filter, denoted LabelF, to filter out unpromising graphs
in linear time for our algorithms; note that, the running time of
LabelF is included in the reported time for our algorithms. The
number of candidate graphs obtained by LabelF and Inves, and
the number of true results are shown in Table V; note that,
Inves conducts additional index-free filtering and then verifies
the remaining candidates. All the reported results in this
subsection are aggregates for 100 queries.
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Fig. 4: Against CSI GED and Inves for 100 queries

Eval-I: Against Existing Index-free Algorithms CSI GED
and Inves. The results of evaluating AStar+-LSa against
CSI GED and Inves for τ = 1, 3, 5, 7, 9, 11 are shown in
Figure 4. Inves outperforms CSI GED if the online graph
partitioning of Inves filters a large portion of the candidate
graphs (e.g., on AIDS for τ = 1, 3 and on PubChem for τ ≤ 7,
see Table V), and is outperformed by CSI GED otherwise.
Nevertheless, AStar+-LSa consistently outperforms CSI GED
and Inves, and the improvements can be up-to two orders of
magnitude (e.g., on PubChem for τ = 7). We also observe that
the online graph partitioning-based filtering of Inves already
takes longer time than AStar+-LSa on PubChem for τ ≤ 5.
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Fig. 5: Filtering effectiveness of Pars

Eval-II: Against Existing Index-based Algorithm Pars.
We evaluate the effectiveness of the index-based filtering of
Pars compared with our index-free algorithm AStar+-LSa. In
Figure 5, we show the filtering time ratio rF which is the
ratio of the filtering time of Pars to the total running time of
AStar+-LSa, and the filtered candidate ratio rC which is the
ratio of the number of candidates filtered by Pars to the total
number of candidates generated by LabelF. We can see that
rF is large for small τ (specifically, rF ≥ 30% for τ ≤ 3), and
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rC is small for large τ (specifically, rC ≤ 60% for τ ≥ 5 and
rC ≤ 40% for τ ≥ 7). Assume that all the candidates take equal
time to verify, and let T be the running time of AStar+-LSa.
Then, the running time of Pars after incorporating AStar+-LSa
for GED verification will be (rF +1− rC)×T , which is at least
0.69×T for AIDS and at least 0.48×T for PubChem as shown
in Figure 5. Thus, the filtering effectiveness of Pars is very
limited compared to our index-free algorithm AStar+-LSa.
Note that, as shown in [20], [10], other index methods have
higher rF and lower rC than Pars; thus, they are expected to
have even lower filtering effectiveness than Pars. Regarding
the total processing time, Pars is 4, 25, and 338 times slower
than AStar+-LSa on AIDS for τ = 1, 3, 5, respectively, due to
using the out-dated algorithm A∗GED for GED verification.
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Fig. 6: Evaluate our algorithms for 100 queries

Eval-III: Evaluate Our Algorithms. The results of evaluating
AStar+-LSa, AStar+-LS, and DFS+-LSa are shown in Figure 6.
Firstly, AStar+-LSa performs similarly to DFS+-LSa; this is
because most candidates are dissimilar to the query graph
(see Table V), and this conforms with our theoretical analysis
in Section V-A. Thus, DFS+-LSa also significantly outper-
forms CSI GED and Inves for GED verification. Secondly,
AStar+-LSa runs much faster than AStar+-LS as a result of the
significantly reduced search space by the tighter lower bound
estimation lbLSa, and the latter runs out-of-memory (denoted
oom) for τ ≥ 9. By comparing Figures 4 and 6, we can see
that AStar+-LS, which uses the same search strategy and the
same lower bound estimation as A∗GED, also significantly
outperforms CSI GED on PubChem for τ ≤ 7. This is because
AStar+-LS improves A∗GED by reducing memory consump-
tion (see Section IV-A) and improving the time complexity of
lower bound computation (see Section IV-B2).

C. Results for GED Verification

In this subsection, we evaluate the best-first search paradigm
with the depth-first search paradigm, and evaluate the scal-
ability of AStar+-LSa, for GED verification. To this end,
we generate query graph pairs as follows. For each graph
dataset and a specific number i of vertices, we first select the
graphs whose sizes are within the range of [i − 2, i + 2], and
then partition all graph pairs among this set of graphs into
different groups according to their GED values. Thus, each
group consists of graph pairs of similar size and the same
GED value. Finally, 10 graph pairs are randomly sampled and
kept for each group. The reported processing time and search
space are the average for each graph pair.

Eval-IV: Evaluate Best-first Search Against Depth-first
Search. In this testing, we evaluate the paradigms of AStar+
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Fig. 7: Evaluate AStar+ v.s. DFS+ on PubChem

and DFS+ for GED verification. Specifically, we evaluate
AStar+-LSa against DFS+-LSa, which only differ by the search
paradigm. Due to much fewer graph pairs than in graph
similarity search (see Table V), we vary τ from 5 to 13. The
results for dissimilar graph pairs are shown in Figure 7(a) and
(b), where the query graph pairs are the ones in the group
corresponding to |V | = 30 and τ ≥ 14. The two algorithms
perform similarly by having exactly the same search space,
which conforms with our theoretical analysis in Section V-A.
The results for similar graph pairs are shown in Figure 7(c) and
(d), where the query graph pairs for τ = x ∈ {5, 7, 9, 11, 13} are
the ones in the union of the groups corresponding to |V | = 30
and τ ≤ x. AStar+-LSa runs slightly faster than DFS+-LSa
by having a smaller search space. This invalidates the recent
claims in [3], [8] that depth-first search is much better than
best-first search for GED verification.
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Fig. 8: Scalability testing of AStar+-LSa

Eval-V: Scalability Testing of AStar+-LSa. The results of
evaluating the scalability of AStar+-LSa for GED verification
are shown in Figure 8. We choose τ from {5, 7, 9, 11, 13} for
AIDS and from {10, 15, 20, 25} for GR. For a fixed |V |, the query
graph pairs are the same across different τ values, which are
the union of the groups corresponding to these τ. We can see
that AStar+-LSa scales well to large graphs.

D. Results for GED Computation

In this subsection, we evaluate our algorithms against the
state-of-the-art algorithm CSI GED for exact GED com-
putation. Note that the existing algorithm Inves [10] does
not support GED computation. The query graph pairs are
generated in the same way as in Section VII-C. We fix
ged(q, g) = 9 and vary |V | from 10 to 30. We set the largest |V |
as 30 because CSI GED fails to process graphs with 30 or
more vertices in a reasonable amount of time. Note that, exact
GED computation is much harder than GED verification, as the
threshold τ given in GED verification prunes a large portion of
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the search space, especially for depth-first search algorithms.
For each query graph pair, we set a timeout of 1 hour (i.e.,
3.6 × 103 seconds); if an algorithm does not terminate in 1
hour, then we record the time for this query graph pair as
1 hour and label the algorithm with “TLE” in the plot. The
reported results are the averaged result for each graph pair.
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Fig. 9: Processing time for GED computation

Eval-VI: Against Existing Algorithm CSI GED. The
running time of AStar+-LSa, AStar+-LS, DFS+-LSa, and
CSI GED on AIDS and PubChem for GED computation by
varying |V | is shown in Figure 9. All our algorithms outperform
CSI GED. Firstly, our best-first search algorithm AStar+-LSa
outperforms CSI GED by up-to four orders of magnitude.
For example, the average processing time of AStar+-LSa
on the PubChem graphs with 30 vertices is less than 0.1
seconds, while CSI GED cannot finish within 1 hour for
most of the query graph pairs. Secondly, our best-first search
algorithm AStar+-LS that uses the same search strategy and
the same lower bound estimation as A∗GED also outper-
forms CSI GED. Thirdly, our depth-first search algorithm
DFS+-LSa also outperforms CSI GED, as a result of the
tighter lower bound estimation lbLSa used in DFS+-LSa.
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Fig. 10: Search space for GED computation

Eval-VII: Evaluate Our Algorithms. The search spaces of
our algorithms for GED computation are shown in Figure 10,
which have the same trend as the running time in Figure 9.
Firstly, AStar+-LSa runs much faster than AStar+-LS due to
the significantly reduced search space. Recall that, the only
difference between these two algorithms lies in the lower
bound estimation. Secondly, AStar+-LSa runs much faster than
DFS+-LSa due to having a significantly smaller search space,
which conforms with our theoretical analysis in Section V-B.
Note that, the improvement of AStar+-LSa over DFS+-LSa
for GED computation is much more profound than for GED
verification in Section VII-C. This further invalidates the
claims in [3], [8] that depth-first search is more suitable than
best-first search for GED computation.

VIII. conclusion

In this paper, we proposed a significantly improved best-first
search algorithm AStar+-LSa for both GED verification and
GED computation. AStar+-LSa improves the existing best-first

search algorithm A∗GED by reducing memory consumption,
tightening lower bound estimation, and improving the time
complexity for lower bound computation. We theoretically
showed that AStar+-LSa has a smaller time and space com-
plexity than A∗GED, and AStar+-LSa is better than its depth-
first search variant DFS+-LSa which outperforms the exist-
ing depth-first search algorithms CSI GED and DF GED.
Extensive performance studies confirmed the efficiency of
AStar+-LSa for both GED verification (i.e., index-free graph
similarity search) and GED computation.
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