
“© 2020 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all
other uses, in any current or future media, including reprinting/republishing this material for advertising or
promotional purposes, creating new collective works, for resale or redistribution to servers or lists, or reuse
of any copyrighted component of this work in other works.”

Periodic Communities Mining in Temporal Networks:
Concepts and Algorithms

Journal: Transactions on Knowledge and Data Engineering

Manuscript ID TKDESI-2020-04-0326

Manuscript Type: ICDE 2019

Keywords: Periodic Community, Temporal Networks, Maximal Clique, Maximum
Clique, k-Core

Transactions on Knowledge and Data Engineering

Summary of changes
Periodic Communities Mining in Temporal Networks: Concepts and Algorithms

Hongchao Qin, Rong-Hua Li, Ye Yuan, Guoren Wang, Weihua Yang, and Lu Qin

This journal submission is based on our paper titled “Mining Periodic Cliques in Temporal

Networks” published in ICDE 2019. We extended our previous work substantially. We summarize

the major differences below.

1) In the previous version, we only study the problem of mining maximal periodic cliques in

temporal networks. In this journal submission, except the periodic clique model, we

introduce several new periodic community models such as periodic k-core, periodic k-ECC,

and periodic k-truss. We also present detailed discussions on the intuitions, cohesiveness,

efficiency and relations of those periodic community models (see Section 2).

2) We generalize our previously-proposed periodic clique mining algorithms to a new

algorithmic framework for mining periodic communities based on different periodic

community models. Our framework includes three steps. The first step is to reduce the

temporal graph by two effective graph reduction techniques (Section 3). The second step is

to transform the temporal graph into a static graph so that mining the periodic communities

in the original temporal graph is equivalent to mining communities in the transformed graph

(Section 4). In the third step, we propose a decomposition algorithm to search maximal

periodic k-core and a Bron-Kerbosch style algorithm to enumerate all maximal periodic

k-cliques (Section 5).

3) We also study the maximum periodic clique search problem in temporal networks, and

propose a new branch-and-bound algorithm to compute the maximum periodic clique. To

improve the efficiency, we also develop several non-trivial lower-bounding techniques and an

early termination technique based on the degeneracy of the graph. All these materials are

shown in Section 5.3.

4) We redesign and conduct comprehensive experiments to evaluate the newly-proposed

maximal periodic k-core search and maximum periodic clique search algorithm. The new

experimental results are shown in Figs.8-9, and Fig. 11. The detailed analyses of these results

are presented in Exps.2-4, 8-10 in Section 6.

5) We give all the missing proofs of the theorems and lemmas in our conference version (See

Theorems 1-6 and lemmas 1-8). We have also carefully revised the abstract, introduction,

related work, and other sections. Many new materials are added compared to the

conference version of this paper.

6) For reproducibility purpose, the source code of the algorithms is released at

https://github.com/VeryLargeGraph/MPC/.

Page 1 of 31 Transactions on Knowledge and Data Engineering

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60

IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, VOL. XX, NO. X, MARCH 2020 1

Periodic Communities Mining in Temporal
Networks: Concepts and Algorithms

Hongchao Qin, Rong-Hua Li, Ye Yuan, Guoren Wang, Weihua Yang, and Lu Qin

Abstract—Periodicity is a frequently happening phenomenon for social interactions in temporal networks. Mining periodic communities
are essential to understanding periodic group behaviors in temporal networks. Unfortunately, most previous studies for community
mining in temporal networks ignore the periodic patterns of communities. In this paper, we study the problem of seeking periodic
communities in a temporal network, where each edge is associated with a set of timestamps. We propose novel models, including
σ-periodic k-core and σ-periodic k-clique, that represent periodic communities in temporal networks. Specifically, a σ-periodic k-core
(or σ-periodic k-clique) is a k-core (or clique with size larger than k) that appears at least σ times periodically in the temporal graph. The
problem of searching periodic core is efficient but the resulting communities may be not enough cohesive; the problem of enumerating
all periodic cliques is not efficient (NP-hard) but the resulting communities are very cohesive. To compute all of them efficiently, we first
develop two effective graph reduction techniques to significantly prune the temporal graph. Then, we transform the temporal graph into
a static graph and prove that mining the periodic communities in the temporal graph equals mining communities in the transformed
graph. Subsequently, we propose a decomposition algorithm to search maximal σ-periodic k-core, a Bron-Kerbosch style algorithm to
enumerate all maximal σ-periodic k-cliques, and a branch-and-bound style algorithm to find the maximum σ-periodic clique. The
results of extensive experiments on five real-life datasets demonstrate the efficiency, scalability, and effectiveness of our algorithms.

Index Terms—Periodic Community, Temporal Networks, Maximal Clique, Maximum Clique, k-Core.

F

1 INTRODUCTION

In many real-life networks, such as communication net-
works, scientific collaboration networks, and social net-
works, the links are often associated with temporal informa-
tion. For example, in a face-to-face contact network [1], [2],
each edge (u, v, t) denotes a contact between two individu-
als u and v at time t. In an email communication network,
each email contains a sender and a receiver, as well as the
time when the email was sent. In a scientific collaboration
network (e.g., DBLP), each edge (u, v, t) represents that two
authors u and v coauthored a paper at time t. The networks
that involve temporal information are typically termed as
temporal networks [3], [4], [5].

Periodicity is a frequently happening phenomenon for
social interactions in temporal networks. Weekly group
meeting, monthly birthday party, and yearly family re-
unions − these are regular and significant patterns in tem-
poral interaction networks. Mining such periodic group pat-
terns are essential to understanding and predicting group
behaviors in a temporal network. In this paper, we inves-
tigate a novel data mining problem for temporal networks:

• H.Qin is with the Department of Computer Science, Northeastern Uni-
versity, Shenyang, China.
E-mail: qhc.neu@gmail.com

• R.Li, Y.Yuan and G.Wang are with the Department of Computer Science,
Beijing Institute of Technology, Beijing, China.
E-mail: lironghuascut@gmail.com; yuanye@mail.neu.edu.cn; wanggr-
bit@126.com

• W. Yang is with the Taiyuan University of Technology, Taiyuan, China.
email: yangweihua@tyut.edu.cn

• L.Qin is with the University of Technology Sydney, Sydney, Australia
email: lu.qin@uts.edu.au

Manuscript received 2020

periodic community mining, or the detection of all commu-
nities that occur at regular time intervals, and show that the
proposed technique can be applied to discover the inherent
periodicity of communities in a temporal network. Mining
the periodic community patterns could be very useful for
many practical applications, two of which are listed as
follows.

Periodic movement behavior discovery. Consider an ap-
plication in studying the collective movement behaviors of
wild herds of animals [6]. It is well known that the move-
ment behavior of wild herds of animals often exhibits peri-
odic group patterns. In practice, ecologists can tag the ani-
mals with tracking sensors to study the collective movement
patterns of the animals. In this application, the interactions
of the animals (e.g., two animals within a short distance
may be considered as an interaction) can be modeled as
a temporal network. By mining periodic communities in
this temporal network, we are able to identify periodic
group movement behaviors of wild animals. Mining such
periodic group movement behavior of wild animals can be
of ecological interests [6]. For example, if a herd of animals
fail to follow the periodic mitigation behavior, it could be a
signal of abnormal environment change.

Predicting future activities. Periodic pattern is a predictable
pattern, because it repeatedly occurs at regular time inter-
vals. Once we identify a periodic activity, we may predict
the same activity will appear within a regular time interval.
Based on this observation, we are capable of inferring the
future interactions of a group of individuals in a temporal
network by mining periodic communities. Taking a tempo-
ral scientific collaboration network DBLP as an example,
suppose that four researchers A,B,C , and D in DBLP have

Page 2 of 31Transactions on Knowledge and Data Engineering

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60

IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, VOL. XX, NO. X, MARCH 2020 2

collaborated with each other in 2015, 2016, and 2017 years.
Then, we can infer that these four researchers are likely to
coauthor papers in 2018 year.

Recently, the problem of mining communities on tempo-
ral graphs has attracted much attention due to numerous
applications [4], [5], [7]. For example, Wu et al. [7] proposed
a temporal k-core model to find cohesive subgraphs in
a temporal network. Ma et al. [4] devised a dense sub-
graph mining algorithm to identify cohesive subgraphs in
a temporal network. Li et al. [5] developed an algorithm to
detect persistent communities in a temporal graph. All these
community mining algorithms do not consider the periodic
patterns of communities, thus cannot be applied to identify
periodic communities. To the best of our knowledge, we are
the first to study the periodic community mining problem,
and propose efficient solutions to detect periodic communi-
ties in temporal graphs. The main contributions of our work
are summarized as follows.
Novel models. We propose several models based on the
cohesive subgraph models to characterize periodic com-
munities in a temporal graph. They are motivated by the
concepts such as k-core, k-ECC, k-truss and k-clique. The
containment relation is that k-clique ⊆ k-truss⊆ k-ECC ⊆
k-core. In this paper, we study the algorithms of mining
maximal σ-periodic k-core, maximal σ-periodic k-clique and
maximum σ-periodic clique, since the other models can be
computed by the same methods as them.
New algorithms. First, we develop two novel graph reduc-
tion methods, called PNCluster and PECluster, based on the
concept of k-core [9]. On the basis of the PNCluster and
PECluster, we develop two efficient and powerful graph
reduction techniques to prune the input temporal graph. We
show that both PNCluster and PECluster can be computed
in near-linear time and space complexity. Second, we use
the variables in the processing of finding PECluster to
transform the temporal graph into a static graph. We have
proved that mining the periodic communities in the tempo-
ral graph equals mining communities in the transformed
graph. Third, we propose a decomposition algorithm to
search maximal σ-periodic k-core, a Bron-Kerbosch style
algorithm to enumerate all maximal σ-periodic k-cliques,
and a branch-and-bound style algorithm to find maximum
σ-periodic clique. In addition, we present theoretical anal-
yses for all those algorithms. Although the problems of
enumerating all maximal σ-periodic k-cliques and finding
maximum σ-periodic clique are NP-hard, they are fixed-
parameter tractable with respect to a newly-proposed con-
cept called σ-periodic degeneracy δ̂, which is often very
small in practice as confirmed in our experiments.
Extensive experiments. We conduct comprehensive experi-
ments on five real-life temporal networks. The results show
that our best algorithm is much faster than the baselines
on all datasets under most parameter settings. For example,
our best algorithm can identify all maximal σ-periodic k-
cliques in around 400 seconds on a large temporal graph
with more than 1.7 million nodes and 12 million edges. We
also examine case studies to evaluate the effectiveness of
our model. The results show that our model is indeed able
to identify many interesting periodic communities that can
not be found by the other models.

4 ...2 31 5

v2v1

v3v1

v3v2

v4v3

v5v3

v5v4

v2v1

v3v1

v3v2

v4v3

v5v3

v5v4

v3v1

v3v2

v4v3

v5v3

v5v4

v2v1

v3v1

v3v2

v4v3

v5v3

v5v4

v1v2

v3

{2,3,4}

 {1,3,5}

(a) A temporal graph G

v5v4

v1v2

v3

(b) The de-temporal graph G

v1v2 v1v2 v1v1

v3

v5v4

v3

v5v4

v3

v5v4

v3

v5

v2

v3

G1 G2 G3 G4 G5

v2

v4

(c) The five snapshots of G

Fig. 1. Basic concepts of the temporal graph

Organization. Section 2 introduces the models and for-
mulates our problem. The graph reduction techniques are
proposed in Section 3. Section 4 introduces the transform-
ing method which can change the temporal graph into a
static graph. Section 5 proposes the algorithms for mining
the periodic communities. The experiments are shown in
Section 6. We review the related work in Section 7, and
conclude this work in Section 8.

2 PRELIMINARIES

Let G = (V, E) be an undirected temporal graph, where
V and E denote the set of nodes and the set of temporal
edges respectively. Let n = |V| and m = |E| be the number
of nodes and temporal edges respectively. Each temporal
edge e ∈ E is a triplet (u, v, t), where u, v are nodes in V ,
and t is the interaction time between u and v. We assume
that t is an integer, because the timestamp is an integer
in practice. For a temporal graph G, the de-temporal graph
of G denoted by G = (V,E) is a graph that ignores all
the timestamps associated with the temporal edges. More
formally, for the de-temporal graph G of G, we have V = V
and E = {(u, v)|(u, v, t) ∈ E}. Let Nu(G) = {v|(u, v) ∈ E}
be the set of neighbor nodes of u, and du(G) = |Nu(G)|
be the degree of u in G. A graph G′ = (V ′, E′) is called
a subgraph of G = (V,E) if V ′ ⊆ V and E′ ⊆ E.
A subgraph GS = (VS , ES) is referred to as an induced
subgraph of G if ES = {(u, v)|u, v ∈ VS , (u, v) ∈ E}.
Similarly, a temporal subgraph GS = (VS , ES) is referred
to as an induced temporal subgraph of G if VS ⊆ V and
ES = {(u, v, t)|u, v ∈ VS , (u, v, t) ∈ E}. For convenience,
we use the notion S ⊆ G (S ⊂ G if S 6= G) to represent that
S is a subgraph of G.

Given a temporal graph G, we can extract a series of
snapshots based on the timestamps. Let T = {t|(u, v, t) ∈
E} be the set of timestamps. For each ti ∈ T , we can obtain
a snapshot Gi = (Vi, Ei) where Vi = {u|(u, v, ti) ∈ E} and
Ei = {(u, v)|(u, v, ti) ∈ E}. In the rest of this paper, we
assume without loss of generality that all the timestamps
are sorted in a chronological order, i.e., t1 < t2 < · · · < t|T |.
Fig. 1(a) illustrates a temporal graph G with 5 nodes and 22
temporal edges. Figs.1(b) and (c) illustrates the de-temporal
graph of G and all the five snapshots of G respectively.

Page 3 of 31 Transactions on Knowledge and Data Engineering

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60

IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, VOL. XX, NO. X, MARCH 2020 3

TABLE 1
Periodic community models based on the cohesive subgraph models

Models Intuitions (all are σ-periodic subgraphs C) Cohesiveness Efficiency Complexity (static model)
σ-periodic k-core each node in C has degree at least k F FFFF O(|E|) [10]
σ-periodic k-ECC C is still connected after removing k − 1 edges FF FFF O(hl|E|) (l, h << |V |) [11]
σ-periodic k-truss each edge in C supports at least k − 2 triangles FF FFF O(|E|1.5) [12]
σ-periodic k-clique a clique with size no less than k FFF F O(|V |23|V |/3) (NP-hard) [8]

Definition 1 (time support set). Given a temporal graph
G, the time support set of a subgraph S is defined as
TS(S) , {ti|S ⊆ Gi}, where Gi is the i-th snapshot of
G.

Definition 2 (σ-periodic time support set). Given a temporal
graph G and a parameter σ, a σ-periodic time support set
of a subgraph S, denoted by PTσ(S), is a subset of TS(S)
such that (1) PTσ(S) = {tj1 , · · · , tjσ}, and (2) tji+1

−
tji = p for all i = 1, · · · , σ − 1 with any constant p.

By Definition 2, we can see that the timestamps of a σ-
periodic time support set forms an arithmetic sequence and
the cardinality of a σ-periodic time support set is exactly
equal to σ. Clearly, there may exist many σ-periodic time
support sets for a subgraph S. Based on Definition 2, we
define the σ-periodic subgraph below.
Definition 3 (σ-periodic subgraph). Given a temporal graph
G, its de-temporal graph G and parameter σ, a subgraph
S ⊆ G is a σ-periodic subgraph in G if there exists a
σ-periodic time support set PTσ(S) which is not empty.

By Definition 3, any σ-periodic subgraph S ⊆ G has at
least one σ-periodic time support set PTσ(S). A subgraph
S is a maximal σ-periodic subgraph if there is no other σ-
periodic subgraph S′ that satisfies S ⊂ S′. Intuitively, a pe-
riodic community should be a periodic densely-connected
subgraph. We propose several novel models to define the
periodic communities as follows.
Definition 4 (σ-periodic k-core). A σ-periodic k-core C is a

subgraph of the de-temporal graph G such that (1) every
node inside C has degree at least k, and (2) C is a σ-
periodic subgraph.

Definition 5 (σ-periodic k-clique). A σ-periodic k-clique C
is a subgraph of the de-temporal graph G such that (1)
C is a clique in G with |C| > k, and (2) C is a σ-periodic
subgraph.

Fig. 2 shows the comparison of the widely used cohe-
siveness models. Those models have the following proper-
ties: (1) a k-ECC must be a k-core since considering any
node u, u will not be disconnected by removing k− 1 edges
so u has degree no less than k; (2) a k-truss must be a k-
ECC since considering any edge (u, v), it will be contained
in k−2 triangles so node u and v can not be disconnected by
removing k − 1 edges; (3) a k-clique must be a k-truss since
nodes in clique are connected with each other. Based on the
widely-used k-truss and k-ECC model, we can modify the
first condition in Definition 4 and 5 to define the σ-periodic
k-truss and σ-periodic k-ECC.

Table 1 shows the intuitions, cohesiveness, efficiency
and complexity (static model) of those periodic community
models. As σ-periodic k-core is the worst cohesive and best
efficient model, and σ-periodic k-clique is the best cohesive

k-truss

k-clique

k-core

k-ECC

Fig. 2. Comparison of the cohesiveness models

and worst efficient model, we study the problem of mining
σ-periodic core and σ-periodic clique in this paper due to
the limit of space.

Note that for a typical temporal graph, many σ-periodic
cliques are small and may not be interesting to the users.
Therefore, it will be more useful to find large σ-periodic
cliques for practical applications. As a result, we focus
mainly on mining the σ-periodic cliques with size larger
than k as defined in Definition 4 and 5. Intuitively, a σ-
periodic k-core (or σ-periodic k-clique) C is maximal if there
is no other σ-periodic k-core (or σ-periodic k-clique) C ′

meeting C ⊂ C ′.
Below, we use an example to illustrate the above defini-

tions and summarizes the problems below.

Example 1. Consider a temporal graph in Fig. 1(a). Suppose
that σ = 3, k= 2. For the subgraph S = {(v1, v3), (v2, v3)},
the time support set of S is {1, 3, 4, 5}. Clearly, by Def-
inition 2, the set {1, 3, 5} is a σ-periodic time support
set of S. Therefore, the subgraph S is a σ-periodic
subgraph by Definition 3. Note that S is not a maxi-
mal σ-periodic subgraph because there is a σ-periodic
subgraph C = {(v1, v3), (v2, v3), (v1, v2)} that contains
S. By Definition 4 and 5, we can see that C is both a σ-
periodic k-core and σ-periodic k-clique with PTσ(C) =
{1, 3, 5}. Moreover, C ′ = {(v3, v4), (v3, v5), (v4, v5)} is
another σ-periodic k-core and σ-periodic k-clique with
PTσ(C ′) = {2, 3, 4}.

Problem 1. Given a temporal graph G and parameters σ
and k, the goal is to find all the maximal σ-periodic k-core
(MPCore) in G.
Problem 2. Given a temporal graph G and parameters σ
and k, the goal is to enumerate all the maximal σ-periodic
k-clique (MPClique) in G.

In problem 2, it is hard to set the parameter k to control
the lower size of the clique in some applications, so we study
the problem below to find the largest k.
Problem 3. Given a temporal graph G and parameters σ and
k, the goal is to find the maximum σ-periodic clique of the
largest size (MAXPClique) in G.

Note that, if we have enumerated all the maximal σ-
periodic k-cliques in Problem 2, then Problem 3 will be
solved. However, there are several pruning rules which can
speed up the process of finding maximum σ-periodic clique.

Page 4 of 31Transactions on Knowledge and Data Engineering

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60

IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, VOL. XX, NO. X, MARCH 2020 4

So the key issues in this paper are to mine MPCore and
MPClique in G.
NP-hardness. As shown in Table 1, the k-core can be found
by linear time in terms of |E|, but the maximal clique
enumeration problem is NP-hard. Below, we prove that the
maximal σ-periodic k-clique enumeration problem is also
NP-hard.

We can show that the traditional maximal clique enu-
meration problem is a special case of the maximal σ-periodic
k-clique enumeration problem. Consider a temporal graph
G that contains a set of snapshots G = Gi = G2 =, · · · ,=
G|T |. Clearly, in this temporal graph G, every subgraph of
G is periodic. As a result, the problem of enumerating all
maximal σ-periodic k-cliques is equivalent to the problem
of enumerating all maximal cliques (with size larger than k)
in the de-temporal graph G. So our problem is NP-hard.

Although there is a close connection between our prob-
lem and the maximal clique enumeration problem, the
existing maximal clique enumeration algorithms cannot be
directly applied to solve our problem. The reason is that the
traditional maximal clique enumeration algorithms, such as
the Bron-Kerbosch algorithm [13] can only identify maximal
cliques in a snapshot Gi for the timestamp ti. It is not clear
to apply this algorithm to derive maximal periodic cliques.
Challenges. To solve our problems, a possible solution
is first to enumerate all maximal cores/cliques in the de-
temporal graph, and then checks which of them is periodic.
However, this method is quite complicated and even in-
tractable, because a core/clique in a snapshot may contain a
maximal periodic core/clique with less nodes in a periodic
time support set. Therefore, we need to check each subgraph
of a maximal core/clique in each snapshot, which is very
costly.

Another potential approach is first to enumerate all pe-
riodic subgraphs, and then applies traditional algorithms to
identify all MPCores/MPCliques in each periodic subgraph.
Clearly, this approach may involve numerous redundant
computations for subgraphs with the same nodes, because
the number of periodic subgraphs may be very large and
the same cores or cliques could be repeatedly enumerated
in many different periodic subgraphs. Therefore, the chal-
lenge of our problem is how to efficiently enumerate all
periodic communities with less redundant computations.
In the following sections, we will develop several novel
graph reduction techniques and an efficient enumeration
algorithm to identify them.

3 REDUCTION BY PERIODIC NODES AND EDGES

In this section, we propose several powerful techniques
to prune the unpromising nodes which are definitely not
contained in any periodic communities. Our key idea for
graph reduction is based on the concept of k-core [10].
Before proceeding further, we first give the definition of k-
core (abbreviated as KCore) as follows.
Definition 6 (KCore). Given a de-temporal graph G of G and

a parameter k, a KCore is a maximal subgraph of G in
which every node has degree at least k, i.e., du(G) ≥ k
for u ∈ G.

It is easy to check that if a node is contained in a maximal
σ-periodic k-core, this node will have at least k neighbors

in the de-temporal graph G of G. Hence, if a node is not
included in the KCore of G, it must be not contained in any
maximal σ-periodic k-core. As a consequence, we can first
prune all nodes that are not contained in the KCore of G.
This prune rule is simple, but it may be not very effective,
because it does not consider the periodic property for prun-
ing. Below, we develop novel concepts called PNCluster
and PECluster which can capture the periodic property for
pruning.

3.1 The PNCluster pruning rule
By Definitions 4 and 5, we can easily derive that every node
u in periodic communities satisfies a periodic degree property:
there must exist a σ-periodic subgraph in which u has
degree no less than k. Therefore, if a node is not contained in
any σ-periodic subgraph, it can be safely pruned. Since the
deletion of an unpromising node may trigger its neighbors
that violate the periodic degree property, we can iteratively
prune the graph until all nodes meet the periodic degree
property. Below, we give a definition, called (σ, k)-periodic
node, to describe a node that satisfies the periodic degree
property.
Definition 7 ((σ, k)-periodic node). Given a temporal graph
G, a subgraph S ⊆ G, and parameters σ and k, a node v
is called a (σ, k)-periodic node in S if and only if there
exists a σ-periodic subgraph of S in which v has degree
at least k.

Recall that by Definition 3, a σ-periodic subgraph may
have many σ-periodic time support sets. Therefore, there
may also exist many σ-periodic time support sets for a
(σ, k)-periodic node v in which v has degree no less than
k. Below, we give a definition to describe all σ-periodic time
support sets for a (σ, k)-periodic node.

Based on Definition 7, we define the (σ, k)-periodic time
support set for a (σ, k)-periodic node as follows.
Definition 8 ((σ, k)-periodic time support set). Given a tem-

poral graph G, a subgraph S ⊆ V and a (σ, k)-periodic
node v, the (σ, k)-periodic time support set of v in S is
PTσk(S, v) , [tj1 , · · · , tjσ] that satisfies (1) tji+1

− tji = p
for each i = 1, · · · , σ − 1 with a constant p, and (2)
dv(S ∩Gti) ≥ k for each i = 1, · · · , σ − 1.

By Definition 8, for any (σ, k)-periodic node v, there is a
σ-periodic subgraph S with PTσ(S) = PTσk(S, v) in which
dv(S) ≥ k. Since a σ-periodic subgraph may have many
σ-periodic time support sets, there also exist many (σ, k)-
periodic time support sets for a (σ, k)-periodic node v. For
convenience, when there is no confusion of S, σ and k, we
let PTv be the set of all those (σ, k)-periodic time support
sets in subgraph S for the node v. Clearly, a node v is a
(σ, k)-periodic node if and only if PTv 6= ∅ in a subgraph
S. Based on the above definitions, we present a new peri-
odic cohesive subgraph model, called (σ, k)-periodic node
cluster (abbreviated as PNCluster), which will be applied to
prune unpromising nodes in the periodic communities. The
PNCluster is defined as follows.
Definition 9 ((σ, k)-periodic node cluster). Given a temporal

graph G, two integer parameters σ and k, a subset of
nodes S in G is called a (σ, k)-periodic node cluster if it
meets the following constraints.

Page 5 of 31 Transactions on Knowledge and Data Engineering

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60

IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, VOL. XX, NO. X, MARCH 2020 5

v4
v2

v1

 {
1

,3
, 5

,7
} v6

v7

v5

 {
1

,2
, 3

,5
}

v3

v8

 {1,2,3,5}

 {1,2,3}

 {1,2} {1,3}

 {2, 3}

 {1,3,5,7}

Fig. 3. Running example

(1) Periodic degree constraint: each node u ∈ S is a
(σ, k)-periodic node of the temporal subgraph induced
by S;
(2) Maximal constraint: there does not exist a subset of
nodes S′ in G that satisfies (1) and S ⊂ S′.

Lemma 1. Given a temporal graph G, parameters σ and k,
the PNCluster is unique in G if it exists.

Proof: We can prove this lemma by a contradiction. Suppose
that there exist two different PNCluster in G, denoted by S1

and S2 respectively (S1 6= S2). Let us consider the node
set S = S1 ∪ S2. Since every node in S1 (S2) is a (σ, k)-
periodic node, each node in S is also a (σ, k)-periodic node
by Definition 7. As a result, every node in S meets the
periodic degree property in Definition 9. Since S1 6= S2,
we have S1 ⊂ S and S2 ⊂ S which contradicts to the fact
that S1 (S2) satisfies the maximal property. �

The following example illustrates the above definitions.
Example 2. Consider a temporal graph G shown in Fig. 3.

Note that in Fig. 3, each temporal edge is associated
with a set of integers denoting the set of timestamps
of that edge. Clearly, the de-temporal graph G of G is
a 3-core, as every node in G has at least 3 neighbors.
For node v4, we can see that it has degree no less than 3
in timestamps {1, 2, 3, 5, 7}. Suppose that σ = 3, k = 3.
Then, we can derive that v4 is a (σ, k)-periodic node.
This is because there exists a σ-periodic subgraph S =
{(v4, v3), (v4, v6), (v4, v7)} in which dv4(S) ≥ 3, and the
corresponding (σ, k)-periodic time support set for v4 is
[1, 2, 3] (i.e., PTσk(S, v4) = [1, 2, 3]). It is easy to check
that there are three (σ, k)-periodic time support sets for
v4 in G, which are [1, 2, 3], [1, 3, 5] and [3, 5, 7]. Thus, we
have PTv4 = {[1, 2, 3], [1, 3, 5], [3, 5, 7]} in G. Also, we
can find that v8 is not a (σ, k)-periodic node, because no
σ-periodic subgraph contains v8. By Definition 9, we can
obtain that {v1, · · · , v7} is a PNCluster. �

Based on Lemma 1, the PNCluster is unique in G so it
can be computed by a decomposition framework. Below,
we develop two efficient algorithms to efficiently calculate
the PNCluster.
The basic PNCluster algorithm. Similar to the traditional k-
core algorithm [9], a basic solution to compute the PNCluster
is to peel the nodes from G that violate the periodic de-
gree property. Since the deletion of a node u may result
in u’s neighbors no longer satisfying the periodic degree
property, we need to iteratively process u’s neighbors. Such
an iterative peeling procedure terminates until no node can
be deleted. When the algorithm completes, the remaining
nodes form the PNCluster. The detailed description of our
algorithm is shown in Algorithm 1.

Algorithm 1 first computes the KCore Gc = (Vc, Ec) in
the de-temporal graph (lines 1-2), because the PNCluster is

Algorithm 1: PNCluster (G, σ, k)
Input: Temporal graph G = (V, E), parameters σ and k
Output: The PNCluster Vw .

1 Let G = (V,E) be the de-temporal graph of G;
2 Let Gc = (Vc, Ec) be the KCore of G;
3 Q ← ∅;D ← ∅;
4 for u ∈ Vc do
5 du(Gc)← compute the degree of u in Gc;
6 (flag,PTu)←ComputePeriod (G, σ, k, u, Vc);
7 if flag = 0 then
8 du(Gc)← 0; Q.push(u);

9 while Q 6= ∅ do
10 v ← Q.pop(); D ← D ∪ {v};
11 for w ∈ Nv(Gc), s.t. du(Gc) ≥ k do
12 dw(Gc)← dw(Gc)− 1;
13 if dw(Gc) < k then Q.push(w);
14 else
15 (flag,PTw)←ComputePeriod (G, σ, k, w, Vc \D);
16 if flag = 0 then
17 dw(Gc)← 0; Q.push(w);

18 return Vw ← Vc \D ;

Algorithm 2: ComputePeriod (G, σ, k, u, F)
Input: Temporal graph G = (V, E), parameters σ, k, node u, and node

set F
Output: A boolean variable flag and PTu

1 PQ← ∅; StartS ← ∅; PTu ← ∅; flag ← 0;
2 for t← t1 : t|T | do
3 Let Gt be the snapshot of G at timestamp t;
4 du ← |Nu(Gt) ∩ F |;
5 if du ≥ k then
6 for each TS ← [s, i, l, ArrD] ∈ PQ do
7 if (t− TS.s)%TS.i = 0 then
8 if (t− TS.s)/TS.i 6= TS.l then
9 PQ.pop(TS); continue;

10 TS.l← TS.l + 1; TS.ArrD ← TS.ArrD ∪ {du};
11 if TS.l = σ then
12 PTu ← PTu ∪ {TS}; flag ← 1;PQ.pop(TS);
13 /* For PNCluster, the algorithm can early

terminate. */

14 if t− TS.s > (σ − 1)TS.i then PQ.pop(TS);

15 for start← [s, d] ∈ StartS do
16 PQ.push([start.s, t− start.s, 2, {start.d, du}]);

17 StartS ← StartS ∪ {[t, du]};

18 return (flag,PTu);

clearly contained in the KCore. Then, for each node u in
Vc, the algorithm invokes Algorithm 2 to checks whether
u is a (σ, k)-periodic node or not (lines 4-6). If a node
u is not a (σ, k)-periodic node, it will be pushed into a
queue Q (lines 7-8). Subsequently, the algorithm iteratively
processes the nodes in Q. In each iteration, the algorithm
pops a node v from Q and uses a set D to maintain all the
deleted nodes (line 10). For each neighbor node w of v, the
algorithm updates dw(Gc) (lines 12). If the revised dw(Gc)
is smaller than k, w is clearly not a (σ, k)-periodic node. As
a consequence, the algorithm pushes it into Q which will
be deleted in the next iterations (line 13). Otherwise, the
algorithm invokes Algorithm 2 to determine whether w is a
(σ, k)-periodic node (lines 14-15). Ifw is not a (σ, k)-periodic
node, the algorithm sets dw(Gc) to 0, and pushes it into Q.
The algorithm terminates whenQ is empty. At this moment,
the remaining nodes Vc \D is the PNCluster of G. Below, we
describe the implementation details of Algorithm 2.

Recall that we need to compute the set of (σ, k)-periodic
time support set in GVc\D for a node v, i.e., PTv , to check

Page 6 of 31Transactions on Knowledge and Data Engineering

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60

IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, VOL. XX, NO. X, MARCH 2020 6

whether v is a (σ, k)-periodic node or not. The node v is a
(σ, k)-periodic node if and only if PTv is nonempty. By Defi-
nition 8, a (σ, k)-periodic time support set can be represented
as an arithmetic sequence of the timestamps. In Algorithm 2,
we record PTv as a set where each element TS (Time
Support) in PTv is a four-tuple [s, i, l, ArrD] representing
an arithmetic sequence. In the four-tuple [s, i, l, ArrD], s
denotes the starting timestamp of the arithmetic sequence, i
is the common difference, l represents the number of terms
of the arithmetic sequence, and ArrD (Array of Degree) is
an array that stores the degree of u at each timestamp of the
arithmetic sequence.

Based on this data structure, the algorithm makes use of
a queue PQ to maintain all the candidates of the arithmetic
sequences. The algorithm also uses a set StartS to store all
the starting timestamps of the arithmetic sequences. Each
element in StartS is a two-tuple [s, d], where s denotes
the starting timestamp and d denotes the degree of u at
s (lines 15-17). Initially, both PQ and StartS are set to
empty sets (line 1). Then, the algorithm enumerates all the
timestamps from t1 to t|T | (line 2). For each timestamp, the
algorithm calculates the number of neighbors of u (denoted
by du) that are both in Gt (the snapshot at the timestamp
t) and the node set F (lines 3-4), i.e., |Nu(Gt) ∩ F |. If
du ≥ k, the algorithm explores all the candidate arithmetic
sequences in PQ (lines 5-6). For each candidate TS ∈ PQ,
if (t − TS.s)%TS.i = 0, we may extend the arithmetic
sequence TS by t (line 7). If (t − TS.s)/TS.i 6= TS.l, we
know that t cannot extend the current arithmetic sequence
TS. Since the remaining timestamps are no less than t,
they also cannot extend TS. Therefore, we can safely delete
the candidate TS (lines 8-9). Otherwise, the algorithm can
augment the arithmetic sequence TS by adding t into TS.
In this case, we increase TS.l by 1, and add du into the array
TS.ArrD (line 8). If the augmented arithmetic sequence
TS has σ terms, TS represents a valid (σ, k)-periodic time
support set for u (line 11). As a result, the algorithm adds
TS into PTu and set flag to 1, denoting that u is a (σ, k)-
periodic node (line 12). At this moment, the algorithm can
early terminate. Note that Algorithm 2 can also be applied
to compute the complete set of (σ, k)-periodic time support
sets for u. Clearly, if t− TS.s > (σ − 1)TS.i, t cannot grow
the current arithmetic sequence TS, and TS is no longer
to be a valid (σ, k)-periodic time support set. Therefore, the
algorithm deletes TS from PQ (line 14). For each starting
timestamp start.s, the algorithm makes use of the current
timestamp t and start.s to generate an initial arithmetic
sequence (lines 15-16). The algorithm also applies the cur-
rent timestamp t to generate a new starting timestamp
which will be used for the next iterations (line 17). Since
Algorithm 2 explores all the possible arithmetic sequences,
it is able to correctly compute PTu. The following example
illustrates how Algorithm 2 works.

Example 3. Reconsider the temporal graph in Fig. 3. Suppose
that σ = 3, k = 3. It is easy to derive that v4 has degree
no less than 3 at the timestamps {1, 2, 3, 5, 7}. Fig. 4
illustrates the candidate arithmetic sequences when the
algorithm processes a timestamp in {1, 2, 3, 5, 7}. The
first row in Fig. 4 shows the starting timestamp of the
candidate arithmetic sequences. When t = 1, the starting

31 2 5 7

1 1

2

2 1

2

32

3

3

3

5

5 3

5

75

7

7

1 2

3 53 5

1

5

2

5 77 7

5

Fig. 4. Illustration of using Algorithm 2 to compute PT(v4)

timestamp is {1}, and the set StartS = {[1, 6]} (since
dv4 = 6 at timestamp 1). When t = 2, there is a candidate
arithmetic sequence {1, 2}, and the queue PQ has an
element [1, 1, 2, {6, 5}]. Similarly, when t = 3 there are
three candidates which are {1, 2, 3}, {1, 3}, and {2, 3}.
Clearly, {1, 2, 3} is a valid (σ, k)-periodic time support
set for v4. When t = 5, the timestamp 5 cannot extend
{2, 3}, thus {2, 3} is deleted. It is easy to check that
the timestamp 5 can extend {1, 3}, {1}, {2}, and {3}.
As a result, we can obtain four candidates {1, 3, 5},
{1, 5}, {2, 5}, and {3, 5}. Likewise, when t = 7, we
have seven candidates which are {3, 5, 7}, {1, 5}, {2, 5},
{1, 7}, {2, 7}, {3, 7} and {5, 7}. Note that our algorithm
cannot delete the candidate {1, 5} when t = 7, because
{1, 5} could be extended by t > 7 (similar for {2, 5}).
Clearly, we can obtain three (σ, k)-periodic time support
sets for v4 which are [1, 2, 3], [1, 3, 5], and [3, 5, 7]. �

Analysis of Algorithm 1. Below, we analyze the correctness
and complexity of Algorithm 1.

Theorem 1. Algorithm 1 correctly computes the PNCluster.

Proof: Let S = Vc \D. Clearly, by Algorithm 1, each node
in S is a (σ, k)-periodic node of the temporal subgraph
induced by S. To prove that S is a PNCluster, we need to
show the maximal property of S. Suppose to the contrary
that there is a set S′ such that (1) every node in S′ is a (σ, k)-
periodic node of the temporal subgraph induced by S′, and
(2) S ⊂ S′. Since S ⊂ S′, there exists a (σ, k)-periodic node
u ∈ S′ \ S in the temporal subgraph induced by S′. Note
that by our assumption, every node in S′ has degree no
less than k in a σ-periodic subgraph of the temporal graph
induced by S′. Thus, Algorithm 1 cannot delete the node u.
Therefore, u ∈ Vc \D which is a contradiction. �

The complexity of Algorithm 1 is shown as follows.

Lemma 2. For a temporal graph G with |T | timestamps,
there are at most O(|T |2σ−1) (σ, k)-periodic time sup-
port sets for each node in G.

Proof: Recall that each (σ, k)-periodic time support set
for a node is a σ-term arithmetic sequence which can be
represented as {ti+p, ti+2p, · · · , ti+σp}, where 0 < i ≤
|T | − (σ − 1)p and p ≥ 1 is a common difference. Clearly,
the maximum p is

⌊
|T |−1
σ−1

⌋
. Since i + σp ≤ |T |, we have

i ≤ |T | − σp. As a result, the total number of arithmetic

sequences can be bounded by
∑b |T |−1

σ−1 c
p=1 (|T | − σp). By re-

laxing this formula, we can easily derive that the number of
(σ, k)-periodic time support sets is bounded by O(|T |2σ−1).

�
Based on Lemma 2, we have the following results.

Corollary 1. The time and space complexity of Algorithm 2
for computing PTu is O(|T |du(G) + |T |2σ−1) and
O(|T |2) respectively.

Page 7 of 31 Transactions on Knowledge and Data Engineering

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60

IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, VOL. XX, NO. X, MARCH 2020 7

Proof: First, Algorithm 2 needs to compute the degree
of u at each timestamp which consumes |T |du(G) time in
the worst case. Since there are at most O(|T |2σ−1) (σ, k)-
periodic time support sets for u by Lemma 2, the total
number of TS can be bounded by O(|T |2σ−1). Therefore,
the total time complexity of Algorithm 2 is O(|T |du(G) +
|T |2σ−1). For the space complexity, each TS uses O(σ)
space, thus the total space complexity is O(|T |2). �

Theorem 2. The time and space complexity of Algorithm 1
is O(m|T |2σ−1) and O(m+ n+ |T |2) respectively.

Proof: We first analyze the time complexity of Algorithm 1.
First, the algorithm takes O(m + n) time to compute the
k-core Gc = (Vc, Ec) (line 2). Then, for each node u in Vc,
the algorithm invokes Algorithm 2 to compute PTu which
takes O(|T |2σ−1) time. Therefore, in lines 4-8, the algorithm
consumes O(n|T |2σ−1) time. In lines 9-17, for each node
v, the algorithm explores all neighbors of v at most once.
For each neighbor w of v, the algorithm needs to invoke
Algorithm 2 to compute PTw which consumes O(|T |2σ−1)
time. Therefore, the total time complexity in lines 9-17 is
O(m|T |2σ−1). Putting it all together, the time complexity of
Algorithm 1 is O(m|T |2σ−1). For the space complexity, the
algorithm needs to maintain the graph, the queue Q, and
PTu for a node u ∈ Vc which consumes O(m + n + |T |2)
space in total. �

Note that |T | (the number of snapshots) is typically not
very large in practical temporal graphs. For example, in
DBLP temporal network, there are at most 60 snapshots if
we extract a snapshot by year (each snapshot represents a
co-authorship network in one year). Hence, the worst-case
time complexity of our algorithm is near linear w.r.t. the size
of the temporal graph. Moreover, the practical performance
of Algorithm 1 should be much better than the worst-case
time complexity. This is because Algorithm 1 is integrated
with a degree pruning rule (see lines 12-13 in Algorithm 1),
which significantly decreases the number of calls of the
ComputePeriod procedure. In addition, the ComputePeriod
procedure can early terminate once the algorithm find a
valid (σ, k)-periodic time support set, which can further
reduce the time cost of Algorithm 1.
An improved PNCluster+ algorithm. Although Algo-
rithm 1 is efficient in practice, it still has two limitations.
First, Algorithm 1 needs to invoke Algorithm 2 to compute
PTu for every node u ∈ Vc (line 6), which is very costly
for high-degree nodes. Second, when deleting a node u,
Algorithm 1 has to call Algorithm 2 to re-compute PTw for
each neighbor node w of u (see line 15 in Algorithm 1),
which clearly results in significant amounts of redundant
computations.

To overcome these limitations, we propose an im-
proved algorithm called PNCluster+. The striking features
of PNCluster+ are twofold. On the one hand, PNCluster+
does not compute PTu for every node u in advance. Instead,
it calculates PTu for the node u on-demand. PNCluster+
processes the nodes based on an increasing order by their
degrees. Specifically, the algorithm first explores the low-
degree nodes and applies the degree pruning rule to delete
nodes. This is because the low-degree nodes are more likely
to be deleted by the degree pruning rule. Moreover, com-
pared to the high-degree nodes, the time costs for com-

Algorithm 3: PNCluster+ (G, σ, k)
Input: Temporal graph G = (V, E), parameters σ, and k
Output: The PNCluster Vw

1 Let G = (V,E) be the de-temporal graph of G;
2 Let Gc = (Vc, Ec) be the KCore of G;
3 Q ← ∅;D ← ∅;
4 Let du(Gc) be the degree of u in Gc;
5 for u ∈ Vc in an increasing order by du(Gc) do
6 if u ∈ D then continue;
7 PTu ←ComputePeriod (u,G, σ, k, Vc \D);
8 if PTu = ∅ then Q.push(u);
9 IPTu ←InvertIndex (PTu);

10 while Q 6= ∅ do
11 v ← Q.pop(); D ← D ∪ {v};
12 for w ∈ Nv(Gc) do
13 if dw(Gc) ≥ k then
14 dw(Gc)← dw(Gc)− 1;
15 if dw(Gc) < k then Q.push(w); continue;
16 if PTw has already been computed then
17 UpdatePeriod (PTw, IPTw, v, k);
18 if PTw = ∅ then Q.push(w);

19 return Vw ← (Vc \D);

20 Procedure InvertIndex (PTu)
21 IPTu ← ∅; L← ∅; h← 1;
22 Let PTu(j)← [s, i, σ, ArrD] be the j-th element in PTu;
23 for j ← 1 : |PTu| do
24 for t← 0 : (σ − 1) do
25 L(h)← [PTu(j).s+ t× i, j]; h← h+ 1;

26 for h← 1 : |L| do
27 [t, j]← L(h); IPTu(t).push(j);

28 return IPTu;

29 Procedure UpdatePeriod (PTw, IPTw, v, k)
30 for each temporal edge (w, v, t) ∈ E do
31 PTS(t)← IPTw(t);
32 while PTS(t) 6= ∅ do
33 j ← PTS(t).pop();
34 PTw(j).ArrD[t]← PTw(j).ArrD[t]− 1 ;
35 if PTw(j).ArrD[t] < k then
36 PTw ← PTw \ {PTw(j)};

puting PTu for low-degree nodes are much cheaper. If a
node u cannot be removed by the degree pruning rule, the
PNCluster+ algorithm invokes Algorithm 2 to compute PTu
on-demand. Note that based on this on-demand computing
paradigm, we can substantially reduce the computational
costs for the high-degree nodes. The reason is as follows.
When processing a high-degree node u, many low-degree
neighbors of u may have already been pruned which will
significantly decrease the degree of u, thus reducing the cost
for computing PTu. On the other hand, when deleting a
node u, PNCluster+ does not re-compute PTw for a neigh-
bor node w of u. Instead, PNCluster+ dynamically updates
the computed PTw for each node w, thus substantially
avoiding redundant computations. The detailed description
of PNCluster+ is shown in Algorithm 3.

Algorithm 3 first computes the KCore Gc = (Vc, Ec)
in the de-temporal graph (line 2), and then explores the
nodes in Vc based on an increasing order by the degrees
in Gc (line 5). When processing a node u, the algorithm first
checks whether u has been deleted or not (line 6). If u has not
been removed, PNCluster+ invokes Algorithm 2 to compute
PTu (line 7). If PTu is an empty set, u is not a (σ, k)-periodic
node. Thus, the algorithm pushes it into the queueQ (line 8).
Subsequently, the algorithm iteratively deletes the nodes
in Q (lines 10-18). When removing a node v, PNCluster+
explores all v’s neighbors (line 12). For a neighbor node

Page 8 of 31Transactions on Knowledge and Data Engineering

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60

IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, VOL. XX, NO. X, MARCH 2020 8

w, PNCluster+ first updates the degree of w (line 14), i.e.,
dw(Gc). If the updated degree is less than k, u is not a (σ, k)-
periodic node (line 15). In this case, the algorithm pushes it
into Q and continues to process the next node in Q (the
degree pruning rule). Otherwise, if PTw has already been
computed, the algorithm invokes UpdatePeriod to update
PTw (line 17). If the updated PTw becomes empty, w is not
a (σ, k)-periodic node and the algorithm pushes w into Q
(line 18). Note that if PTw has not been computed yet, the
algorithm does not need to update PTw. In this case, PTw
will be calculated in the next iterations (see line 7).

To efficiently implement the UpdatePeriod procedure,
we develop an inverted index structure called IPTu
to organize all (σ, k)-periodic time support sets main-
tained in PTu. Specifically, for the j-th arithmetic se-
quence (corresponding to a (σ, k)-periodic time support
set) {tji , tji+p, · · · , tji+(σ−1)×p} in PTu, we insert an ele-
ment j into IPTu(tji+h×p) for each 0 ≤ h ≤ σ − 1, i.e.,
IPTu(tji+h×p).push(j). Based on PTu, we can easily con-
struct the inverted index IPTu by invoking the InvertIndex
procedure (lines 20-28). By our construction, IPTu(t) keeps
all arithmetic sequences that contain the timestamp t. There-
fore, once we have an invert index IPTu, we can quickly
retrieve the arithmetic sequences containing t.

The UpdatePeriod procedure explores all the temporal
edges (w, v, t) to update PTw after deleting v (line 30).
For each (w, v, t), the algorithm identifies all the arithmetic
sequences (the elements in PTw) that contain the timestamp
t based on the inverted index structure (lines 31-33). For
each arithmetic sequence, the algorithm decreases the de-
gree of w at timestamp t by 1 (line 34). If the updated
degree is smaller than k, the algorithm deletes the arithmetic
sequence from PTw (lines 35-36), because it is no longer a
valid (σ, k)-periodic time support set. Since our algorithm
correctly computes and maintains PTw for every node w,
the correctness of Algorithm 3 can be guaranteed. Below,
we analyze the time and space complexity of Algorithm 3.

Theorem 3. The time and space complexity of Algorithm 3 is
O(αm+ n(ασ + T 2σ−1) and O(m+ nασ) respectively,
where α = maxu∈Vc{|PTu|}.

Proof: First, in line 2, the algorithm computes the k-core
on the de-temporal graph which takes O(m + n) time. In
line 7, the algorithm takes O(nT 2σ−1) time in the worst
case by Lemma 2. In line 9, the algorithm spends O(ασ)
time to construct the inverted index for each node u in
the worst case. Therefore, the total time cost for computing
the inverted index can be bounded by O(ασn). For each
temporal edge (w, v, t), the algorithm updates PTw at most
once, and the cost for each update can be bounded by
O(α) in lines 31-35. Therefore, the total cost for updating
all PTw is bounded by O(αm). Putting it all together, the
time complexity of Algorithm 3 is O(αm+n(ασ+ T 2σ−1).

Note that for each node u, the space overhead of the
inverted index IPTu is equal to that of PTu. Since the
algorithm uses O(ασ) space for storing PTu, the total
space overhead for maintaining both IPTu and PTu for
all u ∈ Vc is bounded by O(nασ). The algorithm also
needs to store the temporal graph and the queue Q which
consumes O(m+ n) space. Therefore, the space complexity
of Algorithm 3 is O(m+ nασ). �

Note that the time complexity of Algorithm 3 is lower
than that of Algorithm 1, as α is smaller than T 2σ−1. In
practice, the space usage of Algorithm 3 is much smaller
than the worst-case bound, because our algorithm only
work on the k-core subgraph which is typically significantly
smaller than the original temporal graph.

3.2 The PECluster pruning rule
Although PNCluster can prune many unpromising nodes, it
is not very effective for pruning unpromising edges. For
example, in Fig. 3, the edge (v4, v5) is clearly not a σ-
periodic edge with σ = 3, as the timestamps associated with
this edge cannot form an 3-term arithmetic sequence. As a
result, such an edge cannot be contained in any σ-periodic
k-clique. To overcome this defect, we propose a novel (σ, k)-
periodic edge cluster (abbreviated as PECluster) pruning
technique which combines both σ-periodic nodes and edges
for pruning. Below, we give a definition of σ-periodic edge.
Definition 10 (σ-periodic edge). Given a temporal graph
G, its de-temporal graph G and parameter σ, an edge
(u, v) ∈ G is called a σ-periodic edge if there exists a
σ-periodic time support set for the subgraph {(u, v)}.
It is easy to see that a σ-periodic edge is also a special σ-

periodic subgraph, because we can treat an edge (u, v) as a
special subgraph. Therefore, every σ-periodic edge also has
a set of σ-periodic time support sets. For convenience, we
let EPTuv be the set of all those σ-periodic time support sets
for a σ-periodic edge (u, v). Clearly, an edge is a σ-periodic
edge if and only if EPTuv 6= ∅. Note that to determine
whether an edge (u, v) is a σ-periodic edge, we can make
use of a similar algorithm as shown in Algorithm 2 to
compute EPTuv , which takes O(|T |2σ−1) time in the worst
case. Based on Definition 10, we define the σ-periodic-link
graph in the following.
Definition 11. A subgraph G̃c = (Ṽc, Ẽc) of the de-temporal

graph G is called a σ-periodic-link graph if every edge
(u, v) ∈ Ẽc is a σ-periodic edge.

By Definition 11, we can obtain the maximum σ-
periodic-link graph by removing all the non-periodic edges
from G (i.e., only retain all the σ-periodic edges in G). The
following example illustrates the above definitions.
Example 4. Reconsider the temporal graph G shown in

Fig. 3. Suppose that σ = 3, k = 3. Then, we can
see that the edge (v4, v5) has three timestamps {1, 2, 5}
which clearly cannot form a 3-term arithmetic sequence.
Therefore, we have EPTv4v5 = ∅, indicating that (v4, v5)
is not a σ-periodic edge. We can easily derive that all the
other edges in the de-temporal graph G (except (v4, v5))
are σ-periodic edges. Hence, the maximum σ-periodic-
link graph is a subgraph by removing edge (v4, v5) in G
which is shown in Fig. 5(a). �

Based on the maximum σ-periodic-link graph, we define
the (σ, k)-periodic edge cluster (PECluster) as follows.
Definition 12 ((σ, k)-periodic edge cluster). A subgraph S

of the maximum σ-periodic-link graph Ĝc = (V̂c, Êc)
is called a (σ, k)-periodic edge cluster if it satisfies the
following constraints.
(1) Periodic edge constraint: for any edge (u, v) in S,

Page 9 of 31 Transactions on Knowledge and Data Engineering

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60

IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, VOL. XX, NO. X, MARCH 2020 9

v4
v2

v1

v6

v7

v5v3

 {
1

,3
, 5

,7
}

 {
1

,2
, 3

,5
}

 {1,2,3,5}

 {1,2,3} {1,3,5,7}

(a) σ-periodic-link graph

v4
v2

v1

v6

v7

v5v3

 {
1

,3
, 5

,7
}

 {
1

,2
, 3

,5
}

 {1,2,3,5}

 {1,2,3} {1,3,5,7}

(b) Subgraph reduced by PECluster

Fig. 5. Illustration of the PECluster pruning (σ = 3, k = 3)

PTu ∩ PTv ∩ EPTuv 6= ∅;
(2) Maximal constraint: there does not exist a subgraph
S′ of Ĝc that satisfies (1) and S ⊂ S′.

Based on Definition 12, we are able to derive several
useful properties for the (σ, k)-periodic edge cluster.

Lemma 3. Given a temporal graph G, its de-temporal graph
G, parameters σ and k, the PECluster is unique in G if it
exists.

Proof: The proof is similar to the proof of Lemma 1, thus
we omit for brevity. �

Lemma 4. Let G be the de-temporal graph, Gw be the
subgraph induced by the PNCluster, and Gs is the
PECluster. Then, we have Gs ⊆ Gw.

Proof: By Definition 12, each edge (u, v) ∈ Gs meets PTu ∩
PTv ∩ EPTuv 6= ∅, indicating that both PTu 6= ∅ and PTv 6=
∅. As a result, all the nodes in Gs is a (σ, k)-periodic node.
Since PNCluster Gw is a maximal subgraph that consists of
all (σ, k)-periodic nodes, we have Gs ⊆ Gw. �

As shown in Lemma 4, such a PECluster pruning tech-
nique is more powerful than the PNCluster pruning tech-
nique, since it may prune more edges and nodes of the
original temporal graph. Below, we develop an algorithm
to efficiently compute the PECluster.

The basic idea of PECluster algorithm is that we first
compute the subgraph induced by the PNCluster, denoted
by Gw. Then, we identify all the edges in Gw that do not
satisfy the periodic edge constraint in Definition 12 (i.e., find
the edge (u, v) meeting PTu∩PTv∩EPTuv = ∅). After that,
we delete all those unpromising edges from Gw. Note that
the deletion of an edge (u, v) may trigger u and v’s outgoing
edges that violate the periodic edge constraint. Therefore,
we need to iteratively perform this edge peeling procedure,
until no edge can be removed.

The detailed description of PECluster algorithm is
shown in Algorithm 4. In line 1, the algorithm first invokes
Algorithm 3 to calculate the PNCluster Vw. Note that by
Algorithm 3, we are able to obtain PTu and IPTu for each
u ∈ Vw (line 2). Also, we can easily get the subgraph
Gw = (Vw, Ew) induced by Vw. The algorithm uses a queue
EQ and a set ED to maintain all the unpromising edges
(line 5). For each (u, v) ∈ Ew, the algorithm computes
the set EPT(u, v) (lines 6-7), which is denoted by EPTuv
in Algorithm 4. Then, if (u, v) violates the periodic edge
constraint (PTu ∩PTv ∩EPTuv = ∅)), the algorithm pushes
it into the queue EQ (lines 8-9). Subsequently, the algorithm
iteratively deletes the element in EQ (lines 10-19). For each
(u, v) ∈ EQ, the algorithm needs to update PTu and PTv
by invoking the UpdatePeriod procedure (lines 12 and 16).
This is because the deletion of an edge (u, v) decreases the

Algorithm 4: PECluster (G, σ, k)
Input: Temporal graph G = (V, E), parameters σ, and k
Output: The PECluster Gs = (Vs, Es)

1 Vw ← PNCluster+ (G, σ, k);
2 PTu and IPTu have already been computed in PNCluster+ for each
u ∈ Vw ;

3 Let G = (V,E) be the de-temporal graph of G;
4 Let Gw = (Vw, Ew) be the subgraph induced by Vw in G;
5 EQ← ∅; ED ← ∅;
6 for each (u, v) ∈ Ew do
7 Compute EPTuv ;
8 if PTu ∩ PTv ∩ EPTuv = ∅ then
9 EQ.push((u, v));

10 while EQ 6= ∅ do
11 (u, v)← EQ.pop(); ED ← ED ∪ {(u, v)};
12 UpdatePeriod (PTu, IPTu, v, k);
13 for x ∈ Nu(Gw) do
14 if (u, x) /∈ EQ and (u, x) /∈ ED then
15 if PTu ∩ PTx ∩ EPTux = ∅ then EQ.push((u, x));

16 UpdatePeriod (PTv, IPTv, u, k);
17 for x ∈ Nv(Gw) do
18 if (v, x) /∈ EQ and (v, x) /∈ ED then
19 if PTv ∩ PTx ∩ EPTvx = ∅ then EQ.push((v, x));

20 return Gs ← the subgraph comprises all edges in Ew \ ED ;

degrees of both u and v by 1 which may further result
in the updating of PTu and PTv . Since PTu (or PTv)
may update, the algorithm has to verify each edge (u, x)
(or edge (v, x)) for x ∈ Nu(Gw) whether it satisfies the
periodic edge constraint or not (lines 13-15 and lines 17-
19). If the edge (u, x) (or edge (v, x)) does not satisfy the
periodic edge constraint, the algorithm pushes it into EQ
(lines 15 and 19). The algorithm terminates when EQ = ∅.
At this moment, the subgraph comprises all the remaining
edges is a PECluster. Since all the edges that violate the
periodic edge constraint are deleted and every remaining
edge meets the periodic edge constraint, Algorithm 4 can
correctly compute the PECluster. The following example
illustrates how Algorithm 4 works.

Example 5. Reconsider the temporal graph shown in Fig. 3.
Suppose that σ = 3, k = 3. First, by computing the
PNCluster, the algorithm can obtain an induced sub-
graph Gw = (Vw, Ew) where Vw = {v1, · · · , v7}. Then,
the algorithm calculates EPTuv for each (u, v) ∈ Ew
(lines 6-7). Clearly, we have EPTv4v5 = ∅, thus the algo-
rithm pushes (v4, v5) into EQ (lines 8-9). Also, the algo-
rithm pushes (v3, v5) into EQ. The reason is that PTv3 =
{[1, 3, 5]}, PTv5 = {[1, 2, 3]}, EPTv3v5 = {[1, 2, 3]}, thus
PTv3 ∩ PTv5 ∩ EPTv3v5 = ∅ (lines 8-9). Subsequently,
the algorithm pops (v4, v5) from EQ and updates PTv4
and PTv5 . Since PTv4 and PTv5 do not change after
deleting (v4, v5), the algorithm continues to pop (v3, v5)
from EQ. After removing (v3, v5), PTv5 is updated to be
an empty set. Thus, the algorithm will pushes (v5, v6)
and (v5, v7) into EQ, and then iteratively processes
these two edges. When the algorithm terminates, we can
obtain the PECluster as shown in Fig. 5(b) (the subgraph
induced by the nodes {v1, · · · , v4}). Compared to the
PNCluster pruning, the PECluster pruning can prune
many additional nodes and edges, indicating that the
PECluster pruning is indeed much more powerful than
the PNCluster pruning. �

Page 10 of 31Transactions on Knowledge and Data Engineering

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60

IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, VOL. XX, NO. X, MARCH 2020 10

v4
v2

v1

v3

ω1 : v1 {1, 3, 5}

ω2 : v1 {3, 5, 7} {
1

,3
, 5

,7
}

 {1,3,5,7}

ω5 : v3 {1, 3, 5}

ω6 : v4 {1, 3, 5}

ω3 : v2 {1, 3, 5}

ω4 : v2 {3, 5, 7}

(a) Transformed nodes

ω1

ω3

ω5

ω6

ω2

ω4

(b) Transformed graph G̃

Fig. 6. Illustration of the graph transformation method

Theorem 4. The time and space complexity of Algorithm 4
is O(m|T |2σ−1) and O(m|T |2σ−1) respectively.

Proof: First, the algorithm takes O(αm+ n(ασ + |T |2σ−1)
to compute the PNCluster, where α = maxu∈Vc{|PTu|}.
Second, the algorithm consumes O(|T |2σ−1) time to com-
pute EPT(u, v) for each (u, v) ∈ Ew. Thus, the total time
costs to compute EPT(u, v) for all edges in Ew can be
bounded by O(m|T |2σ−1). Third, for each deleted edge
(u, v), the algorithm takes O(α) time to update PTu and
PTv . Therefore, the total time complexity of lines 10-17 can
be bounded by O(αm). Putting it all together, the time
complexity of Algorithm 4 is O(m|T |2σ−1). For the space
complexity, it is easy to show that the total space usage of
our algorithm can be bounded by O(m|T |2σ−1). �

Note that since our algorithm only works on the
PNCluster (not the original temporal graph), the time cost
of Algorithm 4 is much less than the worst case bound in
practice, which is also confirmed in our experiments.

4 TRANSFORMING THE TEMPORAL GRAPH INTO
STATIC GRAPH BY PERIODIC NODES AND EDGES

In this section, we present the approach of transforming
the temporal graph into static graph by periodic nodes and
edges. Recall that in PECluster Gs = (Vs, Es), each node u
has a set of (σ, k)-periodic time support sets, i.e., PTu, and
each edge (u, v) also has a set of σ-periodic time support
sets, i.e., EPTuv . Since every node u and every edge (u, v)
in the periodic community shares at least one periodic time
support set, we can decompose the periodic community
into a set of nodes and edges which are associated with
the same periodic time support sets. This motivate us to
construct a graph G̃ = (Ṽ , Ẽ) as follows. For each node
v ∈ Vs and an element PTsv in PTv , we construct a node
(v,PTsv) for Ṽ . As a result, for each node v ∈ Vs, we can
obtain |PTv| nodes in Ṽ . For any two nodes (u,PTsu) and
(v,PTsv) in Ṽ , we create an edge (u, v,EPTsuv) if and only
if EPTsuv = PTsu = PTsv (i.e., the same arithmetic sequence),
where EPTsuv is an element in EPTuv . This is because for
any edge (u, v) in a periodic community, the nodes u, v and
the edge (u, v) shares the same periodic time support set.
Clearly, by this construction, each node in the transformed
graph is a two-tuple (a node and a periodic time support
set), and each edge is a three-tuple (an edge and a periodic
time support set). The following example illustrates our
graph transformation method.

Example 6. Consider the temporal graph shown in Fig. 3.
Suppose that σ=3, k=3. Then, the reduced graph by
PECluster is shown in Fig. 5(b). Based on the reduced
graph, we can obtain the transformed graph G̃ shown

in Fig. 6. Specifically, Fig. 6(a) depicts the reduced graph
and the transformed nodes. For example, for the node
v1, we have PT(v1) = {[1, 3, 5], [3, 5, 7]}. Therefore, we
construct two nodes ω1 = (v1, [1, 3, 5]) and ω2 = (3, 5, 7)
in G̃. Similarly, we can obtain four other nodes in G̃
which are ω3, · · · , ω6 as shown in Fig. 6(a). Since the
nodes v1, v2, and edge (v1, v2) are associated with the
same periodic time support sets [1, 3, 5] and [3, 5, 7],
we can obtain two edges (ω1, ω3) and (ω2, ω4) in the
transformed graph G̃. Likewise, we can get all the other
edges in G̃. The final transformed graph G̃ is shown in
Fig. 6(b) which contains 6 nodes and 7 edges. �

Below, we show the relation of PECluster, MPCore,
MPClique and MAXPClique.
Lemma 5. Any node and edge in a MPCore must be con-

tained in the PECluster.

Proof: According to Definition 4, a MPCoreC is a σ-periodic
subgraph, and any node v in C has at least k neighbors.
By Definition 7, any node v is a (σ, k)-periodic node, and
therefore C satisfies the periodic degree constraint. Since
the PNCluster is a maximal subgraph meeting the periodic
degree constraint, C must be contained in the PNCluster.

Consider an edge (u, v) in a MPCore C . Since C is
a σ-periodic subgraph, there exist at least one σ-periodic
time support set TS for C. Since u, v ∈ C, TS is also a
(σ, k)-periodic time support set for both nodes u and v by
Definitions 7 and 8. Similarly, TS is also a σ-periodic time
support set for the edge (u, v), as (u, v) ∈ C. As a result, we
have PTu ∩ PTv ∩ EPTuv 6= ∅. Since each edge (u, v) ∈ C
meets PTu ∩ PTv ∩ EPTuv 6= ∅, (u, v) must be contained in
the PECluster by Definition 12. �

Lemma 6. Any node and edge in a MPClique must be
contained in the MPCore.

Proof: The proof can be easily get by Definition 4 and 5,
thus we omit it for brevity. �

Corollary 2. Any node and edge in σ-periodic k-ECC
must be contained in the maximal σ-periodic k-core, σ-
periodic k-truss must be in σ-periodic k-ECC, σ-periodic
k-clique must be in σ-periodic k-truss.

Based on Lemmas 5 and 6, we know that MPCore and
MPClique are contained in the PECluster of G. Therefore,
we can first compute the PECluster to prune unpromising
nodes and edges, and then mine MPCore and MPClique on
the reduced graph. The following lemma shows that any
MPCore in temporal graph G is an unique corresponding
core in the transformed graph G̃.
Lemma 7. For any σ-periodic k-core C = (Vc, Ec) in the

reduced graph Gs, there exists a k-core C̃ = (Ṽc, Ẽc) in
the transformed graph G̃ such that the node set Ṽc of C̃ is
equal to Vc. For any maximal k-core C̃ = (Ṽc, Ẽc) with
node set Ṽc sharing the same σ-periodic time support
set in G̃, the subgraph induced by Ṽc is a maximal σ-
periodic k-core C in Gs.

Proof: First, by Definition 5, each σ-periodic k-core C =
(Vc, Ec) in Gs has at least one σ-periodic time support set
TS. According to the graph transformation method, we can
easily derive that the set of nodes {(v, TS)|v ∈ Vc} form a
k-core C̃ in G̃. Clearly, by our definition, we have Vc = Ṽc.

Page 11 of 31 Transactions on Knowledge and Data Engineering

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60

IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, VOL. XX, NO. X, MARCH 2020 11

Algorithm 5: MPCore (G, σ, k)
Input: Temporal graph G = (V, E), parameters σ and k
Output: Set of maximal σ-periodic k-core C

1 Gs = (Vs, Es)← PECluster(G, σ, k);
2 PTu has been computed in PECluster for each u ∈ Vs;
3 EPTuv has been calculated in PECluster for each (u, v) ∈ Es;
4 G̃ = (Ṽ , Ẽ)← the transformed graph based on PTu and EPTuv ;
5 Let d(u,PTsu)(G̃) be the degree of node (u,PTsu) in G̃; Q ← ∅; D ← ∅;
6 for (u,PTsu) ∈ Ṽ in an increasing order by d(u,PTsu)(G̃) do
7 if u ∈ D then continue;
8 if d(u,PTsu)(G̃) < k then Q.push((u,PTsu));
9 while Q 6= ∅ do

10 (v,PTsv)← Q.pop(); D ← D ∪ {(v,PTsv)};
11 for (w,PTsw) ∈ N(v,PTsv)(G̃), s.t. d(w,PTsw)(G̃) ≥ k do
12 d(w,PTsw)(G̃)← d(w,PTsw)(G̃)− 1;
13 if d(w,PTsw)(G̃) < k then Q.push(w);

14 C ← G̃Ṽ \D ; // C can be grouped into different maximal σ-periodic
k-core by PTsu in each node (u,PTsu)

15 return C;

Second, for each maximal k-core C̃ = (Ṽc, Ẽc) in which
nodes in Ṽc share the same σ-periodic time support set,
we have EPTsuv = PTsu = PTsv 6= ∅ for any two nodes
u, v ∈ Ṽc by the graph transformation approach. As a result,
the node set Ṽc forms a k-core C, and all nodes and edges
share the same σ-periodic time support set EPTsuv . Since C̃
is a maximal clique, no node can be added into C̃ while
maintaining the property of EPTsuv = PTsu = PTsv 6= ∅.
Therefore, the maximal k-core C̃ in G̃ is a MPCore in Gs. �

Corollary 3. Any MPClique in temporal graph G is an
unique corresponding maximal clique in the trans-
formed graph G̃.

Proof: We can prove that (1) For any MPClique C ′ =
(V ′c , E

′
c) in the reduced graph Gs, there exists a maximal

clique C̃ = (Ṽc, Ẽc) in the transformed graph G̃ such that
the node set Ṽc is equal to V ′c . (2) For any maximal clique
C̃ = (Ṽc, Ẽc) with node set Ṽc in G̃, the subgraph induced
by Ṽc is a MPClique in Gs. The detail is similar to the proof
of Lemma 7. �

5 MINING THE PERIODIC COMMUNITIES

5.1 Searching maximal σ-periodic k-core

Based on Lemma 7, any MPCore in temporal graph G is
an unique corresponding core in the transformed graph G̃.
Therefore, we can first compute the PECluster and transform
the temporal graph by the construction method in section 4,
and then perform a decomposition algorithm in the trans-
formed graph. The detail of the MPCore algorithm is shown
as follows.

Algorithm 5 invokes the PECluster pruning technique
(Algorithm 4) to prune the temporal graph (line 1). Note
that in this pruning procedure, we can also obtain PTu for
each u ∈ Vs and EPTuv for each (u, v) ∈ Es (lines 2-3).
Based on PTu and EPTuv , the algorithm can construct the
transformed graph G̃ (line 4). We can see that each node
in G̃ is a two-tuple like (u,PTsu) in which u is the node id
in Gs and PTsu is a σ-periodic time support set of node u.
Then, the algorithm performs a decomposition algorithm to
search the maximal σ-periodic k-core. It maintainsQ to store
the deleting nodes and D to store the deleted nodes (line 5).

Then the algorithm pushes the node with degree less than k
into Q and checks whether their neighbors meet the degree
constrict (lines 8-13). After all the nodes in Ṽ have been
checked in line 6, the remained node set Ṽ \D is the set of
all nodes in the maximal σ-periodic k-core. Furthermore, C
can be grouped into different maximal σ-periodic k-core by
PTsu in each node (u,PTsu). The node set in C with different
PTsu will be in different maximal σ-periodic k-core.

It is easy to see that Algorithm 5 only needs O(|Ṽ |)
time to find the maximal σ-periodic k-core, so the time
and space complexity of Algorithm 5 is O(m|T |2σ−1) and
O(m|T |2σ−1) respectively, same as that in Algorithm 4.

5.2 Enumerating maximal σ-periodic k-clique

Recall that the MPClique enumeration problem is NP-hard.
Thus, there does not exist a polynomial-time algorithm to
solve our problem unless P=NP. Moreover, most existing
maximal clique enumeration algorithms (e.g., the classic
cBron-Kerbosh algorithm [13]) can only work on static
graphs, it is not clear how to apply them to identify periodic
cliques in temporal graphs. To circumvent this problem, we
propose a new Bron-Kerbosch style enumeration algorithm,
called MPClique, which can efficiently compute the com-
plete set of all MPCliques.
The MPClique algorithm. Based on Corollary 3, we are able
to obtain the complete set of MPCliques by enumerating all
maximal cliques in G̃. Since G̃ is a static graph, we make use
of a Bron-Kerbosch style algorithm to identify all maximal
cliques in G̃. The detailed description of our algorithm
is shown in Algorithm 6. It first invokes Algorithm 5 to
find the set of MPCliques, because any node and edge in
a MPClique must be contained in the MPCore based on
Lemma 6. Then, the algorithm performs a Bron-Kerbosch
algorithm with pivoting technique to identify all maximal
cliques in G̃ (line 3). Specifically, the set R̃ denotes the
current clique, P̃ denotes the set of candidate nodes, and X̃
denotes the set of nodes that have already been processed.
Note that each node in P̃ , R̃, and X̃ is a two-tuple (v,PTsv).
In line 10, the algorithm adopts a similar pivoting technique
developed in [14] to speed up the enumeration procedure.
Note that the operator N(v,PTsv)

(G̃) is to take the neighbors
of the node (v,PTsv) in the transformed graph G̃. The
correctness of Algorithm 6 can be guaranteed by [14] and
Corollary 3.
Number of MPCliques. Below, we analyze the number of
MPCliques in the temporal graph G based on a novel concept
of σ-periodic degeneracy. The classic degeneracy is a well-
known metric for measuring the sparsity of a static graph
[8]. Many real-life networks are often very sparse, thus
having a small degeneracy [8]. Below, we give the definition
of degeneracy.

Definition 13 (Degeneracy). The degeneracy of a static graph
G is the minimum integer δ such that each subgraph S
of G contains a node v with degree no larger than δ.

Eppstein et al. [8] proved that the number of maximal
cliques in a static graph is bounded by (|V | − δ)3δ/3. They
also developed an efficient maximal clique enumeration
algorithm with time complexity O(δ|V |3δ/3) based on the

Page 12 of 31Transactions on Knowledge and Data Engineering

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60

IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, VOL. XX, NO. X, MARCH 2020 12

Algorithm 6: MPClique (G, σ, k)
Input: Temporal graph G = (V, E), parameters σ and k
Output: Set of maximal σ-periodic k-clique C

1 G̃ = (Ṽ , Ẽ)← MPCore (G, σ, k);
2 global C ← ∅;
3 EnumClique (Ṽ , ∅, ∅, k);
4 return C;

5 Procedure EnumClique (P̃ , R̃, X̃, k)

6 if |P̃ |+ |R̃| < k then return;
7 if P̃ ∪ X̃ = ∅ then C ← C ∪ {R̃};
8 (v′,PTs

v′)← arg max
(v,PTsv)∈P̃∪X̃

|P̃ ∩N(v,PTsv)(G̃)|;

9 for (v,PTsv) ∈ P̃ \N(v′,PTs
v′

)(G̃) do

10 R̃′ ← R̃′ ∪ (v,PTsv);
11 P̃ ′ ← P̃ ∩N(v,PTsv)(G̃); X̃′ ← X̃ ∩N(v,PTsv)(G̃);
12 EnumClique (P̃ ′, R̃′, X̃′, k);
13 P̃ ← P̃ \ (v,PTsv); X̃ ← X̃ ∪ (v,PTsv);

degeneracy ordering. The classic degeneracy, however, can-
not be directly used to bound the number of MPCliques
in temporal graphs. Below, we introduce a novel concept,
called σ-periodic degeneracy, which will be applied to
bound the number of MPCliques.

Definition 14 (σ-periodic degeneracy). Given a temporal
graph G and parameter σ, the σ-periodic degeneracy of
G is the smallest integer δ̂ such that every σ-periodic
subgraph contains a node with degree at most δ̂.

Since the degeneracy-based bound for the number of
maximal cliques is tailored for static graph [8], it is not
clear how to use the σ-periodic degeneracy to bound the
number of MPCliques in temporal graph. To circumvent
this problem, we resort to bound the number of maximal
cliques in the transformed graph G̃. The rationale is that the
number of maximal cliques in G̃ is no less than the number
of MPCliques in the temporal graph G by Lemma 3. Since
the transformed graph G̃ is a static graph, we are capable
of applying the results developed by Eppstein et al. [8] to
bound the number of maximal cliques in G̃. Let δ̃ be the
degeneracy of the transformed graph G̃. Then, the following
lemma shows that δ̃ is bounded by δ̂.

Lemma 8. For any temporal graph G and the transformed
graph G̃ of the PECluster of G, we have δ̃ ≤ δ̂.

Proof: First, we consider a connected subgraph S̃ of the
transformed graph G̃. By our graph transformation method,
the connected subgraph S̃ must be a σ-periodic subgraph
in G. Therefore, each connected subgraph S̃ of G̃ can be
mapped to a σ-periodic subgraph S′ in G. By definition,
there exists a node u in S̃ having degree at most δ̃. Hence,
the degree of u in the σ-periodic subgraph S′ is also no
larger than δ̃. By Definition 14, any σ-periodic subgraph in
G must have a node with degree at most δ̂. Therefore, we
have δ̃ ≤ δ̂. Second, for any disconnected subgraph D̃S in
G̃, we consider two cases: (1) each connected component of
D̃S has the same σ-periodic time support set, and (2) the
connected components of D̃S are associated with different
σ-periodic time support sets. For the case (1), we can easily
check that D̃S can be mapped to a σ-periodic subgraph D̃S

′

in G. Therefore, the above argument can also be used to
prove δ̃ ≤ δ̂. For the case (2), since D̃S cannot be mapped to

a σ-periodic subgraph, we do not need to bound δ̂. Putting
it all together, we can derive that δ̃ ≤ δ̂. �

Based on Lemma 8, we can leverage δ̂ to bound the num-
ber of MPCliques in G as shown in the following theorem.

Theorem 5. Given a temporal graph G, parameters σ and k,
the number of maximal σ-periodic k-cliques (MPCliques)
in G is less than (4m2k−2σ−1 − δ̂)3δ̂/3.

Proof: Note that if a node u ∈ G is a (σ, k)-periodic
node, the largest cardinality of the time support set of u
in which u has degree at least k is less than du(G)/k.
By Lemma 2, the number of (σ, k)-periodic time sup-

port sets of u is bounded by
∑b (du(G)/k)−1

σ−1 c
p=1 (du(G)/k −

σp) < (du(G)/k)2σ−1. Therefore, the total number of (σ, k)-
periodic time support sets for all nodes in G, denoted by Ñ ,
is bounded by

∑
u∈V (du(G)/k)2σ−1 < 4m2k−2σ−1. Recall

that by our graph transformation approach, the number of
nodes in the transformed graph G̃ can be bounded by Ñ .
According to the results developed by Eppstein et al. [8],
the number of maximal cliques in a static graph with de-
generacy δ is at most (|V |− δ)3δ/3, where |V | is the number
of nodes of the graph. As a consequence, the number of
maximal cliques in the transformed graph G̃ is no larger
than (4m2k−2σ−1 − δ̃)3δ̃/3. Since the number of maximal
cliques in G̃ is no less than the number of MPCliques in G
and δ̃ ≤ δ̂, the number of MPCliques in G can be bounded
by (4m2k−2σ−1 − δ̂)3δ̂/3. �

Based on the results developed by Eppstein et al. [8],
we can also bound the worst-case time complexity of the
MPClique enumeration problem by the σ-periodic degener-
acy of G, i.e., δ̂. Specifically, we have the following results.

Theorem 6. Given a temporal graph G, parameters σ and k,
there exists an algorithm to enumerate all MPCliques in
G in O(δ̂m2k−2σ−13δ̂/3) time, where δ̂ is the σ-periodic
degeneracy and m is the number of temporal edges in G.

Proof: Since the transformed graph G̃ is a static graph, the
algorithm proposed by Eppstein et al. [8] with worst-case
time complexity O(δ|V |3δ/3) can also be applied to enumer-
ate all maximal cliques in G̃. Note that the degeneracy and
the number of nodes of G̃ is bounded by δ̂ and m2k−2σ−1

respectively. The time complexity of the algorithm devised
by Eppstein et al. is O(δ̂m2k−2σ−13δ̂/3) to enumerate all
maximal cliques in G̃, thus the theorem is established. �

Not that Theorem 6 indicates that enumerating all
MPCliques in a temporal graph G is fixed-parameter tractable
with respect to the parameter σ-periodic degeneracy δ̂ of G.
Since the σ-periodic degeneracy of G is typically very small
in real-life temporal graphs, the proposed algorithm can be
very efficient in practice.

5.3 Finding maximum σ-periodic clique

We can also use the transformed graph with a branch-and-
bound algorithm framework to find the maximum periodic
clique [15]. In the worst case, finding the maximum periodic
clique need to enumerate all the maximal cliques. However,
we can modify the search space of Algorithm 6 to search the
maximum periodic clique. Specifically, we do not need the
flag set X̃ to check whether the clique is maximal and we

Page 13 of 31 Transactions on Knowledge and Data Engineering

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60

IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, VOL. XX, NO. X, MARCH 2020 13

need to design several pruning rules for the candidate max-
imum periodic clique. Intuitively, we maintain MaxSize
to record the size of the MAXPClique, Size to record the
size of the candidate clique in current loop and C to record
the candidate nodes which will be checked to add into the
candidate clique. Below, we will introduce several pruning
rules which can make termination for the enumeration.

Pruning rule 1: the current max size lower bound. Sup-
pose that we have maintained the current MaxSize of the
MAXPClique, this pruning rule is based on that the newly
joined node must have degree larger than MaxSize to form
a clique of sizeMaxSize+1. This pruning rule will perform
when the search space is rebuilt.

Pruning rule 2: the color-based upper bound. This prun-
ing rule performs when we have the current Size for the
MAXPClique, and there comes a set of nodes C which will
be added to form a larger MAXPClique. Intuitively, if the
current Size plus the size of C is not larger than the main-
tained MaxSize, in this loop MaxSize will certainly not
changed. However, the upper bound based on the candidate
set size |C| is not very tight, because Size + |C| is often
larger than MaxSize. A tighter bound can be easily derived
by a coloring algorithm. In particular, we assign a color
to each node in C using a degree-ordering based greedy
coloring algorithm [16] so that no two adjacent nodes have
the same color. The colors of the nodes in MAXPClique
must be different. Therefore, let color(C) be the number of
colors of the candidate nodes in C, color(C) + Size is an
upper bound of the size of a maximum clique in the current
loop. For an efficient implement, we only invoke the greedy
coloring algorithm once, and compute the upper bound
color(C)+Size in each search subspace C based on the same
coloring result. Note that the greedy coloring algorithm can
be implemented in linear time w.r.t. the uncertain graph
size [16] and compute the upper bound in each search
subspace can be done inO(|C|) time, thus such a basic color-
based pruning technique is very efficient.

Pruning rule 3: early termination based on degeneracy. We
can have that the size of MAXPClique MaxSize will be no
larger than the degeneracy δ̃ of the transformed G̃. Because
we can find a maximum clique in which every node’s degree
is MaxSize, and according to Definition 13 MaxSize < δ̃.
Computing δ̃ only needs O(|Ṽ ||Ẽ|) time, so this pruning
technique is efficient.

Algorithm 7 details the pseudo-code for computing the
size of the MAXPClique. In line 1, it first initializesMaxSize
as 3, since we do not consider the MAXPClique with size less
than 3. Then, it invokes Algorithm 5 to compute the MPCore,
because MAXPClique must be in MPClique and MPClique
are in MPCore according to Lemma 6. Next, it computes the
degeneracy δ̃ in transformed graph G̃ and it can be used in
line 17 to make an early termination based on pruning rule
3. Furthermore, the algorithm visits node ui ∈ Ṽ to search
the maximum clique (lines 4-10). C records the candidate
nodes which will be checked to add into the candidate
clique and pruning rule 1 performs in line 9. Procedure
FindClique can search the maximum clique by the given
candidate nodes C and parameter MaxSize. In lines 13-15,
if C = ∅, the current Size is the maximum size of clique
in this loop, and it updates MaxSize if Size > MaxSize.

Algorithm 7: MAXPClique (G, σ)
Input: Temporal graph G = (V, E) and parameter σ
Output: Size of the maximum σ-periodic clique

1 global MaxSize← 3;
2 G̃ = (Ṽ , Ẽ)← MPCore (G, σ,MaxSize);
3 δ̃ ← degeneracy of the transformed graph G̃; // each node is a two-tuple

like (u,PTsu)), for convenient, we use u to represent one node here
4 for i← 1 : |Ṽ | in a descending order w.r.t. the degree of the node ui ∈ Ṽ do
5 if |Nui (G̃)| > MaxSize then
6 C ← ∅;
7 for node uj ∈ Nui (G̃) do
8 if j > i and |Nuj (G̃)| > MaxSize then
9 C ← C ∪ (v,PTsv); [Pruning rule 1]

10 FindClique (C,MaxSize);

11 return MaxSize;

12 Procedure FindClique (C, Size)
13 if C = ∅ then
14 if Size > MaxSize then MaxSize← Size;
15 return;

16 while |C| > 0 do
17 if MaxSize = δ̃ then return; [Pruning rule 3]
18 if color(C) + Size ≤MaxSize then return; [Pruning rule 2]
19 for node u ∈ C do
20 C′ ← (C \ u) ∩Nu(G̃);
21 C′ ← {v|v ∈ C′; |Nv(G̃) ∩ C′| ≥MaxSize}; [Pruning rule 1]
22 FindClique (C′, Size+ 1);

While C is not empty set, it first uses pruning rule 3 and 2 to
check whether terminate the loop or not (lines 17-18), and
then checks each node in C to form a larger clique (lines
19-22). The whole algorithm finished after all the nodes
are checked in line 4. Finally, it returns the size of the
MAXPClique. Note that, if we add a stored node set, it can
also output one clique of the maximum size.

The problem of mining maximum clique is also NP-
hard [16], due to the proposed pruning rules, the time
complexity of Algorithm 7 can be bounded by that of
Algorithm 6 in Theorem 6. However, the pruning rules
can reduce the computation time greatly. We will show the
running time in practice at Section 6.

6 EXPERIMENTS

In this section, we conduct extensive experiments to eval-
uate the efficiency and effectiveness of the proposed algo-
rithms. In our experiments, we implement various algo-
rithms for comparison.
• MPCO-KC is a baseline algorithm integrated with k-core

reduction techniques. It first computes PTu and EPTuv
for nodes and edges in KCore of G using Algorithm 2,
and then constructs a transformed graph G̃. It uses the
core decomposition algorithm to search MPCore on G̃.

• MPCO-NC denotes the MPCO-KC algorithm integrated
with the PNCluster reduction rule.

• MPCO-EC denotes the MPCO-KC algorithm with the
PECluster reduction rule, i.e., Algorithm 5.

• MPCL-KC is a baseline algorithm with k-core reduction
techniques. It constructs G̃ by PTu and EPTuv in KCore
of G. Then it uses the Bron-Kerbosch algorithm with a
pivoting technique to enumerate all MPClique on G̃.

• MPCL-NC denotes the MPCL-KC algorithm integrated
with the PNCluster reduction rule.

• MPCL-EC denotes the MPCL-KC algorithm with the
PECluster reduction rule, i.e., Algorithm 6.

Page 14 of 31Transactions on Knowledge and Data Engineering

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60

IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, VOL. XX, NO. X, MARCH 2020 14

TABLE 2
Datasets

Dataset |V | |E| |E| dmax |T | Time scale
HS 327 5,818 20,448 322 101 hour
PS 242 8,317 26,351 393 34 hour

LKML 26,885 159,996 328,092 14,172 96 month
Enron 86,978 297,456 499,983 4,311 48 month
DBLP 1,729,816 8,546,306 12,007,380 5,980 59 year

• MAXPCL denotes the MAXPClique algorithm with all the
pruning rules, i.e., Algorithm 7.

• MAXPCL-B denotes the MAXPClique algorithm without
the three pruning rules in Section 5.3.

To evaluate the effectiveness of the proposed maximal
σ-periodic k-clique model, we also use PNCluster and
PECluster as two intuitive baseline models. The reasons
are as follows. First, to the best of our knowledge, there is
no existing community model that can be used to model
periodic communities in temporal networks. Second, by
Definitions 9 and 12, both PNCluster and PECluster can
capture periodic and cohesive properties of a community in
temporal graphs, thus PNCluster and PECluster can serve as
two baselines for modeling periodic communities.

All algorithms are implemented in Python and
the source code is available at https://github.com/
VeryLargeGraph/MPC/. All the experiments are conducted
on a server of Linux kernel 4.4 with Intel Core(TM) i5-
8400 @ 3.20GHz and 32 GB main memory.
Datasets. We use five different types of real-life temporal
networks in the experiments. The detailed statistics of our
datasets are summarized in Table 2. In Table 2, the first two
datasets are human contact temporal networks which are
download from (http://www.sociopatterns.org/datasets/).
Specifically, HS is a temporal network of face-to-face con-
tacts between students in a French high school [2], and PS
is a temporal network of contacts between the children and
teachers in a French primary school [2]. Each snapshot of
these temporal networks is extracted in a hour. Both LKML
and Enron are temporal communication networks down-
loaded from (http://konect.uni-koblenz.de), where each
temporal edge (u, v, t) represents an email communication
from a user u to v at time t. Each snapshot of these temporal
networks is extracted in a month. DBLP is a temporal col-
laboration network of authors in DBLP downloaded from
(http://dblp.uni-trier.de/xml/), where each temporal edge
(u, v, t) denotes that two authors u and v co-authored one
paper at time t. Each snapshot of DBLP is extracted in a
year. In Table 2, dmax is the maximum number of temporal
edges associated with a node, and |T | denotes the number
of snapshots.
Parameter settings. There are two parameters k, σ in our
algorithm. For the parameter k, we vary it from 3 to 7 with
a default value of 3. We also vary σ from 3 to 7 with a
default value of 3. Unless otherwise specified, the value of
the other parameter are set to its default value when varying
a parameter.

6.1 Efficiency Testing

Exp-1: Comparison between PNCluster and PNCluster+.
Fig. 7 evaluates the running time of PNCluster (Algo-
rithm 1) and PNCluster+ (Algorithm 3) for computing

HS PS LKML Enron DBLP101

102

103

104

105

Ru
nn

in
g

Ti
m

e
(m

s) PNCluster
PNCluster+

Fig. 7. Running time of PNCluster V.S. PNCluster+

HS0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8

Ru
ni

ng
 ti

m
e

(s
)

0.319 0.295

0.683

PS0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.253
0.304

0.599

LKML0

5

10

15

20

25

8.3
10.2

24.3

Enron0

2

4

6

8

10

1.6 1.7

9.8

DBLP0

20

40

60

80

44.2
56.1

84.3

MPCO-KC MPCO-NC MPCO-EC

(a) Time of searching MPCore

HS
0.2

0.4

0.6

0.8

1.0

Ru
ni

ng
 ti

m
e

(s
) 0.890

0.310

0.161

PS
0.2

0.4

0.6

0.8

1.0

0.768

0.545

0.326

LKML

1000

2000

3000

4000 3765

416
147

Enron

200

400

600

800

1000

1200 1154

187
61

DBLP

2000

4000

6000

8000 7421

1056
415

MPCL-KC MPCL-NC MPCL-EC

(b) Time of enumerating MPCliques

Fig. 8. Running time of different algorithms on various datasets

(σ, k)-periodic node cluster under the default parameter
setting. As can be seen, PNCluster+ is much faster than
PNCluster on all datasets. The running time of PNCluster+
is around a half of the running time of PNCluster. For exam-
ple, on Enron, PNCluster+ takes 1.1 seconds and PNCluster
consumes 2.3 seconds to identify (σ, k)-periodic node clus-
ter. The reason is that PNCluster+ is based on an on-demand
computing paradigm which can substantially reduce redun-
dant computations. These results are consistent with our
theoretical analysis presented in Section 3.1. In the following
experiments, we will use PNCluster+ to compute (σ, k)-
periodic node cluster.
Exp-2: Efficiency of various MPCore and MPClique mining
algorithms. Fig. 8 shows the running time of MPCO-KC,
MPCO-NC, MPCO-EC and MPCL-KC, MPCL-NC, MPCL-EC
on different datasets with parameters σ = 4, k = 4. Similar
results can also be observed under the other parameter
settings. From Fig. 8(a), we can see that MPCO-KC is faster
than the other competitors on all datasets. This is because
that in MPCO-NC and MPCO-EC, the process of invoking
ComputePeriod in Algorithm 2 spends lots of extra time.
However, from Fig. 8(b), we can see that MPCL-EC is much
faster than the others on all datasets. For example, on
DBLP, MPCL-EC takes around 7 minutes to enumerate all
MPCliques which cuts the running time over MPCL-NC and
MPCL-KC by 154% and 1,688% respectively. These results
indicate that the PECluster pruning rule is indeed very
powerful in practice which are consistent with our analysis
in Section 3.2.
Exp-3: Efficiency with varying parameters. Table. 3 reports
the running time of MPCO-KC, MPCO-NC, MPCO-EC and
MPCL-KC, MPCL-NC, MPCL-EC with varying parameters
on DBLP. Similar results can also be observed on the other
datasets. At the above part of the table, it can be observed
that MPCO-KC is quicker than MPCO-NC and MPCO-EC
under most parameter settings, but the performance gap is

Page 15 of 31 Transactions on Knowledge and Data Engineering

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60

IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, VOL. XX, NO. X, MARCH 2020 15

TABLE 3
Running time (s) of different algorithms with varying parameters (on DBLP)

σ = 3 σ = 4 σ = 5 σ = 6 σ = 7
MPCO-KCMPCO-NCMPCO-ECMPCO-KCMPCO-NCMPCO-ECMPCO-KCMPCO-NCMPCO-ECMPCO-KCMPCO-NCMPCO-ECMPCO-KCMPCO-NCMPCO-EC

k = 3 27.5 36.2 127.3 16.5 24.4 98.5 13.3 23.6 66.3 9.6 20.6 44.1 9.0 16.5 33.0
k = 4 20.5 29.7 97.2 13.1 21.7 64.5 11.1 19.8 40.5 8.8 18.0 30.2 8.2 15.8 21.6
k = 5 17.4 23.1 74.8 11.1 18.5 40.1 8.4 16.7 25.8 6.6 15.5 19.8 5.7 14.0 15.0
k = 6 15.9 19.0 44.7 7.0 15.4 26.5 6.3 11.6 17.9 6.8 9.3 10.8 5.3 9.6 10.2
k = 7 10.0 16.0 30.4 6.0 13.6 17.1 5.5 11.8 12.4 6.6 8.3 9.5 5.5 9.5 9.6

σ = 3 σ = 4 σ = 5 σ = 6 σ = 7
MPCL-KC MPCL-NC MPCL-EC MPCL-KC MPCL-NC MPCL-EC MPCL-KC MPCL-NC MPCL-EC MPCL-KC MPCL-NC MPCL-EC MPCL-KC MPCL-NC MPCL-EC

k = 3 INF 32,213 4,339 24,517 12,313 1,237 8,321 4,567 936 4,235 3,456 804 2,145 1,023 144
k = 4 23,100 3,574 580 7,421 1,056 415 3,441 774 326 1,960 114 71 1,467 48 38
k = 5 9,770 736 280 3,428 801 75 1,771 417 45 1,220 63 35 1,023 33 37
k = 6 4,464 621 112 2,035 585 45 1,643 142 32 980 32 27 576 14 16
k = 7 2,382 534 24 1,292 51 23 1,201 44 27 620 21 20 231 10 11

HS PS LKML Enron DBLP
100

101

102

103

Ru
nn

in
g

Ti
m

e
(m

s)

0.75 0.84 0.94 0.89 1.04 1.27

25.40

84.10

812.10

9.23

24.10

55.80

170.00

540.00

4339.00

MAXPCL
MAXPCL-B
MPCL-EC

Fig. 9. Running time of MAXPCL V.S. MAXPCL-B

decreasing with increasing k and σ. It is the reason that
MPCO-NC and MPCO-EC need to invoking ComputePeriod
and the processing time is decreasing when k and σ in-
crease. At the below part of the table, we can see MPCL-EC
is faster than all the other algorithms under almost all pa-
rameter settings. In general, the running time of MPCL-KC,
MPCL-NC and MPCL-EC decrease with increasing k and σ,
because the size of the transformed graph decreases as k or
σ increases. Note that when σ = 7 and k ≥ 5, MPCL-NC
is slightly faster than MPCL-EC. The reason could be that
for a large σ and k, the original temporal graph can be
reduced to a very small graph by PNCluster, thus the benefit
of PECluster may be not significant.

Exp-4: Efficiency of MAXPCL V.S. MAXPCL-B. Fig. 9 shows
the running time of MAXPCL, MAXPCL-B. We also put the
running time of MPCL-EC here for comparison. It can be
observed that MAXPCL is much faster than MPCL-EC on
all datasets, which means that the branch-and-bound style
framework is efficient in practice. We can also see that on
LKML, Enron and DBLP, MAXPCL-B needs about triple
time as much as MAXPCL. Those results indicate that the
proposed pruning rules in Section 5.3 are effective.

Exp-5: Scalability testing. Fig. 10 shows the scalability of
MPCL-EC on DBLP. Similar results can also be observed
on the other datasets or other algorithms. We generate four
temporal subgraphs by randomly picking 20%-80% of the
nodes (temporal edges), and evaluate the running time of
MPCL-EC on those subgraphs. As can be seen, the running
time increases smoothly with increasing |V| and |E|. These
results suggest that the MPCL-EC algorithm is scalable
when handling large temporal networks.

Exp-6: Memory overhead. The most uncontrollable memory
usage in the above algorithms is the storage of PTu and
EPTuv for MPCL-EC in Algorithm 4. Table 4 shows the
memory usage of MPCL-EC on different datasets. We can
see that the memory usage of MPCL-EC is higher than the
size of the temporal graph, because MPCL-EC needs to store

20% 40% 60% 80% 100%

101

102

103

104

Ru
ni

ng
 ti

m
e

(s
) vary | |

vary | |

Fig. 10. Scalability testing of MPCL-EC (DBLP)

TABLE 4
Memory overhead of MPCL-EC

Memory Graph PT + EPT Memory (all)
HS 5.2MB 25.2MB 45MB
PS 2.8MB 15.8MB 35MB

LKML 20.1MB 35.4MB 101MB
Enron 53.3MB 98.6Mb 198MB
DBLP 678.5MB 2,398MB 3,234MB

TABLE 5
Number of nodes in the reduced graph

KCore PNCluster PECluster
HS 326 99% 280 86% 165 51%
PS 242 100% 233 96% 211 87%

LKML 9,773 36% 1,785 6.6% 926 3.4%
Enron 18,591 21% 3,314 3.8% 2,315 2.7%
DBLP 1,258,540 73% 126,357 7.3% 73,109 4.2%

PTu and EPTuv (for each node and edge). However, on
large datasets, it is typically lower than five times of the size
of the temporal graph. For instance, MPCL-EC consumes
3,234MB memory on DBLP while the temporal graph uses
678.5MB memory. These results indicate that MPCL-EC
achieves near linear space complexity which confirms our
theoretical analysis in Sections 3.2 and 5.2.

6.2 Effectiveness Testing

Exp-7: Number of nodes in the reduced graph. Table 5
shows the number of remaining nodes in de-temporal graph
G obtained by KCore, PNCluster and PECluster on all
datasets under the default parameter setting. In columns 2-4
of Table 5, the left integer is the number of remaining nodes
and the right value is the percentage of the remaining nodes
over all nodes in the graph. As can be seen, both PNCluster
and PECluster can prune a large number of unpromising
nodes on large datasets. For example, on DBLP, the number
of remaining nodes obtained by PNCluster and PECluster is
only 7.3% and 4.2% of the original graph respectively. These
results confirm that our graph reduction techniques are
indeed very effective on large real-life temporal networks.

Page 16 of 31Transactions on Knowledge and Data Engineering

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60

IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, VOL. XX, NO. X, MARCH 2020 16

TABLE 6
The size of the transformed graph reduced by PECluster

|Ṽ | |Ẽ| #MPCliques δ̃ |MAXPClique|
HS 1,946 3,388 18 24 10
PS 3,508 12,174 475 47 11

LKML 149,385 505,514 17,382 12 6
Enron 37,869 173,914 10,203 53 13
DBLP 353,557 1,028,598 45,442 120 21

3 4 5 6 7
102

103

104

105

Si
ze

 o
f M

PC
or

e = 3
= 6

(a) Vary k (DBLP)

3 4 5 6 7101

102

103

104

105

Si
ze

 o
f M

PC
or

e = 3
= 6

(b) Vary σ (DBLP)

Fig. 11. Size of MPCore with varying parameters

3 4 5 6 7
101

102

103

104

105

Nu
m

be
r o

f M
PC

liq
ue

s

= 3
= 6

(a) Vary k (DBLP)

3 4 5 6 7

101

102

103

104

105

Nu
m

be
r o

f M
PC

liq
ue

s

k = 3
k = 6

(b) Vary σ (DBLP)

Fig. 12. Number of MPCliques with varying parameters

Exp-8: Size of the transformed graph. Table 6 reports
the size of the transformed graph G̃ = (Ṽ , Ẽ) generated
by PECluster under the default parameter setting. We can
observe that the size of G̃ scales linearly w.r.t. the original
graph size. Moreover, the degeneracy δ̃ of G̃ is very small
in all datasets. The number of MPCliques is clearly less than
(4m2k−2σ−1 − δ̃)3δ̃/3, and the size of MAXPClique is less
than δ̃, which confirms our theoretical analyses in Section 5.2
and 5.3.
Exp-9: Size of MPCore and number of MPCliques with
varying σ, k. Fig. 11 shows the size of MPCore with varying
σ, k on DBLP. Fig. 12 shows the number of MPCliques with
varying σ, k on DBLP. The results on the other datasets
are consistent. As shown in Fig. 11(a) and 12(a), the size
of MPCore and number of MPCliques drop sharply with
an increasing k. Likewise, we can observe from Fig. 11(b)
and 12(b) that the size of MPCore and number of MPCliques
decreases with a growing σ. The reason is that with a large
k or σ, the periodic constraint will be strong, thus the
size of MPCore and number of MPCliques decreases. These
results confirm the definitions of MPCore, MPCliques and
our theoretical analysis in Theorem 6.
Exp-10: Distribution of the size of MPCliques with varying
parameters. Fig. 13 shows the distribution of the size of
MPCliques on Enron and DBLP with parameters σ = 3 (or
σ = 6) and k = 3. Similar trends can also be observed on
the other datasets and using other parameter settings. We
can see that most MPCliques has a small size on Enron and
DBLP, and very few MPCliques have a size no less than 10.
This is because a MPClique must satisfy the periodic clique
constraint which may rule out large cliques.
Exp-11: Case study on DBLP. We conduct a case study
using DBLP to further evaluate the effectiveness of various
models. As MPClique is the most cohesive model, we use

4 5 6 7 8 9 ≥10
0
10
20
30
40
50
60

�

σ=3
σ=6

(a) Enron

4 5 6 7 8 9 ≥10
0

20

40

60

80

�

σ=3
σ=6

(b) DBLP

Fig. 13. Distribution of the size of MPCliques (k = 3)

Magdalena Balazinska

Mitch Cherniack

Samuel Madden

Joseph M. Hellerstein

Stanley B. Zdonik

Ugur Çetintemel

Nesime Tatbul

Donald Carney

Christian Convey

Andrew Pavlo

Jeremy Kepner

Jennie Duggan

Michael Stonebraker

Michael J. Carey
David Maier

Ihab F. Ilyas

Mourad Ouzzani

Ziawasch Abedjan

(a) PNCluster

Magdalena Balazinska

Mitch Cherniack

Samuel Madden

Stanley B. Zdonik

Ugur Çetintemel

Nesime Tatbul

Donald Carney

Christian Convey
Andrew Pavlo

Jeremy Kepner

Jennie Duggan

Michael Stonebraker

Ihab F. Ilyas

Mourad Ouzzani

Ziawasch Abedjan

(b) PECluster (c) MPClique

Fig. 14. Case study on DBLP

MPClique to compare with other baselines here. Fig. 14
shows three communities of Prof. Michael Stonebraker ob-
tained by PNCluster, PECluster and MPClique respectively,
using default parameters. As can be seen in Fig. 14(c), the
community obtained by MPClique contains two cliques, and
each clique comprises the close and long-term collaborators
of Prof. Michael Stonebraker. Moreover, we find that each
clique appears in 2015, 2016, and 2017 year, suggesting
that there are two periodic communities containing Prof.
Michael Stonebraker in recent years. From Figs. 14(a-b), we
can see that the communities obtained by PNCluster and
PECluster not only contain two MPCliques in Fig. 14(c),
but they also include some short-term collaborators of Prof.
Michael Stonebraker who did not collaborate with him peri-
odically, which indicates that both PNCluster and PECluster
models cannot fully capture the periodic patterns of a com-
munity. These results further confirm that MPClique is more
effective than the baselines to detect periodic communities
in temporal graphs.

7 RELATED WORK

Temporal graph analysis. Our work is related to the studies
on temporal graph analysis. Yang et al. [17] proposed an
algorithm to detect frequent changing components in the
temporal graph. Huang et al. [18] investigated the minimum
spanning tree problem in temporal graphs. Gurukar et al.
[19] presented a model to identify the recurring subgraphs
that have similar sequence of information flow in temporal
graphs. Wu et al. [20] proposed an efficient algorithm to
answer the reachability and time-based path queries in
temporal graphs. Yang et al. [3] studied a problem of finding
a set of diversified quasi-cliques from a temporal graph.
Wu et al. [7] proposed a temporal k-core model based on
the counts of temporal edges. Ma et al. [4] investigated a
dense subgraph problem in temporal graphs. Li et al. [5]
developed an efficient algorithm to identify persistent com-
munities in temporal graphs. To the best of our knowledge,
our work is the first to study the problem of mining periodic
communities in temporal graphs.
Community detection in dynamic graphs. There is a
number of studies for mining communities on dynamic

Page 17 of 31 Transactions on Knowledge and Data Engineering

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60

IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, VOL. XX, NO. X, MARCH 2020 17

networks [21]. Most of them aim to identify and analyze
the community structures that evolve over time. Lin et al.
[22] proposed a probabilistic generative model to analyze
evolving communities. Chen et al. [23] developed an algo-
rithm for tracking community dynamics. Agarwal et al. [24]
studied how to find dense clusters for dynamic microblog
streams. Li et al. [25] devised an algorithm to maintain the
k-core in large dynamic graphs. Rossetti et al. [26] proposed
an online iterative algorithm for tracking the evolution of
communities. Unlike these studies, our work focuses mainly
on detecting periodic communities in temporal graphs.
Maximal cliques enumeration. Our work is also related
to the maximal clique enumeration problem. Notable algo-
rithms for enumerating maximal clique include the classic
Bron-Kerbosch algorithm [13] and its variants [8], [14], [27].
Tomita et al. [14] proved that the Bron-Kerbosch algorithm
with a pivoting technique is essentially optimal according
to the worst-case bound. Eppstein et al. [8] developed
an algorithm which is fixed-parameter tractable w.r.t. the
degeneracy of the graph. Cheng et al. [27] proposed an
external-memory algorithm for clique enumeration in mas-
sive graphs. More recently, Himmel [28] developed a Bron-
Kerbosch style algorithm for enumerating maximal cliques
in temporal graph. Their work, however, cannot be used to
enumerate periodic cliques.
Periodic behavior mining. The studies of periodic behavior
mining are also related to our work. Notable examples are
summarized below. Li et al. [29] addressed the problem of
mining periodic behaviors for moving objects. Kurashima
et al. [30] modeled the periodic actions in real-world (e.g.,
eating, sleep, and exercise) to make predictions for future
actions. Radinsky et al. [31] also developed a temporal
model to predict the periodic actions. Lahiri et al. [32]
investigated a problem of mining periodic subgraphs in
dynamic social networks. Their work, however, does not
consider the communities in the periodic subgraphs, thus
cannot be used for mining periodic communities.

8 CONCLUSION

In this work, we study a problem of mining periodic com-
munities in temporal graph. We propose novel models,
including σ-periodic k-core and σ-periodic k-clique, that
represents a periodic community in temporal networks.
We first develop several new pruning techniques to sub-
stantially reduce the size of the temporal graph. Then, we
transform the reduced temporal graph into a static graph.
Next, we propose a decomposition algorithm to search max-
imal σ-periodic k-core, a Bron-Kerbosch style algorithm to
enumerate all maximal σ-periodic k-cliques, and a branch-
and-bound style algorithm to find maximum σ-periodic
clique. Comprehensive experiments on five real-life tem-
poral networks demonstrate the efficiency, scalability and
effectiveness of our algorithms.

ACKNOWLEDGEMENT

This work was partially supported by (i) NSFC Grants
61772346, 61732003, U1809206, 61932004, 61702435; (ii) Fun-
damental Research Funds for the Central Universities Grant
N181605012.

REFERENCES

[1] P. Vanhems, A. Barrat, C. Cattuto, J.-F. Pinton, N. Khanafer,
C. Regis, B. a Kim, B. Comte, and N. Voirin, “Estimating potential
infection transmission routes in hospital wards using wearable
proximity sensors,” PLoS ONE, vol. 8, p. e73970, 2013.

[2] J. Fournet and A. Barrat, “Contact patterns among high school
students,” PLOS ONE, vol. 9, p. e107878, 2014.

[3] Y. Yang, D. Yan, H. Wu, J. Cheng, S. Zhou, and J. C. S. Lui,
“Diversified temporal subgraph pattern mining,” in KDD, 2016.

[4] S. Ma, R. Hu, L. Wang, X. Lin, and J. Huai, “Fast computation of
dense temporal subgraphs,” in ICDE, 2017.

[5] R.-H. Li, J. Su, L. Qin, J. X. Yu, and Q. Dai, “Persistent community
search in temporal networks,” in ICDE, 2018.

[6] I. R.Fischhoff, S. R.Sundaresan, J. Cordingley, H. M.Larkin, and
M.-J. Sellier, “Social relationships and reproductive state influence
leadership roles in movements of plains zebra, equus burchellii,”
Animal Behaviour, vol. 73, no. 5, pp. 825–831, 2007.

[7] H. Wu, J. Cheng, Y. Lu, Y. Ke, Y. Huang, D. Yan, and H. Wu, “Core
decomposition in large temporal graphs,” in IEEE International
Conference on Big Data, 2015.

[8] D. Eppstein, M. Löffler, and D. Strash, “Listing all maximal cliques
in large sparse real-world graphs,” ACM Journal of Experimental
Algorithmics, vol. 18, 2013.

[9] V. Batagelj and M. Zaversnik, “An O(m) algorithm for cores
decomposition of networks,” CoRR cs.DS/0310049, 2003.

[10] S. B. Seidman, “Network structure and minimum degree,” Social
networks, vol. 5, no. 3, pp. 269–287, 1983.

[11] L. Chang, J. X. Yu, L. Qin, X. Lin, C. Liu, and W. Liang, “Efficiently
computing k-edge connected components via graph decomposi-
tion,” in SIGMOD, 2013.

[12] X. Huang, H. Cheng, L. Qin, W. Tian, and J. X. Yu, “Querying
k-truss community in large and dynamic graphs,” SIGMOD, 2014.

[13] C. Bron and J. Kerbosch, “Algorithm 457: finding all cliques of an
undirected graph,” Communications of the ACM, vol. 16, no. 9, pp.
575–577, 1973.

[14] E. Tomita, A. Tanaka, and H. Takahashi, “The worst-case time
complexity for generating all maximal cliques and computational
experiments,” Theoretical Computer Science, vol. 363, no. 1, pp. 28–
42, 2006.

[15] Q. Wu and J. Hao, “A review on algorithms for maximum clique
problems,” European Journal of Operational Research, vol. 242, no. 3,
pp. 693–709, 2015.

[16] W. Hasenplaugh, T. Kaler, T. B. Schardl, and C. E. Leiserson,
“Ordering heuristics for parallel graph coloring,” in SPAA, 2014,
pp. 166–177.

[17] Y. Yang, J. X. Yu, H. Gao, J. Pei, and J. Li, “Mining most frequently
changing component in evolving graphs,” World Wide Web, vol. 17,
no. 3, pp. 351–376, 2014.

[18] S. Huang, A. W. Fu, and R. Liu, “Minimum spanning trees in
temporal graphs,” in SIGMOD, 2015.

[19] S. Gurukar, S. Ranu, and B. Ravindran, “COMMIT: A scalable ap-
proach to mining communication motifs from dynamic networks,”
in SIGMOD, 2015.

[20] H. Wu, Y. Huang, J. Cheng, J. Li, and Y. Ke, “Reachability and
time-based path queries in temporal graphs,” in ICDE, 2016.

[21] G. Rossetti and R. Cazabet, “Community discovery in dynamic
networks: A survey,” ACM Comput. Surv., vol. 51, no. 2, pp. 35:1–
35:37, 2018.

[22] Y.-R. Lin, Y. Chi, S. Zhu, H. Sundaram, and B. L. Tseng, “Facetnet:
A framework for analyzing communities and their evolutions in
dynamic networks,” in WWW, 2008.

[23] Z. Chen, K. A. Wilson, Y. Jin, W. Hendrix, and N. F. Samatova,
“Detecting and tracking community dynamics in evolutionary
networks,” in ICDMW, 2010.

[24] M. K. Agarwal, K. Ramamritham, and M. Bhide, “Real time dis-
covery of dense clusters in highly dynamic graphs: Identifying real
world events in highly dynamic environments,” PVLDB, vol. 5,
no. 10, 2012.

[25] R. H. Li, J. X. Yu, and R. Mao, “Efficient core maintenance in
large dynamic graphs,” IEEE Transactions on Knowledge and Data
Engineering, vol. 26, no. 10, pp. 2453–2465, 2014.

[26] G. Rossetti, L. Pappalardo, D. Pedreschi, and F. Giannotti, “Tiles:
an online algorithm for community discovery in dynamic social
networks,” Machine Learning, vol. 106, no. 8, pp. 1213–1241, 2017.

[27] J. Cheng, Y. Ke, A. W.-C. Fu, J. X. Yu, and L. Zhu, “Finding
maximal cliques in massive networks,” ACM Trans. Database Syst.,
vol. 36, no. 4, pp. 21:1–21:34, 2011.

Page 18 of 31Transactions on Knowledge and Data Engineering

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60

IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, VOL. XX, NO. X, MARCH 2020 18

[28] A.-S. Himmel, H. Molter, R. Niedermeier, and M. Sorge, “Adapt-
ing the bron–kerbosch algorithm for enumerating maximal cliques
in temporal graphs,” Social Network Analysis and Mining, vol. 7,
no. 1, pp. 7–35, 2017.

[29] Z. Li, B. Ding, J. Han, R. Kays, and P. Nye, “Mining periodic
behaviors for moving objects,” in KDD, 2010.

[30] T. Kurashima, T. Althoff, and J. Leskovec, “Modeling Interdepen-
dent and Periodic Real-World Action Sequences,” in WWW, 2018.

[31] K. Radinsky, K. Svore, S. Dumais, J. Teevan, A. Bocharov, and
E. Horvitz, “Modeling and predicting behavioral dynamics on the
web,” in WWW, 2012.

[32] M. Lahiri and T. Y. Berger-Wolf, “Periodic subgraph mining in
dynamic networks,” Knowledge and Information Systems, vol. 24,
no. 3, pp. 467–497, 2010.

Hongchao Qin is currently a Ph.D. Candidate in
Northeastern University, China. He received the
B.S. degree in mathematics and M.E. degree in
computer science from Northeastern University
in 2013 and 2015, respectively. His current re-
search interests include social network analysis
and data-driven graph mining.

Rong-Hua Li received the Ph.D. degree from the
Chinese University of Hong Kong in 2013. He is
currently an Associate Professor at Beijing Insti-
tute of Technology, Beijing, China. His research
interests include graph data management and
mining, social network analysis, graph compu-
tation systems, and graph-based machine learn-
ing.

Ye Yuan received the BS, MS, and PhD degrees
in computer science from Northeastern Univer-
sity, in 2004, 2007, and 2011, respectively. He is
now a professor in the Department of Computer
Science, Northeastern University, China. His re-
search interests include graph databases, prob-
abilistic databases, and social network analysis.

Guoren Wang received the BSc, MSc, and PhD
degrees from the Department of Computer Sci-
ence, Northeastern University, China, in 1988,
1991 and 1996, respectively. Currently, he is a
Professor in the Department of Computer Sci-
ence, Beijing Institute of Technology, Beijing,
China. His research interests include XML data
management, query processing and optimiza-
tion, bioinformatics, high dimensional indexing,
parallel database systems, and cloud data man-
agement. He has published more than 100 re-

search papers.

Weihua Yang is currently a professor at Taiyuan
University of Technology, Taiyuan, China. He
received his Ph.D degree at Laboratoire de
Recherche en Informatique-CNRS, Department
of computer science, Pairs-Sud University, Paris,
France, in 2013. His research interests are in
the area of graph theory, connectivity and hamil-
tonicity of graphs, design and analysis of graph
algorithm.

Lu Qin received his bachelor degree from de-
partment of Computer Science and Technology
in Renmin University of China in 2006, and
PhD degree from department of Systems En-
gineering and Engineering Management in the
Chinese University of Hong Kong in 2010. He
is now an associate professor in the Centre
of Quantum Computation and Intelligent Sys-
tems (QCIS) in University of Technology, Sydney
(UTS). His research interests include parallel
big graph processing, I/O efficient algorithms on

massive graphs, and keyword search in graph data.

Page 19 of 31 Transactions on Knowledge and Data Engineering

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60

Mining Periodic Cliques in Temporal Networks

Hongchao Qin†, Rong-Hua Li‡, Guoren Wang‡, Lu Qin#, Yurong Cheng‡, Ye Yuan†
†Northeastern University, China; ‡Beijing Institute of Technology, China; #University of Technology Sydney, Australia

{qhc.neu;lironghuascut}@gmail.com; wanggrbit@126.com; Lu.Qin@uts.edu.au; yrcheng@bit.edu.cn; yuanye@mail.neu.edu.cn

Abstract—Periodicity is a frequently happening phenomenon
for social interactions in temporal networks. Mining periodic
communities are essential to understanding periodic group behav-
iors in temporal networks. Unfortunately, most previous studies
for community mining in temporal networks ignore the periodic
patterns of communities. In this paper, we study a problem
of seeking periodic communities in a temporal network, where
each edge is associated with a set of timestamps. We propose a
novel model, called maximal σ-periodic k-clique, that represents
a periodic community in temporal networks. Specifically, a
maximal σ-periodic k-clique is a clique with size larger than
k that appears at least σ times periodically in the temporal
graph. We show that the problem of enumerating all those
periodic cliques is NP-hard. To compute all of them efficiently,
we first develop two effective graph reduction techniques to
significantly prune the temporal graph. Then, we present an
efficient enumeration algorithm to enumerate all maximal σ-
periodic k-cliques in the reduced graph. The results of extensive
experiments on five real-life datasets demonstrate the efficiency,
scalability, and effectiveness of our algorithms.

I. INTRODUCTION

In many real-life networks, such as communication net-
works, scientific collaboration networks, and social networks,
the links are often associated with temporal information. For
example, in a face-to-face contact network [1], [2], each
edge (u, v, t) denotes a contact between two individuals u
and v at time t. In an email communication network, each
email contains a sender and a receiver, as well as the time
when the email was sent. In a scientific collaboration network
(e.g., DBLP), each edge (u, v, t) represents that two authors
u and v coauthored a paper at time t. The networks that
involve temporal information are typically termed as temporal
networks [3]–[5].

Periodicity is a frequently happening phenomenon for social
interactions in temporal networks. Weekly group meeting,
monthly birthday party, and yearly family reunions − these
are regular and significant patterns in temporal interaction
networks. Mining such periodic group patterns are essential to
understanding and predicting group behaviors in a temporal
network. In this paper, we investigate a novel data mining
problem for temporal networks: periodic community mining,
or the detection of all communities that occur at regular
time intervals, and show that the proposed technique can be
applied to discover the inherent periodicity of communities in
a temporal network. Mining the periodic community patterns
could be very useful for many practical applications, two of
which are listed as follows.

Periodic movement behavior discovery. Consider an appli-
cation in studying the collective movement behaviors of wild
herds of animals [6]. It is well known that the movement
behavior of wild herds of animals often exhibits periodic
group patterns. In practice, ecologists can tag the animals with
tracking sensors to study the collective movement patterns of
the animals. In this application, the interactions of the animals
(e.g., two animals within a short distance may be considered

as an interaction) can be modeled as a temporal network. By
mining periodic communities in this temporal network, we are
able to identify periodic group movement behaviors of wild
animals. Mining such periodic group movement behavior of
wild animals can be of ecological interests [6]. For example,
if a herd of animals fail to follow the periodic mitigation
behavior, it could be a signal of abnormal environment change.

Predicting future activities. Periodic pattern is a predictable
pattern, because it repeatedly occurs at regular time intervals.
Once we identify a periodic activity, we may predict the
same activity will appear within a regular time interval. Based
on this observation, we are capable of inferring the future
interactions of a group of individuals in a temporal network
by mining periodic communities. Taking a temporal scientific
collaboration network DBLP as an example, suppose that four
researchers A,B,C, and D in DBLP have collaborated with
each other in 2015, 2016, and 2017 years. Then, we can infer
that these four researchers are likely to coauthor papers in
2018 year.

Recently, the problem of mining communities on temporal
graphs has attracted much attention due to numerous appli-
cations [4], [5], [7]. For example, Wu et al. [7] proposed
a temporal k-core model to find cohesive subgraphs in a
temporal network. Ma et al. [4] devised a dense subgraph
mining algorithm to identify cohesive subgraphs in a temporal
network. Li et al. [5] developed an algorithm to detect persis-
tent communities in a temporal graph. All these community
mining algorithms do not consider the periodic patterns of
communities, thus cannot be applied to identify periodic
communities. To the best of our knowledge, we are the first
to study the periodic community mining problem, define the
periodic clique model and propose efficient solutions to find
periodic cliques in temporal graphs. The main contributions
of our work are summarized as follows.

Novel model. We propose a novel maximal σ-periodic k-
clique model to characterize periodic communities in a tem-
poral graph, since the clique is the most cohesive structure
in a graph and it is a traditional model for community. We
show that the traditional maximal clique problem is a special
case of the problem of enumerating all maximal σ-periodic k-
cliques in a temporal graph. Since the problem of enumerating
maximal cliques is NP-hard [8], our problem is also NP-hard.

New algorithms. First, we develop two novel relaxed periodic
clique models, called WPCore and SPCore, based on the con-
cept of k-core [9]. On the basis of the WPCore and SPCore,
we develop two efficient and powerful graph reduction tech-
niques to prune the input temporal graph. We show that both
WPCore and SPCore can be computed in near-linear time
and space complexity. Second, we propose an enumeration
algorithm based on a carefully-design graph transformation
technique to efficiently enumerate all maximal σ-periodic k-
cliques. In addition, we present a theoretical analysis for the

1130

2019 IEEE 35th International Conference on Data Engineering (ICDE)

2375-026X/19/$31.00 ©2019 IEEE
DOI 10.1109/ICDE.2019.00104

Page 20 of 31Transactions on Knowledge and Data Engineering

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60

number of such cliques in a temporal graph based on a newly-
proposed concept called σ-periodic degeneracy δ̂. We also
show that the problem of enumerating all maximal σ-periodic
k-cliques is fixed-parameter tractable with respect to δ̂, which
is often very small in practice as confirmed in our experiments.

Extensive experimental results. We conduct comprehensive
experiments on five real-life temporal networks. The results
show that our best algorithm is much faster than the baselines
on all datasets under most parameter settings. For example, our
best algorithm can identify all maximal σ-periodic k-cliques
in around 400 seconds on a large temporal graph with more
than 1.7 million nodes and 12 million edges. The baseline
algorithm, however, cannot get the results in 2 days. We also
examine two case studies to evaluate the effectiveness of our
model. The results show that our model is indeed able to
identify many interesting periodic communities that can not
be found by the other models.

Organization. Section II introduces the model of maximal
σ-periodic k-clique and formulates our problem. The graph
reduction techniques are proposed in Section III. Section IV
proposes the enumeration algorithm and presents an analysis
of the number of those cliques. The experiments are shown
in Section V. We review the related work in Section VI, and
conclude this work in Section VII.

II. PRELIMINARIES

Let G = (V, E) be an undirected temporal graph, where V
and E denote the set of nodes and the set of temporal edges
respectively. Let n = |V| and m = |E| be the number of
nodes and temporal edges respectively. Each temporal edge
e ∈ E is a triplet (u, v, t), where u, v are nodes in V , and t is
the interaction time between u and v. We assume that t is an
integer, because the timestamp is an integer in practice. For a
temporal graph G, the de-temporal graph of G denoted by G =
(V,E) is a graph that ignores all the timestamps associated
with the temporal edges. More formally, for the de-temporal
graph G of G, we have V = V and E = {(u, v)|(u, v, t) ∈ E}.
Let Nu(G) = {v|(u, v) ∈ E} be the set of neighbor nodes of
u, and du(G) = |Nu(G)| be the degree of u in G. A graph
S = (VS , ES) is called a subgraph of G = (V,E) if VS ⊆ V
and ES ⊆ E. A subgraph S = (VS , ES) is referred to as an
induced subgraph of G if ES = {(u, v)|u, v ∈ VS , (u, v) ∈
E}. Similarly, a temporal subgraph S = (VS , ES) is referred
to as an induced temporal subgraph of G if VS ⊆ V and
ES = {(u, v, t)|u, v ∈ VS , (u, v, t) ∈ E}. For convenience, we
use the notion S ⊆ G (S ⊂ G if S �= G) to represent that S
is a subgraph of G.

Given a temporal graph G, we can extract a series of
snapshots based on the timestamps. Let T = {t|(u, v, t) ∈ E}
be the set of timestamps. For each ti ∈ T , we can obtain a
snapshot Gi = (Vi, Ei) where Vi = {u|(u, v, ti) ∈ E} and
Ei = {(u, v)|(u, v, ti) ∈ E}. In the rest of this paper, we
assume without loss of generality that all the timestamps are
sorted in a chronological order, i.e., t1 < t2 < · · · < t|T |.
Fig. 1(a) illustrates a temporal graph G with 5 nodes and 22
temporal edges. Figs.1(b) and (c) illustrates the de-temporal
graph of G and all the five snapshots of G respectively.

Definition 1 (time support set): Given a temporal graph G,
the time support set of a subgraph S is defined as T (S) �
{ti|S ⊆ Gi}, where Gi is the i-th snapshot of G.

Definition 2 (σ-periodic time support set): Given a temporal
graph G and a parameter σ, a σ-periodic time support set of

4 ...2 31 5

v2v1

v3v1

v3v2

v4v3

v5v3

v5v4

v2v1

v3v1

v3v2

v4v3

v5v3

v5v4

v3v1

v3v2

v4v3

v5v3

v5v4

v2v1

v3v1

v3v2

v4v3

v5v3

v5v4

v1v2

v3

{2,3,4}

 {1,3,5}

(a) A temporal graph G
v5v4

v1v2

v3

(b) The de-temporal graph G

v1v2 v1v2 v1v1

v3

v5v4

v3

v5v4

v3

v5v4

v3

v5

v2

v3

G1 G2 G3 G4 G5

v2

v4

(c) The five snapshots of G
Fig. 1. Basic concepts of the temporal graph

a subgraph S, denoted by πσ(S), is a subset of T (S) such
that (1) πσ(S) = {tj1 , · · · , tjσ}, and (2) tji+1 − tji = p for
all i = 1, · · · , σ − 1 with any constant p.

By Definition 2, we can see that the timestamps of a σ-
periodic time support set forms an arithmetic sequence and
the cardinality of a σ-periodic time support set is exactly equal
to σ. Clearly, there may exist many σ-periodic time support
sets for a subgraph S. Based on Definition 2, we define the
σ-periodic subgraph below.

Definition 3 (σ-periodic subgraph): Given a temporal graph
G, its de-temporal graph G, and a parameter σ, a subgraph S
of G is called a σ-periodic subgraph if there exists a σ-periodic
time support set πσ(S) for S.

By Definition 3, any σ-periodic subgraph S ⊆ G has at
least one σ-periodic time support set πσ(S). A subgraph S is
a maximal σ-periodic subgraph if there is no other σ-periodic
subgraph S′ that satisfies S ⊂ S′. Based on the widely-used
clique model, we propose a novel σ-periodic k-clique model
to define the periodic communities as follows.

Definition 4 (σ-periodic k-clique): A σ-periodic k-clique C
is a subgraph of the de-temporal graph G such that (1) C is a
clique in G with |C| > k, and (2) C is a σ-periodic subgraph.

Note that for a typical temporal graph, many σ-periodic
cliques are small and may not be interesting to the users.
Therefore, it will be more useful to find large σ-periodic
cliques for practical applications. As a result, we focus mainly
on mining the σ-periodic cliques with size larger than k as
defined in Definition 4. Based on Definition 4, we define the
maximal σ-periodic k-clique as follows.

Definition 5 (maximal σ-periodic k-clique): A σ-periodic
k-clique C is maximal if there is no other σ-periodic k-clique
C ′ meeting C ⊂ C ′.

For convenience, in the rest of this paper, the maximal σ-
periodic k-clique is abbreviated as MPClique. Below, we use
an example to illustrate the above definitions.

Example 1: Consider a temporal graph in Fig. 1(a). Suppose
that σ = 3, k = 2. For the subgraph S = {(v1, v3), (v2, v3)},
the time support set of S is {1, 3, 4, 5}. Clearly, by Def-
inition 2, the set {1, 3, 5} is a σ-periodic time support
set of S. Therefore, the subgraph S is a σ-periodic sub-
graph by Definition 3. Note that S is not a maximal σ-
periodic subgraph because there is a σ-periodic subgraph C =
{(v1, v3), (v2, v3), (v1, v2)} that contains S. By Definition 4,
we can see that C is a σ-periodic k-clique. Moreover, it is
easy to check that C is also a maximal σ-periodic k-clique.

Based on Definition 5, we formulate the periodic community
mining problem as follows.

1131

Page 21 of 31 Transactions on Knowledge and Data Engineering

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60

Problem formulation. Given a temporal graph G and param-
eters σ and k, the goal of the periodic community mining
problem is to enumerate all the maximal σ-periodic k-cliques
(MPCliques) in G.

Hardness and challenges. We can show that the traditional
maximal clique enumeration problem is a special case of the
maximal σ-periodic k-clique enumeration problem. Consider
a temporal graph G that contains a set of snapshots G =
Gi = G2 =, · · · ,= G|T |. Clearly, in this temporal graph G,
every subgraph of G is periodic. As a result, the problem
of enumerating all maximal σ-periodic k-cliques is equivalent
to the problem of enumerating all maximal cliques (with size
larger than k) in the de-temporal graph G. Since the traditional
maximal clique enumeration problem is known to be NP-hard,
our problem is also NP-hard.

Although there is a close connection between our problem
and the maximal clique enumeration problem, the existing
maximal clique enumeration algorithms cannot be directly
applied to solve our problem. The reason is that the traditional
maximal clique enumeration algorithms, such as the Bron-
Kerbosch algorithm [10] can only identify maximal cliques
in a snapshot Gi for the timestamp ti. It is not clearly
how to apply this algorithm to derive maximal periodic
cliques. To solve our problem, a possible solution is first to
enumerate all maximal cliques in the de-temporal graph, and
then checks which of them is periodic. However, this method
is quite complicated and even intractable, because a clique in
a snapshot may contain a maximal periodic clique with less
nodes in a periodic time support set. Therefore, to identify all
MPCliques, we need to check each sub-clique of a maximal
clique in each snapshot, which is very costly. Another potential
approach is first to enumerate all periodic subgraphs, and then
applies a traditional maximal clique enumeration algorithm to
identify all MPCliques in each periodic subgraph. Clearly, this
approach may involve numerous redundant computations for
cliques with the same nodes, because the number of periodic
subgraphs may be very large and the same MPClique could be
repeatedly enumerated in many different periodic subgraphs.
Therefore, the challenge of our problem is how to efficiently
enumerate all MPCliques with less redundant computations.
In the following sections, we will develop several novel graph
reduction techniques and an efficient enumeration algorithm
to identify all MPCliques.

III. REDUCTION BY PERIODIC CORES

In this section, we propose several powerful techniques
to prune the unpromising nodes which are definitely not
contained in any maximal periodic clique. Our key idea for
graph reduction is based on the concept of k-core [11].
Before proceeding further, we first give the definition of k-
core (abbreviated as KCore) as follows.

Definition 6 (KCore): Given a de-temporal graph G of G
and a parameter k, a KCore is a maximal subgraph of G in
which every node has degree at least k, i.e., du(G) ≥ k for
u ∈ G.

It is easy to check that if a node is contained in a MPClique,
this node will have at least k neighbors in the de-temporal
graph G of G. Hence, if a node is not included in the
KCore of G, it must be not contained in any MPClique.
As a consequence, we can first prune all nodes that are not
contained in the KCore of G. This prune rule is simple, but
it may be not very effective, because it does not consider the
periodic property of the MPClique for pruning. Below, we

v4
v2

v1

 {
1

,3
, 5

,7
} v6

v7

v5

 {
1

,2
, 3

,5
}

v3

v8

 {1,2,3,5}

 {1,2,3}

 {1,2} {1,3}

 {2, 3}

 {1,3,5,7}

Fig. 2. Running example

develop a novel concept called WPCore which can capture
the periodic property for pruning.

A. The WPCore pruning rule
By Definitions 4 and 5, we can easily derive that every

node u in a MPClique satisfies a periodic degree property:
there must exist a σ-periodic subgraph in which u has degree
no less than k. Therefore, if a node is not contained in any σ-
periodic subgraph, it can be safely pruned. Since the deletion
of an unpromising node may trigger its neighbors that violate
the periodic degree property, we can iteratively prune the graph
until all nodes meet the periodic degree property. Below, we
give a definition, called (σ, k)-periodic node, to describe a
node that satisfies the periodic degree property.

Definition 7 ((σ, k)-periodic node): Given a temporal graph
G, its de-temporal graph G, and parameters σ and k, a node
v is called a (σ, k)-periodic node if and only if there exists a
σ-periodic subgraph of G in which v has degree at least k.

Recall that by Definition 3, a σ-periodic subgraph may have
many σ-periodic time support sets. Therefore, there may also
exist many σ-periodic time support sets for a (σ, k)-periodic
node v in which v has degree no less than k. Below, we give
a definition to describe all σ-periodic time support sets for a
(σ, k)-periodic node.

Based on Definition 7, we define the (σ, k)-periodic time
support set for a (σ, k)-periodic node as follows.

Definition 8 ((σ, k)-periodic time support set): Given a
temporal graph G and a (σ, k)-periodic node v, the (σ, k)-
periodic time support set of v is πk

σ(v) � [tj1 , · · · , tjσ] that
satisfies (1) tji+1

− tji = p for each i = 1, · · · , σ − 1 with a
constant p, and (2) dv(S) ≥ k, where S is a subgraph of the
snapshot Gti for each i = 1, · · · , σ − 1.

By Definition 8, for any (σ, k)-periodic node v, there is a σ-
periodic subgraph S with πσ(S) = πk

σ(v) in which dv(S) ≥ k.
Since a σ-periodic subgraph may have many σ-periodic time
support sets, there also exist many (σ, k)-periodic time support
sets for a (σ, k)-periodic node v. For convenience, we let
PT(v) be the set of all those (σ, k)-periodic time support sets
for a node v. Clearly, a node v is a (σ, k)-periodic node if and
only if PT(v) �= ∅. Based on the above definitions, we present
a new periodic cohesive subgraph model, called σ-periodic
weak k-core (abbreviated as WPCore), which will be applied
to prune unpromising nodes in enumerating all MPCliques.
The WPCore is defined as follows.

Definition 9 (σ-periodic weak k-core): Given a temporal
graph G, two integer parameters σ and k, a subset of nodes
S in G is called a σ-periodic weak k-core if it meets the
following constraints.
(1) Periodic degree constraint: each node u ∈ S is a (σ, k)-
periodic node of the temporal subgraph induced by S;
(2) Maximal constraint: there does not exist a subset of nodes
S′ in G that satisfies (1) and S ⊂ S′.

The following example illustrates the above definitions.
Example 2: Consider a temporal graph G shown in Fig. 2.

Note that in Fig. 2, each temporal edge is associated with
a set of integers denoting the set of timestamps of that

1132

Page 22 of 31Transactions on Knowledge and Data Engineering

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60

Algorithm 1: WPCore (G, σ, k)
Input: Temporal graph G = (V, E), parameters σ and k
Output: The WPCore Vw .

1 Let G = (V,E) be the de-temporal graph of G;
2 Let Gc = (Vc, Ec) be the k-core of G;
3 Q ← ∅;D ← ∅;
4 for u ∈ Vc do
5 du(Gc)← compute the degree of u in Gc;

6 (flag, ˜PTu)←ComputePeriod (G, σ, k, u, Vc);
7 if flag = 0 then
8 du(Gc)← 0; Q.push(u);

9 while Q �= ∅ do
10 v ← Q.pop(); D ← D ∪ {v};
11 for w ∈ Nv(Gc), s.t. du(Gc) ≥ k do
12 dw(Gc)← dw(Gc)− 1;
13 if dw(Gc) < k then Q.push(w);
14 else
15 (flag, ˜PTw)←ComputePeriod (G, σ, k, w, Vc \D);
16 if flag = 0 then
17 dw(Gc)← 0; Q.push(w);

18 return Vw ← Vc \D ;

edge. Clearly, the de-temporal graph G of G is a 3-core,
as every node in G has at least 3 neighbors. For node v4,
we can see that it has degree no less than 3 in timestamps
{1, 2, 3, 5, 7}. Suppose that σ = 3, k = 3. Then, we can
derive that v4 is a (σ, k)-periodic node. This is because there
exists a σ-periodic subgraph S = {(v4, v3), (v4, v6), (v4, v7)}
in which dv4(S) ≥ 3, and the corresponding (σ, k)-periodic
time support set for v4 is [1, 2, 3] (i.e., πk

σ(v4) = [1, 2, 3]). It
is easy to check that there are three (σ, k)-periodic time support
sets for v4 which are [1, 2, 3], [1, 3, 5] and [3, 5, 7]. Thus, we
have PT(v4) = {[1, 2, 3], [1, 3, 5], [3, 5, 7]}. Also, we can find
that v8 is not a (σ, k)-periodic node, because no σ-periodic
subgraph contains v8. By Definition 9, we can obtain that
{v1, · · · , v7} is a WPCore. �

Below, we show two important properties of the WPCore
which will be used for pruning in enumerating all MPCliques.

Lemma 3.1: Any node in a MPClique must be contained in
the WPCore of G.

Lemma 3.2: Given a temporal graph G, parameters σ and
k, the WPCore is unique in G if it exists.

Based on Lemmas 3.1 and 3.2, we can first compute the
WPCore S of G, and then enumerate all MPCliques on the
temporal subgraph induced by the nodes in S. The remaining
question is how can we efficiently compute the WPCore.
Below, we develop two efficient algorithms to efficiently
calculate the WPCore.

The basic WPCore algorithm. Similar to the traditional k-
core algorithm [9], a basic solution to compute the WPCore
is to peel the nodes from G that violate the periodic degree
property. Since the deletion of a node u may result in u’s
neighbors no longer satisfying the periodic degree property,
we need to iteratively process u’s neighbors. Such an iterative
peeling procedure terminates until no node can be deleted.
When the algorithm completes, the remaining nodes form the
WPCore. The detailed description of our algorithm is shown
in Algorithm 1.

Algorithm 1 first computes the KCore Gc = (Vc, Ec) in the
de-temporal graph (lines 1-2), because the WPCore is clearly
contained in the KCore. Then, for each node u in Vc, the
algorithm invokes Algorithm 2 to checks whether u is a (σ, k)-
periodic node or not (lines 4-6). If a node u is not a (σ, k)-
periodic node, it will be pushed into a queue Q (lines 7-8).

Subsequently, the algorithm iteratively processes the nodes in
Q. In each iteration, the algorithm pops a node v from Q
and uses a set D to maintain all the deleted nodes (line 10).
For each neighbor node w of v, the algorithm updates dw(Gc)
(lines 12). If the revised dw(Gc) is smaller than k, w is clearly
not a (σ, k)-periodic node. As a consequence, the algorithm
pushes it into Q which will be deleted in the next iterations
(line 13). Otherwise, the algorithm invokes Algorithm 2 to
determine whether w is a (σ, k)-periodic node (lines 14-15).
If w is not a (σ, k)-periodic node, the algorithm sets dw(Gc)
to 0, and pushes it into Q. The algorithm terminates when Q
is empty. At this moment, the remaining nodes Vc \D is the
WPCore of G. Below, we describe the implementation details
of Algorithm 2.

Recall that we need to compute the set of (σ, k)-periodic
time support set for a node v, i.e., PT(v), to check whether v
is a (σ, k)-periodic node or not. The node v is a (σ, k)-periodic
node if and only if PT(v) is nonempty. By Definition 8,
a (σ, k)-periodic time support set can be represented as an
arithmetic sequence of the timestamps. In Algorithm 2, we

devise a new data structure ˜PTv to represent the set of (σ, k)-
periodic time support set for v (i.e., PT(v)). Specifically,
˜PTv is a set where each element TS in ˜PTv is a four-tuple
[s, i, l, ArrD] representing an arithmetic sequence. In the four-
tuple [s, i, l, ArrD], s denotes the starting timestamp of the
arithmetic sequence, i is the common difference, l represents
the number of terms of the arithmetic sequence, and ArrD
(Array of Degree) is an array that stores the degree of u at
each timestamp of the arithmetic sequence.

Based on this data structure, the algorithm makes use of
a queue PQ to maintain all the candidates of the arithmetic
sequences. The algorithm also uses a set StartS to store all the
starting timestamps of the arithmetic sequences. Each element
in StartS is a two-tuple [s, d], where s denotes the starting
timestamp and d denotes the degree of u at s (lines 15-17).
Initially, both PQ and StartS are set to empty sets (line 1).
Then, the algorithm enumerates all the timestamps from t1
to t|T | (line 2). For each timestamp, the algorithm calculates
the number of neighbors of u (denoted by du) that are both
in Gt (the snapshot at the timestamp t) and the node set
F (lines 3-4), i.e., |Nu(Gt) ∩ F |. If du ≥ k, the algorithm
explores all the candidate arithmetic sequences in PQ (lines 5-
6). For each candidate TS ∈ PQ, if (t − TS.s)%TS.i = 0,
we may extend the arithmetic sequence TS by t (line 7).
If (t − TS.s)/TS.i �= TS.l, we know that t cannot extend
the current arithmetic sequence TS. Since the remaining
timestamps are no less than t, they also cannot extend TS.
Therefore, we can safely delete the candidate TS (lines 8-9).
Otherwise, the algorithm can augment the arithmetic sequence
TS by adding t into TS. In this case, we increase TS.l by 1,
and add du into the array TS.ArrD (line 8). If the augmented
arithmetic sequence TS has σ terms, TS represents a valid
(σ, k)-periodic time support set for u (line 11). As a result,

the algorithm adds TS into ˜PTu and set flag to 1, denoting
that u is a (σ, k)-periodic node (line 12). At this moment,
the algorithm can early terminate. Note that Algorithm 2 can
also be applied to compute the complete set of (σ, k)-periodic
time support sets for u. Clearly, if t − TS.s > (σ − 1)TS.i,
t cannot grow the current arithmetic sequence TS, and TS
is no longer to be a valid (σ, k)-periodic time support set.
Therefore, the algorithm deletes TS from PQ (line 14). For
each starting timestamp start.s, the algorithm makes use of

1133

Page 23 of 31 Transactions on Knowledge and Data Engineering

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60

Algorithm 2: ComputePeriod (G, σ, k, u, F)

Input: Temporal graph G = (V, E), parameters σ, k, node u, and node set F
Output: A boolean variable flag and PT(u)

1 PQ← ∅; StartS ← ∅; ˜PTu ← ∅; flag ← 0;
2 for t← t1 : t|T | do
3 Let Gt be the snapshot of G at timestamp t;
4 du ← |Nu(Gt) ∩ F |;
5 if du ≥ k then
6 for each TS ← [s, i, l, ArrD] ∈ PQ do
7 if (t− TS.s)%TS.i = 0 then
8 if (t− TS.s)/TS.i �= TS.l then
9 PQ.pop(TS); continue;

10 TS.l← TS.l + 1; TS.ArrD ← TS.ArrD ∪ {du};
11 if TS.l = σ then
12 ˜PTu ← ˜PTu ∪ {TS}; flag ← 1;PQ.pop(TS);
13 /* For WPCore, the algorithm can early terminate. */

14 if t− TS.s > (σ − 1)TS.i then PQ.pop(TS);

15 for start← [s, d] ∈ StartS do
16 PQ.push([start.s, t− start.s, 2, {start.d, du}]);

17 StartS ← StartS ∪ {[t, du]};

18 return (flag, ˜PTu);

the current timestamp t and start.s to generate an initial
arithmetic sequence (lines 15-16). The algorithm also applies
the current timestamp t to generate a new starting timestamp
which will be used for the next iterations (line 17). Since
Algorithm 2 explores all the possible arithmetic sequences,

it is able to correctly compute ˜PTu. The following example
illustrates how Algorithm 2 works.

Example 3: Reconsider the temporal graph in Fig. 2.
Suppose that σ = 3, k = 3. It is easy to derive that v4 has
degree no less than 3 at the timestamps {1, 2, 3, 5, 7}. Fig. 3
illustrates the candidate arithmetic sequences when the algo-
rithm processes a timestamp in {1, 2, 3, 5, 7}. The first row in
Fig. 3 shows the starting timestamp of the candidate arithmetic
sequences. When t = 1, the starting timestamp is {1}, and
the set StartS = {[1, 6]} (since dv4 = 6 at timestamp 1).
When t = 2, there is a candidate arithmetic sequence {1, 2},
and the queue PQ has an element [1, 1, 2, {6, 5}]. Similarly,
when t = 3 there are three candidates which are {1, 2, 3},
{1, 3}, and {2, 3}. Clearly, {1, 2, 3} is a valid (σ, k)-periodic
time support set for v4. When t = 5, the timestamp 5 cannot
extend {2, 3}, thus {2, 3} is deleted. It is easy to check that
the timestamp 5 can extend {1, 3}, {1}, {2}, and {3}. As a
result, we can obtain four candidates {1, 3, 5}, {1, 5}, {2, 5},
and {3, 5}. Likewise, when t = 7, we have seven candidates
which are {3, 5, 7}, {1, 5}, {2, 5}, {1, 7}, {2, 7}, {3, 7} and
{5, 7}. Note that our algorithm cannot delete the candidate
{1, 5} when t = 7, because {1, 5} could be extended by
t > 7 (similar for {2, 5}). Clearly, we can obtain three (σ, k)-
periodic time support sets for v4 which are [1, 2, 3], [1, 3, 5],
and [3, 5, 7]. �
Analysis of Algorithm 1. Below, we analyze the correctness
and complexity of Algorithm 1.

Theorem 3.1: Algorithm 1 correctly computes the WPCore.
Proof: Let S = Vc\D. Clearly, by Algorithm 1, each node in

S is a (σ, k)-periodic node of the temporal subgraph induced
by S. To prove that S is a WPCore, we need to show the
maximal property of S. Suppose to the contrary that there is a
set S′ such that (1) every node in S′ is a (σ, k)-periodic node
of the temporal subgraph induced by S′, and (2) S ⊂ S′.
Since S ⊂ S′, there exists a (σ, k)-periodic node u ∈ S′ \ S
in the temporal subgraph induced by S′. Note that by our

31 2 5 7

1 1

2

2 1

2

32

3

3

3

5

5 3

5

75

7

7

1 2

3 53 5

1

5

2

5 77 7

5

Fig. 3. Illustration of using Algorithm 2 to compute PT(v4)

assumption, every node in S′ has degree no less than k in a σ-
periodic subgraph of the temporal graph induced by S′. Thus,
Algorithm 1 cannot delete the node u. Therefore, u ∈ Vc \D
which is a contradiction. �

The complexity of Algorithm 1 is shown as follows.
Lemma 3.3: For a temporal graph G with |T | timestamps,

there are at most O(|T |2σ−1) (σ, k)-periodic time support sets
for each node in G.

Based on Lemma 3.3, we have the following results.
Corollary 3.1: The time and space complexity of Algo-

rithm 2 for computing ˜PTu is O(|T |du(G) + |T |2σ−1) and
O(|T |2) respectively.

Theorem 3.2: The time and space complexity of Algorithm
1 is O(m|T |2σ−1) and O(m+ n+ |T |2) respectively.

Note that |T | (the number of snapshots) is typically not
very large in practical temporal graphs. For example, in
DBLP temporal network, there are at most 60 snapshots if
we extract a snapshot by year (each snapshot represents a
co-authorship network in one year). Hence, the worst-case
time complexity of our algorithm is near linear w.r.t. the size
of the temporal graph. Moreover, the practical performance
of Algorithm 1 should be much better than the worst-case
time complexity. This is because Algorithm 1 is integrated
with a degree pruning rule (see lines 12-13 in Algorithm 1),
which significantly decreases the number of calls of the
ComputePeriod procedure. In addition, the ComputePeriod
procedure can early terminate once the algorithm find a valid
(σ, k)-periodic time support set, which can further reduce the
time cost of Algorithm 1.

An improved WPCore algorithm. Although Algorithm 1
is efficient in practice, it still has two limitations. First,

Algorithm 1 needs to invoke Algorithm 2 to compute ˜PTu

for every node u ∈ Vc (line 6), which is very costly for high-
degree nodes. Second, when deleting a node u, Algorithm 1

has to call Algorithm 2 to re-compute ˜PTw for each neighbor
node w of u (see line 15 in Algorithm 1), which clearly results
in significant amounts of redundant computations.

To overcome these limitations, we propose an improved al-
gorithm called WPCore+. The striking features of WPCore+
are twofold. On the one hand, WPCore+ does not compute
˜PTu for every node u in advance. Instead, it calculates ˜PTu

for the node u on-demand. WPCore+ processes the nodes
based on an increasing order by their degrees. Specifically,
the algorithm first explores the low-degree nodes and applies
the degree pruning rule to delete nodes. This is because
the low-degree nodes are more likely to be deleted by the
degree pruning rule. Moreover, compared to the high-degree

nodes, the time costs for computing ˜PTu for low-degree
nodes are much cheaper. If a node u cannot be removed
by the degree pruning rule, the WPCore+ algorithm invokes

Algorithm 2 to compute ˜PTu on-demand. Note that based
on this on-demand computing paradigm, we can substantially
reduce the computational costs for the high-degree nodes. The
reason is as follows. When processing a high-degree node
u, many low-degree neighbors of u may have already been
pruned which will significantly decrease the degree of u, thus

1134

Page 24 of 31Transactions on Knowledge and Data Engineering

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60

Algorithm 3: WPCore+ (G, σ, k)
Input: Temporal graph G = (V, E), parameters σ, and k
Output: The WPCore Vw

1 Let G = (V,E) be the de-temporal graph of G;
2 Let Gc = (Vc, Ec) be the k-core of G;
3 Q ← ∅;D ← ∅;
4 Let du(Gc) be the degree of u in Gc;
5 for u ∈ Vc in an increasing order by du(Gc) do
6 if u ∈ D then continue;

7 ˜PTu ←ComputePeriod (u,G, σ, k, Vc \D);

8 if ˜PTu = ∅ then Q.push(u);

9 ˜IPTu ←InvertIndex (˜PTu);
10 while Q �= ∅ do
11 v ← Q.pop(); D ← D ∪ {v};
12 for w ∈ Nv(Gc) do
13 if dw(Gc) ≥ k then
14 dw(Gc)← dw(Gc)− 1;
15 if dw(Gc) < k then Q.push(w); continue;

16 if ˜PTw has already been computed then
17 UpdatePeriod (˜PTw,˜IPTw, v, k);

18 if ˜PTw = ∅ then Q.push(w);

19 return Vw ← (Vc \D);

20 Procedure InvertIndex (˜PTu)

21 ˜IPTu ← ∅; L← ∅; h← 1;

22 Let ˜PTu(j)← [s, i, σ, ArrD] be the j-th element in ˜PTu;

23 for j ← 1 : |˜PTu| do
24 for t← 0 : (σ − 1) do
25 L(h)← [˜PTu(j).s + t× i, j]; h← h + 1;

26 for h← 1 : |L| do
27 [t, j]← L(h); ˜IPTu(t).push(j);

28 return ˜IPTu;

29 Procedure UpdatePeriod (˜PTw,˜IPTw, v, k)
30 for each temporal edge (w, v, t) ∈ E do
31 PTS(t)←˜IPTw(t);
32 while PTS(t) �= ∅ do
33 j ← PTS(t).pop();

34 ˜PTw(j).ArrD[t]← ˜PTw(j).ArrD[t]− 1 ;

35 if ˜PTw(j).ArrD[t] < k then
36 ˜PTw ← ˜PTw \ {˜PTw(j)};

reducing the cost for computing ˜PTu. On the other hand,

when deleting a node u, WPCore+ does not re-compute ˜PTw

for a neighbor node w of u. Instead, WPCore+ dynamically

updates the computed ˜PTw for each node w, thus substantially
avoiding redundant computations. The detailed description of
WPCore+ is shown in Algorithm 3.

Algorithm 3 first computes the KCore Gc = (Vc, Ec) in the
de-temporal graph (line 2), and then explores the nodes in Vc

based on an increasing order by the degrees in Gc (line 5).
When processing a node u, the algorithm first checks whether
u has been deleted or not (line 6). If u has not been removed,

WPCore+ invokes Algorithm 2 to compute ˜PTu (line 7). If
˜PTu is an empty set, u is not a (σ, k)-periodic node. Thus, the
algorithm pushes it into the queue Q (line 8). Subsequently,
the algorithm iteratively deletes the nodes in Q (lines 10-
18). When removing a node v, WPCore+ explores all v’s
neighbors (line 12). For a neighbor node w, WPCore+ first
updates the degree of w (line 14), i.e., dw(Gc). If the updated
degree is less than k, u is not a (σ, k)-periodic node (line 15).
In this case, the algorithm pushes it into Q and continues
to process the next node in Q (the degree pruning rule).

Otherwise, if ˜PTw has already been computed, the algorithm

invokes UpdatePeriod to update ˜PTw (line 17). If the updated

˜PTw becomes empty, w is not a (σ, k)-periodic node and the

algorithm pushes w into Q (line 18). Note that if ˜PTw has
not been computed yet, the algorithm does not need to update
˜PTw. In this case, ˜PTw will be calculated in the next iterations
(see line 7).

To efficiently implement the UpdatePeriod procedure, we

develop an inverted index structure called ˜IPTu to organize all

(σ, k)-periodic time support sets maintained in ˜PTu. Specif-
ically, for the j-th arithmetic sequence (corresponding to a
(σ, k)-periodic time support set) {tji , tji+p, · · · , tji+(σ−1)×p}
in ˜PTu, we insert an element j into ˜IPTu(tji+h×p) for each

0 ≤ h ≤ σ − 1, i.e., ˜IPTu(tji+h×p).push(j). Based on
˜PTu, we can easily construct the inverted index ˜IPTu by
invoking the InvertIndex procedure (lines 20-28). Note that by

our construction, ˜IPTu(t) keeps all arithmetic sequences that
contain the timestamp t. Therefore, once we have an invert

index ˜IPTu, we can quickly retrieve the arithmetic sequences
containing t.

The UpdatePeriod procedure explores all the temporal

edges (w, v, t) to update ˜PTw after deleting v (line 30).
For each (w, v, t), the algorithm identifies all the arithmetic

sequences (the elements in ˜PTw) that contain the timestamp t
based on the inverted index structure (lines 31-33). For each
arithmetic sequence, the algorithm decreases the degree of
w at timestamp t by 1 (line 34). If the updated degree is
smaller than k, the algorithm deletes the arithmetic sequence

from ˜PTw (lines 35-36), because it is no longer a valid (σ, k)-
periodic time support set. Since our algorithm correctly com-

putes and maintains ˜PTw for every node w, the correctness of
Algorithm 3 can be guaranteed. Below, we analyze the time
and space complexity of Algorithm 3.

Theorem 3.3: The time and space complexity of Algorithm
3 is O(αm+ n(ασ+ T 2σ−1) and O(m+ nασ) respectively,

where α = maxu∈Vc
{|˜PTu|}.

Note that the time complexity of Algorithm 3 is lower than
that of Algorithm 1, as α is smaller than T 2σ−1. In practice,
the space usage of Algorithm 3 is much smaller than the
worst-case bound, because our algorithm only work on the
k-core subgraph which is typically significantly smaller than
the original temporal graph.

B. The SPCore pruning rule
Although WPCore can prune many unpromising nodes, it is

not very effective for pruning unpromising edges. For example,
in Fig. 2, the edge (v4, v5) is clearly not a σ-periodic edge
with σ = 3, as the timestamps associated with this edge cannot
form an 3-term arithmetic sequence. As a result, such an edge
cannot be contained in any σ-periodic k-clique. To overcome
this defect, we propose a novel σ-periodic strong k-core
(abbreviated as SPCore) pruning technique which combines
both σ-periodic nodes and edges for pruning. Below, we give
a definition of σ-periodic edge.

Definition 10 (σ-periodic edge): Given a temporal graph G,
its de-temporal graph G and parameter σ, an edge (u, v) ∈ G
is called a σ-periodic edge if there exists a σ-periodic time
support set for the subgraph {(u, v)}.

It is easy to see that a σ-periodic edge is also a special
σ-periodic subgraph, because we can treat an edge (u, v) as a
special subgraph. Therefore, every σ-periodic edge also have
a set of σ-periodic time support sets. For convenience, we let

1135

Page 25 of 31 Transactions on Knowledge and Data Engineering

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60

v4
v2

v1

v6

v7

v5v3

 {
1

,3
, 5

,7
}

 {
1

,2
, 3

,5
}

 {1,2,3,5}

 {1,2,3} {1,3,5,7}

(a) σ-periodic-link graph

v4
v2

v1

v6

v7

v5v3

 {
1

,3
, 5

,7
}

 {
1

,2
, 3

,5
}

 {1,2,3,5}

 {1,2,3} {1,3,5,7}

(b) Subgraph reduced by SPCore

Fig. 4. Illustration of the SPCore pruning (σ = 3, k = 3)

EPT(u, v) be the set of all those σ-periodic time support sets
for a σ-periodic edge (u, v). Clearly, an edge is a σ-periodic
edge if and only if EPT(u, v) �= ∅. Note that to determine
whether an edge (u, v) is a σ-periodic edge, we can make use
of a similar algorithm as shown in Algorithm 2 to compute
EPT(u, v), which takes O(|T |2σ−1) time in the worst case.
Based on Definition 10, we define the σ-periodic-link graph
in the following.

Definition 11: A subgraph G̃c = (Ṽc, Ẽc) of the de-temporal
graph G is called a σ-periodic-link graph if every edge (u, v) ∈
Ẽc is a σ-periodic edge.

By Definition 11, we can obtain the maximum σ-periodic-
link graph by removing all the non-periodic edges from G
(i.e., only retain all the σ-periodic edges in G). The following
example illustrates the above definitions.

Example 4: Reconsider the temporal graph G shown in
Fig. 2. Suppose that σ = 3, k = 3. Then, we can see that
the edge (v4, v5) has three timestamps {1, 2, 5} which clearly
cannot form a 3-term arithmetic sequence. Therefore, we have
EPT(v4, v5) = ∅, indicating that (v4, v5) is not a σ-periodic
edge. We can easily derive that all the other edges in the
de-temporal graph G (except (v4, v5)) are σ-periodic edges.
Hence, the maximum σ-periodic-link graph is a subgraph by
removing edge (v4, v5) in G which is shown in Fig. 4(a). �

Based on the maximum σ-periodic-link graph, we define
the σ-periodic strong k-core (SPCore) as follows.

Definition 12 (σ-periodic strong k-core): A subgraph S of
the maximum σ-periodic-link graph Ĝc = (V̂c, Êc) is called a
σ-periodic strong k-core if it satisfies the following constraints.
(1) Periodic edge constraint: for any edge (u, v) in S, PT(u)∩
PT(v) ∩ EPT(u, v) �= ∅;
(2) Maximal constraint: there does not exist a subgraph S′

of Ĝc that satisfies (1) and S ⊂ S′.
Based on Definition 12, we are able to derive several useful

properties for the σ-periodic strong k-core.
Lemma 3.4: Any edge in the MPClique must be contained

in the SPCore.
Lemma 3.5: Given a temporal graph G, its de-temporal

graph G, parameters σ and k, the SPCore is unique in G
if it exists.

Lemma 3.6: Let G be the de-temporal graph, Gw be the
subgraph induced by the WPCore, and Gs is the SPCore.
Then, we have Gs ⊆ Gw.

Based on Lemmas 3.4 and 3.5, we know that every
MPClique are contained in the unique SPCore of G.
Therefore, we can first compute the SPCore to prune
unpromising nodes and edges, and then enumerate all
MPCliques on the reduced graph. As shown in Lemma 3.6,
such a SPCore pruning technique is more powerful than the
WPCore pruning technique, since it may prune more edges
and nodes of the original temporal graph. Below, we develop
an algorithm to efficiently compute the SPCore.

The basic idea of our SPCore algorithm is that we first
compute the subgraph induced by the WPCore, denoted by

Algorithm 4: SPCore (G, σ, k)
Input: Temporal graph G = (V, E), parameters σ, and k
Output: The SPCore Gs = (Vs, Es)

1 Vw ← WPCore+ (G, σ, k);

2 ˜PTu and ˜IPTu have already been computed in WPCore+ for each u ∈ Vw ;
3 Let G = (V,E) be the de-temporal graph of G;
4 Let Gw = (Vw, Ew) be the subgraph induced by Vw in G;
5 EQ← ∅; ED ← ∅;
6 for each (u, v) ∈ Ew do
7 Compute EPTuv ;

8 if ˜PTu ∩ ˜PTv ∩ EPTuv = ∅ then
9 EQ.push((u, v));

10 while EQ �= ∅ do
11 (u, v)← EQ.pop(); ED ← ED ∪ {(u, v)};
12 UpdatePeriod (˜PTu,˜IPTu, v, k);
13 for x ∈ Nu(Gw) do
14 if (u, x) /∈ EQ and (u, x) /∈ ED then
15 if ˜PTu ∩ ˜PTx ∩ EPTux = ∅ then EQ.push((u, x));

16 UpdatePeriod (˜PTv,˜IPTv, u, k);
17 for x ∈ Nv(Gw) do
18 if (v, x) /∈ EQ and (v, x) /∈ ED then
19 if ˜PTv ∩ ˜PTx ∩ EPTvx = ∅ then EQ.push((v, x));

20 return Gs ← the subgraph comprises all edges in Ew \ ED ;

Gw. Then, we identify all the edges in Gw that do not satisfy
the periodic edge constraint in Definition 12 (i.e., find the edge
(u, v) meeting PT(u) ∩ PT(v) ∩ EPT(u, v) = ∅). After that,
we delete all those unpromising edges from Gw. Note that the
deletion of an edge (u, v) may trigger u and v’s outgoing edges
that violate the periodic edge constraint. Therefore, we need to
iteratively perform this edge peeling procedure, until no edge
can be removed. The detailed description of our algorithm is
shown in Algorithm 4.

In line 1, the algorithm first invokes Algorithm 3 to calculate
the WPCore Vw. Note that by Algorithm 3, we are able to

obtain ˜PTu and ˜IPTu for each u ∈ Vw (line 2). Also, we
can easily get the subgraph Gw = (Vw, Ew) induced by Vw.
The algorithm uses a queue EQ and a set ED to maintain
all the unpromising edges (line 5). For each (u, v) ∈ Ew, the
algorithm computes the set EPT(u, v) (lines 6-7), which is
denoted by EPTuv in Algorithm 4. Then, if (u, v) violates
the periodic edge constraint (PT(u) ∩ PT(v) ∩ EPT(u, v) =
∅)), the algorithm pushes it into the queue EQ (lines 8-9).
Subsequently, the algorithm iteratively deletes the element
in EQ (lines 10-19). For each (u, v) ∈ EQ, the algorithm

needs to update ˜PTu and ˜PTv by invoking the UpdatePeriod
procedure (lines 12 and 16). This is because the deletion of an
edge (u, v) decreases the degrees of both u and v by 1 which

may further result in the updating of ˜PTu and ˜PTv . Since ˜PTu

(or ˜PTv) may update, the algorithm has to verify each edge
(u, x) (or edge (v, x)) for x ∈ Nu(Gw) whether it satisfies the
periodic edge constraint or not (lines 13-15 and lines 17-19).
If the edge (u, x) (or edge (v, x)) does not satisfy the periodic
edge constraint, the algorithm pushes it into EQ (lines 15 and
19). The algorithm terminates when EQ = ∅. At this moment,
the subgraph comprises all the remaining edges is a SPCore.
Since all the edges that violate the periodic edge constraint
are deleted and every remaining edge meets the periodic edge
constraint, Algorithm 4 can correctly compute the SPCore.
The following example illustrates how Algorithm 4 works.

Example 5: Reconsider the temporal graph shown in Fig. 2.
Suppose that σ = 3, k = 3. First, by computing the WPCore,
the algorithm can obtain an induced subgraph Gw = (Vw, Ew)

1136

Page 26 of 31Transactions on Knowledge and Data Engineering

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60

where Vw = {v1, · · · , v7}. Then, the algorithm calculates
EPT(u, v) for each (u, v) ∈ Ew (lines 6-7). Clearly, we
have EPT(v4, v5) = ∅, thus the algorithm pushes (v4, v5) into
EQ (lines 8-9). Also, the algorithm pushes (v3, v5) into EQ.

The reason is that ˜PTv3
= {[1, 3, 5]}, ˜PTv5

= {[1, 2, 3]},
and EPT(v3, v5) = {[1, 2, 3]}, and thus ˜PTv3 ∩ ˜PTv5 ∩
EPT(v3, v5) = ∅ (lines 8-9). Subsequently, the algorithm pops

(v4, v5) from EQ and updates ˜PTv4 and ˜PTv5 . Since ˜PTv4

and ˜PTv5
do not change after deleting (v4, v5), the algorithm

continues to pop (v3, v5) from EQ. After removing (v3, v5),
˜PTv5

is updated to be an empty set. Thus, the algorithm will
pushes (v5, v6) and (v5, v7) into EQ, and then iteratively
processes these two edges. When the algorithm terminates,
we can obtain the SPCore as shown in Fig. 4(b) (the subgraph
induced by the nodes {v1, · · · , v4}). Compared to the WPCore
pruning, the SPCore pruning can prune many additional nodes
and edges, indicating that the SPCore pruning is indeed much
more powerful than the WPCore pruning. �

Below, we analyze the complexity of Algorithm 4.
Theorem 3.4: The time and space complexity of Algorithm

4 is O(m|T |2σ−1) and O(m+ n+ |T |2) respectively.
Note that since our algorithm only works on the WPCore

(not the original temporal graph), the time cost of Algorithm
4 is much less than the worst case bound in practice, which
is also confirmed in our experiments.

IV. ENUMERATION OF MPCliques

Recall that the MPClique enumeration problem is NP-hard.
Thus, there does not exist a polynomial-time algorithm to solve
our problem unless P=NP. Moreover, most existing maximal
clique enumeration algorithms (e.g., the classic Bron-Kerbosch
algorithm [10]) can only work on static graphs, it is not clear
how to apply them to identify periodic cliques in temporal
graphs. To circumvent this problem, we propose a new Bron-
Kerbosch style enumeration algorithm, called MPC, which
can efficiently compute the complete set of all MPCliques.
The MPC algorithm first invokes Algorithm 4 to significantly
reduce the size of the original temporal graph. Then, the
MPC algorithm transforms the reduced temporal graph into
a special static graph G̃, and performs a Bron-Kerbosch style
enumeration algorithm to find all maximal cliques on G̃. We
show that the complete set of all maximal cliques in G̃ is a
complete set of all MPCliques in the original temporal graph
G. The detail of the MPC algorithm is shown as follows.

A. The MPC algorithm
Note that the key step in MPC is to construct the trans-

formed graph G̃. Below, we present our graph transformation
approach.

Constructing the transformed graph. Recall that in the
reduced graph Gs = (Vs, Es), each node u has a set of
(σ, k)-periodic time support sets, i.e., PT(u), and each edge
(u, v) also has a set of σ-periodic time support sets, i.e.,
EPT(u, v). Since every node u and every edge (u, v) in a
MPClique C shares at least one periodic time support set, we
can decompose a MPClique into a set of nodes and edges
which are associated with the same periodic time support
sets. This motivate us to construct a graph G̃ = (Ṽ , Ẽ) as
follows. For each node v ∈ Vs and an element PTs

v in PT(v),
we construct a vertex (v,PTs

v) for Ṽ . As a result, for each
node v ∈ Vs, we can obtain |PT(v)| vertices in Ṽ . For any

v4
v2

v1

v3

ω1 : v1 {1, 3, 5}

ω2 : v1 {3, 5, 7} {
1

,3
, 5

,7
}

 {1,3,5,7}

ω5 : v3 {1, 3, 5}

ω6 : v4 {1, 3, 5}

ω3 : v2 {1, 3, 5}

ω4 : v2 {3, 5, 7}

(a) Transformed nodes

ω1

ω3

ω5

ω6

ω2

ω4

(b) Transformed graph G̃

Fig. 5. Illustration of the graph transformation method

two vertices (u,PTs
u) and (v,PTs

v) in Ṽ , we create an edge
(u, v,EPTs

uv) if and only if EPTs
uv = PTs

u = PTs
v (i.e., the

same arithmetic sequence), where EPTs
uv is an element in

EPT(u, v). This is because for any edge (u, v) in a MPClique,
the nodes u, v and the edge (u, v) shares the same periodic
time support set. Clearly, by this construction, each vertex in
the transformed graph is a two-tuple (a node and a periodic
time support set), and each edge is a three-tuple (an edge and
a periodic time support set). The following example illustrates
our graph transformation method.

Example 6: Consider the temporal graph shown in Fig. 2.
Suppose that σ = 3, k = 3. Then, the reduced graph by
SPCore is shown in Fig. 4(b). Based on the reduced graph,
we can obtain the transformed graph G̃ shown in Fig. 5.
Specifically, Fig. 5(a) depicts the reduced graph and the
transformed vertices. For example, for the node v1, we have
PT(v1) = {[1, 3, 5], [3, 5, 7]}. Therefore, we construct two
vertices ω1 = (v1, [1, 3, 5]) and ω2 = (3, 5, 7) in G̃. Similarly,
we can obtain four other vertices in G̃ which are ω3, · · · , ω6

as shown in Fig. 5(a). Since the nodes v1, v2, and edge (v1, v2)
are associated with the same periodic time support sets [1, 3, 5]
and [3, 5, 7], we can obtain two edges (ω1, ω3) and (ω2, ω4)
in the transformed graph G̃. Likewise, we can get all the
other edges in G̃. The final transformed graph G̃ is shown
in Fig. 5(b) which contains 6 nodes and 7 edges. �

Let C̃ = (Ṽc, Ẽc) be a maximal clique in the transformed
graph G̃. By our graph transformation method, the first term
of a vertex ω = (v,PTs

v) ∈ Ṽc is a node v in the reduced
graph Gs. For a maximal clique C̃ in the transformed graph
G̃, we let Vc be the set of nodes of C̃ in the reduced
graph Gs, i.e., Vc � {v|(v,PTs

v) ∈ Ṽc}. Note that there
may exist two maximal cliques C̃1 and C̃2 in G̃ having
the same node set Vc. For example, suppose that we have
a maximal periodic clique induced by the nodes {v1, v2, v3}
in G with two periodic time support sets [1, 3, 5] and [3, 5, 7].
Then, such a periodic clique will be transformed to two max-
imal cliques {(v1, [1, 3, 5]), (v2, [1, 3, 5]), (v3, [1, 3, 5])} and
{(v1, [3, 5, 7]), (v2, [3, 5, 7]), (v3, [3, 5, 7])} in G̃. By the graph
transformation approach, we can derive the following result.

Lemma 4.1: For any MPClique C ′ = (V ′c , E
′
c) in the

reduced graph Gs, there exists a maximal clique C̃ = (Ṽc, Ẽc)
in the transformed graph G̃ such that the node set Vc of C̃ is
equal to V ′c . For any maximal clique C̃ = (Ṽc, Ẽc) with node
set Vc in G̃ , the subgraph induced by Vc is a MPClique C in
Gs.

Based on Lemma 4.1, we are able to obtain the complete set
of MPCliques by enumerating all maximal cliques in G̃. Since
G̃ is a static graph, we make use of a Bron-Kerbosch style
algorithm to identify all maximal cliques in G̃. The detailed
description of our algorithm is shown in Algorithm 5.

In line 2, the algorithm invokes the SPCore pruning tech-
nique (Algorithm 4) to prune the temporal graph. Note that

in this pruning procedure, we can also obtain ˜PTu for each

1137

Page 27 of 31 Transactions on Knowledge and Data Engineering

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60

Algorithm 5: MPC (G, σ, k)
Input: Temporal graph G = (V, E), parameters σ and k
Output: the set of MPCliques C

1 C ← ∅;
2 Gs = (Vs, Es)← SPCore(G, σ, k);

3 ˜PTu has been computed in SPCore for each u ∈ Vs;
4 EPTuv has been calculated in SPCore for each (u, v) ∈ Es;

5 G̃ = (Ṽ , Ẽ)← construct the transformed graph based on ˜PTu and EPTuv ;

6 EnumMPClique (Ṽ , ∅, ∅, k);

7 Procedure EnumMPClique (P̃ , R̃, X̃, k)
8 if |P̃ |+ |R̃| < k then return;

9 if P̃ ∪ X̃ = ∅ then C ← C ∪ {R̃};
10 (v′, ˜PT

s

v′)← arg max
(v,˜PT

s
v)∈P̃∪X̃

|P̃ ∩N
(v,˜PT

s
v)

(G̃)|;

11 for (v, ˜PT
s

v) ∈ P̃ \N
(v′,˜PTs

v′)
(G̃) do

12 R̃′ ← R̃′ ∪ (v, ˜PT
s

v);

13 P̃ ′ ← P̃ ∩N
(v,˜PT

s
v)

(G̃); X̃′ ← X̃ ∩N
(v,˜PT

s
v)

(G̃);

14 EnumMPClique (P̃ ′, R̃′, X̃′, k);

15 P̃ ← P̃ \ (v, ˜PTs

v); X̃ ← X̃ ∪ (v, ˜PT
s

v);

u ∈ Vs and EPTuv for each (u, v) ∈ Es (lines 3-4). Based on
˜PTu and EPTuv , the algorithm can construct the transformed
graph G̃ (line 5). Then, the algorithm performs a Bron-
Kerbosch algorithm with pivoting technique to identify all
maximal cliques in G̃ (line 6). Specifically, the set R̃ denotes
the current clique, P̃ denotes the set of candidate vertices, and
X̃ denotes the set of vertices that have already been processed.

Note that each vertex in P̃ , R̃, and X̃ is a two-tuple (v, ˜PT
s

v).
In line 10, the algorithm adopts a similar pivoting technique
developed in [12] to speed up the enumeration procedure. Note
that the operator N

(v,˜PT
s

v)
(G̃) is to take the neighbors of the

vertex (v, ˜PT
s

v) in the transformed graph G̃. The correctness
of Algorithm 5 can be guaranteed by [12] and Lemma 4.1.

B. Number of MPCliques
In this subsection, we analyze the number of MPCliques in

the temporal graph G based on a novel concept of σ-periodic
degeneracy. The classic degeneracy is a well-known metric
for measuring the sparsity of a static graph [8]. Many real-life
networks are often very sparse, thus having a small degeneracy
[8]. Below, we give the definition of degeneracy.

Definition 13 (Degeneracy): The degeneracy of a static
graph G is the minimum integer δ such that each subgraph
S of G contains a node v with degree no larger than δ.

Eppstein et al. [8] proved that the number of maximal
cliques in a static graph is bounded by (|V | − δ)3δ/3.
They also developed an efficient maximal clique enumeration
algorithm with time complexity O(δ|V |3δ/3) based on the
degeneracy ordering. The classic degeneracy, however, cannot
be directly used to bound the number of MPCliques in
temporal graphs. Below, we introduce a novel concept, called
σ-periodic degeneracy, which will be applied to bound the
number of MPCliques.

Definition 14 (σ-periodic degeneracy): Given a temporal
graph G and parameter σ, the σ-periodic degeneracy of G is the
smallest integer δ̂ such that every σ-periodic subgraph contains
a node with degree at most δ̂.

Since the degeneracy-based bound for the number of max-
imal cliques is tailored for static graph [8], it is not clear
how to use the σ-periodic degeneracy to bound the number of
MPCliques in temporal graph. To circumvent this problem,
we resort to bound the number of maximal cliques in the

transformed graph G̃. The rationale is that the number of
maximal cliques in G̃ is no less than the number of MPCliques
in the temporal graph G by Lemma 4.1. Since the transformed
graph G̃ is a static graph, we are capable of applying the
results developed by Eppstein et al. [8] to bound the number
of maximal cliques in G̃. Let δ̃ be the degeneracy of the
transformed graph G̃. Then, the following lemma shows that
δ̃ is bounded by δ̂.

Lemma 4.2: For any temporal graph G and the transformed
graph G̃ of the SPCore of G, we have δ̃ ≤ δ̂.

Based on Lemma 4.2, we can leverage δ̂ to bound the
number of MPCliques in G as shown in the following theorem.

Theorem 4.1: Given a temporal graph G, parameters σ and
k, the number of maximal σ-periodic k-cliques (MPCliques)
in G is less than (4m2k−2σ−1 − δ̂)3δ̂/3.

Based on the results developed by Eppstein et al. [8], we can
also bound the worst-case time complexity of the MPClique
enumeration problem by the σ-periodic degeneracy of G, i.e.,
δ̂. Specifically, we have the following results.

Theorem 4.2: Given a temporal graph G, parameters σ and
k, there exists an algorithm to enumerate all MPCliques in

G in O(δ̂m2k−2σ−13δ̂/3) time, where δ̂ is the σ-periodic
degeneracy of G and m is the number of temporal edges in G.

Not that Theorem 4.2 indicates that enumerating all
MPCliques in a temporal graph G is fixed-parameter tractable
with respect to the parameter σ-periodic degeneracy δ̂ of G.
Since the σ-periodic degeneracy of G is typically very small
in real-life temporal graphs, the proposed algorithm can be
very efficient in practice.

V. EXPERIMENTS

In our experiments, we implement four various algorithms
to identify maximal σ-periodic k-cliques: MPC-B, MPC-KC,
MPC-WC+, MPC-SC. Specifically, MPC-B is a baseline
algorithm which is not integrated with any graph reduction
techniques. MPC-B first computes PT(u) (for each node u)
and EPT(u, v) (for each edge (u, v)) using Algorithm 2, and
then constructs a transformed graph G̃. After that, MPC-B
uses the Bron-Kerbosch algorithm with a pivoting technique to
enumerate all maximal σ-periodic k-cliques on G̃. MPC-KC
is the MPC-B algorithm combined with the KCore pruning
rule. MPC-WC+ denotes the MPC-B algorithm integrated with
the WPCore pruning rule. Note that we also implement two
algorithms which are WC (Algorithm 1) and WC+ to compute
the WPCore. The MPC-WC+ algorithm is integrated with a
more efficient WC+ algorithm. MPC-SC denotes the MPC-B
algorithm with the SPCore pruning rule, i.e., Algorithm 5. To
evaluate the effectiveness of the proposed maximal σ-periodic
k-clique model, we use WPCore and SPCore as two intuitive
baseline models. The reasons are as follows. First, to the
best of our knowledge, there is no existing community model
that can be used to model periodic communities in temporal
networks. Second, by Definitions 9 and 12, both WPCore
and SPCore can capture periodic and cohesive properties of a
community in temporal graphs, thus WPCore and SPCore can
serve as two baselines for modeling periodic communities. All
algorithms are implemented in Python. All the experiments are
conducted on a server of Linux kernel 4.4 with Intel Core(TM)
i5-8400@3.20GHz and 32 GB main memory.

Datasets. We use five different types of real-life temporal
networks in the experiments. The detailed statistics of our

1138

Page 28 of 31Transactions on Knowledge and Data Engineering

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60

��6
102

103
�5
�X
�Q
�Q
��Q
�
�W�
�P
�H
��P

�V� 2231

890

310

161

�3�6
102

103

�5
�X
�Q
�Q
��Q
�
�W�
�P
�H
��P

�V� 2314

768

545

326

���0�

102

103

104

�5
�X
�Q
�Q
��Q
�
�W�
�P
�H
��V
�

12987

3765

416

147

�(�Q�U�R�Q
101

102

103

�5
�X
�Q
�Q
��Q
�
�W�
�P
�H
��V
�

3476

1154

187

61

�'�%��3

102

103

104

105

�5
�X
�Q
�Q
��Q
�
�W�
�P
�H
��V
�

>2days

7421

1056

415

MPC-B MPC-KC MPC-WC+ MPC-SC

Fig. 7. Running time of different algorithms on various datasets (σ = 4, k = 4)

TABLE II
RUNNING TIME OF DIFFERENT ALGORITHMS WITH VARYING PARAMETERS (DBLP)

σ = 3 σ = 4 σ = 5 σ = 6 σ = 7
MPC-KCMPC-WC+ MPC-SC MPC-KCMPC-WC+ MPC-SC MPC-KCMPC-WC+ MPC-SC MPC-KCMPC-WC+ MPC-SC MPC-KCMPC-WC+ MPC-SC

k = 3 INF 32,213 4,339 24,517 12,313 1,237 8,321 4,567 936 4,235 3,456 804 2,145 1,023 144
k = 4 23,100 3,574 580 7,421 1,056 415 3,441 774 326 1,960 114 71 1,467 48 38
k = 5 9,770 736 280 3,428 801 75 1,771 417 45 1,220 63 35 1,023 33 37
k = 6 4,464 621 112 2,035 585 45 1,643 142 32 980 32 27 576 14 16
k = 7 2,382 534 24 1,292 51 23 1,201 44 27 620 21 20 231 10 11

TABLE I
DATASETS

Dataset |V | |E| |E| dmax |T | Time scale
HS 327 5,818 20,448 322 101 hour
PS 242 8,317 26,351 393 34 hour

LKML 26,885 159,996 328,092 14,172 96 month
Enron 86,978 297,456 499,983 4,311 48 month
DBLP 1,729,816 8,546,306 12,007,380 5,980 59 year

HS PS LKML Enron DBLP
10

1

10
2

10
3

10
4

10
5

�5
�X�Q

�Q�
�Q�

�W��P
�H

�P

�V�

WC

WC+

Fig. 6. Running time of WC and WC+

datasets are summarized in Table I. In Table I, the first
two datasets are human contact temporal networks which
are download from (http://www.sociopatterns.org/datasets/).
Specifically, HS is a temporal network of face-to-face contacts
between students in a French high school [2], and PS is
a temporal network of contacts between the children and
teachers in a French primary school [2]. Each snapshot of
these temporal networks is extracted in a hour. Both LKML
and Enron are temporal communication networks downloaded
from (http://konect.uni-koblenz.de), where each temporal edge
(u, v, t) represents an email communication from a user u
to v at time t. Each snapshot of these temporal networks
is extracted in a month. DBLP is a temporal collaboration
network of authors in DBLP downloaded from (http://dblp.
uni-trier.de/xml/), where each temporal edge (u, v, t) denotes
that two authors u and v co-authored one paper at time t. Each
snapshot of DBLP is extracted in a year. In Table I, dmax is the
maximum number of temporal edges associated with a node,
and |T | denotes the number of snapshots.

Parameter settings. There are two parameters k, σ in our
algorithm. For the parameter k, we vary it from 3 to 7 with a
default value of 3. We also vary σ from 3 to 7 with a default
value of 3. Unless otherwise specified, the value of the other
parameter are set to its default value when varying a parameter.

A. Efficiency Testing

Exp-1: Comparison between WC and WC+. Fig. 6 evaluates
the running time of WC (Algorithm 1) and WC+ (Algorith-
m 3) for computing WPCore. As can be seen, WC+ is much
faster than WC on all datasets. The running time of WC+
is around a half of the running time of WC. For example, on
Enron, WC+ takes 1.1 seconds and WC consumes 2.3 seconds
to identify all MPCliques. The reason is that WC+ is based
on an on-demand computing paradigm which can substantially
reduce redundant computations. These results are consistent
with our theoretical analysis presented in Section III-A. In the
following experiments, we will use WC+ to compute WPCore.

TABLE III
NUMBER OF NODES OF THE REDUCED GRAPH

KCore WPCore SPCore
HS 326 99% 280 86% 165 51%
PS 242 100% 233 96% 211 87%

LKML 9,773 36% 1,785 6.6% 926 3.4%
Enron 18,591 21% 3,314 3.8% 2,315 2.7%
DBLP 1,258,540 73% 126,357 7.3% 73,109 4.2%

Exp-2: Efficiency of various MPClique mining algorithm-
s. Fig. 7 shows the running time of MPC-B, MPC-KC,
MPC-WC+ and MPC-SC on different datasets with parameters
σ = 4 and k = 4. Similar results can also be observed under
the other parameter settings. From Fig. 7, we can see that
MPC-SC is much faster than all the other competitors on all
datasets. For example, on DBLP, MPC-SC takes around 7
minutes to enumerate all MPCliques which cuts the running
time over MPC-WC+ and MPC-KC by 154% and 1,688%
respectively. Note that MPC-B cannot get results on DBLP in
2 days. These results indicate that the SPCore pruning rule
is indeed very powerful in practice which are consistent with
our analysis in Section III-B.

Exp-3: Effect of parameters. Table. II reports the running
time of different algorithms with varying parameters on DBLP.
Similar results can also be observed on the other datasets.
Since the parameters do not significantly affect MPC-B, we
focus mainly on MPC-KC, MPC-WC+ and MPC-SC. As can
be seen, MPC-SC is faster than all the other algorithms under
almost all parameter settings. In general, the running time of
MPC-KC, MPC-WC+ and MPC-SC decrease with increasing
k and σ, because the size of the transformed graph decreases as
k or σ increases. Note that when σ = 7 and k ≥ 5, MPC-WC+
is slightly faster than MPC-SC. The reason could be that for
a large σ and k, the original temporal graph can be reduced
to a very small graph by WPCore, thus the benefit of SPCore
may be not significant.

Exp-4: Number of nodes of the reduced graph. Table III
shows the number of remaining nodes obtained by KCore,
WPCore and SPCore on all datasets under the default pa-
rameter setting. In columns 2-4 of Table III, the left integer
is the number of remaining nodes and the right value is
the percentage of the remaining nodes over all nodes in the
graph. As can be seen, both WPCore and SPCore can prune
a large number of unpromising nodes on large datasets. For
example, on DBLP, the number of remaining nodes obtained
by WPCore and SPCore is only 7.3% and 4.2% of the
original graph respectively. These results confirm that our
graph reduction techniques are indeed very effective on large
real-life temporal networks.

Exp-5: Size of the transformed graph. Table IV reports
the size of the transformed graph G̃ = (Ṽ , Ẽ) generated by
MPC-SC. We can observe that the size of G̃ scales linearly

1139

Page 29 of 31 Transactions on Knowledge and Data Engineering

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60

TABLE IV
THE SIZE OF THE TRANSFORMED GRAPH (MPC-SC)

|Ṽ | |Ẽ| #. MPCliques δ̃
HS 1,946 3,388 57 12
PS 3,508 12,174 474 10

LKML 149,385 505,514 17,382 8
Enron 37,869 173,914 10,203 7
DBLP 353,557 1,028,598 45,442 12

20% 40% 60% 80% 100%

101

102

103

104

�5
�X�Q

�Q�
�Q�

�W�
�P
�H

�V
�H�F

 Vary ||

Vary ||

Fig. 8. Scalability testing of MPC-SC (DBLP)

TABLE V
MEMORY OVERHEAD OF MPC-SC

Graph size Memory (PT, EPT) Memory (all)
HS 5.2MB 25.2MB 45MB
PS 2.8MB 15.8MB 35MB

LKML 20.1MB 35.4MB 101MB
Enron 53.3MB 98.6Mb 198MB
DBLP 678.5MB 2,398MB 3,234MB

4 5 6 7 8 9 ≥10

0

10

20

30

40

50

60

��

σ=3

σ=6

(a) Enron

4 5 6 7 8 9 ≥10

0

20

40

60

80

��

σ=3

σ=6

(b) DBLP

Fig. 9. Distribution of the size of MPCliques (k = 3)

w.r.t. the original graph size. Moreover, the degeneracy δ̃ of
G̃ is very small in all datasets. The number of MPCliques is

clearly less than (4m2k−2σ−1 − δ̃)3δ̃/3, which confirms our
theoretical analysis in Section IV-B.

Exp-6: Scalability testing. Fig. 8 shows the scalability of
MPC-SC on DBLP. Similar results can also be observed on
the other datasets. We generate four temporal subgraphs by
randomly picking 20%-80% of the nodes (temporal edges),
and evaluate the running time of MPC-SC on those subgraphs.
As can be seen, the running time increases smoothly with
increasing |V| and |E|. These results suggest that the MPC-SC
algorithm is scalable when handling large temporal networks.

Exp-7: Memory overhead. Table V shows the memory usage
of MPC-SC on different datasets. We can see that the memory
usage of MPC-SC is higher than the size of the temporal graph,
because MPC-SC needs to store PT(u) (for each node u) and
EPTuv (for each edge (u, v)). However, on large datasets, it
is typically lower than five times of the size of the temporal
graph. For instance, MPC-SC consumes 3,234MB memory
on DBLP while the temporal graph uses 678.5MB memory.
These results indicate that MPC-SC achieves near linear
space complexity which confirms our theoretical analysis in
Sections III-B and IV.

B. Effectiveness Testing
Exp-8: Distribution of the size of MPCliques. Fig. 9 shows
the distribution of the size of MPCliques on Enron and DBLP
with parameters σ = 3 (or σ = 6) and k = 3. Similar trends
can also be observed on the other datasets and using other
parameter settings. We can see that most MPCliques has a
small size on both Enron and DBLP, and very few MPCliques
have a size no less than 10. This is because a MPClique must
satisfy the periodic clique constraint which may rule out large
cliques.

Exp-9: Number of MPCliques with varying parameters.
Fig. 10 shows the number of MPCliques with varying k or
σ on Enron and DBLP. The results on the other datasets are
consistent. As shown in Fig. 10(a) and Fig. 10(c), the number

3 4 5 6 7
10

1

10
2

10
3

10
4

10
5

�1
�X�P

�E�H
�U�R

�I�0
�3�&

��T
�X�H
�V

σ=3

σ=6

(a) Vary k (Enron)

3 4 5 6 7
10

1

10
2

10
3

10
4

10
5

�1
�X�P

�E�H
�U�R

�I�0
�3�&

��T
�X�H
�V

k=3

k=6

(b) Vary σ (Enron)

3 4 5 6 7

10
1

10
2

10
3

10
4

10
5

�1
�X�P

�E�H
�U�R

�I�0
�3�&

��T
�X�H
�V

σ=3

σ=6

(c) Vary k (DBLP)

3 4 5 6 7

10
1

10
2

10
3

10
4

10
5

�1
�X�P

�E�H
�U�R

�I�0
�3�&

��T
�X�H
�V

k=3

k=6

(d) Vary σ (DBLP)

Fig. 10. Number of MPCliques with varying parameters

(a) WPCore (b) SPCore (c) MPClique
Fig. 11. Case study on DBLP

of MPCliques drops sharply with an increasing k. Likewise,
we can observe from Fig. 10(b) and Fig. 10(d) that the number
of MPCliques decreases with a growing σ. The reason is that
with a large k or σ, the periodic clique constraint will be
strong, thus the number of MPCliques decreases. These results
confirm our theoretical analysis in Theorem 4.2.

Exp-10: Case study on DBLP. We conduct a case study
using DBLP to further evaluate the effectiveness of various
models. Fig. 11 shows three communities of Prof. Michael
Stonebraker obtained by WPCore, SPCore and MPClique
respectively, using default parameters. As can be seen in
Fig. 11(c), the community obtained by MPClique contains
two cliques, and each clique comprises the close and long-
term collaborators of Prof. Michael Stonebraker. Moreover, we
find that each clique appears in 2015, 2016, and 2017 year,
suggesting that there are two periodic communities containing
Prof. Michael Stonebraker in recent years. From Figs. 11(a-
b), we can see that the communities obtained by WPCore and
SPCore not only contain two MPCliques in Fig. 11(c), but they
also include some short-term collaborators of Prof. Michael
Stonebraker who did not collaborate with him periodically,
which indicates that both WPCore and SPCore models cannot
fully capture the periodic patterns of a community. These
results further confirm that MPClique is more effective than
the baselines to detect periodic communities in temporal
graphs.

VI. RELATED WORK

Temporal graph analysis. Our work is related to the studies
on temporal graph analysis. Yang et al. [13] proposed an
algorithm to detect frequent changing components in the
temporal graph. Huang et al. [14] investigated the minimum
spanning tree problem in temporal graphs. Gurukar et al. [15]
presented a model to identify the recurring subgraphs that
have similar sequence of information flow in temporal graphs.
Wu et al. [16] proposed an efficient algorithm to answer the
reachability and time-based path queries in temporal graphs.
Yang et al. [3] studied a problem of finding a set of diversified
quasi-cliques from a temporal graph. Wu et al. [7] proposed
a temporal k-core model based on the counts of temporal
edges. Ma et al. [4] investigated a dense subgraph problem in

1140

Page 30 of 31Transactions on Knowledge and Data Engineering

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60

temporal graphs. Li et al. [5] developed an efficient algorithm
to identify persistent communities in temporal graphs. To the
best of our knowledge, our work is the first to study the
problem of mining periodic communities in temporal graphs.

Community detection in dynamic graphs. There is a number
of studies for mining communities on dynamic networks [17].
Most of them aim to identify and analyze the community
structures that evolve over time. Lin et al. [18] proposed a
probabilistic generative model to analyze evolving commu-
nities. Chen et al. [19] developed an algorithm for tracking
community dynamics. Agarwal et al. [20] studied how to
find dense clusters for dynamic microblog streams. Li et al.
[21] devised an algorithm to maintain the k-core in large
dynamic graphs. Rossetti et al. [22] proposed an online
iterative algorithm for tracking the evolution of communities.
Unlike these studies, our work focuses mainly on detecting
periodic communities in temporal graphs.

Maximal cliques enumeration. Our work is also related to
the maximal clique enumeration problem. Notable algorithms
for enumerating maximal clique include the classic Bron-
Kerbosch algorithm [10] and its variants [8], [12], [23]. Tomita
et al. [12] proved that the Bron-Kerbosch algorithm with
a pivoting technique is essentially optimal according to the
worst-case bound. Eppstein et al. [8] developed an algorithm
which is fixed-parameter tractable w.r.t. the degeneracy of the
graph. Cheng et al. [23] proposed an external-memory algo-
rithm for clique enumeration in massive graphs. More recently,
Himmel [24] developed a Bron-Kerbosch style algorithm for
enumerating maximal cliques in temporal graph. Their work,
however, cannot be used to enumerate periodic cliques.

Periodic behavior mining. The studies of periodic behavior
mining are also related to our work. Notable examples are
summarized below. Li et al. [25] addressed the problem of
mining periodic behaviors for moving objects. Kurashima et
al. [26] modeled the periodic actions in real-world (e.g., eating,
sleep, and exercise) to make predictions for future actions.
Radinsky et al. [27] also developed a temporal model to
predict the periodic actions. Lahiri et al. [28] investigated
a problem of mining periodic subgraphs in dynamic social
networks. Their work, however, does not consider the com-
munities in the periodic subgraphs, thus cannot be used for
mining periodic communities.

VII. CONCLUSION

In this work, we study a problem of mining periodic
communities in temporal graph. We propose a novel model,
called maximal σ-periodic k-clique, to characterize the peri-
odic communities in a temporal graph. To find all maximal
σ-periodic k-cliques, we first develop several new pruning
techniques to substantially reduce the size of the temporal
graph. Then, on the reduced temporal graph, we propose an
enumeration algorithm based on a carefully-designed graph
transformation technique to efficiently identify all maximal σ-
periodic k-cliques. Comprehensive experiments on five real-
life temporal networks demonstrate the efficiency, scalability
and effectiveness of our algorithms.

Acknowledgement. This work was partially supported by (i) NS-

FC Grants 61772346, 61732003, U1809206, 61572119, 61622202,

U1401256, 61729201; (ii) National Key R&D Program of China

2018YFB1004402; (iii) Beijing Institute of Technology Research

Fund Program for Young Scholars; (iv) ARC Discovery Project Grant

DP160101513; (v) Fundamental Research Funds for the Central

Universities N150402005. Guoren Wang is the corresponding author

of this paper.

REFERENCES

[1] P. Vanhems, A. Barrat, C. Cattuto, J.-F. Pinton, N. Khanafer, C. Regis,
B. a Kim, B. Comte, and N. Voirin, “Estimating potential infection
transmission routes in hospital wards using wearable proximity sensors,”
PLoS ONE, vol. 8, p. e73970, 2013.

[2] J. Fournet and A. Barrat, “Contact patterns among high school students,”
PLOS ONE, vol. 9, p. e107878, 2014.

[3] Y. Yang, D. Yan, H. Wu, J. Cheng, S. Zhou, and J. C. S. Lui, “Diversified
temporal subgraph pattern mining,” in KDD, 2016.

[4] S. Ma, R. Hu, L. Wang, X. Lin, and J. Huai, “Fast computation of dense
temporal subgraphs,” in ICDE, 2017.

[5] R.-H. Li, J. Su, L. Qin, J. X. Yu, and Q. Dai, “Persistent community
search in temporal networks,” in ICDE, 2018.

[6] I. R.Fischhoff, S. R.Sundaresan, J. Cordingley, H. M.Larkin, and M.-J.
Sellier, “Social relationships and reproductive state influence leadership
roles in movements of plains zebra, equus burchellii,” Animal Behaviour,
vol. 73, no. 5, pp. 825–831, 2007.

[7] H. Wu, J. Cheng, Y. Lu, Y. Ke, Y. Huang, D. Yan, and H. Wu,
“Core decomposition in large temporal graphs,” in IEEE International
Conference on Big Data, 2015.

[8] D. Eppstein, M. Löffler, and D. Strash, “Listing all maximal cliques
in large sparse real-world graphs,” ACM Journal of Experimental
Algorithmics, vol. 18, 2013.

[9] V. Batagelj and M. Zaversnik, “An O(m) algorithm for cores decompo-
sition of networks,” CoRR cs.DS/0310049, 2003.

[10] C. Bron and J. Kerbosch, “Algorithm 457: finding all cliques of an
undirected graph,” Communications of the ACM, vol. 16, no. 9, pp.
575–577, 1973.

[11] S. B. Seidman, “Network structure and minimum degree,” Social
networks, vol. 5, no. 3, pp. 269–287, 1983.

[12] E. Tomita, A. Tanaka, and H. Takahashi, “The worst-case time
complexity for generating all maximal cliques and computational
experiments,” Theoretical Computer Science, vol. 363, no. 1, pp. 28–42,
2006.

[13] Y. Yang, J. X. Yu, H. Gao, J. Pei, and J. Li, “Mining most frequently
changing component in evolving graphs,” World Wide Web, vol. 17,
no. 3, pp. 351–376, 2014.

[14] S. Huang, A. W. Fu, and R. Liu, “Minimum spanning trees in temporal
graphs,” in SIGMOD, 2015.

[15] S. Gurukar, S. Ranu, and B. Ravindran, “COMMIT: A scalable approach
to mining communication motifs from dynamic networks,” in SIGMOD,
2015.

[16] H. Wu, Y. Huang, J. Cheng, J. Li, and Y. Ke, “Reachability and time-
based path queries in temporal graphs,” in ICDE, 2016.

[17] G. Rossetti and R. Cazabet, “Community discovery in dynamic
networks: A survey,” ACM Comput. Surv., vol. 51, no. 2, pp. 35:1–
35:37, 2018.

[18] Y.-R. Lin, Y. Chi, S. Zhu, H. Sundaram, and B. L. Tseng, “Facetnet: A
framework for analyzing communities and their evolutions in dynamic
networks,” in WWW, 2008.

[19] Z. Chen, K. A. Wilson, Y. Jin, W. Hendrix, and N. F. Samatova,
“Detecting and tracking community dynamics in evolutionary networks,”
in ICDMW, 2010.

[20] M. K. Agarwal, K. Ramamritham, and M. Bhide, “Real time discovery
of dense clusters in highly dynamic graphs: Identifying real world events
in highly dynamic environments,” PVLDB, vol. 5, no. 10, 2012.

[21] R. H. Li, J. X. Yu, and R. Mao, “Efficient core maintenance in
large dynamic graphs,” IEEE Transactions on Knowledge and Data
Engineering, vol. 26, no. 10, pp. 2453–2465, 2014.

[22] G. Rossetti, L. Pappalardo, D. Pedreschi, and F. Giannotti, “Tiles: an
online algorithm for community discovery in dynamic social networks,”
Machine Learning, vol. 106, no. 8, pp. 1213–1241, 2017.

[23] J. Cheng, Y. Ke, A. W.-C. Fu, J. X. Yu, and L. Zhu, “Finding maximal
cliques in massive networks,” ACM Trans. Database Syst., vol. 36, no. 4,
pp. 21:1–21:34, 2011.

[24] A.-S. Himmel, H. Molter, R. Niedermeier, and M. Sorge, “Adapting the
bron–kerbosch algorithm for enumerating maximal cliques in temporal
graphs,” Social Network Analysis and Mining, vol. 7, no. 1, pp. 7–35,
2017.

[25] Z. Li, B. Ding, J. Han, R. Kays, and P. Nye, “Mining periodic behaviors
for moving objects,” in KDD, 2010.

[26] T. Kurashima, T. Althoff, and J. Leskovec, “Modeling Interdependent
and Periodic Real-World Action Sequences,” in WWW, 2018.

[27] K. Radinsky, K. Svore, S. Dumais, J. Teevan, A. Bocharov, and
E. Horvitz, “Modeling and predicting behavioral dynamics on the web,”
in WWW, 2012.

[28] M. Lahiri and T. Y. Berger-Wolf, “Periodic subgraph mining in dynamic
networks,” Knowledge and Information Systems, vol. 24, no. 3, pp. 467–
497, 2010.

1141

Page 31 of 31 Transactions on Knowledge and Data Engineering

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60

	Clipboard Data(1)
	17.pdf

