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Thanks for providing us this revision opportunity. We are very grateful to the anonymous 
reviewers for their insightful and valuable comments. We have revised the manuscript and tried 
our best to address all the comments. The point-to-point responses are given below.  

To Associate Editor: 
(1) Comments: This revision addresses many issues from the early version and therefore two of 
the reviewers gave very positive feedback. However, one of the reviewers raised concerns on the 
novelty of the work. Especially, due to the lack of theoretical guarantee about how good are these 
two bounds, the effectiveness for fast computation seems not fully convincing. Besides, the 
cohesion of introduction of streaming settings shall also be further addressed. Thus, the work shall 
be further improved to warrant publication. 

Responses: The bounds are simple and not the key contributions of our work, which are only used 
for pruning unpromising nodes in our algorithm. The key technical contribution of our work is an 
I/O-efficient algorithm, i.e., the PCore Algorithm, to determine whether there exists a k-core in a 
refined graph (see Algorithm 2). The proposed PCore algorithm is nontrivial and can be perfectly 
implemented in an I/O-efficient manner. In the experiments, we find that without our PCore 
algorithm, the basic version of the binary-search framework is inefficient which may be worse 
than the state-of-the-art algorithm (see Fig.2(a) and Fig.2(c), SemiDeg vs. SemiDeg+). However, 
with our PCore algorithm, we can achieve one order (three orders) of magnitude speedup over the 
state-of-the-art algorithm for the degeneracy computation (maintenance) problem (see Fig. 2 and 
Fig. 7 respectively). Another key contribution of our work is an extensive evaluation of the 
degeneracy of 150 real-life graphs, which can provide a useful guideline for many 
degeneracy-based graph analysis applications. Perhaps, Reviewer#3 may misunderstand the key 
technical contributions and practical value of our work.  
 Real-life graphs may be frequently updated, thus it is important to study the problem of 
maintaining the degeneracy for dynamic graphs. Since real-life massive graphs are often disk 
resident, we investigate the problem of maintaining the degeneracy for disk-resident graphs. 
Previous studies on I/O-efficient k-core decomposition [1] or I/O-efficient degeneracy 
computation [2] also consider such a dynamic setting for disk-resident graphs. Thus, in this 
revision, we still keep the I/O-efficient degeneracy maintenance algorithm, which is useful for 
degeneracy computation on massive dynamic graphs.  

[1]  Dong Wen, Lu Qin, Ying Zhang, Xuemin Lin, Jeffrey Xu Yu: I/O efficient Core Graph 
Decomposition at web scale. ICDE 2016: 133-144 

[2]  Dong Wen, Lu Qin, Ying Zhang, Xuemin Lin, Jeffrey Xu Yu: I/O Efficient Core Graph 
Decomposition: Application to Degeneracy Ordering. IEEE Trans. Knowl. Data Eng. 31(1): 
75-90 (2019) 
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To Reviewer_#1: 
(1) Comments: My only additional comment is that it should be clarified in the paper that the gsh 
dataset used is a (sampled) subset of the actual dataset. 

Responses: In this revision, we have clarified this point (see Section 6.1).   

To Reviewer #2: 
(1) Comments: It is good to see that my previous comments are all addressed. There are some new 
issues in the latest revision. 
Page 9, Line 14: It is somewhat surprising that the compilation is made without any optimization 
flag, e.g. -O2 or -O3. It would be good to explain the reason. 
Page 9, Line 26: "sorting cost is not included" looks strange to me, especially some of the 
previous work does not require the input to be sorted. 

Responses: Thank you for pointing out these issues. We have also tested our algorithms with –O3 
compilation optimization on more than 30 datasets. We find that the time overheads of our 
algorithms are not significantly affected (near the same). The reason could be that the main costs 
of our algorithms are dominated by the IO costs (not the CPU costs).  
   Sorting the edges of a graph can be considered as a preprocessing procedure. Several previous 
studies (see [1] and [2]) also assume that the input adjacency lists are sorted by node IDs. In our 
work, we follow the same assumption as used in [1] and [2].   

[1]  Dong Wen, Lu Qin, Ying Zhang, Xuemin Lin, Jeffrey Xu Yu: I/O Efficient Core Graph 
Decomposition: Application to Degeneracy Ordering. IEEE Trans. Knowl. Data Eng. 31(1): 
75-90 (2019) 

[2]  Dong Wen, Lu Qin, Ying Zhang, Xuemin Lin, Jeffrey Xu Yu: I/O efficient Core Graph 
Decomposition at web scale. ICDE 2016: 133-144 

To Reviewer #3: 
(1) Comments: The novelty of the algorithms in Section 4 is not that high. Two bounds and a 
binary search seems straight forward. Therefore, the overall feeling is that the proposed 
algorithms are that that elegant as we feel when learn some classic algorithms such as quicksort. 
The bounds are also naive bounds without any in-depth theoretical analysis/guarantee. 

Responses: Thanks for pointing out this. In our work, the bounds are not the key contributions. 
The main contribution of work is a novel I/O-efficient framework to compute the degeneracy for 
massive graphs. In our framework, the key technical contribution is not the binary search 
procedure, but the I/O-efficient procedure, i.e., the PCore algorithm, for determining whether there 
exists a k-core in a refined graph (see Algorithm 2). The proposed PCore algorithm is nontrivial 
and can be perfectly implemented in an I/O-efficient manner. It only works on a small node set, 
and it can dynamically update the upper bounds to significantly prune unpromising nodes, thus it 
is I/O-efficient. Moreover, the PCore algorithm is also the key subroutine of our I/O-efficient 
degeneracy maintenance algorithms. In the experiments, we find that without our PCore algorithm, 
the basic version of the binary-search framework is inefficient which may be worse than the 
state-of-the-art algorithm (see Fig.2(a) and Fig.2(c), SemiDeg vs. SemiDeg+). However, with our 
PCore algorithm, we can achieve one order (three orders) of magnitude speedup over the 
state-of-the-art algorithm for the degeneracy computation (maintenance) problem (see Fig. 2 and 
Fig. 7 respectively).  

Page 2 of 17Transactions on Knowledge and Data Engineering

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60



Another key contribution of our work is an extensive evaluation of the degeneracy of 150 
real-life graphs, which can provide a useful guideline for many degeneracy-based graph analysis 
applications. Specifically, our results indicate that the “small-degeneracy” assumption holds for 
many real-life graphs, but it might be excessively optimistic for social networks and web graphs, 
and that future work on these two types of graphs should not rely on this assumption. 

 (2) Comments: Section 5 considers streaming setting, which is quite different than disk-resident 
settings. Putting them together may not be a good idea. 
Degeneracy is the same as k-value of k-core. Using a simple concept might be easier for readers 
to understand. 

Responses: Thanks for pointing out this. Real-life graphs may be frequently updated, thus it is 
important to study the problem of maintaining the degeneracy for dynamic graphs. Since real-life 
massive graphs are often disk resident, we investigate the problem of maintaining the degeneracy 
for disk-resident graphs. Previous studies on I/O-efficient k-core decomposition [1] or 
I/O-efficient degeneracy computation [2] also consider such a dynamic setting for disk-resident 
graphs. Thus, in this revision, we still keep the I/O-efficient degeneracy maintenance algorithm, 
which is useful for degeneracy computation on massive dynamic graphs.     

Degeneracy is a well-known and classic concept to measure the sparseness of a graph and it 
is also widely used in many recent database and data mining papers (e.g., [2-4]), thus we use this 
classic concept in our work.      

[1]  Dong Wen, Lu Qin, Ying Zhang, Xuemin Lin, Jeffrey Xu Yu: I/O efficient Core Graph 
Decomposition at web scale. ICDE 2016: 133-144 

[2]  Dong Wen, Lu Qin, Ying Zhang, Xuemin Lin, Jeffrey Xu Yu: I/O Efficient Core Graph 
Decomposition: Application to Degeneracy Ordering. IEEE Trans. Knowl. Data Eng. 31(1): 
75-90 (2019) 

[3]  Christos Giatsidis, Fragkiskos D. Malliaros, Dimitrios M. Thilikos, Michalis Vazirgiannis: 
CoreCluster: A Degeneracy Based Graph Clustering Framework. AAAI 2014: 44-50 

[4]  Christos Giatsidis, Dimitrios M. Thilikos, Michalis Vazirgiannis: D-cores: Measuring 
Collaboration of Directed Graphs Based on Degeneracy. ICDM 2011: 201-210 
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I/O-Efficient Algorithms for Degeneracy
Computation on Massive Networks

Rong-Hua Li, Qiushuo Song, Xiaokui Xiao, Lu Qin, Guoren Wang, Jeffrey Xu Yu, and Rui Mao

Abstract—Degeneracy is an important concept to measure the sparsity of a graph which has been widely used in many network
analysis applications. Many network analysis algorithms, such as clique enumeration and truss decomposition, perform very
well in graphs having small degeneracies. In this paper, we propose an I/O-efficient algorithm to compute the degeneracy of
the massive graph that cannot be fully kept in the main memory. The proposed algorithm only uses O(n) memory, where n
denotes the number of nodes of the graph. We also develop an I/O-efficient algorithm to incrementally maintain the degeneracy
on dynamic graphs. Extensive experiments show that our algorithms significantly outperform the state-of-the-art degeneracy
computation algorithms in terms of both running time and I/O costs. The results also demonstrate high scalability of the proposed
algorithms. For example, in a real-world web graph with 930 million nodes and 13.3 billion edges, the proposed algorithm takes
only 633 seconds and uses less than 4.5GB memory to compute the degeneracy.

Index Terms—Degeneracy, I/O-efficient algorithm, k-core, Massive graphs.

F

1 INTRODUCTION

Given a graph G, the degeneracy of G, denoted by δ, is the
smallest integer such that every subgraph of G has a node of
degree at most δ. The degeneracy has been recognized as an
important concept for measuring the sparsity of a graph, and
it finds applications in several different domains, including
network analysis, graph mining, and graph theory. A few
significant applications are as follows.

Maximal clique enumeration. A clique is a completed
subgraph in which every pair of nodes has an edge,
and a maximal clique is one whose super-graphs are all
non-cliques. The state-of-the-art algorithms [1], [2] for
enumerating maximal cliques require an efficient algorithm
for deriving the degeneracy ordering of nodes, which is
a byproduct of degeneracy computation. Therefore, an
improved algorithm for computing degeneracy immediately
leads to more efficient methods for maximal cliques enu-
meration.

Densest subgraph discovery. The densest subgraph G′

[3] of a graph is the one that maximizes m′/n′, where
m′ and n′ denote the numbers of edges and nodes in G′.
The identification of the densest subgraph has numerous
applications such as community discovery [4]–[8], graph
compression [9], computational biology [10], and spam
detection [11]. Since the exact computation of densest

• Rong-Hua Li and Guoren Wang are with Beijing Institute of
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• Qiushuo Song and Rui Mao are with Shenzhen University, Shenzhen,
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• Lu Qin is with University of Technology, Sydney, Australia. Email:
Lu.Qin@uts.edu.au.

• Jeffrey Xu Yu is with the Chinese University of Hong Kong, Hong Kong.
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subgraph is expensive [3], most existing techniques aim
to derive approximate solutions, which require obtaining
an approximation of the maximum subgraph density, i.e.,
the maximum value of m′/n′. It is well known that
the degeneracy is a 2-approximation of the maximum
subgraph density [12], and therefore an efficient algorithm
for computing degeneracy is highly useful for densest
subgraph computation [12]–[14].

Complexity bounds of graph algorithms. Degeneracy is
a 2-approximation of arboricity [15], [16] (see Section 2
for details). The arboricity is a classic graph measure that
is frequently used to analyze the space or time complexity
of network analysis algorithms, such as triangle counting
[17], k-clique enumeration [18], truss decomposition [19],
[20], structural graph clustering [21], influential community
search [22], [23], top-k structural diversity search [24].
Computing the exact value of arboricity, however, incurs
significant costs [25]. To address this issue, one can derive
the degeneracy of the input graph G, and then use it as an
approximation of G’s arboricity for analysis.

In addition, the degeneracy δ has also been widely used
as a parameter in many fixed-parameter tractable (FPT)
graph algorithms [26], in which the complexity of these
algorithms depend mainly on an exponential function of
δ, e.g., O(3δ). For example, the classic dominating set
problem [27]–[29], cycle counting problem [30], as well as
the maximal clique enumeration problem are shown to be
FPT with the parameter δ. Thus, computing the degeneracy
of a graph G can be useful to predict whether such FPT
algorithms are tractable in G.

Motivation. For a graph G that fits in the main memory,
the degeneracy of G can be computed efficiently using a
linear-time algorithm for core decomposition [31], [32].
Specifically, the algorithm consists of several iterations,
such that the k-th (k = 1, 2, . . .) iteration recursively
removes all nodes in G whose degrees are smaller than
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k, until all remaining nodes have degrees at least k in the
subgraph that they induce (this subgraph is referred to as
the k-core). It is known that if the degeneracy of G equals
δ, then the algorithm runs in exactly δ iterations, i.e., δ
equals the largest core number k in G.

Nevertheless, real-world graphs are often too large for the
main memory of a single machine. For example, the current
Facebook social network contains 1.32 billion nodes and
140 billion edges (http://newsroom.fb.com/company-info).
This motivates semi-external algorithms for degeneracy
computation via k-core decomposition [33], which require
only the nodes of G to be memory-resident but allows
the edges of G to be disk-resident. For instance, for the
aforementioned Facebook graph, around 10GB memory is
sufficient to accommodate all nodes in the graph.

The state-of-the-art semi-external algorithm for core
decomposition [33], however, suffers from the following
deficiencies. First, to derive the degeneracy δ of a graph
G, it requires enumerating the 1-, 2-, . . ., δ-cores of G,
which incurs unnecessary overheads because, intuitively,
the i-cores (1 ≤ i ≤ δ − 1) are not particularly useful for
degeneracy computation. Second, if we use this algorithm
to track the degeneracy of a dynamic graph G, we would
need to maintain the core decomposition of G which takes
O(l(m + n)/B) I/O costs [33] (l is the iteration number
of the algorithm, m and n denote the number of edges
and nodes of the graph respectively, and B denotes the
block size), thus it is rather costly for massive graphs.
Alternatively, one may apply the existing semi-streaming1

algorithms [12], [13], [34] for degeneracy computation.
These algorithms, however, can only return (2 + ε) ap-
proximation of degeneracy and are designed only for static
graphs (see Section 3 for details).

Our contributions. To overcome the limitations of the
existing solutions, we propose a semi-external method for
degeneracy computation that utilizes an algorithm design
drastically different from previous methods. Specifically,
our method does not rely on core decomposition to identify
the degeneracy δ of the input graph G. Instead, we start
by deriving an (potentially loose) upper bound ub and a
lower bound lb of δ, and then perform a binary search
in the range [lb, ub] to pinpoint the exact value of δ. To
facilitate this binary search, we develop a novel I/O-efficient
algorithm that takes as input G and an integer k, and returns
a k-core of G (if any) without computing the full core
decomposition. In addition, we also devise a semi-external
algorithm to incrementally maintain the degeneracy of G
when there are edge insertions or deletions.

We experimentally evaluate our algorithms using a vari-
ety of benchmark datasets with up to several billion edges.
The results show that our degeneracy computation method
is an order of magnitude faster than the state-of-the-art
solution [33], and our degeneracy maintenance approach
is up to three orders of magnitude faster than prior art. For
instance, on the GSH dataset with 0.9 billion nodes and

1. A semi-streaming algorithm is a semi-external algorithm that requires
only a small number of sequential passes of the input graph.

13.3 billion edges, our algorithm takes around 10 minutes
to derive the exact value of degeneracy, whereas the state
of the art requires more than two hours. For degeneracy
maintenance, our solution needs only 0.02 seconds (resp.
0.1 milliseconds) on average to process an edge insertion
(resp. deletion), whereas prior art requires around 0.3
seconds (resp. 0.1 seconds). Furthermore, our solution is
memory-efficient: it requires less than 4.5GB memory to
handle GSH, which is 625GB in size.

Taking one step further in our experiments, we apply
our algorithm to measure the degeneracies of 150 publicly
available graphs, including social networks, web graphs, c-
itation networks, collaboration networks, infrastructure net-
works, biological networks, and communication networks.
This large experimental study is motivated by the facts
that (i) a large body of existing work (e.g., [2], [17], [18],
[22], [28], [29], [35]) assume that real networks have small
degeneracies, but (ii) to our knowledge, this assumption
has never been validated with systematic experiments,
presumably because of the significant overheads incurred
by existing algorithms for degeneracy computation. Our
results show two sides of a coin. On one hand, we observe
that the majority of the 150 graphs tested do have fairly
small degeneracies (with δ < 200); on the other hand, we
also notice that large social networks and web graphs can
have degeneracies up to several thousands. In particular, the
degeneracies of a social network Twitter and a web graph
UK are 2,488 and 10,424, respectively. This indicates that
the “small-degeneracy” assumption might be excessively
optimistic for social networks and web graphs, and that
future work on these two types of graphs should not rely
on this assumption.

Organization. We formally define our problem in Sec-
tion 2, and survey the existing I/O-efficient algorithms for
degeneracy computation in Section 3. Sections 4 elaborates
the I/O-efficient degeneracy computation algorithm, and
Section 5 describes the I/O-efficient degeneracy main-
tenance algorithm. Section 6 presents the experimental
results. Finally, we conclude this work in Section 7.

2 PRELIMINARIES

Problem definition. We aim to develop efficient algorithms
for (i) computing the degeneracy δ of a graph G and (ii)
incrementally maintain δ when there are edge insertions or
deletions in G. We assume that G is massive in the sense
that the main memory can only accommodate G’s nodes but
not its edges. In other words, we assume that the memory
size is O(n). Note that this assumption is well-adopted in
previous work for analyzing massive graphs [12], [33].

Below, we introduce some useful notations, as well as
the formal definition of the degeneracy δ of a graph G.

Concepts and notations. Let G = (V,E) be an undirected
graph with a node set V and an edge set E, with |V | = n
and |E| = m. Let Nu(G) , {v | (u, v) ∈ E} be the set
of neighbors of u in G, and du(G) = |Nu(G)| denote the
degree of u in G. A graph G′ = (V ′, E′) is a subgraph of
G, denoted as G′ ⊆ G, if V ′ ⊆ V and E′ ⊆ E. Give a set
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Fig. 1. Running example

of node Vs ⊆ V , the subgraph induced by Vs is defined as
G(Vs) = (Vs, Es), where Es = {(u, v) | (u, v) ∈ E, u ∈
Vs, v ∈ Vs}.

The degeneracy of G [36], denoted as δ, is defined below.
Definition 1: (Degeneracy) The degeneracy δ of a graph

G is the smallest integer such that every nonempty subgraph
of G contains a node with degree at most δ. More formally,

δ , max
∀G′⊆G

min
u∈G′
{du(G′)}. (1)

Given a graph G and an integer k, the k-core of G,
denoted as Ck, is the maximal induced subgraph of G such
that every node in Ck has degree no less than k [37], i.e.,
du(Ck) ≥ k for every u ∈ Ck. The core number of a node
u, denoted as cu, is the largest integer k such that there is a
k-core containing u. The maximum core number of a graph
G, denoted by cmax, is the maximum value of core number
for any node in G. It is known that the degeneracy of G
equals the maximum core number [2], i.e., δ = cmax. In the
remainder of the paper, we use δ and cmax interchangeably
to denote the degeneracy of G. We demonstrate the above
concepts using an example below.

Example 1: Consider the graph G shown in Fig. 1. The
degeneracy of G is 3, because (i) there is a subgraph
induced by {v1, v2, v3, v4} where the minimum node degree
is 3, and (ii) no subgraph has minimum degree larger than 3.
In addition, the core number of each node in {v1, v2, v3, v4}
is 3, because the subgraph induced by {v1, v2, v3, v4} is a
3-core. Meanwhile, the core numbers of v5 and v7 are equal
to 2, and the core numbers of v6 and v8 equal 1. �

Graph storage and I/O model. We organize G on
the disk in the same manner as in previous work [33].
Specifically, we store the adjacency lists of G, denoted
as {Nv1(G), Nv2(G), · · · , Nvn(G)}, in an edge file se-
quentially on the disk. We also use a node file to store
a list including the offsets and degrees of the nodes
{v1, v2, · · · vn}. To load the neighbors of a node vi into
the memory, we first access the node file to get the offset
and degree of vi, and then load the neighbors of vi from the
edge file. We adopt the widely-used external memory model
proposed in [38] to analyze the I/O-efficient algorithm.
Specifically, let M be the memory size and B be the block
size (B < M ). The disk files are organized by blocks and
each block size is B bytes. For each read I/O, the algorithm
loads one block of size B from disk into main memory.
Similarly, for each write I/O, the algorithm write one block
of size B from the main memory into disk. The I/O costs for
each algorithm denotes the total number of read and write
I/Os taken by the algorithm. Note that the semi-external I/O
model assumes the memory size M = O(n) [12], [33], i.e.,

the main memory can hold all nodes of the graph but cannot
store all edges. In this paper, we adopt such a semi-external
I/O model to design and analyze algorithms for degeneracy
computation.

3 EXISTING I/O-EFFICIENT ALGORITHMS
In the literature, there exist two types of algorithms for
degeneracy computation that assumes O(n) memory as
we do. The first type is semi-streaming algorithms [12],
[13], [34] that require only a small number of sequential
passes of the input graph, while the second type is a semi-
external algorithm for k-core decomposition [33], referred
to as SemiCore. In this section, we reviews two types of
algorithms in detail.

We also note that there is a full external-memory k-core
decomposition algorithm [39] designed for the case when
the memory is too small to accommodate even the nodes in
the input graph. Such a full external-memory takes O(δ(m+
n)/B) I/Os. As shown in [33], the performance of this full
external-memory algorithm is much worse than the state-of-
the-art semi-external algorithm [33] which uses O(l(m +
n)/B) I/Os (l is typically smaller than δ). Therefore, we
omit the full external-memory algorithm proposed in [39]
in this section.

3.1 Semi-streaming Algorithms
Existing semi-streaming algorithms [12], [13], [34] adop-
t a greedy multi-pass approach to compute degeneracy.
Specifically, in the i-th pass, the algorithms identify an
induced subgraph Gi = (Vi, Ei) and compute the density
ρi of Gi, where ρi = |Ei|/|Vi|. Then, they delete all
nodes whose degrees are smaller than α × ρi, where
α = 2 + ε > 2 is a given parameter. When all nodes are
removed, the algorithms terminate and output α×maxi{ρi}
as an α-approximation of the degeneracy. Throughout the
algorithms, we only maintain the degree of each node in
the main memory, which takes only O(n) space. It was
shown that such semi-streaming algorithms only require
O(log1+ε/2 n) passes over G [12].

The main drawback of the above semi-streaming al-
gorithms is that their approximation ratio is relatively
loose, as demonstrated in the experiments. Specifically, the
algorithms can only provide (2 + ε)-approximate solutions
when incurring O(log1+ε/2 n × (m + n)/B) I/O costs,
where B denotes the block size. Additionally, it is not
clear how the algorithms can be applied to incrementally
maintain the degeneracy when G is updated.

Other related algorithms. Goodrich and Pszona [13]
develop a algorithm similar to the ones above, and it can
return a (2 + ε)-approximation of the degeneracy in the
external-memory model. However, in [13], Goodrich and
Pszona did not provide experimental results and therefore it
is not clear how efficient their algorithms are in practice. In
[14], Farach-Colton and Tsai propose a one-pass streaming
algorithm to compute (1 + ε)-approximations of the de-
generacy based on a streaming sampling technique. This
algorithm, however, requires O(ε−2n(log2 n)

3) memory,
which is substantially larger than the O(n) memory that
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we assume, especially when ε is small. For example,
when ε = 1, for the twitter dataset in our experiments
(with n =41,652,230 and m =1,468,365,182), we have
ε−2n(log2 n)

3 > m. Therefore, we do not consider the
one-pass streaming algorithm.

3.2 The SemiCore Algorithm

The SemiCore algorithm [33] is the state-of-the-art semi-
external algorithm to compute the exact degeneracy of a
graph, and it is based on iterative k-core computation [40].
To explain the algorithm, we first introduce h-index [41],
which is a key concept in SemiCore.

Definition 2: (h-index) Let X = {x1, x2, · · · , xt} be a
set of real values. The h-index of X is defined as the largest
integer k such that there are k values in X no less than k,
i.e., h(X) , argmax

k

(
|{xi | xi ≥ k, xi ∈ X}| ≥ k

)
.

For example, consider the set X of node degrees in
the graph in Fig. 1, i.e., X = {dv1 , dv2 , · · · , dv8} =
{3, 4, 5, 4, 4, 1, 2, 1}. The h-index of X equals 4, since (i)
there are four nodes {v2, v3, v4, v5} with degrees no less
than 4, and (ii) 4 is the maximum integer satisfying this
degree constraint.

The h-index was originally proposed as a measure of the
scientific outputs of researchers, but recently was applied to
devise efficient graph algorithms [35], [42], [43]. A crucial
observation utilized in SemiCore is that the core number
of a node u is equal to the h-index of the core numbers
of u’s neighbors [40]. Based on this observation, SemiCore
starts by setting an upper bound of the core number for
each node u (e.g., the degree du), and then it iteratively
refines the upper bound by computing the h-index of the
upper bounds of u’s neighbors. The algorithm terminates
when no node’s upper bound needs to be updated [33], [40].
We note that Lü et al. [44] also independently discovered
such an h-index iteration algorithm. To reduce the I/O
costs, SemiCore leverages a clever pruning rule to avoid
refining the upper bound of a node until necessary. As
shown in [33], the memory overhead of SemiCore is O(n),
and the I/O complexity of SemiCore is O(l× (m+n)/B),
where l denotes the number of iterations. In addition, it
is shown that SemiCore can be extended to incrementally
maintain the core numbers for all nodes when there are
edge insertions or deletions.

The main deficiency of SemiCore is that, if we apply
it to compute the degeneracy δ of a graph, then it may
require a large number of iterations, as it needs to derive
the core numbers of all nodes before obtaining δ, leading
to significant overheads. To address this problem, we will
propose a much more efficient algorithm for degeneracy
computation in Section 4.

4 OUR SOLUTION

In this section, we first propose a basic algorithm (referred
to as SemiDeg) based on the idea of binary search, and
present an improved methods (referred to as SemiDeg+)
that offers higher efficiency.

4.1 The Basic Algorithm

Bounds of the degeneracy. Before presenting the details
of SemiDeg, we first introduce several bounds on the
degeneracy δ that SemiDeg utilizes. Let ĉu denote an
upper bound of the core number of a node u, and ĉ =
{ĉv1 , . . . , ĉvn} be a set of upper bounds of the core numbers
of v1, v2, . . . , vn. In addition, let d = {dv1 , · · · , dvn} the
set of degrees of the nodes in V . By Definition 2, the
h-index of ĉ, denoted by h(ĉ), is

h(ĉ) = argmax
k

(
|{ĉv | ĉv ≥ k, v ∈ V }| ≥ k

)
. (2)

We have the following lemma.
Lemma 1: Given any upper bounds set ĉ of the core

numbers, we have h(ĉ) ≥ δ.
Proof: Recall that δ equals the maximum core number

cmax in G. Since we have a cmax-core in G, there are at
least cmax + 1 nodes in G that have core numbers no less
than cmax. As a result, we have at least cmax + 1 nodes
whose core number upper bounds are no less than cmax.
By Definition 2, h(ĉ) ≥ cmax.

Let hu(ĉ, Nu(G)) be the h-index of u with respect
to (w.r.t.) the upper bounds of the core numbers of u’s
neighbor nodes. By Definition 2,

hu(ĉ, Nu(G)) , argmax
k

(
|{ĉv | ĉv ≥ k, v ∈ Nu(G)}| ≥ k

)
.

(3)
We have the following result.

Lemma 2: For any node u ∈ V , we have
hu(ĉ, Nu(G)) ≥ cu for any upper bounds set ĉ.

Proof: Assume, to the contrary, that hu(ĉ, Nu(G)) <
cu. By the definition of core numbers, u must have at least
cu neighbors with core numbers no less than cu. As a result,
there are at least cu neighbors of u with upper bounds no
less than cu. Therefore, by Definition 2, hu(ĉ, Nu(G)) ≥
cu, leading to a contradiction.

Since du ≥ cu for any node u ∈ V , we have
hu(d, Nu(G)) ≥ cu by Lemma 2. For convenience, we
refer to hu = hu(d, Nu(G)) as the h-index of a node u. Let
h = {hv1 , · · · , hvn} be the set of h-index of all nodes in
V . Since h is a valid upper bounds set of the core numbers,
the h-index of h, denoted as h∗, is an upper bound of the
degeneracy δ. In what follows, we show that h∗ is a tighter
upper bound than h(d).

Lemma 3: h∗ ≤ h(d).
Proof: Since hu ≤ du for any u ∈ V , the h-index over

h must be no larger than the h-index over d. As a result,
we have h∗ ≤ h(d).

Besides the above upper bounds of δ, we can also use
d m
n−1e as a lower bound of the degeneracy δ [35].

Key idea of SemiDeg. The rationale of SemiDeg is to
apply a binary search in [d m

n−1e, h
∗] to identify the precise

value of δ. Specifically, we first examine an integer k ∈
[d m
n−1e, h

∗], and test whether G contains a k-core. If there
exists a k-core in G, then we have δ ≥ k, based on which
we proceed to search in [k+ 1, h∗]; otherwise, we redirect
our search to [d m

n−1e, k − 1]. To determine whether a k-
core exists in G, we iteratively remove the nodes in G
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Algorithm 1 SemiDeg (G)
Input: G = (V,E) in the disk
Output: The degeneracy δ of G

1: Let d be the degree set of all nodes in V ;
2: for each u ∈ V do
3: Load Nu(G) from disk;
4: hu ← Hindex(u,d, Nu(G));
5: umax ← argmaxu∈V {hu}; h← {hv1

, · · · , hvn};
6: lb←

∑
u∈V du/2(n− 1); ub←Hindex (umax, h, V );

7: while lb ≤ ub do
8: mid← b(lb+ ub)/2c;
9: update ← 1; R← V ;

10: ĉu ← du for each u ∈ V ;
11: while update = 1 do
12: update ← 0;
13: for u ∈ R s.t. ĉu < mid do
14: R← R \ {u}; update← 1;
15: Load Nu(G) from disk;
16: for v ∈ Nu(G) ∩ R do
17: ĉv ← ĉv − 1;
18: if R 6= ∅ then lb← mid+ 1; δ ← mid;
19: else ub← mid− 1;
20: return δ;

21: Procedure Hindex (u, d, Vs)
22: b(i)← 0 for all 1 ≤ i ≤ du;
23: for each v ∈ Vs do
24: i← min{dv, du}; b(i)← b(i) + 1;
25: sum← 0; j ← du;
26: while j ≥ 1 do
27: sum← sum+ b(j);
28: if sum ≥ j then break;
29: j ← j − 1;
30: return j;

with degrees smaller than k, until all remaining nodes have
degree at least k in the subgraph that they induce. If all
nodes in G are removed by this procedure, then G must
not contain a k-core; otherwise, the remaining nodes should
form a k-core.

Algorithm 1 shows the pseudo-code of SemiDeg. It first
computes the h-index hu for each node u using the Hindex
procedure (Lines 2-4). Then, it derives the h-index of h
and uses it as an upper bound of the degeneracy δ (Line
6). Subsequently, it applies the binary search procedure
mentioned previously (Lines 7-19). Finally, it returns the
degeneracy value δ (Line 20). We illustrate SemiDeg using
an example.

Example 2: Consider the graph G in Fig. 1. We have
h = {3, 3, 3, 3, 2, 1, 2, 1} for the nodes {v1, · · · , v8}. The
h-index of h equals 3, i.e., h∗ = 3. On the other hand,
we have d m

n−1e = 2. Accordingly, SemiDeg sets lb = 2
and ub = 3 and then performs the binary search procedure
on [2, 3]. In its first iteration, SemiDeg attempts to find
a 2-core (i.e., mid = 2) in G by iteratively deleting the
nodes with degrees smaller than 2. As a result, SemiDeg
obtains a 2-core {v1, v2, v3, v4, v5, v7}, and records δ = 2.
Subsequently, SemiDeg sets lb = ub = mid = 3, and tries
to find a 3-core in G. This leads to a 3-core {v1, v2, v3, v4},
based on which SemiDeg updates δ by setting it to 3. After
this step, SemiDeg terminates, and returns δ = 3. �

Theoretical analysis. The correctness of SemiDeg is guar-
anteed by Lemmas 1 and 3. In the following, we analyze the
memory overhead and I/O complexity of SemiDeg. Let τ be
the maximum number of iterations that SemiDeg requires,
for any k, to decide whether a k-core exists in G (see Lines
11-17 in Algorithm 1). We have the following result.

Theorem 1: The memory and I/O costs of SemiDeg are
O(n) and O(log2 h

∗ × τ(m+ n)/B), respectively.
Proof: SemiDeg only needs to store a constant number

of O(n)-size arrays in the main memory, and hence, its
memory overhead is O(n). For any k, SemiDeg requires
O(τ(m+n)/B) I/Os to determine whether a k-core exists
in G. This is because, in each iteration (lines 13-17), the
algorithm sequentially scans the edge file at most once
which takes O((m + n)/B) I/Os in the worst case. Since
SemiDeg only examines O(log2 h

∗) values of k, the total
I/O complexity of SemiDeg is O(τ(m+n) log2 h

∗/B).
Note that both τ and log2 h

∗ are often a small number
(τ = O(log n) as indicated in [45]). In that case, the I/O
complexity of SemiDeg is almost linear to (m+ n)/B.

Remark. Note that both h(d) (the h-index of the degree
vector d) and

√
2m are well-known upper bounds for the

degeneracy. However, both of them are looser than h∗ (the
upper bound used in Algorithm 1), which leads to more
iterations in the binary-search procedure of Algorithm 1,
and thus incurs higher I/O costs. We have empirically
verified that the performance of the algorithm using h(d)
or
√
2m as upper bounds will be inferior to that of

Algorithm 1, which uses h∗ as an upper bound.

4.2 The SemiDeg+ Algorithm
Although SemiDeg can compute the degeneracy of G in
an I/O-efficient manner, it still suffers from two limitations.
First, it requires scanning G once to compute the h-index
for each node. When the graph is very large, such a graph
scanning procedure can be costly. Second, when deciding
whether a k-core exists in G, it requires scanning all
nodes with degrees smaller than k as well as the edges
associated with those nodes. This procedure may also incur
considerable overheads in practice.

To overcome the limitation of SemiDeg, we propose an
enhanced algorithm dubbed SemiDeg+. To avoid comput-
ing the h-index for every node in G, SemiDeg+ utilizes the
h-index of d (i.e., the set of node degrees in G) as a “cheap”
upper bound of the degeneracy δ. More importantly, when
testing whether a k-core exists in G, SemiDeg+ applies a
novel algorithm (referred to as PCore) that avoids accessing
nodes and edges as much as possible. In what follows, we
elaborate the PCore algorithm, and then present the details
of SemiDeg+.

The PCore algorithm. PCore is based on the following
observation.

Observation 1: If G contains a k-core, the k-core
must be in the subgraph induced by the nodes set
R = {u | u ∈ V, ĉu ≥ k}, where ĉu is a core number
upper bound of u.

Proof: The nodes that are not in R cannot be contained
in the k-core, because their core number upper bounds are
smaller than k.

Based on Observation 1, if we are to determine whether
G contains a k-core, we only need to consider the subgraph
induced by R, denoted as G(R). For convenience, we refer
to R as the working node set. The basic idea of PCore

Page 8 of 17Transactions on Knowledge and Data Engineering

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60



IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, VOL.XXX, NO. XXX, 2018 6

Algorithm 2 PCore (G, R, ĉ, ρ)
Input: G = (V,E) in the disk, the working node set R,

upper bounds set ĉ, and an integer ρ
Output: The ρ-core R and the updated ĉ

1: r̂u ← 0 for all u ∈ V ; /* r̂ is the counting set */
2: update ← 1;
3: while update = 1 do
4: update ← 0;
5: for u ∈ R s.t. r̂u < ρ do
6: Load Nu(G) from disk;
7: if ĉu = du then
8: ĉu ← Hindex (u, ĉ, Nu(G)); /* h-index upper bound */
9: r̂u ← |Nu(G) ∩ R|;

10: if r̂u < ρ then
11: R← R \ {u}; update← 1;
12: ĉu ← min{ĉu, ρ}; /* update the upper bound */
13: for v ∈ Nu(G) ∩ R do
14: r̂v ← r̂v − 1;
15: return (R, ĉ);

is to maintain, for each node u ∈ R, the degree of u in
the induced subgraph G(R), and then iteratively deletes
the nodes whose degrees in G(R) are smaller than k.
Algorithm 2 shows the pseudo-code of PCore.
PCore takes as input G, a positive integer ρ, a set ĉ of

core number upper bounds, and a set R of nodes whose
core number upper bounds are at least ρ. It returns updated
versions of R and ĉ, such that (i) R = ∅ if G does
not contain a ρ-core, (ii) otherwise, R is a ρ-core of G.
Specifically, PCore uses a set r̂ to maintain the degrees of
the nodes in R. Initially, r̂u = 0 for any u ∈ R (Line 1).
Then, for each node u ∈ R with r̂u < ρ, PCore iteratively
loads u’s neighbors from the disk (Lines 5-14). If ĉu equals
its original degree in G, PCore updates ĉu by setting it to
the h-index of u w.r.t. the core number upper bounds of
u’s neighbors, i.e., hu(ĉ, Nu(G)) (Lines 7-8). After that,
PCore updates r̂u to the number of neighbors of u in the
working node set R (Line 9). If r̂u < ρ, then u cannot be
contained in the ρ-core; in that case, PCore removes u from
R (Line 11), and also updates ĉu to ρ (Line 12), since the
core number of u must be smaller than ρ. Subsequently,
for each neighbor v of u in the working node set R, PCore
updates r̂v (Lines 13-14). Finally, PCore returns R and ĉ
(Line 15). The following example illustrates how PCore
works.

Example 3: Consider the graph in Fig. 1. Suppose R =
{v2, v3, v4, v5}, ĉ = {3, 4, 5, 4, 4, 1, 2, 1} for the nodes
{v1, · · · , v8}, and ρ = 4. First, PCore loads v2’s neighbors
from the disk, and computes the h-index of v2, which
is equal to 3 (lines 7-8 in Algorithm 2). Then, PCore
updates r̂v2 by 3, as v2 has three neighbors in R. Since
r̂v2 < ρ = 4, PCore deletes v2 from R. Second, PCore
loads v3’s neighbors from the disk, and updates ĉv3 by
hv3(ĉ, Nv3(G)) which equals 3. Then, PCore updates r̂v3
by 2, as v3 has two neighbors in R (R = {v3, v4, v5}).
PCore also removes v3 from R, because r̂v3 < ρ. Similarly,
we can easily derive that PCore also deletes v4 and v5, and
updates ĉv4 and ĉv5 by 3 and 2 respectively. �

The following theorem shows the correctness of PCore.
Theorem 2: If G contains a ρ-core, then PCore returns

the ρ-core and a correct upper bound set ĉ.

Proof: Let R and R∗ be the input and output working

Algorithm 3 SemiDeg+ (G)
Input: G = (V,E) in the disk
Output: The degeneracy δ of G

1: Let du be the degree of u ∈ V ; ĉu ← du for each u ∈ V ;
2: Let umax be the node that has the largest degree in G;
3: lb←

∑
u∈V du/2(n− 1); ub←Hindex (umax, d, V );

4: while hd ≥ lb do
5: R← {u | u ∈ V, ĉu ≥ ub};
6: (C, ĉ)←PCore (G, R, ĉ, ub);
7: if C 6= ∅ then break;
8: else ub← ub/2; /* halve the upper bound */
9: if ub ≥ lb then lb← ub;

10: ub← 2 · ub; /* ub is a 2-approximation of degeneracy */

11: while lb ≤ ub do
12: mid← b(lb+ ub)/2c; R← {u | u ∈ V, ĉu ≥ mid};
13: (C, ĉ)← PCore (G, R, ĉ, mid);
14: if C 6= ∅ then lb← mid+ 1; δ ← mid;
15: else ub← mid− 1;
16: return δ;

node set of PCore, respectively. First, we show that if R∗ 6=
∅, then R∗ is the ρ-core in G. This is because when PCore
terminates, r̂u ≥ ρ for each u ∈ R∗. Thus, the nodes in R∗

satisfy the degree constraint of the ρ-core. To show that R∗

is the maximal subset satisfying such a degree constraint,
we assume to the contrary that there is a superset R̃ of R∗

that also satisfies the degree constraint of the ρ-core. Since
R contains the ρ-core, we have R̃ ⊆ R. As a consequence,
there is a node u ∈ R̃ and u /∈ R∗ that is deleted by
PCore. In that case, we have r̂u < ρ, which contradicts to
the assumption that R̃ satisfies the degree constraint.

Second, by Lemma 2, hu(ĉ, Nu(G)) is a valid upper
bound of cu. On the other hand, if a node u is removed
PCore, we have cu < ρ. Thus, the upper bound updating
strategies of PCore (Lines 8 and 12 in Algorithm 2) is
correct. As a result, PCore correctly outputs a refined upper
bounds set.

Details of SemiDeg+. We present the details of SemiDeg+
in Algorithm 3. The algorithm first computes d m

n−1e and
h(d) as the initial lower and upper bounds of δ, respectively
(Lines 1-3). After that, it performs an iteratively-halving
procedure to tighten lower and upper bounds of δ, and to
obtain a 2-approximation of δ (Lines 4-10). In each iteration
of the procedure, the algorithm considers a working node
set R = {u | u ∈ V, ĉu ≥ ub} (Line 5), and invokes PCore
determine whether a ub-core exists. After the iterative
procedure terminates, the algorithm performs a binary
search over the interval [lb, ub] to compute the exact value
of δ, using PCore in each iteration (Lines 11-16). We
illustrate the algorithm using the an example.

Example 4: Consider the graph in Fig. 1. First, we
have ĉ = {3, 4, 5, 4, 4, 1, 2, 1} for the nodes {v1, · · · , v8}.
Clearly, we have lb = d m

n−1e = 2 and h(d) = 4. In the
iteratively-halving procedure (Lines 4-10), SemiDeg+ first
invokes PCore with a working node set R = {v2, v3, v4, v5}
and upper bounds set ĉ to identify whether a 4-core exists.
As shown in the Example 3, PCore would return R = ∅
and ĉ = {3, 3, 3, 3, 2, 1, 2, 1}. Then, SemiDeg+ halves the
upper bound to h(d)/2 = 2, and invokes PCore with inputs
R = {v1, v2, v3, v4, v5, v7}, ĉ = {3, 3, 3, 3, 2, 1, 2, 1},
and ρ = 2. It can be verified that PCore returns R =
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{v1, v2, v3, v4, v5, v7} and ĉ = {3, 3, 3, 3, 2, 1, 2, 1}. Since
there is a 2-core, SemiDeg+ terminates the iteratively-
halving procedure.

After that, SemiDeg+ performs a binary search over
the interval [2, 4]. First, we have mid = 3, and thus,
SemiDeg+ invokes PCore with inputs R = {v2, v3, v4, v5},
ĉ = {3, 3, 3, 3, 2, 1, 2, 1}, and mid = ρ = 3. Accordingly,
PCore returns R = {v2, v3, v4, v5} as a 3-core and keeps
ĉ unchanged. Then, SemiDeg+ records δ = 3 (Line 14),
and updates lb = 4. Subsequently, SemiDeg+ invokes
PCore with inputs R = ∅, ĉ = {3, 3, 3, 3, 2, 1, 2, 1}, and
mid = ρ = 4. Since R = ∅, PCore immediately terminates
without incurring any I/O cost. Then, SemiDeg+ updates
ub = mid − 1 = 3. Since ub < lb, SemiDeg+ terminates
and returns δ = 3 as the final result. �

Analysis of SemiDeg+. The correctness of SemiDeg+
directly follows the correctness of PCore, which is shown
in Theorem 2. In the following, we analyze the memory and
I/O overheads of SemiDeg+. Let τ be the maximum number
of iterations needed in PCore to compute whether the
working node set R contains a k-core, ñ be the maximum
number of nodes in R, and m̃ be the total number of
incident edges of the nodes in R. We have the following
result.

Theorem 3: The memory and I/O costs of SemiDeg+ are
O(n) and O(log2 h(d)× τ(ñ+ m̃)/B), respectively.

Proof: SemiDeg+ only needs to maintain two O(n)
size arrays, i.e., r̂ and ĉ, as well as the working node set
R. Therefore, the memory cost of SemiDeg+ is O(n). As
for the I/O cost of SemiDeg+, we observe that in Lines
1-10 in Algorithm 3, SemiDeg+ has at most O(log2 h(d))
iterations, which incurs at most O(log2 h(d)×τ(ñ+m̃)/B)
I/Os. Let [lb, ub] be the binary-search interval in Lines 11-
15. The number of iterations required for a binary search on
[lb, ub] is O(log2(ub − lb)) = O(log2 δ) ≤ O(log2 h(d)),
since lb ≤ δ ≤ ub ≤ 2 × lb. As a result, the total number
of I/Os of SemiDeg+ is O(log2 h(d)× τ(ñ+ m̃)/B).

Comparison with other algorithms. Compared with
SemiDeg, SemiDeg+ has the following advantages.
First, SemiDeg+ only works on a small working node
set R, which leads to much higher efficiency. Second,
SemiDeg+ does not compute the h-index for every node,
but only derive the h-index for a node on-demand, which
significantly reduces the number of I/Os. The reason is that
in an iteration, computing the h-index for all nodes takes
O((m + n)/B) I/Os, while SemiDeg+ only calculates the
h-index for the nodes that are contained in R and also
meet the constraint r̂u < ρ (see lines 5-8 in Algorithm 2),
thus the I/O costs can be much lower than O((m+n)/B).

Compared with SemiCore [33], SemiDeg+ excels in
efficiency because (i) SemiCore needs to compute all k-
cores before obtaining the degeneracy δ, which incurs
considerable I/O costs, and (ii) SemiDeg+ only derives a
small number of k-cores in its derviation of δ, which is
much more efficient.

Note that SemiDeg+ can also return a 2-approximate
degeneracy value when the iteratively-halving procedure

terminates (Lines 4-10). This approximate version of
SemiDeg+ (i.e., the iteratively-halving procedure) is not
only much more efficient than SemiStream [12], but it
also achieves better approximate ratio than SemiStream,
as demonstrated in Section 6.

Discussions. Any ordering of nodes in an undirected graph
G = (V,E) can generate a directed graph G′ with the
same nodes, in which each edge is oriented from the high-
order node in the low-order one. The degeneracy ordering
is an ordering such that the maximum out-degree of the
node in the yielded directed graph G′ is no larger than δ
[12], [36]. Note that after obtaining the degeneracy δ, it
is straightforward to compute the degeneracy ordering by
iteratively removing the nodes with degrees smaller than δ.

5 DEGENERACY MAINTENANCE

In this section, we show how to incrementally maintain
the degeneracy under the semi-external setting, given that
the graph is updated by an edge insertion or deletion.
Obviously, we can apply the SemiCore algorithm to main-
tain the degeneracy. SemiCore, however, is inefficient for
degeneracy maintenance, because it has to maintain all the
core numbers of nodes when an edge is updated. Intuitively,
an efficient degeneracy maintenance algorithm should only
maintain the cmax-core, as the degeneracy has nothing to do
with other k-cores for k < cmax. The key issue is how can
we efficiently maintain the cmax-core without maintaining
the other k-cores.

Note that in our problem, the challenges that we face
are fundamentally different from the traditional k-core
maintenance problem. This is because in our problem, we
only have the core numbers of the nodes in the cmax-
core, and no core number is provided for the other nodes.
Therefore, the traditional core maintenance techniques [33],
[46], [47], which need to know all core numbers, cannot
be used for our problem. Below, we develop a novel cmax-
core maintenance approach based on the PCore algorithm
to tackle this challenge.

5.1 Handling Edge Deletion
We first consider the edge deletion case. Let (u, v) be
an edge to be deleted. Recall that by Algorithm 3, we
can obtain the degeneracy cmax, the cmax-core denoted
by Cmax, as well as the degree set of nodes, i.e., d =
{dv1 , · · · , dvn}. Clearly, to maintain the degeneracy, it is
sufficient to maintain the cmax-core Cmax. By the result
shown in [46], Cmax may be updated only if both u and
v are contained in Cmax. Thus, in the following, we only
consider the case when both u ∈ Cmax and v ∈ Cmax.

Let r̂u be the number of neighbors of u in Cmax, i.e.,
r̂u = |Nu(G) ∩ Cmax|. We have the following result.

Lemma 4: After deleting (u, v), Cmax will be updated
only if r̂u < cmax or r̂v < cmax.

Proof: If r̂u < cmax (r̂v < cmax), we know that u (v)
has less than cmax neighbors in Cmax, thus its core number
must decrease by 1. Therefore, we must delete the node u
(v) from Cmax. On the other hand, if both r̂u ≥ cmax and
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Algorithm 4 Deletion (G, (u, v), d, cmax, Cmax)
Input: Graph G, edge (u, v), degree set d, cmax,

and the cmax-core Cmax

Output: The updated degeneracy cmax,
cmax-core Cmax, and d

1: Update du and dv after removing edge (u, v);
2: if u ∈ Cmax and v ∈ Cmax then
3: r̂u ← |Nu(G) ∩ Cmax|; r̂v ← |Nv(G) ∩ Cmax|;
4: if r̂u < cmax or r̂v < cmax then
5: (Cmax, ĉ) ← PCore (G, Cmax, d, cmax);
6: if Cmax = ∅ then
7: cmax ← cmax − 1;
8: (Cmax, ĉ)← PCore (G, {u|u ∈ V, du ≥ cmax}, d, cmax);
9: return (d, cmax, Cmax);

r̂v ≥ cmax, u and v are still contained in Cmax by the
definition of the cmax-core.

By Lemma 4, if r̂u < cmax or r̂v < cmax, we can
invoke PCore to maintain the cmax-core. Recall that PCore
admits three input parameters: the working node set, the
upper bounds set, and the parameter ρ. We can use Cmax

as the working node set, since it must contain the updated
cmax-core. We update the degrees du and dv after removing
(u, v), and make use of the updated degree sets d as the
upper bounds set. For the parameter ρ, we set it to cmax.
Clearly, we can obtain a cmax-core, if it exists, by invoking
PCore with these parameters. Note that PCore may return
an empty set if the cmax-core does not exist. In this case,
the entire cmax-core is vanished after deleting (u, v). Thus,
we has to compute the (cmax−1)-core, as an edge deletion
can only decrease the maximum core number (degeneracy)
by 1 based on the result shown in [46]. Again, we are
able to apply the PCore algorithm to compute (cmax − 1)-
core. It is important to note that the updated (cmax − 1)-
core may contains the original cmax-core. Therefore, we
cannot use Cmax as the working node set. Instead, we set
R = {u|u ∈ V, du ≥ cmax − 1}, because R obviously
contains the (cmax − 1)-core. Also, we set the updated
degree set as the upper bounds set, and ρ = cmax − 1.
The detailed implementation of our algorithm is depicted
in Algorithm 4.

Example 5: Consider the graph in Fig. 1. Suppose that
we delete an edge (v1, v2). Clearly, before deleting (v1, v2),
we have d = {3, 4, 5, 4, 4, 1, 2, 1}, cmax = 3, and Cmax =
{v1, v2, v3, v4}. First, the algorithm updates dv1 = 2 and
dv2 = 3. Then, the algorithm calculates r̂v1 = 2 and
r̂v2 = 2, because both v1 ∈ Cmax and v2 ∈ Cmax (Lines 2-
3). Since r̂v1 < cmax, the algorithm invokes PCore to
compute the cmax-core (Lines 4-5). We can easily derive
that PCore returns ∅, as there is no 3-core after deleting
(v1, v2). Thus, the algorithm computes the (cmax− 1)-core
by using the working node set R = {u|u ∈ V, du ≥ 2} =
{v1, · · · , v5, v7} (Lines 6-8). PCore will return R as the
(cmax − 1)-core, and the Deletion algorithm updates cmax

by Cmax accordingly (Lines 6-8). �

Analysis of Deletion. The correctness of Algorithm 4 can
be guaranteed by Lemma 4 and Theorem 2. Clearly, the
memory overhead of Algorithm 4 is O(n). Below, we
mainly analyze the I/O complexity of Algorithm 4. Let τ be
the number of iterations taken by PCore, ñ be the number

Algorithm 5 Insertion (G, (u, v), d, cmax, Cmax)
Input: Graph G, edge (u, v), degree set d, cmax,

and the cmax-core Cmax

Output: The updated degeneracy cmax,
cmax-core Cmax, and d

1: Update du and dv after inserting edge (u, v);
2: if du ≥ cmax and dv ≥ cmax then
3: hu ← Hindex(u, d,Nu(G)); hv ← Hindex(v, d,Nv(G));
4: if hu ≥ cmax and hv ≥ cmax then
5: if u ∈ Cmax and v ∈ Cmax then
6: (C, ĉ)← PCore (G,Cmax,d, cmax + 1);
7: if C 6= ∅ then
8: cmax ← cmax + 1; Cmax ← C;
9: else

10: (Cmax, ĉ)← PCore (G, {u|u ∈ V, du ≥ cmax}, d, cmax);
11: return (d, cmax, Cmax);

of nodes in the working node set R, and m̃ be the total
number of incident edges of the nodes in R.

Theorem 4: To handle an edge (u, v), the I/O complexity
of Algorithm 4 is O(τ(m̃ + ñ)/B) if the cmax-core is
updated. Otherwise, the I/O complexity is O((du+dv)/B).

Proof: Clearly, if the cmax-core is not updated, Algo-
rithm 4 only needs to update du and dv , as well as compute
r̂u and r̂v , which can be done by loading the neighbors
of u and v from the disk once. Thus, in this case, the
I/O cost is O((du + dv)/B). If the cmax-core is updated,
Algorithm 4 has to invoke PCore to maintain the cmax-core,
thus its I/O complexity is the same as that of PCore, which
is O(τ(m̃+ ñ)/B).

In the experiments, we show that our algorithm is very
efficient in practice, because the cmax-core is updated
infrequently even when the graph is frequently updated.
On the other hand, the number of iterations taken by PCore
to compute the cmax-core can be bounded by O(log n) in
random graphs, as indicated in [45]. Thus, even if the cmax-
core is updated, the I/O complexity of our algorithm is
expected to be bounded by O(log n× (m̃+ ñ)/B).

5.2 Handling Edge Insertion
Here we discuss the edge insertion case. Let (u, v) be an
edge to be inserted. The algorithm first updates the degrees
du and dv after adding (u, v). Then, it is easy to show that
Cmax may be updated only if both du ≥ cmax and dv ≥
cmax. To further improve the efficiency, we can compute
the h-index of u (v), denoted by hu (hv), based on the
updated degrees. Based on the h-index, we can derive the
following result.

Lemma 5: After inserting (u, v), Cmax cannot be update
if hu < cmax or hv < cmax.

Proof: Suppose, without loss of generality, that hu <
cmax. Then, we have cu < cmax, as hu is an upper bound
of cu. Clearly, u does affect Cmax, and the number of
neighbors of v in Cmax also keeps unchanged. As a result,
no node’s core number will be updated in this case.

By Lemma 5, we only need to maintain the cmax-core
when both hu ≥ cmax and hv ≥ cmax. Below, we assume
that hu ≥ cmax and hv ≥ cmax, and consider two cases.
First, if both u ∈ Cmax and v ∈ Cmax, the cmax-core may
contain a (cmax + 1)-core after adding (u, v). Thus, we
invoke PCore with working node set R = Cmax, upper
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bounds set d, and ρ = cmax+1 to compute the (cmax+1)-
core. If such a (cmax + 1)-core exists, we update Cmax by
the (cmax+1)-core, and increase cmax by 1. Otherwise, we
keep both cmax and Cmax unchanged, because both u and
v are already in Cmax and thereby the insertion of (u, v)
does not affect Cmax. Second, if there exist at least one
node of u and v that are not in Cmax, we invoke PCore with
parameters R = {u|u ∈ V, du ≥ cmax}, d, and ρ = cmax to
compute the cmax-core. This is because under this case, the
cmax-core may be expanded after inserting an edge (u, v),
and therefore we need to invoke PCore to recompute the
cmax-core. Moreover, in this case, the cmax-core does not
contain a (cmax + 1)-core. The detailed implementation of
our algorithm is given in Algorithm 5.

Example 6: Consider the graph in Fig. 1. Suppose that
we have already deleted the edge (v1, v2), and we aim to
maintain the degeneracy after adding back (v1, v2). Clearly,
by Example 5, we have d = {2, 3, 5, 4, 4, 1, 2, 1}, cmax =
2, and Cmax = {v1, · · · , v5, v7} for the graph in Fig. 1
after deleting (v1, v2). When inserting back (v1, v2), the
algorithm first updates dv1 = 3 and dv2 = 4 (Line 1 in
Algorithm 5). Since both dv1 ≥ cmax and dv2 ≥ cmax,
the algorithm computes hv1 = 3 and hv2 = 3 (Lines 2-3).
Then, since (i) hv1 ≥ cmax and hv2 ≥ cmax, and (ii) both
v1 ∈ Cmax and v2 ∈ Cmax, the algorithm invokes PCore
with parameters R = Cmax, d, and ρ = 3 to compute the
3-core (Lines 4-6). Clearly, the algorithm is able to obtain
a 3-core {v1, · · · , v4}. Thus, the algorithm updates Cmax

by this 3-core, and sets cmax = 3 (Lines 7-8). �

Analysis of Insertion. The correctness of Algorithm 5 can
be guaranteed by Lemma 5 and Theorem 2. Similar to
Algorithm 4, the memory overhead of Algorithm 5 is O(n).
The I/O complexity of Algorithm 4 is O(τ(m̃ + ñ)/B)
if both hu ≥ cmax and hv ≥ cmax after inserting (u, v).
Otherwise, the I/O complexity is O((du + dv)/B). Since
Cmax is infrequently update even when the graph is rapidly
changed, Algorithm 5 is very efficient in practice, as
confirmed in our experiments.

6 EXPERIMENTS

In this section, we first conduct extensive experiments to
evaluate the efficiency of the proposed algorithms. Then,
we systematically evaluate the degeneracies of 150 publicly
available real-world networks.

6.1 Experimental setup

We collect 150 various real-world networks from four
different sources, including (1) the Koblenz Network Col-
lection (http://konect.uni-koblenz.de/), (2) the Stanford Net-
work Collection (http://snap.stanford.edu/data/), (3) the We-
b Graph Collection (http://webgraph.di.unimi.it/), and the
ASU Network Collection (http://socialcomputing.asu.edu/
pages/datasets). The detailed statistics of these networks
are shown in Table 1. Note that the original GSH dataset
released at http://webgraph.di.unimi.it/ is very large which
takes near 1TB after decompressing. Due to the hardware

limit, our GSH dataset in Table 1 is a subgraph generated
by randomly sampling edges from the original GSH graph.

We implement five various algorithms: SemiStream,
SemiCore, SemiDeg, SemiDeg+, and SemiDegAppr.
SemiStream is the semi-streaming approximate algorithm
proposed in [12]. For SemiStream, we set the parameter
α = 4 to achieve good I/O performance. SemiCore denotes
the state-of-the-art semi-external core decomposition
algorithm [33]. SemiDeg and SemiDeg+ denote
Algorithm 1 and Algorithm 3 respectively. SemiDegAppr is
essentially the iteratively-halving procedure in Algorithm 3
which can generate a 2-approximate solution of the
degeneracy.

Experimental settings. All algorithms are implemented
in C++, using gcc compiler with no compilation flag. All
experiments are conducted on a PC with a 2.4GHz Xeon
CPU, DDR4 2400 MHZ memory (16GB), and 7200 RPM
SATA III 1 TB disk with 600MB/s data transfer rate,
running Red Hat Linux 6.4. We conduct each experiment
independently on this PC, and thus any two experiments
do not compete for resources. For all experiments, the time
cost of each algorithm is measured by the amount of wall-
clock time elapsed during the algorithms’ execution. For
each input graph G, we organize G in the disk using the
graph storage method described in Section 2. In addition,
each node’s adjacency list is sorted by the nodes’ IDs
using a standard external-memory sorting algorithm. Note
that the sorting cost is not included in the time cost for
each algorithm. For all our algorithms, we only store the
node information (e.g., the core number upper bounds c)
in the main memory. For the memory costs, we record
the maximum amount of memory used by each algorithm
during the algorithms’ execution. Recall that when the
algorithm visits the neighborhood of a node, it needs to
load the adjacency list of that node from the disk, thus
incurring I/O costs. We make use of the standard method as
used in [33], [38] to record the number of I/Os for various
algorithms.

6.2 Performance studies

We evaluate the performance of different I/O-efficient
algorithms for degeneracy measurement and maintenance
using two sets of networks: 1) five medium-sized graphs
which are ctPaTe, LiveJour, Hollywood, Orkut, and Arabic;
and 2) five massive graphs, including IT, Twitter, SK, UK,
and GSH. ctPaTe is a citation network, and Hollywood
is a co-actor network. LiveJour, Orkut, and Twitter are
social networks. Arabic, IT, SK, UK, and GSH are web
graphs. The detailed statistics of these networks are shown
in Table 1 (in bold font).

Results for degeneracy computation. Fig. 2 reports
the running time, I/O cost, and memory overhead of
various algorithms for degeneracy computation. As shown
in Figs. 2(a-b), SemiDegAppr is the fastest algorithm,
followed by SemiDeg+, SemiStream, SemiCore, and
SemiDeg. Generally, SemiDegAppr is nearly 2 times faster
than SemiDeg+, and SemiDeg+ is around one order of
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TABLE 1
Networks statistics and the degeneracy results (1K=1,000, 1M=1,000,000, and 1G=1,000,000,000).

Networks Name |V | |E| δ Name |V | |E| δ Name |V | |E| δ

Citation networks ctDBLP 12.6K 99.5K 12 ctCora 23K 183K 13 ctHeTH 28K 706K 37
ctHePH 35K 843K 30 ctSeer 384.4K 3.5M 15 ctPaTe 3.8M 33M 64

Collaboration
networks

caGrQc 5.2K 14.5K 43 caHeTH 9.8K 26K 31 caHePH 12K 118.5K 238
caAsPh 18.8K 198K 56 caCoMa 23K 93.5K 25 caDBLP 933K 13M 118

Infrastructure
networks

RoadEU 1.2K 1.4K 2 AirTra 1.2K 2.6K 4 RoadCH 1.5K 1.3K 1
USAir 1.6K 56.5K 64 OPFlight 2.9K 61K 28 PowGrid 4.9K 6.6K 5
RoadPA 1.1M 1.5M 3 RoadTX 1.4M 1.9M 3 RoadCA 2M 2.8M 3

Biology networks Elegans 453 4.6K 10 Stelzl 1.7K 12.4K 7 Protein 1.9K 2.3K 5
Figeys 2.2K 12.9K 10 Vidal 3.1K 6.7K 6 Reactome 6.3K 147.5K 176

Software networks JungDep 6.1K 138.7K 65 JDK 6.4K 151K 65 LinuxSC 30.8K 214K 23
Lexical networks Thesaurus 23.1K 511.8K 34 WordNet 146K 657K 31 YahooAdv 653.3K 2.9M 39

Computer networks AsRoute 6.5K 14K 12 Oregon 11.5K 65.4K 31 NetTO 34.8K 171.4K 63
Caida 26.5K 53.4K 22 Gnutella 62.6K 295.8K 6 Skitter 1.7M 11.1M 111

P2P networks
P2PGnu04 10.9K 80K 3 P2PGnu05 8.8K 63.7K 3 P2PGnu06 8.7K 63.1K 3
P2PGnu08 6.3K 41.6K 3 P2PGnu09 8.1K 52K 3 P2PGnu24 26.5K 130.7K 2
P2PGnu25 22.7K 109.4K 2 P2PGnu30 36.7K 176.7K 2 P2PGnu31 62.6K 295.8K 2

Communication
networks

RoviraU 1.1K 5.4K 11 UCIrvine 1.9K 59.8K 20 DNCEmail 2K 39.3K 17
DiggCom 30.4K 87.6K 9 Enron 36.7K 183.8K 43 FBWall 47K 877K 16
Slashdot 51.1K 140.8K 14 LinuxMail 63.4K 1.1M 91 WikiDE 91.3K 2.4M 117
WikiDU 225.7K 1.55M 98 EmailEU 256K 420K 37 37 WikiRU 457K 2.3M 81
WikiSP 497.4K 2.7MK 94 WikiGE 519.4K 6.7M 150 WikiPO 541.3K 2.4M 84
WikiIT 863.8K 3.1M 107 WikiArab 1.1M 1.9M 54 WikiCN 1.2M 2.3M 68
WikiFR 1.4M 4.64M 120 WikiTalk 2.4M 5M 131 WikiEN 3M 2.5M 210

Online contact
networks

EmailCon 2K 136.6K 74 WikiElect 7.1K 103.7K 53 PreGood 10.7K 24.3K 31
WikiConf 118.1K 2.9M 145 WikiSign 138.6K 740.4K 55 UbuntuCon 159.3K 964.4K 48

Hyperlink networks

BlogElect 1.2K 19K 36 Foldoc 13.3K 125.2K 9 GoogleIn 15.8K 171.2K 102
WebStanf 282K 2.3M 71 WebND 325.7K 1.5M 155 ReBaidu 415.6K 3.3M 228
WebBerke 685.2K 7.6M 201 WebGoogle 875.7K 5.1M 44 LKWikiPLD 1M 25M 225
LKWikiNL 1M 20.1M 166 LKWikiITD 1.2M 34.8M 271 LKWikiPL 1.5M 57.5M 842
TrecWT 1.6M 8.1M 140 LKWikiPT 1.6M 49M 1043 LKWikiJA 1.6M 71.1M 848
LKWikiIT 1.9M 91.6M 857 LKHuDong 2M 14.9M 266 LKBaidu 2.1M 17.8M 78

LKWikiFRD 2.2M 59M 221 ReHuDong 2.4M 18.9M 16 LKWikiRU 2.9M 82M 818
LKWikiFR 3M 102.4M 1097 LKWikiGE 3.2M 81.6M 829 WebIndo 7.4M 194.1M 6869
EUHost 11.3M 386.9M 987 LKWikiEN 12.1M 378.1M 1123 LKDBPedia 18.3M 172.2M 149
Arabic 22.7M 640M 3,247 EUTpd 6.65M 170.1M 9,874 IT 41.3M 1.2G 3,224
SK 50.6M 1.95G 4,510 UK 106.3M 3.87G 10,424 GSH 930M 13.3G 3,954

Social networks

HamsterF 1.9K 12.5K 20 HamsterA 2.4K 16.6K 24 FbEgo 2.9K 3K 3
Advogato 6.5K 51.1K 25 WikiVote 7.1K 103.7K 53 Google+ 23.6K 39.2K 12
Brightki 58.2K 214.1K 52 FbSocial 63.7K 817K 52 Epinions 75.9K 508.9K 67
Slashdot 79.1K 515.4K 54 BlogCaI 88.8K 4.2M 221 BlogCaII 97.9K 2M 220
Buzznet 101.2K 4.3M 153 Deliciou 103.1K 1.4M 33 Livemoch 104.1K 2.2M 92
Foursqua 106.2K 3.5M 63 LastFM 108.5K 5.1M 70 EPTrust 131.8K 841.4K 121
CatstFri 149.7K 5.4M 419 Douban 154.9K 327.2K 15 Gowalla 196.6K 950.3K 51
Libimset 221K 17.4M 273 DiggFri 279.6K 1.7M 176 DogstFri 426.8K 8.5M 248
FamiLink 623.8K 15.7M 1,159 Youtulink 1.14M 4.94M 51 Hyves 1.4M 2.8M 39
Pokec 1.6M 30.6M 47 FlickrSocI 1.7M 15.6M 568 FlickrSocII 2.3M 33.1M 600
Flixster 2.5M 7.9M 68 Orkut 3.1M 117.2M 253 YouTube 3.2M 9.4M 51
LiveJour 5.4M 79M 372 Twitter 41.6M 1.47G 2,488 FriendST 68.3M 2.59G 304

Miscellaneous FlickCTag 105.9K 2.3M 573 AmazMDS 334.8K 925.9K 6 CoActor 382.2K 33.1M 365
AmazTWeb 403.3K 3.4M 10 Hollywood 2.2M 229M 1,297 DBpedia 3.97M 13.8M 20

magnitude faster than SemiCore. We can also observe
that SemiDeg+ is significantly faster than SemiStream in
massive graphs. For example, on the largest network GSH,
SemiDegAppr takes 385 seconds, SemiDeg+ consumes
633 seconds, SemiStream takes 2,808 seconds, and
SemiCore uses 7,218 seconds to compute the degeneracy.
It is worth mentioning that SemiDeg is not very efficient,
since it needs to scan a large portion of the graph in each
iteration. Thus, for massive graphs, we do not show the
results of SemiDeg.

Similarly, in Figs. 2(c-d), we can clearly see that
the results of the I/O costs are consistent with the
results of the running time. SemiDegAppr is clearly the
winner among all competitors, followed by SemiDeg+,
SemiStream, SemiCore, and SemiDeg. Both SemiDegAppr
and SemiDeg+ use one order of magnitude less I/Os than
SemiCore. For the memory overhead (reported in Figs. 2(e-
f)), all algorithms exhibit similar performance, because

all algorithms consume O(n) space. These observations
confirm our theoretical results shown in Section 4.

Disk-based vs. in-memory algorithms. Here we compare
the time costs between SemiDeg+ and the state-of-the-art
in-memory degeneracy compuation algorithm [48], called
BucketCore, when the graph can fit in the main memory.
BucketCore is an optimized in-memory core decomposition
algorithm using a bucketing technique [48] which was
shown to be faster than the traditional peeling-based core
decomposition algorithm [32]. Note that for BucketCore,
the input graph is stored in the main memory. However,
for SemiDeg+, we only store the node information in the
main memory and the edges of the input graph are stored
in the disk, even if the whole graph can fit in the main
memory. Fig. 3 shows the running time of SemiDeg+ and
BucketCore on the five medium-sized graphs. As can be
seen, SemiDeg+ is at least twice faster than BucketCore on
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Fig. 2. Results of various algorithms for degeneracy
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Fig. 3. Comparison SemiDeg+ with BucketCore

these datasets. For example, on Arabic, SemiDeg+ takes 6.6
seconds, while BucketCore consumes 25.1 seconds to com-
pute the degeneracy. The reason could be that SemiDeg+
directly computes the degeneracy based on an efficient
binary-search procedure (with pruning optimization), while
BucketCore needs to compute the core decomposition to
derive the degeneracy which is typically more expensive
than the binary-search procedure. These results indicate
that the core-decomposition based algorithm is less efficient
than the binary-search based algorithm for degeneracy
computation.

Random vs. sequential I/O costs. Recall that in
SemiDeg+, the algorithm may incurs both random and
sequential I/O costs. When the algorithm starts to load the
neighborhood of a node from the disk, the algorithm may
incur a random I/O, because it needs to seek the position
of that node’s adjacency list in the disk. When loading an
adjacency list into the main memory, the algorithm will
take sequential I/Os, because an adjacency list may occupy
several consecutive blocks in the disk. In this experiment,

10K
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1M

10M

IT Twitter
SK UK GSH

I/
O

RandIO
SeqIO

Fig. 4. Random vs. sequential I/O costs for SemiDeg+

we study the number of random and sequential I/Os
taken by SemiDeg+. Fig. 4 reports our results on the five
massive graphs. We can see that the number of sequential
I/Os is around 10 times larger than that of random I/Os
on most datasets. Since the sequential I/Os are typically
much cheaper than the random I/Os, thus our SemiDeg+
algorithm can be very efficient in practice, which are
consistent with our previous results.

Comparison between SemiDegAppr and SemiStream. It
should be noted that in SemiStream, a large parameter α
will lead to better I/O performance, but it may degrade the
approximation performance. In the previous experiment, we
have already shown that both SemiDegAppr and SemiDeg+
are much more efficient than SemiStream even when α =
4. Here we show that SemiDegAppr is also much better than
SemiStream (with α = 4) in terms of the approximation
performance. The results are shown in Fig. 5. As can
be seen, the degeneracy obtained by SemiDegAppr is
near to optimal on many datasets, whereas SemiStream
typically obtains a loose approximation of the degeneracy.
For example, on the GSH network, the exact degeneracy is
3,954, while the degeneracy obtained by SemiDegAppr and
SemiStream is 3,958 and 5,494 respectively. These results
suggest that SemiDegAppr is much better than SemiStream
for degeneracy computation on massive graphs in terms of
both running time and approximation performance.

Scalability testing. In this experiment, we show the s-
calability of SemiDegAppr and SemiDeg+ using Twitter
and UK datasets. Similar results can also be observed on
the other datasets. For both Twitter and UK, we generate
four subgraphs by randomly sampling edges from 20% to
100%, and evaluate the time and I/O costs of our algorithms
on these subgraphs.The results are shown in Fig. 6. As
can be seen, both the running time and I/O costs of our
algorithms increase as |E| increases. The curves of both
SemiDegAppr and SemiDeg+ are nearly linear, indicating
that our algorithms scale very well in practice.

Results for degeneracy maintenance. In this experiment,
we evaluate the performance of SemiDeg+ and SemiCore
for degeneracy maintenance, since only SemiDeg+ and
SemiCore can be used for degeneracy maintenance. We
randomly delete and insert 1,000 edges in the graph
for each test. The maintenance costs of each algorithm
for edge deletion and edge insertion are the averaged
results over 1,000 deletions and insertions respectively. The
experimental results are shown in Fig. 7. From Fig. 7(a),
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we can clearly see that SemiDeg+ is at least three orders
of magnitude faster than SemiCore for handling an edge
deletion on most networks. To process an edge insertion,
SemiDeg+ is one order of magnitude faster than SemiCore
on Hollywood and Twitter, and at least three orders of
magnitude faster than SemiCore on IT, UK, and GSH.
For example, on the Twitter dataset, SemiCore spends
115ms and 304ms to handle an edge deletion and insertion
respectively, whereas SemiDeg+ takes only 0.02ms and
26ms to process an edge deletion and insertion respectively.
This is because SemiDeg+ only needs to maintain the cmax-
core, while SemiCore has to maintain all the core numbers.
Likewise, from Fig. 7(b), we are able to derive similar
results for the I/O costs of SemiDeg+ and SemiCore. These
results confirm the theoretical analysis in Section 5.

6.3 Degeneracy of different networks

Degeneracy of real-world networks. In this experiment,
we systematically evaluate the degeneracies of 150 real-
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Fig. 9. Degree and h-index distributions of large-
degeneracy graphs

world networks. The results are reported in Table 1. From
Table 1, we can see that citation networks, collabora-
tion networks, infrastructure networks, biology networks,
software networks, lexical networks, computer networks,
P2P networks, communication networks, and online contact
networks have relatively small degeneracies. However, for
some large social networks and hyperlink networks, the
degeneracy can be very large. For example, the Twitter
social network has a degeneracy 2,488, and the web graph
UK has a degeneracy 10,424.

Fig. 8 depicts the degeneracy distributions of different
types of networks. As can be seen, there are 111 networks
that have a degeneracy smaller than 200, validating that
many real-world networks indeed have small degeneracies.
From Fig. 8(c), we can observe that near one-half hyperlink
networks have degeneracies larger than 800. Moreover,
as reported in Table 1, all massive web graphs have
very large degeneracies. From Fig. 8(d), we can see that
80% social networks have small degeneracies (δ ≤ 200),
and the remaining 20% social networks have relatively
large degeneracies. These results indicate that the “small-
degeneracy” assumption made in many existing work [2],
[17], [22], [29], [35] might be excessively optimistic for
web graphs and social networks.

Node distributions of large-degeneracy networks. Here
we conduct an experiment to investigate why some real-
world networks have large degeneracies. Specifically, we
study the distributions of high-degree and high h-index
nodes on the large-degeneracy networks. Fig. 9 shows the
results on the Twitter and UK datasets. Similar results can
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also be obtained on the other large-degeneracy networks.
As can be seen, both Twitter and UK contain a significant
number of high-degree and high h-index nodes. These
high-degree and high h-index nodes probably form a large
dense subgraph which leads to the network having a large
degeneracy. For example, on the UK dataset, there are
10,428 nodes that have h-index values no smaller than
10,000. By the definition of h-index, those high h-index
nodes very likely form a dense subgraph, thus resulting in
a large degeneracy value of UK.

Degeneracy of random graphs. In this experiment, we
evaluate the degeneracies of random graphs. We generate
two sets of random graphs (with 10-million nodes): the
power-law random graphs and the classic Erdos-Renyi (ER)
random graphs. For the power-law random graphs, we vary
the power-law degree exponent γ from 2 to 3.4, because
most real-world power-law networks fall into this range
[49]. For the ER graphs, we vary the number of edges from
10 million to 80 million. The results are shown in Fig. 10.
From Fig. 10(a), we can see that the degeneracy of the
power-law graph decreases with an increasing γ. Moreover,
the degeneracy of the power-law graph is very small if
γ > 2.2. These results further confirm that most real-world
graphs have small degeneracies. On the other hand, the
degeneracy of the ER graph increases as |E| grows. This is
because the density of the graph increases with increasing
|E|, which may give rise to large k-cores [50], and therefore
the degeneracy may increase.

7 CONCLUSION
In this paper, we propose a novel I/O-efficient algorithm
using O(n) memory to compute the degeneracy of mas-
sive graphs. We also devise an I/O-efficient degeneracy
maintenance algorithm for dynamic graphs. Based on our
algorithms, we perform a comprehensive evaluation of the
degeneracy over 150 real-world graphs. The results sug-
gest that most real-world graphs have small degeneracies,
except for some large social networks and web graphs,
in which the degeneracy can be up to several thousands.
The experimental results also demonstrate that the proposed
algorithms are substantially faster than the state-of-the-art
algorithms for degeneracy computation and maintenance.
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