“©2020 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any current or future media, including reprinting/republishing this material for advertising or promotional purposes, creating new collective works, for resale or redistribution to servers or lists, or reuse of any copyrighted component of this work in other works.”
I/O-Efficient Algorithms for Degeneracy Computation on Massive Networks

<table>
<thead>
<tr>
<th>Journal:</th>
<th>Transactions on Knowledge and Data Engineering</th>
</tr>
</thead>
<tbody>
<tr>
<td>Manuscript ID</td>
<td>TKDE-2018-02-0102.R2</td>
</tr>
<tr>
<td>Manuscript Type:</td>
<td>Regular</td>
</tr>
<tr>
<td>Keywords:</td>
<td>Graph mining, Core decomposition, I/O-efficient graph algorithm, Graph data management</td>
</tr>
</tbody>
</table>
Summary of Changes:

I/O-Efficient Algorithms for Degeneracy Computation on Massive Networks

Rong-Hua Li, Qiushuo Song, Xiaokui Xiao, Lu Qin, Guoren Wang, Jeffrey Xu Yu, and Rui Mao

Thanks for providing us this revision opportunity. We are very grateful to the anonymous reviewers for their insightful and valuable comments. We have revised the manuscript and tried our best to address all the comments. The point-to-point responses are given below.

To Associate Editor:

(1) Comments: This revision addresses many issues from the early version and therefore two of the reviewers gave very positive feedback. However, one of the reviewers raised concerns on the novelty of the work. Especially, due to the lack of theoretical guarantee about how good are these two bounds, the effectiveness for fast computation seems not fully convincing. Besides, the cohesion of introduction of streaming settings shall also be further addressed. Thus, the work shall be further improved to warrant publication.

Responses: The bounds are simple and not the key contributions of our work, which are only used for pruning unpromising nodes in our algorithm. The key technical contribution of our work is an I/O-efficient algorithm, i.e., the PCore Algorithm, to determine whether there exists a k-core in a refined graph (see Algorithm 2). The proposed PCore algorithm is nontrivial and can be perfectly implemented in an I/O-efficient manner. In the experiments, we find that without our PCore algorithm, the basic version of the binary-search framework is inefficient which may be worse than the state-of-the-art algorithm (see Fig.2(a) and Fig.2(c), SemiDeg vs. SemiDeg+). However, with our PCore algorithm, we can achieve one order (three orders) of magnitude speedup over the state-of-the-art algorithm for the degeneracy computation (maintenance) problem (see Fig. 2 and Fig. 7 respectively). Another key contribution of our work is an extensive evaluation of the degeneracy of 150 real-life graphs, which can provide a useful guideline for many degeneracy-based graph analysis applications. Perhaps, Reviewer#3 may misunderstand the key technical contributions and practical value of our work.

Real-life graphs may be frequently updated, thus it is important to study the problem of maintaining the degeneracy for dynamic graphs. Since real-life massive graphs are often disk resident, we investigate the problem of maintaining the degeneracy for disk-resident graphs. Previous studies on I/O-efficient k-core decomposition [1] or I/O-efficient degeneracy computation [2] also consider such a dynamic setting for disk-resident graphs. Thus, in this revision, we still keep the I/O-efficient degeneracy maintenance algorithm, which is useful for degeneracy computation on massive dynamic graphs.

[1] Dong Wen, Lu Qin, Ying Zhang, Xuemin Lin, Jeffrey Xu Yu: I/O efficient Core Graph Decomposition at web scale. ICDE 2016: 133-144
To Reviewer #1:
(1) Comments: My only additional comment is that it should be clarified in the paper that the gsh dataset used is a (sampled) subset of the actual dataset.

Responses: In this revision, we have clarified this point (see Section 6.1).

To Reviewer #2:
(1) Comments: It is good to see that my previous comments are all addressed. There are some new issues in the latest revision.
Page 9, Line 14: It is somewhat surprising that the compilation is made without any optimization flag, e.g. -O2 or -O3. It would be good to explain the reason.
Page 9, Line 26: "sorting cost is not included" looks strange to me, especially some of the previous work does not require the input to be sorted.

Responses: Thank you for pointing out these issues. We have also tested our algorithms with –O3 compilation optimization on more than 30 datasets. We find that the time overheads of our algorithms are not significantly affected (near the same). The reason could be that the main costs of our algorithms are dominated by the IO costs (not the CPU costs).

Sorting the edges of a graph can be considered as a preprocessing procedure. Several previous studies (see [1] and [2]) also assume that the input adjacency lists are sorted by node IDs. In our work, we follow the same assumption as used in [1] and [2].

[2] Dong Wen, Lu Qin, Ying Zhang, Xuemin Lin, Jeffrey Xu Yu: I/O efficient Core Graph Decomposition at web scale. ICDE 2016: 133-144

To Reviewer #3:
(1) Comments: The novelty of the algorithms in Section 4 is not that high. Two bounds and a binary search seems straightforward. Therefore, the overall feeling is that the proposed algorithms are that elegant as we feel when learn some classic algorithms such as quicksort. The bounds are also naive bounds without any in-depth theoretical analysis/guarantee.

Responses: Thanks for pointing out this. In our work, the bounds are not the key contributions. The main contribution of work is a novel I/O-efficient framework to compute the degeneracy for massive graphs. In our framework, the key technical contribution is not the binary search procedure, but the I/O-efficient procedure, i.e., the PCore algorithm, for determining whether there exists a k-core in a refined graph (see Algorithm 2). The proposed PCore algorithm is nontrivial and can be perfectly implemented in an I/O-efficient manner. It only works on a small node set, and it can dynamically update the upper bounds to significantly prune unpromising nodes, thus it is I/O-efficient. Moreover, the PCore algorithm is also the key subroutine of our I/O-efficient degeneracy maintenance algorithms. In the experiments, we find that without our PCore algorithm, the basic version of the binary-search framework is inefficient which may be worse than the state-of-the-art algorithm (see Fig.2(a) and Fig.2(c), SemiDeg vs. SemiDeg+). However, with our PCore algorithm, we can achieve one order (three orders) of magnitude speedup over the state-of-the-art algorithm for the degeneracy computation (maintenance) problem (see Fig. 2 and Fig. 7 respectively).
Another key contribution of our work is an extensive evaluation of the degeneracy of 150 real-life graphs, which can provide a useful guideline for many degeneracy-based graph analysis applications. Specifically, our results indicate that the “small-degeneracy” assumption holds for many real-life graphs, but it might be excessively optimistic for social networks and web graphs, and that future work on these two types of graphs should not rely on this assumption.

(2) Comments: Section 5 considers streaming setting, which is quite different than disk-resident settings. Putting them together may not be a good idea. Degeneracy is the same as k-value of k-core. Using a simple concept might be easier for readers to understand.

Responses: Thanks for pointing out this. Real-life graphs may be frequently updated, thus it is important to study the problem of maintaining the degeneracy for dynamic graphs. Since real-life massive graphs are often disk resident, we investigate the problem of maintaining the degeneracy for disk-resident graphs. Previous studies on I/O-efficient k-core decomposition [1] or I/O-efficient degeneracy computation [2] also consider such a dynamic setting for disk-resident graphs. Thus, in this revision, we still keep the I/O-efficient degeneracy maintenance algorithm, which is useful for degeneracy computation on massive dynamic graphs.

Degeneracy is a well-known and classic concept to measure the sparseness of a graph and it is also widely used in many recent database and data mining papers (e.g., [2-4]), thus we use this classic concept in our work.

[1] Dong Wen, Lu Qin, Ying Zhang, Xuemin Lin, Jeffrey Xu Yu: I/O efficient Core Graph Decomposition at web scale. ICDE 2016: 133-144
I/O-Efficient Algorithms for Degeneracy
Computation on Massive Networks

Rong-Hua Li, Qiushuo Song, Xiaokui Xiao, Lu Qin, Guoren Wang, Jeffrey Xu Yu, and Rui Mao

Abstract—Degeneracy is an important concept to measure the sparsity of a graph which has been widely used in many network analysis applications. Many network analysis algorithms, such as clique enumeration and truss decomposition, perform very well in graphs having small degeneracies. In this paper, we propose an I/O-efficient algorithm to compute the degeneracy of the massive graph that cannot be fully kept in the main memory. The proposed algorithm only uses $O(n)$ memory, where n denotes the number of nodes of the graph. We also develop an I/O-efficient algorithm to incrementally maintain the degeneracy on dynamic graphs. Extensive experiments show that our algorithms significantly outperform the state-of-the-art degeneracy computation algorithms in terms of both running time and I/O costs. The results also demonstrate high scalability of the proposed algorithms. For example, in a real-world web graph with 930 million nodes and 13.3 billion edges, the proposed algorithm takes only 633 seconds and uses less than 4.5GB memory to compute the degeneracy.

Index Terms—Degeneracy, I/O-efficient algorithm, k-core, Massive graphs.

1 INTRODUCTION
Given a graph G, the degeneracy of G, denoted by δ, is the smallest integer such that every subgraph of G has a node of degree at most δ. The degeneracy has been recognized as an important concept for measuring the sparsity of a graph, and it finds applications in several different domains, including network analysis, graph mining, and graph theory. A few significant applications are as follows.

Maximal clique enumeration. A clique is a completed subgraph in which every pair of nodes has an edge, and a maximal clique is one whose super-graphs are all non-cliques. The state-of-the-art algorithms [1], [2] for enumerating maximal cliques require an efficient algorithm for deriving the degeneracy ordering of nodes, which is a byproduct of degeneracy computation. Therefore, an improved algorithm for computing degeneracy immediately leads to more efficient methods for maximal cliques enumeration.

Densest subgraph discovery. The densest subgraph G' of a graph is the one that maximizes m'/n', where m' and n' denote the numbers of edges and nodes in G'. The identification of the densest subgraph has numerous applications such as community discovery [4]–[8], graph compression [9], computational biology [10], and spam detection [11]. Since the exact computation of densest subgraph is expensive [3], most existing techniques aim to derive approximate solutions, which require obtaining an approximation of the maximum subgraph density, i.e., the maximum value of m'/n'. It is well known that the degeneracy is a 2-approximation of the maximum subgraph density [12], and therefore an efficient algorithm for computing degeneracy is highly useful for densest subgraph computation [12]–[14].

Complexity bounds of graph algorithms. Degeneracy is a 2-approximation of arboricity [15], [16] (see Section 2 for details). The arboricity is a classic graph measure that is frequently used to analyze the space or time complexity of network analysis algorithms, such as triangle counting [17], k-clique enumeration [18], truss decomposition [19], [20], structural graph clustering [21], influential community search [22], [23], top-k structural diversity search [24]. Computing the exact value of arboricity, however, incurs significant costs [25]. To address this issue, one can derive the degeneracy of the input graph G, and then use it as an approximation of G’s arboricity for analysis.

In addition, the degeneracy δ has also been widely used as a parameter in many fixed-parameter tractable (FPT) graph algorithms [26], in which the complexity of these algorithms depend mainly on an exponential function of δ, e.g., $O(3^\delta)$. For example, the classic dominating set problem [27]–[29], cycle counting problem [30], as well as the maximal clique enumeration problem are shown to be FPT with the parameter δ. Thus, computing the degeneracy of a graph G can be useful to predict whether such FPT algorithms are tractable in G.

Motivation. For a graph G that fits in the main memory, the degeneracy of G can be computed efficiently using a linear-time algorithm for core decomposition [31], [32]. Specifically, the algorithm consists of several iterations, such that the k-th ($k = 1, 2, \ldots$) iteration recursively removes all nodes in G whose degrees are smaller than
that they induce (this subgraph is referred to as the k-core). It is known that if the degeneracy of G equals δ, then the algorithm runs in exactly δ iterations, i.e., δ equals the largest core number in G.

Nevertheless, real-world graphs are often too large for the main memory of a single machine. For example, the current Facebook social network contains 1.32 billion nodes and 140 billion edges (http://newsroom.fb.com/company-info).

This motivates semi-external algorithms for degeneracy computation via k-core decomposition [33], which require only the nodes of G to be memory-resident but allows the edges of G to be disk-resident. For instance, for the aforementioned Facebook graph, around 10GB memory is sufficient to accommodate all nodes in the graph.

The state-of-the-art semi-external algorithm for core decomposition [33], however, suffers from the following deficiencies. First, to derive the degeneracy δ of a graph G, it requires enumerating the 1-, 2-, ..., δ-cores of G, which incurs unnecessary overheads because, intuitively, the i-cores ($1 \leq i \leq \delta - 1$) are not particularly useful for degeneracy computation. Second, if we use this algorithm to track the degeneracy of a dynamic graph G, we would need to maintain the core decomposition of G which takes $O(|(m + n)/B|)$ I/O costs [33] (i is the iteration number of the algorithm, m and n denote the number of edges and nodes of the graph respectively, and B denotes the block size), thus it is rather costly for massive graphs. Alternatively, one may apply the existing semi-streaming\(^1\) algorithms [12], [13], [34] for degeneracy computation. These algorithms, however, can only return $(2 + \epsilon)$ approximation of degeneracy and are designed only for static graphs (see Section 3 for details).

Our contributions. To overcome the limitations of the existing solutions, we propose a semi-external method for degeneracy computation that utilizes an algorithm design drastically different from previous methods. Specifically, our method does not rely on core decomposition to identify the degeneracy δ of the input graph G. Instead, we start by deriving an (potentially loose) upper bound ub and a lower bound lb of δ, and then perform a binary search in the range $[lb, ub]$ to pinpoint the exact value of δ. To facilitate this binary search, we develop a novel I/O-efficient algorithm that takes as input G and an integer k, and returns a k-core of G (if any) without computing the full core decomposition. In addition, we also devise a semi-external algorithm to incrementally maintain the degeneracy of G when there are edge insertions or deletions.

We experimentally evaluate our algorithms using a variety of benchmark datasets with up to several billion edges. The results show that our degeneracy computation method is an order of magnitude faster than the state-of-the-art solution [33], and our degeneracy maintenance approach is up to three orders of magnitude faster than prior art. For instance, on the GSH dataset with 0.9 billion nodes and 13.3 billion edges, our algorithm takes around 10 minutes to derive the exact value of degeneracy, whereas the state of the art requires more than two hours. For degeneracy maintenance, our solution needs only 0.02 seconds (resp. 0.1 milliseconds) on average to process an edge insertion (resp. deletion), whereas prior art requires around 0.3 seconds (resp. 0.1 seconds). Furthermore, our solution is memory-efficient: it requires less than 4.5GB memory to handle GSH, which is 625GB in size.

Taking one step further in our experiments, we apply our algorithm to measure the degeneracies of 150 publicly available graphs, including social networks, web graphs, citation networks, collaboration networks, infrastructure networks, biological networks, and communication networks. This large experimental study is motivated by the facts that (i) a large body of existing work (e.g., [2], [17], [18], [22], [28], [29], [35]) assume that real networks have small degeneracies, but (ii) to our knowledge, this assumption has never been validated with systematic experiments, presumably because of the significant overheads incurred by existing algorithms for degeneracy computation. Our results show two sides of a coin. On one hand, we observe that the majority of the 150 graphs tested do have fairly small degeneracies (with $\delta < 200$); on the other hand, we also notice that large social networks and web graphs can have degeneracies up to several thousands. In particular, the degeneracies of a social network Twitter and a web graph UK are 2,488 and 10,424, respectively. This indicates that the “small-degeneracy” assumption might be excessively optimistic for social networks and web graphs, and that future work on these two types of graphs should not rely on this assumption.

Organization. We formally define our problem in Section 2, and survey the existing I/O-efficient algorithms for degeneracy computation in Section 3. Sections 4 elaborates the I/O-efficient degeneracy computation algorithm, and Section 5 describes the I/O-efficient degeneracy maintenance algorithm. Section 6 presents the experimental results. Finally, we conclude this work in Section 7.

\section{Preliminaries}

Problem definition. We aim to develop efficient algorithms for (i) computing the degeneracy δ of a graph G and (ii) incrementally maintain δ when there are edge insertions or deletions in G. We assume that G is massive in the sense that the main memory can only accommodate G’s nodes but not its edges. In other words, we assume that the memory size is $O(n)$. Note that this assumption is well-adopted in previous work for analyzing massive graphs [12], [33].

Below, we introduce some useful notations, as well as the formal definition of the degeneracy δ of a graph G.

Concepts and notations. Let $G = (V,E)$ be an undirected graph with a node set V and an edge set E, with $|V| = n$ and $|E| = m$. Let $N_u(G) \triangleq \{v | (u,v) \in E\}$ be the set of neighbors of u in G, and $d_u(G) = |N_u(G)|$ denote the degree of u in G. A graph $G' = (V', E')$ is a subgraph of G, denoted as $G' \subseteq G$, if $V' \subseteq V$ and $E' \subseteq E$. Give a set

1. A semi-streaming algorithm is a semi-external algorithm that requires only a small number of sequential passes of the input graph.
Fig. 1. Running example

of node \(V_s \subseteq V \), the subgraph induced by \(V_s \) is defined as \(G(V_s) = (V_s, E_s) \), where \(E_s = \{(u, v) \mid (u, v) \in E, u \in V_s, v \in V_s \} \).

The degeneracy of \(G \) [36], denoted as \(\delta \), is defined below.

Definition 1: (Degeneracy) The degeneracy \(\delta \) of a graph \(G \) is the smallest integer such that every nonempty subgraph of \(G \) contains a node with degree at most \(\delta \). More formally,

\[
\delta \triangleq \max_{G' \subseteq G} \min_{u \in G'} \{d_u(G')\}. \tag{1}
\]

Given a graph \(G \) and an integer \(k \), the \(k \)-core of \(G \), denoted as \(C_k \), is the maximal induced subgraph of \(G \) such that every node in \(C_k \) has degree no less than \(k \) [37], i.e., \(d_u(C_k) \geq k \) for every \(u \in C_k \). The core number of a node \(u \), denoted as \(c_u \), is the largest integer \(k \) such that there is a \(k \)-core containing \(u \). The maximum core number of a graph \(G \), denoted by \(c_{\text{max}} \), is the maximum value of core number for any node in \(G \). It is known that the degeneracy of \(G \) equals the maximum core number [2], i.e., \(\delta = c_{\text{max}} \). In the remainder of the paper, we use \(\delta \) and \(c_{\text{max}} \) interchangeably to denote the degeneracy of \(G \). We demonstrate the above concepts using an example below.

Example 1: Consider the graph \(G \) shown in Fig. 1. The degeneracy of \(G \) is 3, because (i) there is a subgraph induced by \(\{v_1, v_2, v_3, v_4\} \) where the minimum node degree is 3, and (ii) no subgraph has minimum degree larger than 3. In addition, the core number of each node in \(\{v_1, v_2, v_3, v_4\} \) is 3, because the subgraph induced by \(\{v_1, v_2, v_3, v_4\} \) is a 3-core. Meanwhile, the core numbers of \(v_5 \) and \(v_7 \) are equal to 2, and the core numbers of \(v_6 \) and \(v_8 \) equal 1.

Graph storage and I/O model. We organize \(G \) on the disk in the same manner as in previous work [33]. Specifically, we store the adjacency lists of \(G \), denoted as \(\{N_{v_1}(G), N_{v_2}(G), \cdots, N_{v_n}(G)\} \), in an edge file sequentially on the disk. We also use a node file to store a list including the offsets and degrees of the nodes \(\{v_1, v_2, \cdots, v_n\} \). To load the neighbors of a node \(v_i \) into the memory, we first access the node file to get the offset and degree of \(v_i \), and then load the neighbors of \(v_i \) from the edge file. We adopt the widely-used external memory model proposed in [38] to analyze the I/O-efficient algorithm. Specifically, let \(M \) be the memory size and \(B \) be the block size (\(B < M \)). The disk files are organized by blocks and each block size is \(B \) bytes. For each read I/O, the algorithm loads one block of size \(B \) from disk into main memory. Similarly, for each write I/O, the algorithm write one block of size \(B \) from the main memory into disk. The I/O costs for each algorithm denotes the total number of read and write I/Os taken by the algorithm. Note that the semi-external I/O model assumes the memory size \(M = O(n) \) [12], [33], i.e., the main memory can hold all nodes of the graph but cannot store all edges. In this paper, we adopt such a semi-external I/O model to design and analyze algorithms for degeneracy computation.

3 Existing I/O-Efficient Algorithms

In the literature, there exist two types of algorithms for degeneracy computation that assumes \(O(n) \) memory as we do. The first type is *semi-streaming* algorithms [12], [13], [34] that require only a small number of sequential passes of the input graph, while the second type is a semi-external algorithm for \(k \)-core decomposition [33], referred to as SemiCore. In this section, we reviews two types of algorithms in detail.

We also note that there is a *full external-memory* \(k \)-core decomposition algorithm [39] designed for the case when the memory is too small to accommodate even the nodes in the input graph. Such a full external-memory takes \(O(\delta(m+n)/B) \) I/Os. As shown in [33], the performance of this full external-memory algorithm is much worse than the state-of-the-art semi-external algorithm [33] which uses \(O(l(m+n)/B) \) I/Os (\(l \) is typically smaller than \(\delta \)). Therefore, we omit the full external-memory algorithm proposed in [39] in this section.

3.1 Semi-streaming Algorithms

Existing semi-streaming algorithms [12], [13], [34] adopt a greedy multi-pass approach to compute degeneracy. Specifically, in the \(i \)-th pass, the algorithms identify an induced subgraph \(G_i = (V_i, E_i) \) and compute the density \(\rho_i \) of \(G_i \), where \(\rho_i = |E_i|/|V_i| \). Then, they delete all nodes whose degrees are smaller than \(\alpha \times \rho_i \), where \(\alpha = 2 + \epsilon > 2 \) is a given parameter. When all nodes are removed, the algorithms terminate and output \(\alpha \times \max \{|\rho_i| \} \) as an \(\epsilon \)-approximation of the degeneracy. Throughout the algorithms, we only maintain the degree of each node in the main memory, which takes only \(O(n) \) space. It was shown that such semi-streaming algorithms only require \(O((\log_{1+\epsilon/2} n) \) passes over \(G \) [12].

The main drawback of the above semi-streaming algorithms is that their approximation ratio is relatively loose, as demonstrated in the experiments. Specifically, the algorithms can only provide \((2+\epsilon) \)-approximate solutions when incurring \(O(\log_{1+\epsilon/2} n \times (m+n)/B) \) I/O costs, where \(B \) denotes the block size. Additionally, it is not clear how the algorithms can be applied to incrementally maintain the degeneracy when \(G \) is updated.

Other related algorithms. Goodrich and Pszona [13] develop a algorithm similar to the ones above, and it can return a \((2+\epsilon) \)-approximation of the degeneracy in the external-memory model. However, in [13], Goodrich and Pszona did not provide experimental results and therefore it is not clear how efficient their algorithms are in practice. In [14], Farach-Colton and Tsai propose a one-pass streaming algorithm to compute \((1 + \epsilon)\)-approximations of the degeneracy based on a streaming sampling technique. This algorithm, however, requires \(O(\epsilon^{-2}n(\log_{2} n)^{3}) \) memory, which is substantially larger than the \(O(n) \) memory that.
we assume, especially when ϵ is small. For example, when $\epsilon = 1$, for the twitter dataset in our experiments (with $n = 41,652,230$ and $m = 1,468,365,182$), we have $e^{-2n(\log_2 n)^3} > m$. Therefore, we do not consider the one-pass streaming algorithm.

3.2 The SemiCore Algorithm

The SemiCore algorithm [33] is the state-of-the-art semi-external algorithm to compute the exact degeneracy of a graph, and it is based on iterative k-core computation [40]. To explain the algorithm, we first introduce h-index [41], which is a key concept in SemiCore.

Definition 2: (h-index) Let $X = \{x_1, x_2, \ldots, x_t\}$ be a set of real values. The h-index of X is defined as the largest integer k such that there are k values in X no less than k, i.e., $h(X) \triangleq \arg \max_k \{|\{x_i | x_i \geq k, x_i \in X\}| \geq k\}$.

For example, consider the set of degrees of the nodes in the graph in Fig. 1, i.e., $X = \{d_{v_1}, d_{v_2}, \ldots, d_{v_n}\} = \{3, 4, 5, 4, 1, 2, 1\}$. The h-index of X equals 4, since (i) there are four nodes v_2, v_3, v_4, v_5 with degrees no less than 4, and (ii) 4 is the maximum integer satisfying this degree constraint.

The h-index was originally proposed as a measure of the scientific outputs of researchers, but recently was applied to devise efficient graph algorithms [35], [42], [43]. A crucial observation utilized in SemiCore is that the core number of a node u is equal to the h-index of the core numbers of u's neighbors [40]. Based on this observation, SemiCore starts by setting an upper bound of the core number for each node u (e.g., the degree d_u), and then it iteratively refines the upper bound by computing the h-index of the upper bounds of u's neighbors. The algorithm terminates when no node’s upper bound needs to be updated [33], [40]. We note that Lü et al. [44] also independently discovered such an h-index iteration algorithm. To reduce the I/O costs, SemiCore leverages a clever pruning rule to avoid refining the upper bound of a node until necessary. As shown in [33], the memory overhead of SemiCore is $O(n)$, and the I/O complexity of SemiCore is $O(l \times (m + n)/B)$, where l denotes the number of iterations. In addition, it is shown that SemiCore can be extended to incrementally maintain the core numbers for all nodes when there are edge insertions or deletions.

The main deficiency of SemiCore is that, if we apply it to compute the degeneracy δ of a graph, then it may require a large number of iterations, as it needs to derive the core numbers of all nodes before obtaining δ, leading to significant overheads. To address this problem, we will propose a much more efficient algorithm for degeneracy computation in Section 4.

4 Our Solution

In this section, we first propose a basic algorithm (referred to as SemiDeg) based on the idea of binary search, and present an improved methods (referred to as SemiDeg+) that offers higher efficiency.

4.1 The Basic Algorithm

Bounds of the degeneracy. Before presenting the details of SemiDeg, we first introduce several bounds on the degeneracy δ that SemiDeg utilizes. Let \hat{c}_v denote an upper bound of the core number of a node u, and $\hat{c} = \{\hat{c}_{v_1}, \ldots, \hat{c}_{v_n}\}$ be a set of upper bounds of the core numbers of v_1, v_2, \ldots, v_n. In addition, let $d = \{d_{v_1}, \ldots, d_{v_n}\}$ be the set of degrees of the nodes in V. By Definition 2, the h-index of \hat{c}, denoted by $h(\hat{c})$, is

$$h(\hat{c}) = \arg \max_k \{|\{\hat{c}_v | \hat{c}_v \geq k, v \in V\}| \geq k\}. \tag{2}$$

We have the following lemma.

Lemma 1: Given any upper bounds set \hat{c} of the core numbers, we have $h(\hat{c}) \geq \delta$.

Proof: Recall that δ equals the maximum core number c_{\max} in G. Since we have a c_{\max}-core in G, there are at least $c_{\max} + 1$ nodes in G that have core numbers no less than c_{\max}. As a result, we have at least $c_{\max} + 1$ nodes whose core number upper bounds are no less than c_{\max}. By Definition 2, $h(\hat{c}) \geq c_{\max}$.

Let $h_u(\hat{c}, N_u(G))$ be the h-index of u with respect to (w.r.t.) the upper bounds of the core numbers of u's neighbor nodes. By Definition 2,

$$h_u(\hat{c}, N_u(G)) = \arg \max_k \{|\{\hat{c}_v | \hat{c}_v \geq k, v \in N_u(G)\}| \geq k\} \tag{3}$$

We have the following result.

Lemma 2: For any node $u \in V$, we have $h_u(\hat{c}, N_u(G)) \geq c_u$ for any upper bounds set \hat{c}.

Proof: Assume, to the contrary, that $h_u(\hat{c}, N_u(G)) < c_u$. By the definition of core numbers, u must have at least c_u neighbors with core numbers no less than c_u. As a result, there are at least c_u neighbors of u with upper bounds no less than c_u. Therefore, by Definition 2, $h_u(\hat{c}, N_u(G)) \geq c_u$, leading to a contradiction.

Since $d_u \geq c_u$ for any node $u \in V$, we have $h_u(d, N_u(G)) \geq c_u$ by Lemma 2. For convenience, we refer to $h_u = h_u(d, N_u(G))$ as the h-index of a node u. Let $h = \{h_{v_1}, \ldots, h_{v_n}\}$ be the set of h-index of all nodes in V. Since h is a valid upper bounds set of the core numbers, the h-index of h, denoted as h^*, is an upper bound of the degeneracy δ. In what follows, we show that h^* is a tighter upper bound than $h(d)$.

Lemma 3: $h^* \leq h(d)$.

Proof: Since $h_{v_i} \leq d_i$ for any $v_i \in V$, the h-index over h must be no larger than the h-index over d. As a result, we have $h^* \leq h(d)$.

Besides the above upper bounds of δ, we can also use $\left\lceil \frac{m}{n - 1} \right\rceil$ as a lower bound of the degeneracy δ [35].

Key idea of SemiDeg. The rationale of SemiDeg is to apply a binary search in $[\left\lceil \frac{m}{n - 1} \right\rceil, h^*]$ to identify the precise value of δ. Specifically, we first examine an integer $k \in [\left\lceil \frac{m}{n - 1} \right\rceil, h^*]$, and test whether G contains a k-core. If there exists a k-core in G, then we have $\delta \geq k$, based on which we proceed to search in $[k + 1, h^*]$; otherwise, we redirect our search to $[\left\lceil \frac{m}{n - 1} \right\rceil, k - 1]$. To determine whether a k-core exists in G, we iteratively remove the nodes in G
Algorithm 1 SemiDeg (G)

Input: G = (V, E) in the disk
Output: The degeneracy δ of G

1: Let d be the degree set of all nodes in V;
2: for each u ∈ V do
3: Load N_u(G) from disk;
4: h_u ← Hindex(u, d, N_u(G));
5: u_max ← arg_max_{v ∈ V} {h_v}; h ← {h_u_max};
6: lb ← \sum_{e ∈ V} d_e/(n - 1); ub ← Hindex(u_max, h, V);
7: while lb ≤ ub do
8: mid ← \{lb + ub)/2\};
9: update ← 1; R ← V;
10: for each u ∈ V do
11: if R * then lb ← mid + 1; δ ← mid;
12: else ub ← mid - 1;
13: return δ;
14: Procedure Hindex (u, d, V);
15: b(i) ← 0 for all 1 ≤ i ≤ d_u;
16: for each v ∈ V do
17: i ← min\{d_u, d_v\}; b(i) ← b(i) + 1;
18: sum ← 0; j ← d_u;
19: while j ≥ 1 do
20: sum ← sum + b(j);
21: if sum ≥ j then break;
22: j ← j - 1;
23: return j.

with degrees smaller than k, until all remaining nodes have degree at least k in the subgraph that they induce. If all nodes in G are removed by this procedure, then G must not contain a k-core; otherwise, the remaining nodes should form a k-core.

Algorithm 1 shows the pseudo-code of SemiDeg. It first computes the h-index h_u for each node u using the Hindex procedure (Lines 2-4). Then, it derives the h-index of h and uses it as an upper bound of the degeneracy δ (Line 6). Subsequently, it applies the binary search procedure mentioned previously (Lines 7-19). Finally, it returns the degeneracy value δ (Line 20). We illustrate SemiDeg using an example.

Example 2: Consider the graph G in Fig. 1. We have h = \{3, 3, 3, 3, 2, 1, 2, 1\} for the nodes \{v_1, \ldots, v_8\}. The h-index of h equals 3, i.e., h^* = 3. On the other hand, we have \{\frac{1}{n} = 2\}. Accordingly, SemiDeg sets lb = 2 and ub = 3 and then performs the binary search procedure on [2, 3]. In its first iteration, SemiDeg attempts to find a 2-core (i.e., mid = 2) in G by iteratively deleting the nodes with degrees smaller than 2. As a result, SemiDeg obtains a 2-core \{v_1, v_2, v_3, v_4, v_5, v_7\}, and records δ = 2. Subsequently, SemiDeg sets lb = lb = mid = 3, and tries to find a 3-core in G. This leads to a 3-core \{v_1, v_2, v_3, v_4\}, based on which SemiDeg updates δ by setting it to 3. After this step, SemiDeg terminates, and returns δ = 3. □

Theoretical analysis. The correctness of SemiDeg is guaranteed by Lemmas 1 and 3. In the following, we analyze the memory overhead and I/O complexity of SemiDeg. Let τ be the maximum number of iterations that SemiDeg requires, for any k, to decide whether a k-core exists in G (see Lines 11-17 in Algorithm 1). We have the following result.

Theorem 1: The memory and I/O costs of SemiDeg are O(n) and O(log_2 h^* × τ(m + n)/B), respectively.

Proof: SemiDeg only needs to store a constant number of O(n)-size arrays in the main memory, and hence, its memory overhead is O(n). For any k, SemiDeg requires O(τ(m + n)/B) I/Os to determine whether a k-core exists in G. This is because, in each iteration (lines 13-17), the algorithm sequentially scans the edge file at most once which takes O((m + n)/B) I/Os in the worst case. Since SemiDeg only examines O(log_2 h^*) values of k, the total I/O complexity of SemiDeg is O(τ(m + n) log_2 h^*).

Note that both τ and log_2 h^* are often a small number (τ = O(log n) as indicated in [45]). In that case, the I/O complexity of SemiDeg is almost linear to (m + n)/B.

4.2 The SemiDeg+ Algorithm

Although SemiDeg can compute the degeneracy of G in an I/O-efficient manner, it still suffers from two limitations. First, it requires scanning G once to compute the h-index for each node. When the graph is very large, such a graph scanning procedure can be costly. Second, when deciding whether a k-core exists in G, it requires scanning all nodes with degrees smaller than k as well as the edges associated with those nodes. This procedure may also incur considerable overheads in practice.

To overcome the limitation of SemiDeg, we propose an enhanced algorithm dubbed SemiDeg+. To avoid computing the h-index for every node in G, SemiDeg+ utilizes the h-index of d (i.e., the set of node degrees in G) as a “cheap” upper bound of the degeneracy δ. More importantly, when testing whether a k-core exists in G, SemiDeg+ applies a novel algorithm (referred to as PCore) that avoids accessing nodes and edges as much as possible. In what follows, we elaborate the PCore algorithm, and then present the details of SemiDeg+.

The PCore Algorithm. PCore is based on the following observation.

Observation 1: If G contains a k-core, the k-core must be in the subgraph induced by the nodes set \{u \mid u \in V, \delta_u \geq k\}, where \delta_u is a core number upper bound of u.

Proof: The nodes that are not in R cannot be contained in the k-core, because their core number upper bounds are smaller than k.

Based on Observation 1, if we are to determine whether G contains a k-core, we only need to consider the subgraph induced by R, denoted as G(R). For convenience, we refer to R as the working node set. The basic idea of PCore
Algorithm 2 PCore (G, R, ě, ρ)

Input: G = (V, E) in the disk, the working node set R,
upper bounds set ě, and an integer ρ
Output: The ρ-core R and the updated ě
1: rū ← 0 for all u ∈ V; /* ě is the counting set */
2: update ← 1;
3: while update = 1 do
4: update ← 0;
5: for u ∈ R s.t. rū < ρ do
6: Load Nũ(G) from disk;
7: if ěũ = dũ then
8: ěũ ← ∇(ũ, ě, Nũ(G)); /* h-index upper bound */
9: rū ← |Nũ(G) ∩ R|;
10: if rū < ρ then
11: R ← R \ {u}; /* update the upper bound */
12: ěũ ← min(ěũ, ρ); /* update the upper bound */
13: for v ∈ Nũ(G) ∩ R do
14: rũ ← rũ − 1;
15: return (R, ě);

PCore takes as input G, a positive integer ρ, a set ě of core number upper bounds, and a set R of nodes whose core number upper bounds are at least ρ. It returns updated versions of R and ě, such that (i) R = ∅ if G does not contain a ρ-core, (ii) otherwise, R is a ρ-core of G. Specifically, PCore uses a set ě to maintain the degrees of the nodes in R. Initially, rũ = 0 for any u ∈ R (Line 1). Then, for each node u ∈ R with rũ < ρ, PCore iteratively loads u’s neighbors from the disk (Lines 5-14). If ěũ equals its original degree in G, PCore updates ěũ by setting it to the h-index of u w.r.t. the core number upper bounds of u’s neighbors, i.e., ěũ = hũ(ě, Nũ(G)) (Lines 7-8). After that, PCore updates rũ to the number of neighbors of u in the working node set R (Line 9). If rũ < ρ, then u cannot be contained in the ρ-core; in that case, PCore removes u from R (Line 11), and also updates ěũ to ρ (Line 12), since the core number of u must be smaller than ρ. Subsequently, for each neighbor v of u in the working node set R, PCore updates rũ (Lines 13-14). Finally, PCore returns R and ě (Line 15). The following example illustrates how PCore works.

Example 3: Consider the graph in Fig. 1. Suppose R = {v2, v3, v4, v5}, ě = {3, 4, 5, 4, 4, 1, 2, 1} for the nodes {v1, . . . , v8}, and ρ = 4. First, PCore loads v2’s neighbors from the disk, and computes the h-index of v2, which is equal to 3 (lines 7-8 in Algorithm 2). Then, PCore updates rũ by 3, as v2 has three neighbors in R. Since rũ < ρ = 4, PCore deletes v2 from R. Second, PCore loads v3’s neighbors from the disk, and updates ěũ by hũ(v3, ě, Nũ(G)) which equals 3. Then, PCore updates rũ by 2, as v3 has two neighbors in R (R = {v3, v4, v5}). PCore also removes v3 from R, because rũ < ρ. Similarly, we can easily derive that PCore also deletes v4 and v5, and updates ěũ by 3 and 2 respectively.

The following theorem shows the correctness of PCore.

Theorem 2: If G contains a ρ-core, then PCore returns the ρ-core and a correct upper bound set ě.

Proof: Let R and R* be the input and output working node set of PCore, respectively. First, we show that if R* ̸= ∅, then R* is the ρ-core in G. This is because when PCore terminates, rũ ≥ ρ for each u ∈ R*. Thus, the nodes in R* satisfy the degree constraint of the ρ-core. To show that R* is the maximal subset satisfying such a degree constraint, we assume to the contrary that there is a superset R of R* that also satisfies the degree constraint of the ρ-core. Since R contains the ρ-core, we have R ⊆ R. As a consequence, there is a node u ∈ R and u ̸∈ R* that is deleted by PCore. In that case, we have rũ < ρ, which contradicts to the assumption that R satisfies the degree constraint.

Second, by Lemma 2, hũ(ě, Nũ(G)) is a valid upper bound of ěũ. On the other hand, if a node u is removed PCore, we have ěũ < ρ. Thus, the upper bound updating strategies of PCore (Lines 8 and 12 in Algorithm 2) is correct. As a result, PCore correctly outputs a refined upper bounds set. ∎

Details of SemiDeg+. We present the details of SemiDeg+ in Algorithm 3. The algorithm first computes [m/n−1] and h(d) as the initial lower and upper bounds of δ, respectively (Lines 1-3). After that, it performs an iteratively-halving procedure to tighten lower and upper bounds of δ, and to obtain a 2-approximation of δ (Lines 4-10). In each iteration of the procedure, the algorithm considers a working node set R = {u ∈ V, ϛv ≤ ub} (Line 5), and invokes PCore determine whether a ub-core exists. After the iterative procedure terminates, the algorithm performs a binary search over the interval [lb, ub] to compute the exact value of δ, using PCore in each iteration (Lines 11-16). We illustrate the algorithm using the example.

Example 4: Consider the graph in Fig. 1. First, we have ě = {3, 4, 5, 4, 4, 1, 2, 1} for the nodes {v1, . . . , v8}. Clearly, we have lb = [m/n−1] = 2 and h(d) = 4. In the iteratively-halving procedure (Lines 4-10), SemiDeg+ first invokes PCore with a working node set R = {v2, v3, v4, v5} and upper bounds set ě to identify whether a 4-core exists. As shown in the Example 3, PCore would return R = ∅ and ě = {3, 3, 3, 3, 2, 1, 2, 1}. Then, SemiDeg+ halves the upper bound to h(d)/2 = 2, and invokes PCore with inputs R = {v1, v2, v3, v4, v5, v7}, ě = {3, 3, 3, 3, 2, 1, 2, 1}, and ρ = 2. It can be verified that PCore returns R =
\{v_1, v_2, v_3, v_4, v_5, v_7\} and \(\bar{c} = \{3, 3, 3, 2, 1, 2, 1\}\). Since there is a 2-core, SemiDeg+ terminates the iteratively-halving procedure.

After that, SemiDeg+ performs a binary search over the interval \([2, 4]\). First, we have \(mid = 3\), and thus, SemiDeg+ invokes PCore with inputs \(R = \{v_2, v_3, v_4, v_5\}\), \(\bar{c} = \{3, 3, 3, 2, 1, 2, 1\}\), and \(mid = p = 3\). Accordingly, PCore returns \(R = \{v_2, v_3, v_4, v_5\}\) as a 3-core and keeps \(\bar{c}\) unchanged. Then, SemiDeg+ records \(\delta = 3\) (Line 14), and updates \(lb = 4\). Subsequently, SemiDeg+ invokes PCore with inputs \(R = \emptyset\), \(\bar{c} = \{3, 3, 3, 2, 1, 2, 1\}\), and \(mid = p = 4\). Since \(R = \emptyset\), PCore immediately terminates without incurring any I/O cost. Then, SemiDeg+ updates \(ub = mid - 1 = 3\). Since \(ub < lb\), SemiDeg+ terminates and returns \(\delta = 3\) as the final result.

\section*{Analysis of SemiDeg+}

The correctness of SemiDeg+ directly follows the correctness of PCore, which is shown in Theorem 2. In the following, we analyze the memory and I/O overheads of SemiDeg+.

\textbf{Theorem 3:} The memory and I/O costs of SemiDeg+ are \(O(n)\) and \(O(\log_3 h(d) \times \tau(\bar{n} + \bar{m})/B)\), respectively.

\textbf{Proof:} SemiDeg+ only needs to maintain two \(O(n)\) size arrays, i.e., \(\tilde{F}\) and \(\tilde{c}\), as well as the working node set \(R\). Therefore, the memory cost of SemiDeg+ is \(O(n)\). As for the I/O cost of SemiDeg+, we observe that in Lines 1-10 in Algorithm 3, SemiDeg+ has at most \(O(\log_3 h(d))\) iterations, which incurs at most \(O(\log_3 h(d) \times \tau(\bar{n} + \bar{m})/B)\) I/Os. Let \([lb, ub]\) be the binary-search interval in Lines 11-15. The number of iterations required for a binary search on \([lb, ub]\) is \(O(\log_3(ub - lb)) = O(\log_3 \delta) \leq O(\log_3 h(d))\), since \(lb \leq \delta \leq ub \leq 2 \times lb\). As a result, the total number of I/Os of SemiDeg+ is \(O(\log_3 h(d) \times \tau(\bar{n} + \bar{m})/B)\).

\section*{Comparison with other algorithms}

Compared with SemiCore, SemiDeg+ has the following advantages. First, SemiDeg+ only works on a small working node set \(R\), which leads to much higher efficiency. Second, SemiDeg+ does not compute the h-index for every node, but only derive the h-index for a node on-demand, which significantly reduces the number of I/Os. The reason is that in an iteration, computing the h-index for all nodes takes \(O((m + n)/B)\) I/Os, while SemiDeg+ only calculates the h-index for the nodes that are contained in \(R\) and also meet the constraint \(\tilde{r}_u < \rho\) (see lines 5-8 in Algorithm 2), thus the I/O costs can be much lower than \(O((m + n)/B)\).

Compared with SemiCore [33], SemiDeg+ excels in efficiency because (i) SemiCore needs to compute all k-cores before obtaining the degeneracy \(\delta\), which incurs considerable I/O costs, and (ii) SemiDeg+ only derives a small number of k-cores in its derivation of \(\delta\), which is much more efficient.

Note that SemiDeg+ can also return a 2-approximate degeneracy value when the iteratively-halving procedure terminates (Lines 4-10). This approximate version of SemiDeg+ (i.e., the iteratively-halving procedure) is not only much more efficient than SemiStream [12], but it also achieves better approximate ratio than SemiStream, as demonstrated in Section 6.

\section*{Discussions}

Any ordering of nodes in an undirected graph \(G = (V, E)\) can generate a directed graph \(G'\) with the same nodes, in which each edge is oriented from the high-order node in the low-order one. The degeneracy ordering is an ordering such that the maximum out-degree of the node in the yielded directed graph \(G'\) is no larger than \(\delta\) [12, 36]. Note that after obtaining the degeneracy \(\delta\), it is straightforward to compute the degeneracy ordering by iteratively removing the nodes with degrees smaller than \(\delta\).

\section{Degeneracy Maintenance}

In this section, we show how to incrementally maintain the degeneracy under the semi-external setting, given that the graph is updated by an edge insertion or deletion. Obviously, we can apply the SemiCore algorithm to maintain the degeneracy. SemiCore, however, is inefficient for degeneracy maintenance, because it has to maintain all the core numbers of nodes when an edge is updated. Intuitively, an efficient degeneracy maintenance algorithm should only maintain the \(c_{\text{max}}\)-core, as the degeneracy has nothing to do with other \(k\)-cores for \(k < c_{\text{max}}\). The key issue is how can we efficiently maintain the \(c_{\text{max}}\)-core without maintaining the other \(k\)-cores.

Note that in our problem, the challenges that we face are fundamentally different from the traditional \(k\)-core maintenance problem. This is because in our problem, we only have the core numbers of the nodes in the \(c_{\text{max}}\)-core, and no core number is provided for the other nodes. Therefore, the traditional core maintenance techniques [33], [46], [47], which need to know all core numbers, cannot be used for our problem. Below, we develop a novel \(c_{\text{max}}\)-core maintenance approach based on the PCore algorithm to tackle this challenge.

\subsection*{5.1 Handling Edge Deletion}

We first consider the edge deletion case. Let \((u, v)\) be an edge to be deleted. Recall that by Algorithm 3, we can obtain the degeneracy \(c_{\text{max}}\), the \(c_{\text{max}}\)-core denoted by \(C_{\text{max}}\), as well as the degree set of nodes, i.e., \(d = \{d_{v_1}, \ldots, d_{v_n}\}\). Clearly, to maintain the degeneracy, it is sufficient to maintain the \(c_{\text{max}}\)-core \(C_{\text{max}}\). By the result shown in [46], \(C_{\text{max}}\) may be updated only if both \(u\) and \(v\) are contained in \(C_{\text{max}}\). Thus, in the following, we only consider the case when both \(u \in C_{\text{max}}\) and \(v \in C_{\text{max}}\).

Let \(\tilde{r}_u\) be the number of neighbors of \(u\) in \(C_{\text{max}}\), i.e., \(\tilde{r}_u = |N_u(G) \cap C_{\text{max}}|\). We have the following result.

\textbf{Lemma 4:} After deleting \((u, v)\), \(C_{\text{max}}\) will be updated only if \(\tilde{r}_u < c_{\text{max}}\) or \(\tilde{r}_v < c_{\text{max}}\).

\textbf{Proof:} If \(\tilde{r}_u < c_{\text{max}}\) (\(\tilde{r}_v < c_{\text{max}}\)), we know that \(u\) (\(v\)) has less than \(c_{\text{max}}\) neighbors in \(C_{\text{max}}\), thus its core number must decrease by 1. Therefore, we must delete the node \(u\) (\(v\)) from \(C_{\text{max}}\). On the other hand, if both \(\tilde{r}_u \geq c_{\text{max}}\) and
The memory overhead of Algorithm 4 is guaranteed by Lemma 4 and Theorem 2. Clearly, the number of iterations taken by PCore is upper bounded by (\(\tilde{c}\)max - core)\(C_{\text{max}}\) and \(\tilde{\tau}\).

By Lemma 4, if \(\tilde{n} < c_{\text{max}}\) or \(\tilde{\tau} < c_{\text{max}}\), we can invoke PCore to maintain the \(c_{\text{max}}\)-core. Recall that PCore admits three input parameters: the working node set, the upper bounds set, and the parameter \(\rho\). We can use \(\tilde{c}_{\text{max}}\) as the working node set, since it must contain the updated \(c_{\text{max}}\)-core. We update the degrees \(d_u\) and \(d_v\) after removing \((u, v)\), and make use of the updated degree sets \(d_u\) and \(d_v\) as the upper bounds set. For the parameter \(\rho\), we set it to \(c_{\text{max}}\). Clearly, we can obtain a \(c_{\text{max}}\)-core if it exists, by invoking PCore with these parameters. Note that PCore may return an empty set if the \(c_{\text{max}}\)-core does not exist. In this case, the entire \(c_{\text{max}}\)-core is vanished after deleting \((u, v)\). Thus, we have to compute the \((c_{\text{max}} - 1)\)-core, as an edge deletion can only decrease the maximum core number (degeneracy) by 1 based on the result shown in [46]. Again, we are able to apply the PCore algorithm to compute \((c_{\text{max}} - 1)\)-core. It is important to note that the updated \((c_{\text{max}} - 1)\)-core may contains the original \(c_{\text{max}}\)-core. Therefore, we cannot use \(\tilde{c}_{\text{max}}\) as the working node set. Instead, we set \(R = \{u \in V : d_u \geq c_{\text{max}} - 1\}\), because \(R\) obviously contains the \((c_{\text{max}} - 1)\)-core. Also, we set the updated degree set as the upper bounds set, and \(\rho = c_{\text{max}} - 1\).

The detailed implementation of our algorithm is depicted in Algorithm 4.

Example 5: Consider the graph in Fig. 1. Suppose that we delete an edge \((v_1, v_2)\). Clearly, before deleting \((v_1, v_2)\), we have \(d = \{3, 4, 5, 4, 1, 2, 1\}\), \(c_{\text{max}} = 3\), and \(\tilde{c}_{\text{max}} = \{v_1, v_2, v_3, v_4\}\). First, the algorithm updates \(d_{v_1} = 2\) and \(d_{v_2} = 3\). Then, the algorithm calculates \(\tilde{r}_{v_1} = 2\) and \(\tilde{r}_{v_2} = 2\), because both \(v_1 \in \tilde{c}_{\text{max}}\) and \(v_2 \in \tilde{c}_{\text{max}}\) (Lines 2-3). Since \(\tilde{r}_{v_1} < \tilde{c}_{\text{max}}\), the algorithm invokes PCore to compute the \(c_{\text{max}}\)-core (Lines 4-5). We can easily derive that PCore returns \(\emptyset\), as there is no 3-core after deleting \((v_1, v_2)\). Thus, the algorithm computes the \((c_{\text{max}} - 1)\)-core by using the working node set \(R = \{u \in V : d_u \geq 2\} = \{v_1, \cdots, v_3, v_7\}\) (Lines 6-8). PCore will return \(R\) as the \((c_{\text{max}} - 1)\)-core, and the Deletion algorithm updates \(c_{\text{max}}\) by \(\tilde{c}_{\text{max}}\) accordingly (Lines 6-8).

Analysis of Deletion. The correctness of Algorithm 4 can be guaranteed by Lemma 4 and Theorem 2. Clearly, the memory overhead of Algorithm 4 is \(O(n)\). Below, we mainly analyze the I/O complexity of Algorithm 4. Let \(T\) be the number of iterations taken by PCore, \(\tilde{n}\) be the number of nodes in the working node set \(R\), and \(\tilde{m}\) be the total number of incident edges of the nodes in \(R\).

Theorem 4: To handle an edge \((u, v)\), the I/O complexity of Algorithm 4 is \(O(\tilde{m} + \tilde{n})/B\) if the \(c_{\text{max}}\)-core is updated. Otherwise, the I/O complexity is \(O((d_u + d_v)/B)\).

Proof: Clearly, if the \(c_{\text{max}}\)-core is not updated, Algorithm 4 only needs to update \(d_u\) and \(d_v\), as well as compute \(\tilde{r}_u\) and \(\tilde{r}_v\), which can be done by loading the neighbors of \(u\) and \(v\) from the disk once. Thus, in this case, the I/O cost is \(O((d_u + d_v)/B)\). If the \(c_{\text{max}}\)-core is updated, Algorithm 4 has to invoke PCore to maintain the \(c_{\text{max}}\)-core, thus its I/O complexity is the same as that of PCore, which is \(O(\tilde{m} + \tilde{n})/B)\).

In the experiments, we show that our algorithm is very efficient in practice, because the \(c_{\text{max}}\)-core is updated infrequently even when the graph is frequently updated. On the other hand, the number of iterations taken by PCore to compute the \(c_{\text{max}}\)-core can be bounded by \(O(\log n)\) in random graphs, as indicated in [45]. Thus, even if the \(c_{\text{max}}\)-core is updated, the I/O complexity of our algorithm is expected to be bounded by \(O(\log n \times (\tilde{m} + \tilde{n})/B)\).

5.2 Handling Edge Insertion

Here we discuss the edge insertion case. Let \((u, v)\) be an edge to be inserted. The algorithm first updates the degrees \(d_u\) and \(d_v\) after adding \((u, v)\). Then, it is easy to show that \(C_{\text{max}}\) can be updated only if both \(d_u \geq c_{\text{max}}\) and \(d_v \geq c_{\text{max}}\). To further improve the efficiency, we can compute the h-index of \((u, v)\), denoted by \(h_u(h_v)\), based on the updated degrees. Based on the h-index, we can derive the following result.

Lemma 5: After inserting \((u, v)\), \(C_{\text{max}}\) cannot be updated if \(h_u < c_{\text{max}}\) or \(h_v < c_{\text{max}}\).

Proof: Suppose, without loss of generality, that \(h_u < c_{\text{max}}\). Then, we have \(c_u < c_{\text{max}}\), as \(h_u\) is an upper bound of \(c_u\). Clearly, \(u\) does affect \(C_{\text{max}}\), and the number of neighbors of \(v\) in \(C_{\text{max}}\) also keeps unchanged. As a result, no node’s core number will be updated in this case.

By Lemma 5, we only need to maintain the \(c_{\text{max}}\)-core when both \(h_u \geq c_{\text{max}}\) and \(h_v \geq c_{\text{max}}\). Below, we assume that \(h_u \geq c_{\text{max}}\) and \(h_v \geq c_{\text{max}}\) and consider two cases. First, if both \(u \in C_{\text{max}}\) and \(v \in C_{\text{max}}\), the \(c_{\text{max}}\)-core may contain a \((c_{\text{max}} + 1)\)-core after adding \((u, v)\). Thus, we invoke PCore with working node set \(R = C_{\text{max}}\), upper
bounds set d, and $\rho = c_{\text{max}} + 1$ to compute the $(c_{\text{max}} + 1)$-core. If such a $(c_{\text{max}} + 1)$-core exists, we update C_{max} by the $(c_{\text{max}} + 1)$-core, and increase c_{max} by 1. Otherwise, we keep both c_{max} and C_{max} unchanged, because both u and v are already in C_{max} and thereby the insertion of (u,v) does not affect C_{max}. Second, if there exist at least one node of u and v that are not in C_{max}, we invoke PCore with parameters $R = \{u \in V, d_u \geq c_{\text{max}}\}$, d, and $\rho = c_{\text{max}}$ to compute the c_{max}-core. This is because under this case, the c_{max}-core may be expanded after inserting an edge (u,v), and therefore we need to invoke PCore to recompute the c_{max}-core. Moreover, in this case, the c_{max}-core does not contain a $(c_{\text{max}} + 1)$-core. The detailed implementation of our algorithm is given in Algorithm 5.

Example 6: Consider the graph in Fig. 1. Suppose that we have already deleted the edge (v_1, v_2), and we aim to maintain the degeneracy after adding back (v_1, v_2). Clearly, by Example 5, we have $d = \{2, 3, 5, 4, 1, 2, 1\}$, $c_{\text{max}} = 2$, and $C_{\text{max}} = \{v_1, \ldots, v_5, v_7\}$ for the graph in Fig. 1 after deleting (v_1, v_2). When inserting back (v_1, v_2), the algorithm first updates $d_{v_1} = 3$ and $d_{v_2} = 4$ (Line 1 in Algorithm 5). Since both $d_{v_1} \geq c_{\text{max}}$ and $d_{v_2} \geq c_{\text{max}}$, the algorithm computes $h_{v_1} = 3$ and $h_{v_2} = 3$ (Lines 2-3). Then, since (i) $h_{v_1} \geq c_{\text{max}}$ and $h_{v_2} \geq c_{\text{max}}$, and (ii) both $v_1 \in C_{\text{max}}$ and $v_2 \in C_{\text{max}}$, the algorithm invokes PCore with parameters $R = C_{\text{max}}$, d, and $\rho = 3$ to compute the 3-core (Lines 4-6). Clearly, the algorithm is able to obtain a 3-core $\{v_1, \ldots, v_3\}$. Thus, the algorithm updates C_{max} by this 3-core, and sets $c_{\text{max}} = 3$ (Lines 7-8).

Analysis of Insertion. The correctness of Algorithm 5 can be guaranteed by Lemma 5 and Theorem 2. Similar to Algorithm 4, the memory overhead of Algorithm 5 is $O(n)$. The I/O complexity of Algorithm 4 is $O(\tau (\tilde{m} + \tilde{n})/B)$ if both $h_u \geq c_{\text{max}}$ and $h_v \geq c_{\text{max}}$ after inserting (u,v). Otherwise, the I/O complexity is $O((d_u + d_v)/B)$. Since C_{max} is infrequently update even when the graph is rapidly changed, Algorithm 5 is very efficient in practice, as confirmed in our experiments.

6 Experiments
In this section, we first conduct extensive experiments to evaluate the efficiency of the proposed algorithms. Then, we systematically evaluate the degeneracies of 150 publicly available real-world networks.

6.1 Experimental setup
We collect 150 various real-world networks from four different sources, including (1) the Koblenz Network Collection (http://konect.uni-koblenz.de/), (2) the Stanford Network Collection (http://snap.stanford.edu/data/), (3) the Web Graph Collection (http://webgraph.dii.unimi.it/), and the ASU Network Collection (http://socialcomputing.asu.edu/pages/datasets). The detailed statistics of these networks are shown in Table 1. Note that the original GSH dataset released at http://webgraph.dii.unimi.it/ is very large which takes near 1TB after decompressing. Due to the hardware limit, our GSH dataset in Table 1 is a subgraph generated by randomly sampling edges from the original GSH graph.

We implement five various algorithms: SemiStream, SemiCore, SemiDeg, SemiDeg+, and SemiDegAppr. SemiStream is the semi-streaming approximate algorithm proposed in [12]. For SemiStream, we set the parameter $\alpha = 4$ to achieve good I/O performance. SemiCore denotes the state-of-the-art semi-external core decomposition algorithm [33]. SemiDeg and SemiDeg+ denote Algorithm 1 and Algorithm 3 respectively. SemiDegAppr is essentially the iteratively-halving procedure in Algorithm 3 which can generate a 2-approximate solution of the degeneracy.

Experimental settings. All algorithms are implemented in C++, using gcc compiler with no compilation flag. All experiments are conducted on a PC with a 2.4GHz Xeon CPU, DDR4 2400 MHZ memory (16GB), and 7200 RPM SATA III 1 TB disk with 600MB/s data transfer rate, running Red Hat Linux 6.4. We conduct each experiment independently on this PC, and thus any two experiments do not compete for resources. For all experiments, the time cost of each algorithm is measured by the amount of wall-clock time elapsed during the algorithms’ execution. For each input graph G, we organize G in the disk using the graph storage method described in Section 2. In addition, each node’s adjacency list is sorted by the nodes’ IDs using a standard external-memory sorting algorithm. Note that the sorting cost is not included in the time cost for each algorithm. For all our algorithms, we only store the node information (e.g., the core number upper bounds c) in the main memory. For the memory costs, we record the maximum amount of memory used by each algorithm during the algorithms’ execution. Recall that when the algorithm visits the neighborhood of a node, it needs to load the adjacency list of that node from the disk, thus incurring I/O costs. We make use of the standard method as used in [33], [38] to record the number of I/Os for various algorithms.

6.2 Performance studies
We evaluate the performance of different I/O-efficient algorithms for degeneracy measurement and maintenance using two sets of networks: 1) five medium-sized graphs which are ctPaTe, LiveJour, Hollywood, Orkut, and Arabic; and 2) five massive graphs, including IT, Twitter, SK, UK, and GSH. ctPaTe is a citation network, and Hollywood is a co-actor network. LiveJour, Orkut, and Twitter are social networks. Arabic, IT, SK, UK, and GSH are web graphs. The detailed statistics of these networks are shown in Table 1 (in bold font).

Results for degeneracy computation. Fig. 2 reports the running time, I/O cost, and memory overhead of various algorithms for degeneracy computation. As shown in Figs. 2(a-b), SemiDegAppr is the fastest algorithm, followed by SemiDeg+, SemiStream, SemiCore, and SemiDeg. Generally, SemiDegAppr is nearly 2 times faster than SemiDeg+, and SemiDegAppr is around one order of
magnitude faster than SemiCore. We can also observe that SemiDeg+ is significantly faster than SemiStream in massive graphs. For example, on the largest network GSH, SemiDegAppr takes 385 seconds, SemiDeg+ consumes 633 seconds, SemiStream takes 2,808 seconds, and SemiCore uses 7,218 seconds to compute the degeneracy.

It is worth mentioning that SemiDeg is not very efficient, since it needs to scan a large portion of the graph in each iteration. Thus, for massive graphs, we do not show the results of SemiDeg.

Similarly, in Figs. 2(c-d), we can clearly see that the results of the I/O costs are consistent with the results of the running time. SemiDegAppr is clearly the winner among all competitors, followed by SemiDeg+, SemiStream, SemiCore, and SemiDeg. Both SemiDegApppr and SemiDeg+ use one order of magnitude less I/Os than SemiCore. For the memory overhead (reported in Figs. 2(e-f)), all algorithms exhibit similar performance, because all algorithms consume $O(n)$ space. These observations confirm our theoretical results shown in Section 4.

Disk-based vs. in-memory algorithms.
Here we compare the time costs between SemiDeg+ and the state-of-the-art in-memory degeneracy computation algorithm [48], called BucketCore, when the graph can fit in the main memory. BucketCore is an optimized in-memory core decomposition algorithm using a bucketing technique [48] which was shown to be faster than the traditional peeling-based core decomposition algorithm [32]. Note that for BucketCore, the input graph is stored in the main memory. However, for SemiDeg+, we only store the node information in the main memory and the edges of the input graph are stored in the disk, even if the whole graph can fit in the main memory. Fig. 3 shows the running time of SemiDeg+ and BucketCore on the five medium-sized graphs. As can be seen, SemiDeg+ is at least twice faster than BucketCore on
these datasets. For example, on Arabic, SemiDeg+ takes 6.6 seconds, while BucketCore consumes 25.1 seconds to compute the degeneracy. The reason could be that SemiDeg+ directly computes the degeneracy based on an efficient binary-search procedure (with pruning optimization), while BucketCore needs to compute the core decomposition to derive the degeneracy which is typically more expensive than the binary-search procedure. These results indicate that the core-decomposition based algorithm is less efficient than the binary-search based algorithm for degeneracy computation.

Random vs. sequential I/O costs. Recall that in SemiDeg+, the algorithm may incur both random and sequential I/O costs. When the algorithm starts to load the neighborhood of a node from the disk, the algorithm may incur a random I/O, because it needs to seek the position of that node’s adjacency list in the disk. When loading an adjacency list into the main memory, the algorithm will take sequential I/Os, because an adjacency list may occupy several consecutive blocks in the disk. In this experiment,

Comparison between SemiDegAppr and SemiStream. It should be noted that in SemiStream, a large parameter α will lead to better I/O performance, but it may degrade the approximation performance. In the previous experiment, we have already shown that both SemiDegAppr and SemiDeg+ are much more efficient than SemiStream even when $\alpha = 4$. Here we show that SemiDegAppr is also much better than SemiStream (with $\alpha = 4$) in terms of the approximation performance. The results are shown in Fig. 5. As can be seen, the degeneracy obtained by SemiDegAppr is near to optimal on many datasets, whereas SemiStream typically obtains a loose approximation of the degeneracy. For example, on the GSH network, the exact degeneracy is 3,954, while the degeneracy obtained by SemiDegAppr and SemiStream is 3,958 and 5,494 respectively. These results suggest that SemiDegAppr is much better than SemiStream for degeneracy computation on massive graphs in terms of both running time and approximation performance.

Scalability testing. In this experiment, we show the scalability of SemiDegAppr and SemiDeg+ using Twitter and UK datasets. Similar results can also be observed on the other datasets. For both Twitter and UK, we generate four subgraphs by randomly sampling edges from 20% to 100%, and evaluate the time and I/O costs of our algorithms on these subgraphs. The results are shown in Fig. 6. As can be seen, both the running time and I/O costs of our algorithms increase as $|E|$ increases. The curves of both SemiDegAppr and SemiDeg+ are nearly linear, indicating that our algorithms scale very well in practice.

Results for degeneracy maintenance. In this experiment, we evaluate the performance of SemiDeg+ and SemiCore for degeneracy maintenance, since only SemiDeg+ and SemiCore can be used for degeneracy maintenance. We randomly delete and insert 1,000 edges in the graph for each test. The maintenance costs of each algorithm for edge deletion and edge insertion are the averaged results over 1,000 deletions and insertions respectively. The experimental results are shown in Fig. 7. From Fig. 7(a),
we systematically evaluate the degeneracies of 150 real-world networks. The results are reported in Table 1. From Table 1, we can see that citation networks, collaboration networks, infrastructure networks, biology networks, software networks, lexical networks, computer networks, P2P networks, communication networks, and online contact networks have relatively small degeneracies. However, for some large social networks and hyperlink networks, the degeneracy can be very large. For example, the Twitter social network has a degeneracy 2,488, and the web graph UK has a degeneracy 10,424.

Fig. 8 depicts the degeneracy distributions of different types of networks. As can be seen, there are 111 networks that have a degeneracy smaller than 200, validating that many real-world networks indeed have small degeneracies. From Fig. 8(c), we can observe that near one-half hyperlink networks have degeneracies larger than 800. Moreover, as reported in Table 1, all massive web graphs have very large degeneracies. From Fig. 8(d), we can see that 80% social networks have small degeneracies ($\delta \leq 200$), and the remaining 20% social networks have relatively large degeneracies. These results indicate that the “small-degeneracy” assumption made in many existing work [2, [17], [22], [29], [35] might be excessively optimistic for web graphs and social networks.

Node distributions of large-degeneracy networks
Here we conduct an experiment to investigate why some real-world networks have large degeneracies. Specifically, we study the distributions of high-degree and high h-index nodes on the large-degeneracy networks. Fig. 9 shows the results on the Twitter and UK datasets. Similar results can
Degeneracy of random graphs. In this experiment, we evaluate the degeneracies of random graphs. We generate two sets of random graphs (with 10-million nodes): the power-law random graphs and the classic Erdos-Renyi (ER) random graphs. For the power-law random graphs, we vary the power-law degree exponent \(\gamma \) from 2 to 3.4, because most real-world power-law networks fall into this range [49]. For the ER graphs, we vary the number of edges from 10 million to 80 million. The results are shown in Fig. 10. From Fig. 10(a), we can see that the degeneracy of the power-law graph decreases with an increasing \(\gamma \). Moreover, the degeneracy of the power-law graph is very small if \(\gamma > 2.2 \). These results further confirm that most real-world graphs have small degeneracies. On the other hand, the degeneracy of the ER graph increases as \(|E|\) grows. This is because the density of the graph increases with increasing \(|E|\), which may give rise to large \(k \)-cores [50], and therefore the degeneracy may increase.

7 Conclusion
In this paper, we propose a novel I/O-efficient algorithm using \(O(n) \) memory to compute the degeneracy of massive graphs. We also devise an I/O-efficient degeneracy maintenance algorithm for dynamic graphs. Based on our algorithms, we perform a comprehensive evaluation of the degeneracy over 150 real-world graphs. The results suggest that most real-world graphs have small degeneracies, except for some large social networks and web graphs, in which the degeneracy can be up to several thousands. The experimental results also demonstrate that the proposed algorithms are substantially faster than the state-of-the-art algorithms for degeneracy computation and maintenance.

Acknowledgement. This work was partially supported by (i) NSFC Grants 61772346, U1809206, 61732003; (ii) National Key R&D Program of China 2018YFB1004402; (iii) Beijing Institute of Technology Research Fund Program for Young Scholars; (iv) Research Grants Council of the Hong Kong SAR, China No. 14221716 and 14203618; (v) ARC Discovery Project Grant DP160101513.

REFERENCES

Xiaokui Xiao received the PhD degree in computer science from the Chinese University of Hong Kong in 2008. He is currently an associate professor at the National University of Singapore (NUS), Singapore. Before joining NUS in 2018, he was a associate professor at Nanyang Technological University (NTU). His research interests include data privacy, spatial databases, graph databases, and parallel computing.

Lu Qin received his bachelor degree from department of Computer Science and Technology in Renmin University of China in 2006, and PhD degree from department of Systems Engineering and Engineering Management in the Chinese University of Hong Kong in 2010. He is now a senior lecturer in the Centre of Quantum Computation and Intelligent Systems (QCIS) in University of Technology, Sydney (UTS). His research interests include parallel big graph processing, I/O efficient algorithms on massive graphs, and keyword search in relational database.

Guoren Wang received the BSc, MSc, and PhD degrees from the Department of Computer Science, Northeastern University, China, in 1988, 1991, and 1996, respectively. Currently, he is a professor in the Department of Computer Science, Northeastern University, China. His research interests include XML data management, query processing and optimization, bioinformatics, high dimensional indexing, parallel database systems, and cloud data management.

Jeffery Xu Yu received the B.E., M.E., and Ph.D. degrees in computer science from the University of Tsukuba, Japan, in 1985, 1987, and 1990, respectively. He has held teaching positions at the Institute of Information Sciences and Electronics, University of Tsukuba, and at the Department of Computer Science, Australian National University, Australia. Currently, he is a Professor in the Department of Systems Engineering and Engineering Management, the Chinese University of Hong Kong, Hong Kong. His current research interests include graph database, graph mining, keyword search in relational databases, and social network analysis.

Rui Mao received the PhD degree in computer science from the University of Texas at Austin in 2007. He is currently a professor in Shenzhen University. His research interests include big data analysis and management, content-based similarity query of multimedia and biological data, data mining and machine learning.

Rong-Hua Li received the Ph.D. degree from the Chinese University of Hong Kong in 2013. He is currently an associate professor at Beijing Institute of Technology, Beijing, China. His research interests include graph data management and mining, social network analysis, graph computation systems, and graph-based machine learning.

Qiushuo Song received the Bachelor degree from Shantou University in 2016. He is currently a Master student at Shenzhen University, Shenzhen, China. His current research interests include graph data management, graph mining, and social network analysis.