
Mining Bursting Communities in Temporal Graphs
Hongchao Qin†, Rong-Hua Li‡, Guoren Wang‡, Lu Qin#, Ye Yuan‡, Zhiwei Zhang‡

†Northeastern University, China; ‡Beijing Institute of Technology, China; #University of Technology Sydney, Australia
qhc.neu@gmail.com; {rhli, wanggr}@bit.edu.cn; Lu.Qin@uts.edu.au; yuanye@mail.neu.edu.cn; cszwzhang@comp.hkbu.edu.hk

Abstract—Temporal graphs are ubiquitous. Mining commu-
nities that are bursting in a period of time is essential to
seek emergency events in temporal graphs. Unfortunately, most
previous studies for community mining in temporal networks
ignore the bursting patterns of communities. In this paper, we
are the first to study a problem of seeking bursting communities
in a temporal graph. We propose a novel model, called (l, δ)-
maximal dense core, to represent a bursting community in a
temporal graph. Specifically, an (l, δ)-maximal dense core is a
temporal subgraph in which each node has average degree no less
than δ in a time segment with length no less than l. To compute
the (l, δ)-maximal dense core, we first develop a novel dynamic
programming algorithm which can calculate the segment density
efficiently. Then, we propose an improved algorithm with several
novel pruning techniques to further improve the efficiency. In
addition, we also develop an efficient algorithm to enumerate all
(l, δ)-maximal dense cores that are not dominated by the others
in terms of the parameters l and δ. The results of extensive
experiments on 9 real-life datasets demonstrate the effectiveness,
efficiency and scalability of our algorithms.

I. INTRODUCTION

Real-world networks such as social networks, biological
networks, and communication networks are highly dynamic
in nature. These networks can be modeled as graphs, and the
edges in these graphs often evolve over time. In these graphs,
each edge can be represented as a triple (u, v, t), where u, v are
two end nodes of the edge and t denotes the interaction time
between u and v. The graphs that involve temporal information
are typically termed as temporal graphs [1], [2].

The interaction patterns in a temporal graph are often known
to be bursty, e.g., the human communication events occur
in a short time [1], [2]. Here, a bursty pattern denotes a
number of events occurring in a short time. In this paper,
we study a particular bursty pattern on temporal networks,
called bursting community, which denotes a dense subgraph
pattern that occurs in a short time. In other words, we aim to
identify densely-connected subgraphs from a temporal graph
that emerges in a short time. Mining bursting communities
from a temporal network could be useful for many practical
applications, two of which are listed as follows.

Activity discovery. There are evidences that the timing of
many human activities, ranging from communication to en-
tertainment and work patterns, follow non-Poisson statistics,
characterized by bursts of rapidly occurring events separated
by long periods of inactivity [1]. For example, the talking
points in temporal social networks such as Twitter, Facebook
and Weibo are changing over time. By mining the bursting
communities in such temporal social networks, we are able to
identify a group of users that densely interact with each other

in a short time. The common topics discussed among the users
in a bursting community may represent an emerging activity
that recently spreads over the networks. Therefore, identifying
bursting communities may be useful for finding such emerging
activities in a temporal network.

Emergency event detection. In communication networks
(e.g., phone-call networks), the users’ communication be-
haviors may also exhibit bursty patterns. Identify bursting
communities in a communication network may be useful for
detecting emergency events. For instance, consider a scenario
when an earthquake occurs in a country [3]. Individuals in that
country may contact their relatives and friends in a short time.
These communication behaviors result in that many densely-
connected subgraphs may be formed in a short time, which
are corresponding to bursting communities. Therefore, by
identifying bursting communities in a communication network
(e.g., a phone-call network) could be useful for detecting the
emergency events (e.g., earthquake).

In the literature, there exist a few studies that are proposed
to mine communities in temporal graphs. For example, Wu
et al. [4] proposed a temporal k-core model to find cohesive
subgraphs in a temporal graph. Ma et al. [5] devised a dense
subgraph mining algorithm to identify densest subgraphs in
a weighted temporal graph. Rozenshtein et al. [6] studied
a problem of mining dense subgraphs at different time in
a temporal graph. Li et al. [7] proposed an algorithm to
find communities on temporal graphs that are persistent over
time. Qin et al. [8] studied a problem of finding periodic
community in temporal networks. All of these studies do not
consider the bursting patterns of the community, thus their
techniques cannot be applied to solve our problem. To the
best of our knowledge, we are the first to study the bursting
community mining problem, i.e. the problem of finding the
highly connected temporal subgraph in which each node is
bursting out in a short time.

Contributions. In this paper, we formulate and provide ef-
ficient solutions to find bursting communities in a temporal
graph. In particular, we make the following main contributions.
Novel model. We propose a novel concept, called (l, δ)-
maximal dense core, to characterize the bursting community in
temporal graphs. Each node in (l, δ)-maximal dense core has
average degree no less than δ in a time segment with length
no less than l. We also define a new concept called pareto-
optimal (l, δ)-maximal dense core, which denotes the set of
(l, δ)-maximal dense cores that are not dominated by the other
(l, δ)-maximal dense cores in terms of the parameters l and δ.

ar
X

iv
:1

91
1.

02
78

0v
1

 [
cs

.S
I]

 7
 N

ov
 2

01
9

The pareto-optimal (l, δ)-maximal dense cores can provide a
good summary of all the bursting communities in a temporal
graph over the entire parameter space.
New algorithms. To find an (l, δ)-maximal dense core, the
main technical challenge is to check whether a node u has
average degree no less than δ in a time segment with length
no less than l. We show that the naive algorithm to solve
this issue requires O(|T |2) time, where |T | is the number of
timestamps in the temporal network. To improve the efficiency,
we first propose a dynamic programming algorithm which
takes O(|T |) to solve this issue. Then, we develop a more
efficient algorithm based on several in-depth observations
of our problem which can achieve a near constant time
complexity. In addition, we also propose an efficient algorithm
to find the pareto-optimal (l, δ)-maximal dense cores.
Extensive experimental results. We conduct comprehensive
experiments using 9 real-life temporal graphs to evaluate the
proposed algorithm. The results indicate that our algorithms
significantly outperform the baselines in terms of the com-
munity quality. We also perform a case study on the Enron
dataset. The results demonstrate that our approach can identify
many meaningful and interesting bursting communities that
cannot be found by the other methods. In addition, we also
evaluate the efficiency of the proposed algorithms, and the
results demonstrate the high efficiency of our algorithms. For
example, on a large-scale temporal graph with more than
1M nodes and 10M edges, our algorithm can find a bursting
community in 26.95 seconds. For reproducibility purpose, the
source code of this paper is released at https://github.com/
VeryLargeGraph/MDC.

Organization. Section II introduces the model and formulates
our problem. The algorithms to efficiently mining bursting
communities are proposed in section III and IV. Experimental
studies are presented in Section V, and the related work is
discussed in Section VI. Section VII draws the conclusion of
this paper.

II. PRELIMINARIES

Let G = (V, E) be an undirected temporal graph, where V
and E denote the set of nodes and the set of temporal edges
respectively. Let n = |V| and m = |E| be the number of nodes
and temporal edges respectively. Each temporal edge e ∈ E
is a triplet (u, v, t), where u, v are nodes in V , and t is the
interaction time between u and v. Let T = {t|(u, v, t) ∈ E} be
the set of all timestamps. We assume without loss of generality
that all the timestamps are sorted in a chronological order and
they are joined as an arithmetic time sequence, i.e., t1 < t2 <
· · · < t|T | and (ti − ti−1) is a constant of time interval for
each integer i. In the rest of this paper, we use timestamps
{0, 1, 2.., |T |} to represent {t0, t1, t2..t|T |}. We assume that
each timestamp is an integer, because the UNIX timestamps
are integers in practice.

For a temporal graph G, the de-temporal graph of G
denoted by G = (V,E) is a graph that ignores all the
timestamps associated with the temporal edges. More formally,

TABLE I
TEMPORAL EDGES OF TEMPORAL GRAPH G
t (u, v)

1 (v1, v2)(v1, v3)(v1, v4)(v1, v5)(v2, v3)
(v2, v4)(v2, v5)(v3, v4)(v3, v5)(v4, v5)

2 (v5, v6)(v5, v7)(v6, v7)

3 (v1, v2)(v1, v4)(v1, v5)
(v2, v4)(v2, v5)(v4, v5)

4 (v1, v2)(v1, v3)(v1, v4)(v1, v5)(v2, v3)
(v2, v4)(v2, v5)(v3, v4)(v3, v5)(v4, v5)

5 (v1, v2)(v1, v3)(v1, v4)(v1, v5)(v2, v3)
(v2, v4)(v2, v5)(v3, v4)(v3, v5)(v4, v5)

6 (v5, v6)(v5, v7)(v6, v7)

v1v2

v3 v4

v5

v6

v7

(a) The de-temporal graph G

v1v2

v3 v4

v5 v5

v6

v7 v1v2

v4

v5

v1v2

v3 v4

v5

v1v2

v3 v4

v5 v5

v6

v7

G1 G2 G3

G4 G5 G6

(b) The five snapshots of G
Fig. 1. Basic concepts of the temporal graph

pseudo code. We assume that each timestamp is an integer,
because the unix timestamp is an integer in practice.

For a temporal graph G, the de-temporal graph of G
denoted by G = (V,E) is a graph that ignores all the
timestamps associated with the temporal edges. More formally,
for the de-temporal graph G of G, we have V = V and
E = {(u, v)|(u, v, t) ∈ E}. Let Nu(G) = {v|(u, v) ∈ E}
be the set of neighbor nodes of u, and degG[u] = |Nu(G)|
be the degree of u in G. A graph G′ = (V ′, E′) is called a
subgraph of G = (V,E) if V ′ ⊆ V and E′ ⊆ E. For a given
set of nodes S ⊆ V , a subgraph G(S) = (V (S), E(S)) is
referred to as an induced subgraph of G from S if V (S) = S
and E(S) = {(u, v)|u, v ∈ V (S), (u, v) ∈ E}.

Given a temporal graph G, we can extract a series of
snapshots based on the timestamps. For each ti ∈ T , we can
obtain a snapshot Gi = (Vi, Ei) where Vi = {u|(u, v, ti) ∈ E}
and Ei = {(u, v)|(u, v, ti) ∈ E}. Table. I illustrates a temporal
graph G with 42 temporal edges. Figs.1(a) and (b) illustrates
the de-temporal graph of G and all the six snapshots of G
respectively.

[t!]
TABLE II

TEMPORAL EDGES
t (u, v)

1 (v1, v2)(v1, v3)(v1, v4)(v1, v5)(v2, v3)
(v2, v4)(v2, v5)(v3, v4)(v3, v5)(v4, v5)

2 (v5, v6)(v5, v7)(v6, v7)

3 (v1, v2)(v1, v4)(v1, v5)
(v2, v4)(v2, v5)(v4, v5)

4 (v1, v2)(v1, v3)(v1, v4)(v1, v5)(v2, v3)
(v2, v4)(v2, v5)(v3, v4)(v3, v5)(v4, v5)

5 (v1, v2)(v1, v3)(v1, v4)(v1, v5)(v2, v3)
(v2, v4)(v2, v5)(v3, v4)(v3, v5)(v4, v5)

6 (v5, v6)(v5, v7)(v6, v7)

v1v2

v3 v4

v5

v6

v7

The nodes in bursting communities have a feature in com-
mon that they have high degrees in the induced subgraphs of
some continuous time periods. We introduce some definitions
below to describe the properties.

Definition 1 (temporal subgraph): Given a temporal graph
G = (V, E), a continuous time interval T = [ts, te] ⊆ [1:|T |]
and a given set of nodes S ⊆ V , a temporal subgraph
can be denoted by G(S)[T] = (S, E(S)[T]), and it is an
induced temporal graph of G from temporal edges E(S)[T] =

{(u, v, t)|u, v ∈ S; (u, v, t) ∈ E , t ∈ T}.
Based on Definition 1, a temporal subgraph G(S)[T] is a

induced graph from nodes set S in time interval T , it can
also be treated as a temporal graph and extracts a series
of snapshots. For convenience, we use the notion Gi(S)[T]
to present the snapshot generated from G(S)[T] in ti. The
snapshot of temporal subgraph G(S)[T] in timestamp ti is the
induced subgraph of Gi from S so Gi(S)[T] = Gi(S).

Definition 2 (degree sequence): Given a temporal graph
G(S)[T], for any node v ∈ V , the degree sequence of v in
G, abbreviated as DS(v,G(S)[T]), is a sequence of v’s degree
in each snapshot of G(S)[T]. Each item in the degree sequence
can be denoted by DS(v,G(S)[T])[i].

Based on Definition 1 and 2, any node v in a subtemporal
graph G(S)[T] will have a degree sequence of length |T |.
Each item in this degree sequence is DS(v,G(S)[T])[i] =
dv(Gi(S)[T]) = dv(Gi(S)).

Definition 3 (l-segment density): Given v’s degree sequence
DS(v,G(S)[T = [ts, te]]) in a temporal subgraph and an
integer l, the l-segment density of v in the degree sequence
is the average degree of v in DS(v,G(S)[T]) while the length
of the segment is not less than l, which can be denoted by

SD (v,G(S)[T]) =
∑te
i=ts

dv(Gi(S))

(te−ts+1) in which te− ts+1 ≥ l
Based on Definition 3, the maximum l-segment density of

v in G (abbreviated as MSD(v,G)), is the maximum segment
density SD (v,G(S)[T]) such that there does not exist S′ ∈
V, T ′ ∈ T satisfying SD (v,G(S′)[T ′]) >SD (v,G(S)[T]).

Below, we give a definition to describe the node which has
average degree of not less than δ in one continuous timestamps
with length not less than l in a given temporal subgraph.

Definition 4 ((l, δ)-dense node): Given a temporal graph G,
an integer l and a real value δ, one node u is a (l, δ)-dense
node in G if MSD(v,G) ≥ δ.

Below, we introduce a structure which can cluster the (l, δ)-
dense nodes.

Definition 5 ((l, δ)-maximal dense core): Given a temporal
graph G, an integer l and a real value δ, a (l, δ)-maximal dense
core (abbreviated as (l, δ)-MDC) is a temporal subgraph G(C)
in which C ⊆ V , satisfying
(i) Densely : each node is a (l, δ)-dense node in G(C), which
means that ∀v ∈ C, there holds MSD(v,G(C)) ≥ δ.
(ii) Maximally : there does not exist a subset of nodes S in
G that satisfies (i), (ii) and C ⊂ S.

Example 1: content...

Problem 1 (Bursting Community). Given a temporal graph
G, an integer l ≥ 2 and a real value δ > 0, the goal of mining
one bursting community is to finding the (l, δ)-MDC in G.

Based on Definition 5, (l, δ)-MDC is one bursting com-
munity which can identify important events in the temporal
graph, but it is annoying to find proper parameter settings
of l and δ. Intuitively, a more accurate bursting community
will have higher l and δ. But the large parameter settings will
results in losing answers. However, based on the theory of

(a) Temporal edges in G

v1v2

v3 v4

v5

v6

v7

(b) The de-temporal graph G

v1v2

v3 v4

v5 v5

v6

v7 v1v2

v4

v5

v1v2

v3 v4

v5

v1v2

v3 v4

v5 v5

v6

v7

G1 G2 G3 G4 G5 G6

(c) The six snapshots of G
Fig. 1. Basic concepts of the temporal graph

for the de-temporal graph G of G, we have V = V and
E = {(u, v)|(u, v, t) ∈ E}. Let Nu(G) = {v|(u, v) ∈ E} be
the set of neighbor nodes of u, and degG[u] = |Nu(G)| be the
degree of u in G. For a given set of nodes S ⊆ V , a subgraph
GS = (VS , ES) is referred to as an induced subgraph of G
from S if VS = S and ES = {(u, v)|u, v ∈ VS , (u, v) ∈ E}.

Given a temporal graph G, we can extract a series of
snapshots based on the timestamps. For each i ∈ T , we can
obtain a snapshot Gi = (Vi, Ei) where Vi = {u|(u, v, i) ∈ E}
and Ei = {(u, v)|(u, v, i) ∈ E}. Fig.1 (a) illustrates a temporal
graph G with 42 temporal edges and T = [1 : 6]. Figs.1 (b)
and (c) illustrates the de-temporal graph G and all the six
snapshots of G respectively.

The nodes in bursting communities have a feature in com-
mon that they have high degrees in the induced subgraphs of
some continuous time periods. We introduce some definitions
below to describe the properties.

Definition 1 (temporal subgraph): Given a temporal graph
G = (V, E), a continuous time interval T = [ts, te] ⊆ [1:|T |]
and a given set of nodes S ⊆ V , a temporal subgraph can be
denoted by GS(T) = (S, ES(T)), and it is an induced temporal
graph of G from temporal edges ES(T) = {(u, v, t)|u, v ∈
S, t ∈ T, (u, v, t) ∈ E}.

Based on Definition 1, a temporal subgraph GS(T) is
an induced graph from nodes set S in time interval T , it
can extract a series of snapshots. The snapshot of temporal
subgraph in time i is the induced subgraph of Vi ∩ S,
thus it can be denoted by GVi∩S . For each node u ∈ S,
degGVi∩S [u] = |Nu(GVi∩S)| = |Nu(Gi) ∩ S|.

Definition 2 (degree sequence): Given a temporal graph
GS(T), for node u ∈ S, the degree sequence of u in GS(T),
abbreviated as DS(u,GS(T)), is a sequence of u’s degree in
each snapshot of GS(T). Each item in the degree sequence
can be denoted by DS(u,GS(T))[i] = |Nu(Gi) ∩ S|.

Definition 3 (l-segment density): Given an integer l, a time
interval T = [ts, te] and u’s degree sequence DS(u,GS(T)),
the l-segment density of u in this degree sequence is the
average degree of u in DS(u,GS(T)) while the length of the
segment is no less than l, which can be denoted by

SD(u,GS(T)) =
∑te
i=ts

|Nu(Gi)∩S|
te−ts+1 satisfying te− ts+1 ≥ l

https://github.com/VeryLargeGraph/MDC
https://github.com/VeryLargeGraph/MDC

Based on Definition 3, the maximum l-segment density of u
in GS (abbreviated as MSD(u,GS)), is the l-segment density
SD(u,GS(T)) such that there do not exist S′ ∈ V, T ′ ∈ T
satisfying SD(u,GS′(T ′)) > SD(u,GS(T)).

Below, we give a definition to describe the node which has
average degree no less than δ in a time segment with length
no less than l in a given temporal subgraph.

Definition 4 ((l, δ)-dense node): Given a temporal graph G,
an integer l and a real value δ, one node u is an (l, δ)-dense
node in G if MSD(u,G) ≥ δ.

According to Definition 4, we introduce a structure which
can cluster the (l, δ)-dense nodes.

Definition 5 ((l, δ)-maximal dense core): Given a temporal
graph G, an integer l ≥ 2 and a real value δ > 0, an (l, δ)-
maximal dense core (abbreviated as (l, δ)-MDC) is a temporal
subgraph GC in which C ⊆ V , satisfying
(i) Densely: each node is an (l, δ)-dense node in GC , which
means that ∀u ∈ C, MSD(u,GC) ≥ δ holds.
(ii) Maximally: there does not exist a subset of nodes S in G
that satisfies (i), (ii) and C ⊂ S.

Below, we use an example to illustrate the above definitions.
Example 1: Consider the temporal graph in Fig. 1. Given

l = 3, δ = 3. As shown in Fig. 1(c), we can easily get that
DS(v5,G) = [4, 2, 3, 4, 4, 2]. As l = 3, then the maximum
l-segment density MSD(v5,G) = (3 + 4 + 4)/3 = 3.66.
Given S = {v1, v2, v3, v4, v5}, we can get that DS(v5,GS) =
[4, 0, 3, 4, 4, 0], MSD(v5,GS) = (3 + 4 + 4)/3 = 3.66.
Therefore, v5 is a (3, 3)-dense node in GS . Considering
v3 in S, we can get that DS(v3,GS) = [4, 0, 0, 4, 4, 0],
MSD(v3,GS) = (0 + 4 + 4)/3 = 2.66. So, v3 is a not
(3, 3)-dense node in GS . Therefore, GS is not a (3, 3)-MDC.
However, given C = {v1, v2, v4, v5}, we can find that all the
nodes in C are (3, 3)-dense nodes, because all the nodes have
the maximum l-segment density of 3 considering T = [3 : 5].
So, GC is a (3, 3)-MDC with C = {v1, v2, v4, v5}. �

Problem 1 (Bursting Community). Given a temporal graph
G, an integer l ≥ 2 and a real value δ > 0, the goal of mining
one bursting community is to compute the (l, δ)-MDC in G.

Based on Definition 5, (l, δ)-MDC is a bursting community
which can identify important events in the temporal graph, but
it may be not easy to find proper parameters of l and δ for
practical applications. Intuitively, a good bursting community
will have large l and δ values. But large l and δ values
may result in losing answers. However, based on the theory
of Pareto Optimality, we are able to compute the bursting
communities that are not dominated by the other communities
in terms of parameters l and δ. Below, we introduce a new
concept, POMDC, to define those communities.

Definition 6 (POMDC): Given a temporal graph G, an (l, δ)-
MDC in G is a POMDC if there does not exist a (l′, δ′)-MDC
in G such that l′ > l, δ′ ≥ δ or l′ ≥ l, δ′ > δ.

Based on Definition 6, POMDCs in the temporal graph G
are summarizations of all the (l, δ)-MDC. Intuitively, each

(l, δ)-MDC will be contained in one of the POMDCs since
they are maximal.

Problem 2 (Pareto-optimal Bursting Community). Given a
temporal graph G, the goal of mining Pareto-optimal bursting
communities is to enumerate all the POMDCs in G.

Hardness Discussion. We can find that the problem of mining
one bursting community is a little similar to mining traditional
k-core. But it is not sufficient by adopting the traditional core
decomposition method directly. One way to solve the problem
is reducing the temporal graph by removing the nodes which
are not (l, δ)-dense nodes, and then checking whether the
remained nodes are (l, δ)-dense nodes until no nodes will be
reduced. Therefore, many nodes will be checked whether are
(l, δ)-dense nodes in the remained graph again and again. The
time complexity of the naive method to check whether one
node is (l, δ)-dense node for one time is O(|T |2). However,
the status of one node must be checked while one edge is
deleted, the times of the checking steps are O(m). In some
large temporal networks the scale of |T | is near to m, so
the whole time complexity is near to O(m3). Clearly, this
approach may involve numerous redundant computations for
checking some nodes which are definitely not contained in an
(l, δ)-MDC.

To list all the POMDCs, the naive method is to enumerate
parameter pairs (l, δ) and outputs the one which can not be
dominated. This way is difficult, because it is hard to set the
proper δ which is a real value. However, another possible way
is only considering one dimension, such as l first, and then
finding the maximal δ. Next, we keep δ unchanged and find
the maximal l. The challenge is how to acquire the answers
with less redundant computations.

III. ALGORITHMS FOR MINING (l, δ)-MDC

In this section, we first introduce a basic decomposition
framework to mine the (l, δ)-MDC. Next, we develop a
dynamic programming algorithm which can compute the
segment density efficiently, and then propose an improved
algorithm with several novel pruning techniques.

A. The MDC Algorithm

We can observe that (l, δ)-MDC has the following three
properties.

Property 3.1 (Uniqueness): Given parameters l > 1 and
δ > 0, the (l, δ)-MDC of the temporal graph G is unique.

Proof: We can prove this lemma by a contradiction.
Suppose that there exist two different (l, δ)-maximal dense
cores in G, denoted by C1 and C2 respectively (C1 6= C2). Let
us consider the node set C ′ = C1∪C2. Following Definition 5,
every node in C ′ is a (l, δ)-dense node in G(C ′), because it
is a (l, δ)-dense node in GC1 ∪ GC2 . Since C1 6= C2, we have
C1 ⊂ C ′ and C2 ⊂ C ′ which contradicts to the fact that
C1(C2) satisfies the maximal property. �

Property 3.2 (Containment): Given an (l, δ)-MDC of the
temporal graph G, the (l, δ′)-MDC with δ′ ≥ δ is a temporal
subgraph of (l, δ)-MDC.

Algorithm 1: MDC(G, l, δ)
Input: Temporal graph G = (V, E), parameters l and δ
Output: (l, δ)-MDC in G

1 Let G = (V,E) be the de-temporal graph of G;
2 Let Gc = (Vc, Ec) be the k-CORE (k = δ) of G;
3 Q ← [∅];D ← [∅];MSD ← [∅];
4 for u ∈ Vc do
5 deg[u]← |Nu(Gc)|; /* compute the degree of u in Gc*/
6 MSD[u]← ComputeMSD(G, l, u, Vc);
7 if MSD[u] < δ then Q.push(u);

8 while Q 6= [∅] do
9 v ← Q.pop(); D ← D ∪ {v};

10 for w ∈ Nv(Gc), s.t. deg[w] ≥ δ and MSD(w) ≥ δ do
11 deg[w]← deg[w]− 1;
12 if deg[w] < δ then Q.push(w);
13 else
14 MSD[w]← ComputeMSD(G, l, w, Vc \D);
15 if MSD[w] < δ then Q.push(w);

16 return GVc\D ;

Proof: According to Definition 5, an (l, δ)-MDC C is a
maximal temporal subgraph, and any node in C has segment
density at least δ with length no less than l. For δ′ ≥ δ,
each node in (l, δ′)-maximal dense core will also have segment
density at least δ with length no less than l. Since the C is a
maximal temporal subgraph, (l, δ′)-maximal dense core must
be contained in C. �

We first give the definition of k-CORE, and then show the
third property. The k-CORE of the de-temporal graph of
G can be denoted by Gc = (Vc, Ec), which is a maximal
subgraph such that ∀u ∈ Gc : degGc [u] ≥ k.

Property 3.3 (Reduction): Given an (l, δ)-MDC of the
temporal graph G, the nodes in (l, δ)-MDC must be contained
in the k-CORE (k = δ) of the de-temporal graph G.

Proof: According to Definition 5, any node u in an (l, δ)-
MDC GC has segment density at least δ with length no less
than l (l ≥ 2). So, u must have degree at least δ in at least one
snapshot G∗. As each G∗ ⊆ G, each u in C must have degree
no less than δ. Since the k-CORE (k = δ) of the de-temporal
graph G is the maximal subgraph such that each nodes have
degree no less than δ, C must be contained in the k-CORE
(k = δ) of G. �

Following the property 3.3, we first compute the k-CORE
(k = δ) of the de-temporal graph of G, denoted by Gc. Given
the properties of Uniqueness and Containment, we can apply
the core decomposition framework to compute the (l, δ)-MDC.
Next, we check whether or not node u satisfies the Densely
property mentioned in Definition 5. Specifically, we compute
the Gc in G first, and then check whether node u is an (l, δ)-
dense node for all u ∈ Gc. If u is not an (l, δ)-dense node, we
delete u from the results. Since the deletion of u may result in
u’s neighbors no longer being the (l, δ)-dense node, we need to
iteratively process u’s neighbors. The process terminates if no
node can be deleted. The details are provided in Algorithm 1.

Algorithm 1 first computes the k-CORE (k = δ) of the
de-temporal graph G (lines 1-2), denoted by Gc = (Vc, Ec).
Then, it initializes a queue Q to store the nodes to be deleted,
a set D to store the deleted node, a collection MSD to store
maximum l-segment density for each node (line 3) and deg[u]

to store the degree of u in Gc (line 5). Next, for each u in Vc,
it invokes Algorithm 2 to check whether u is an (l, δ)-dense
node or not (lines 4-6). If u’s maximum l-segment density
MSD[u] is less than δ, u is not an (l, δ)-dense node and
it will be pushed into a queue Q (lines 7-8). Subsequently,
the algorithm iteratively processes the nodes in Q. In each
iteration, the algorithm pops a node v from Q and uses D to
maintain all the deleted nodes (line 10). For each neighbor
node w of v, the algorithm updates deg[w] (lines 12). If
the revised deg[w] is smaller than δ, w is clearly not an
(l, δ)-dense node. As a consequence, the algorithm pushes w
into Q which will be deleted in the next iterations (line 13).
Otherwise, the algorithm invokes Algorithm 2 to determine
whether w is an (l, δ)-dense node (lines 14-15). The algorithm
terminates when Q is empty. At this moment, the remaining
nodes Vc \D is the (l, δ)-dense nodes of G, and the algorithm
returns temporal subgraph GVc\D (line 16).

Example 2: Recall the temporal graph in Fig. 1. Given l =
3, δ = 3. Algorithm 1 first computes the k-CORE (k = δ) of
de-temporal graph G. So, Vc = {v1, v2, v3, v4, v5}. Then, for
each node u in Vc, it checks whether u is an (l, δ)-dense node.
Consider v3, DS(v3,GVc) = [4, 0, 0, 4, 4, 0], we can not find
a segment of at least 3 length in which the density is no less
than 3. Next, v3 will be pushed into Q. In line 9, v3 is added
into set D and all of its neighbors will be checked in line 10.
Now the remained nodes are {v1, v2, v4, v5}, and we can find
that the deg andMSD of them are no less than 3. Therefore,
Algorithm 1 returns GVc\D with Vc \D = {v1, v2, v4, v5}.
Correctness of Algorithm 1. Let C = Vc \D. It will check
MSD[u] and call procedure ComputeMSD once its neighbor
is deleted and added into D, so each node in the remained C
must have a l-segment density at least δ in GC with length no
less than l. Therefore, each node in the remained C will have
the same property. According to Definition 5, Algorithm 1
correctly computes (l, δ)-MDC. �

Complexity of Algorithm 1. The time and space complexity
of Algorithm 1 by invoking Algorithm 2 to compute MSD
is O(m|T |) and O(m) respectively.

Proof: First, Algorithm 1 needs O(m) time to compute the
k-CORE in the de-temporal graph G (line 2). As Algorithm 2
needs time of O(|T |) (see Section III-B), it takes O(|T |n)
time to initialize queue Q for all the nodes in Vc (lines
4-7). Next, in lines 8-16, for each node v, the algorithm
explores all neighbors of v at most once. So it will invoke
Algorithm 2 at most m times and the total time complexity is
O(|T |m). Therefore, since n < m, the total time complexity
of Algorithm 1 is O(|T |m).

In this algorithm, we need to maintain the graph and store
collections of Q, D and deg which consumes O(m) in total.
In procedure ComputeMSD, it needs space of O(|T |) (see
Section III-B). Since |T | < m, thus the total space complexity
of Algorithm 1 is O(m). �

Different from the traditional core decomposition algorithm,
Algorithm 1 needs to check whether one node is an (l, δ)-
dense node in each iteration. Below, the implementation details

of ComputeMSD are described.

B. Dynamic Programming Procedure of ComputeMSD

Recall Definition 5, one node u is an (l, δ)-dense node if
MSD(u,GC) ≥ δ in the temporal subgraph GC . Considering
one node u, we can get u’s degree sequence DS(u,GC)
inside the candidate (l, δ)-MDC for i range from 1 to |T |
first, and then compute the maximum l-segment density of
u. For convenience, in this subsection we denote DS(u,GC)
by DS[u] = {|Nu(Gi) ∩ C|, i ∈ [1 : |T |]}, MSD(u,GC) by
MSD[u] while they all consider the degree sequence in GC .
To get MSD[u], the naive method is to considering all the
segment of longer than l, but the time complexity is O(|T |2).
Below, we propose a dynamic programming algorithm which
transforms the problem into finding the maximum slope in a
curve, which can reduce the computational overhead to linear
complexity.

Definition 7 (cumulative sum curve): Given node u’s degree
sequence DS(u,GC) (abbreviated as DS[u]), the cumulative
sum curve (abbreviated as CSC) of u is a collection of
{CSC[i] = ∑t

i=1DS[u][i], t ∈ [1 : |T |]}.
Without loss of generality, we set CSC[0] as 0. Then,

the points {(0, CSC[0]), (1, CSC[1])...(|T |, CSC[|T |])} can be
drawn as a curve in the Cartesian Coordinate System, and
we denote this curve by CSC. Next, we define the slope by
considering two points in CSC.

Definition 8 (slope): Given integers i, j ∈ [1, |T |], i < j,
the slope of curve CSC from i to j can be denoted by
slope(i, j, CSC) = CSC[j]−CSC[i−1]

j−i+1 , where i, j can be marked
as the start and end of the slope, respectively.

For convenience, we abbreviate slope(i, j, CSC) as
slope(i, j) in the following paper while the symbol CSC can
not be confused.

Lemma 3.1: For a degree sequence DS[u], one time interval
[ts, te], the segment density of the subsequence in [ts, te]
equals the slope of curve CSC from te to ts. Formally,∑te

i=ts
DS[u][i]

te−ts+1 = slope(ts, te, CSC).
Proof: The proof can be easily obtained by the definitions,

thus we omit it for brevity. �

Definition 9 (maximum j-truncated l-slope): Given a curve
CSC of node u, a truncated time j ∈ [l : |T |], the maximum j-
truncated l-slope MTS[j] = {max(slope(i, j))‖i = [0, j− l]}.

According to Lemma 3.1 and Definition 9, MTS[j] is the
maximum slope which ended at time j and the length of the
corresponding segment is no less than l. For convenience,
MTS is the collection of {MTS[j], j ∈ [l, |T |]}.

Corollary 3.1: The problem of finding the MSD(u,GC),
can be transformed to computing max(MTS) in CSC of u.

Proof: According to lemma 3.1, the problem of finding the
maximum l-segment density, can be transformed to computing
the maximum slope of the curve CSC in which the difference
between the start and end of slope is no less than l.

However, there exists the maximum slope of the curve CSC
which ended at some time t′. If we range t from time l to time

Algorithm 2: ComputeMSD(G, l, u, C)
1 CSC ← [∅]; CSC[0]← 0;DS[u]← [∅] ;
2 for t← 1 : |T | do
3 Let Gt be the snapshot of G at timestamp t;
4 DS[u][t]← |Nu(Gt) ∩ C|;
5 CSC[t] = CSC[t− 1] +DS[u][t];

6 CH ← [∅], is ← 0, ie ← −1,MT S[u]← [∅];
7 for t← l : |T | do
8 while is < ie and slope(CH[ie], t− l, CSC) ≤

slope(CH[ie − 1], CH[ie], CSC) do
9 ie ← ie − 1;

10 CH[+ + ie]← t− l;
11 while is < ie and slope(CH[is], t, CSC) ≥

slope(CH[is], CH[is + 1], CSC) do
12 is ← is + 1;

13 MT S[u]←MT S[u] ∪ {slope(CH[is], t, CSC)};
14 return max(MT S[u]);

15 Procedure slope(i, j, CSC)
16 return (CSC[j]− CSC[i])/(j − i)

|T | and record all the MTS[t], then the maximum one will be
the maximum slope of the curve. According to Definition 9,
the difference between the start and end of MTS[t] is at least
l. Therefore, MSD(v,GC) = max(MTS). �

Next, the problem is how to compute all the MTS[t] with
t = [1 : |T |]. One efficient idea is maintaining MTS[t+1] by
the computed MTS[t] and the changes of the curve from time
t to t+ 1. Below, considering the computed MTS[t] and the
newly joined point (t+1, CSC[t+ 1]), we can maintain MTS
based on the following observations.

Observation 3.1: We can compute a lower convex hull
(abbreviated as CH) in CSC of u which ended at time t − l,
the slope of the tangent from point (t, CSC[t]) to the CH is
the maximum l-segment density of node u ended at time t.

Observation 3.2: If the point (a, CSC[a]) and (b, CSC[b]) is
on the maintained lower convex hull, suppose that a < b < c,
CH will add node (c, CSC[c]) and remove node (b, CSC[b]) if
(CSC[c]− CSC[b])/(c− b) ≤ (CSC[b]− CSC[a])/(b− a).

Observation 3.3: For one ended time t, if (CSC[t] −
CSC[b])/(t− b) ≥ (CSC[b]−CSC[a])/(b− a), then the slope
of CSC[t] to CSC[a] will not be the maximum one and node
(a, CSC[a]) should be removed from CH.

Following the observations above, we devise an algorithm
to maintain the lower convex hull CH ended at time t − l,
and the MTS[t] can be computed in a recursive way as the
following algorithm shows.

Algorithm 2 first initializes CSC[t] of u for all timestamps
(lines 1-5). As the nodes set C may be changed in Algorithm 1,
the degree of u can be computed in line 4. Next, it maintains
an array CH to record the indexes of each points in the
lower convex hull, is to record the start index of CH, ie
to record the end index of CH and MT S[u] to record MTS
(line 6). For time t from l to |T |, it dynamically computes
MTS[t] of u (lines 7-13). In lines 8-9, ie reduces by 1 if the
slope(CH[ie], t−l) is no larger than slope(CH[ie−1], CH[ie]),
because the rear node point will be above the convex hull CH
by the end of t − l following Observation 3.2. If there is no
such point in the end, CH[+ + ie] is assigned by t − l. In

0 2 4 6 8
0

5

10

15

20

25

30 DS
CSC
CH
MTS[t]
MSD

(a) t = 4

0 2 4 6 8
0

5

10

15

20

25

30 DS
CSC
CH
MTS[t]
MSD

(b) t = 5

0 2 4 6 8
0

5

10

15

20

25

30 DS
CSC
CH
MTS[t]
MSD

(c) t = 6

0 2 4 6 8
0

5

10

15

20

25

30 DS
CSC
CH
MTS[t]
MSD

(d) t = 7

0 2 4 6 8
0

5

10

15

20

25

30 DS
CSC
CH
MTS[t]
MSD

(e) t = 8

0 2 4 6 8
0

5

10

15

20

25

30 DS
CSC
CH
MTS[t]
MSD

(f) t = 9

Fig. 2. Running example of computing maximum l-segment density for a
degree sequence of [4, 2, 3, 4, 4, 2, 2, 6, 1] with l = 4

lines 11-12, the head index adds up by 1 if slope(CH[is], t)
is no larger than slope(CH[is], CH[is + 1]), because it will
have an upper convex hull in the curve of CH at the start
of CH[is] according to Observation 3.3. We will get a array
MT S[u] of MTS[t] with t ranges from l to |T |. Finally, it
returns max(MT S[u]) after all the iterations (line 14).

Example 3: Fig. 2 shows the running example of com-
puting maximum l-segment density for a degree sequence of
[4, 2, 3, 4, 4, 2, 2, 6, 1] with l = 4. Clearly, T = [1 : 9], CSC =
[0, 4, 6, 9, 13, 17, 19, 21, 27, 28]. According to Corollary 3.1,
the procedure starts at t = 4 because we need satisfy that
the length of the segment is no less than l. At this time,
there is only one item in CH. When t = 5, the ie index
of CH adds up by 1 (line 10), but the is index is remained
0 because slope(0, 5) = (17 − 0)/(5 − 0) = 3.4 is no
larger than slope(0, 1) = (4 − 0)/(1 − 0) = 4.0 (lines
12). And max(MT S[u]) is currently MTS[5] = 3.4. Next,
t = 6, according to Observation 3.2, the ie index of CH
reduces by 1 because slope(1, 2) = 2.0 is no larger than
slope(0, 1) = 4.0 (lines 8-9). Then, the newly ie is 1 and
CH[ie] is assigned by t − l = 2 (line 10). Now CH is
[0, 2], is = 0, ie = 1. In the next step, the is index adds up
by 1 because slope(0, 6) = 19/6 > slope(0, 2) = 6/2 (line
12). So, the final CH and MTS[6] can be shown at Fig. 2(c).
Likewise, when t = 7 to 9, the CH will be maintained by
the similar processes. It should be noted that when t = 7,
slope(3, 8) = 3.6, which is larger than MTS[5]. Finally,
MSD = max(MT S[u]) = 3.6, which is the density of the
4th to 8th items [4, 4, 2, 2, 6]. �

Correctness of Algorithm 2. According to Corollary 3.1, we
need to prove that (i) max(MT S[u]) is the maximum slope;
(ii) the length of corresponding segment is no less than l. For
(i), according to Observation 3.3, lines 11-13 will compute
MTS[t] which will be recorded in MT S[u], thus the final
max(MT S[u]) is the maximum slope. For (ii), t−CH[is] ≥ l
because the only assignment code for CH[i] is in line 10, and
t will be larger in the next loop, so t−CH[i] ≥ l for any i. �

Complexity of Algorithm 2. For a temporal graph G with

|T | timestamps, the time and space complexity of Algorithm 2
is O(|T |) and O(|T |) respectively.

Proof: First, Algorithm 2 needs O(|T |) to compute the
collection CSC (lines 2-5). For each t, ie reduces from t to
is (lines 8-9), and is increases from l to |T | (lines 11-12).
Considering all the loops, the average time complexity of
assigning is is O(|T |). Since ie has the lower bound of is
in each loop, the average time of assigning ie is also O(|T |).
Hence, the whole Algorithm 2 need O(|T |) to calculate node
u’s maximum l-segment density.

In this algorithm, we store collections of CSC, CH and
MT S[u] which consume O(|T |) in total. Therefore, the space
complexity of Algorithm 2 is O(|T |). �

C. An improved MDC+ algorithm

Although Algorithm 1 is efficient in practice, it still
has two limitations. (i) It still needs to call the procedure
ComputeMSD for all nodes in Vc (line 6 in Algorithm 1). In
the worst case, the time complexity of this process can be near
to |T |m. We can observe that if we delete a certain node u,
the deg[v] of u’s neighbor v will reduce, and we can monitor
it at once to check whether deg[v] < δ. Once deg[v] < δ,
we do not need to call the procedure ComputeMSD for v
any more. (ii) It still needs to compute all the maximum
l-segment density dynamically for each deletion of the edges.
We can observe that in each call of ComputeMSD, the degree
of u reduces only one and MSD[u] may not change. So,
the ComputeMSD algorithm clearly results in significant
amounts of redundant computations for the iterations for all
t from l to |T |.

To overcome this limitation, we propose an improved
algorithm called MDC+. The striking features of MDC+
are twofold. On one hand, it needs not to call procedure
ComputeMSD for each node in advance. Instead, it calculates
SD of the candidate node on-demand. On the other hand, when
deleting a node u, MDC+ does not re-compute MSD[w] for
a neighbor node w of u. Instead, MDC+ dynamically updates
the computed MSD[w] for each node w, thus substantially
avoiding redundant computations. The detailed description of
MDC+ is shown in Algorithm 3.

Algorithm 3 first computes the k-CORE (k = δ) Gc in
the de-temporal graph (line 2). Next, it explores the nodes
in Vc based on an increasing order by the degrees in Gc
(line 5). When processing a node u, the algorithm first
checks whether u has been deleted or not (line 6). If u has
not been removed, MDC+ invokes Algorithm 2 to compute
MSD[u] (lines 7-8). It should be noted that the procedure
ComputeMSD∗ is all the same to ComputeMSD except that
it returns (MT S[w],DS[u]) (replace line 14 of Algorithm 2).
Next, if MSD[u] is no larger than δ, u is not an (l, δ)-dense
node. Thus, the algorithm pushes u into the queue Q (line 9).
Subsequently, the algorithm iteratively deletes the nodes in
Q (lines 10-19). When removing a node v, MDC+ explores
all v’s neighbors (line 12). For a neighbor node w, MDC+
first updates the degree of w (line 13), i.e., deg[w]. If the
updated degree is less than δ, w is not an (l, δ)-dense node

Algorithm 3: MDC+(G, l, δ)
Input: Temporal graph G = (V, E), parameters l and k
Output: (l, δ)-MDC in G

1 Let G = (V,E) be the de-temporal graph of G;
2 Let Gc = (Vc, Ec) be the k-CORE (k = δ) of G;
3 Let deg[u] be the degree of u in Gc;
4 Q ← [∅];D ← [∅];MSD ← [∅];MT S ← [∅];DS ← [∅];
5 for u ∈ Vc in an increasing order by deg[u] do
6 if u ∈ D then continue;
7 (MT S[u],DS[u])← ComputeMSD∗(G, l, u, Vc \D);

/* all the same to Alg. 2 except that it returns (MT S[u],DS[u]) */
8 MSD[u]← max(MT S[u]);
9 if MSD[u] < δ then {Q.push(u); deg[u]← 0;}

10 while Q 6= ∅ do
11 v ← Q.pop();D ← D ∪ {v};
12 for w ∈ Nv(Gc) \D, s.t. deg[w] ≥ δ do
13 deg[w]← deg[w]− 1;
14 if deg[w] < δ then {Q.push(w); continue;}
15 if MSD[w] is not existed then continue;
16 for t, s.t.(v, w, t) ∈ E do
17 DS[w][t]← DS[w][t]− 1;
18 MSD[w]← UpdateMSD(w, t, l,DS,MT S);

19 if MSD[w] < δ then {Q.push(w); deg[w]← 0;}

20 return GVc\D ;

21 Procedure UpdateMSD(w, t, l,DS,MT S)
22 CSC ← [∅]; ts ← max(0, t− 2l); te ← min(t+ 2l, |T |); CSC[0]← 0;
23 for i← 0 : te − ts do
24 CSC[i+ 1] = CSC[i] +DS[w][ts + i];

25 CH ← [∅], is ← 0, ie ← −1;
26 for j ← l : te − ts + 1 do
27 while is < ie and slope(CH[ie], j − l, CSC) ≤

slope(CH[ie − 1], CH[ie], CSC) do
28 ie ← ie − 1;

29 CH[+ + ie]← t− l;
30 while is < ie and slope(CH[is], j, CSC) ≥

slope(CH[is], CH[is + 1], CSC) do
31 is ← is + 1;

32 if j ≥ t− ts then
33 MT S[w][j + ts − l]← slope(CH[is], j, CSC);

34 return max(MT S[w]);

(line 14). In this case, the algorithm pushes it into Q and
continues to process the next node in Q (the degree pruning
rule). Otherwise, if MSD[w] has already been computed, the
algorithm invokes UpdateMSD to update MSD[w] (line 19).
If the updatedMSD[w] is less than δ, w is not an (l, δ)-dense
node and the algorithm pushes w into Q (line 19). We can see
that if MSD[w] has not been computed yet, the algorithm
does not need to update MSD[w]. In this case, MSD(w)
will be calculated in the next iterations of line 7. It also should
be noted that the DS is always updated, because if the nodes
have been deleted by the degree constraint, DS will be newest
in GVc\D (line 7), otherwise if the nodes have been deleted
by the (l, δ)-dense constraint, DS will be updated in line 17.
Finally, MDC+ outputs GVc\D as the result.

In the following, we introduce the UpdateMSD procedure.
Suppose that before updating, the maximum l-segment density
of w exists from time ts to te. At this time, if DS[w][t′]
reduces by 1, then there exist three situations: (i) t′ <
ts; (ii) ts ≤ t′ ≤ te; (iii) t′ > te.

Example 4: Fig. 3 shows the three situations of Fig. 2(f)
after DS[w][t′] reduces by 1. We can see that the current
maximum l-segment density of w exists from ts = 3 to te = 8.

0 2 4 6 8
0

5

10

15

20

25

30 DS
CSC
CH
MTS[9]
MSD

(a) t′ = 1

0 2 4 6 8
0

5

10

15

20

25

30 DS
CSC
CH
MTS[9]
MSD

(b) t′ = 4

0 2 4 6 8
0

5

10

15

20

25

30 DS
CSC
CH
MTS[9]
MSD

(c) t′ = 9

Fig. 3. Updated situations of Fig. 2(f) after DS[w][t′] reduces by 1

As shown in Fig. 3(a) in which t′ < ts and Fig. 3(c) in which
t′ > ts, we can see that the MSD[w] will not change. We
can find that the parts of curve with the maximum slop are all
moved down. Also, it can be proved easily from the definition
of l-segment density thatMSD[w] will not change. Howerver,
in Fig. 3(b), DS[w][4] reduces by 1 and the new sequence is
[3, 2, 3, 3, 4, 2, 2, 6, 1]. The maximum l-segment density is 3.5,
which is the density of the 5th to 8th items [4, 2, 2, 6]. So only
when ts ≤ t′ ≤ te should we update the MSD. �

Below we will introduce that it only needs to consider DS
from time t−2l to time t+2l to updateMSD. We first define
a concept, MTS2l[j], which is a maximum j-truncated l-slope
of considering only 2l length of the curve CSC.

Definition 10 (maximum j-truncated l-slope of 2l-length):
Given a curve CSC of node u by Definition 7, a truncated
time j ∈ [l : |T |], the maximum i-lower j-truncated l-slope of
2l-length MTS2l[j] = {max(slope(i, j))‖i = [j − 2l, j − l]}.

However, MTS2l[j] is the maximum slope which only
considers MTS[j] with the slope ends at j and starts in
[j − 2l : j − l]. Furthermore, it holds the property below.

Lemma 3.2: Given a curve CSC of u, MSD(u,GC) =
max(MTS2l) holds.

Proof: If l < t < 2l, then we can compute MTS[t] by
considering time from l to t, which satisfies that t − 2l < l,
so MTS[t] =MTS2l[t]. If t > 2l, suppose that the start
time of MTS[t] is t∗ and it holds t∗ < t − 2l . Since
MTS[t] is maximum, there holds slope(t∗, t) ≥ slope(t− l, t).
Thus, Σti=t∗DS[u][i]

t−t∗+1 ≥ Σti=t−l+1DS[u][i]

l ⇒ Σt−l
i=t∗DS[u][i]

t−l−t∗+1 ≥
Σti=t∗DS[u][i]
t−t∗+1 . Based on Corollary 3.1, if t∗ < t − 2l, then

Σt−l
i=t∗DS[u][i]

t−l−t∗+1 ≤ MTS[t − l]. Thus, we can have the result
that if t∗ < t − 2l, then MTS[t] ≤ MTS[t − 1]. Therefore,
ended at time t, MTS[t − l] will be the most possible final
max(MTS). In conclude, we can check the maximal l-slope
MTS2l[t] which ends at time t and starts from t− 2l to t− l.
Then, MTS2l[t] with t ∈ [l : |T |] can be denoted by MTS2l,
which satisfies that max(MTS2l) = max(MTS). �

Corollary 3.2: Given stored MTS of node u, we can have
MSD(u,GC) = max(MTS). If DS[u] reduces by 1 at time t,
we only need to update MTS[t′] = MTS2l[t

′] with t′ ∈ [t :
t+ 2l] to get the updated MSD(u,GC).

Proof: Suppose that after DS[u] reduces, the exactly
maximum j-truncated l-slope and the one with 2l-length
are MTS∗ and MTS∗2l, respectively. If MTS is updated by
MTS2l[t

′] with t′ ∈ [t : t+ 2l], the new set MTS = [MTS[0 :
t − 1] : MTS∗2l[t : t + 2l] : MTS[t + 2l + 1 : |T |]].
Suppose that the index of maximum one in MTS∗ is t∗,

there hold three situations: (i) t∗ < t, then MTS[0 : t −
1] = MTS∗[0 : t − 1], so max(MTS) = max(MTS∗);
(ii) t < t∗ < t + 2l, MTS2l[t : t + 2l] = MTS∗2l[t : t + 2l]
so max(MTS) = max(MTS∗2l); (iii) t

∗ > t + 2l, as we can
have MTS∗2l[i] ≤ MTS∗[i] for each i, then max(MTS∗[t :
|T |]) = max([MTS∗2l[t : t + 2l] : MTS[t + 2l + 1 : |T |]])
so max(MTS) = max(MTS∗). According to Lemma 3.2, we
can have max(MTS∗) = max(MTS∗2l) = max(MTS). �

Corollary 3.3: If DS[u] reduces by 1 at time t, we only
need to use DS[u][t′] with t′ ∈ [max(0, t − 2l) : min(t +
2l, |T |)] to updateMT S[u] and get the updated MSD(u,GC).

Proof: According to Corollary 3.2, to get the updated
MSD(u,GC), we only need to update MTS[t′] = MTS2l[t

′]
with t′ ∈ [t : t + 2l]. Based on Definition 10, we need
build CSC in [t − 2l : t] to compute MTS[t]. In conclude,
we only need to use DS[u][t′] with t′ ∈ [max(0, t − 2l) :
min(t+ 2l, |T |)] to get the updated MSD(u,GC). �

According to the above corollaries, the UpdateMSD proce-
dure first initializes ts as the left side of the considered time
interval, te as the right side and CSC based on Definition 7
(lines 22-24). The following step is aimed at computing all
the MTS2l[j] which ends at time j and starts from time j−2l
to j − l. The following process is much same as that in
Algorithm 2 (lines 27-31). Note that, we use MT S[w][j] to
record MTS2l[j] of node w and it should be updated only
when j ≥ t − ts (line 32). After all the MT S[w][j] with
j from t to ts have been maintained, the procedure returns
max(MT S[w]) as the updated MSD[w] (line 34).

Correctness of Algorithm 3. We need to prove that (i) DS
is correctly updated; (ii) the updated max(MT S) is always
the maximum slope; (iii) all the remained nodes in Vc \ D
has a maximum l-segment density no less than δ. For (i), in
line 7, DS is computed by considering the current remained
nodes Vc\D, thus it is the current exact one; in line 17, we can
find that DS is updated for each deletion of temporal edges,
unless the considering node w has been popped into Q. For
(ii), based on Corollary 3.3, in lines 16-18, each deletion of
temporal edge (v, w, t) has been considered so max(MT S)
is always the exact answer. For (iii), we can see that each
node need to be checked (line 5) whether to have a maximum
l-segment density (line 9) unless it has been deleted (line 6),
thus the returned GVc\D must be MDC. �

Lemma 3.3: For a temporal graph G with |T | timestamps,
procedure UpdateMSD need O(l) to maintain the maximum
l-segment density.

Proof: First, UpdateMSD needs O(l) to compute the
collection CSC (lines 23-24). For each j, ie reduces from j to
is, and is increases from ts to te. Considering all the loops, the
average time complexity of assigning is and ie is O(te−ts) =
O(l) (lines 26-33). And computing max(MT S[w]) needs
O(l) because we can use MT S[w][ts : te] with the former
maximum value to compute it. However, the whole procedure
UpdateMSD needs O(l) to update MSD[w]. �

Complexity of Algorithm 3. The time and space complexity
of Algorithm 3 are O(α|T | + βl) and O(α|T | +m) respec-

tively, where α = |Vc|, β = |Ec| are number of nodes and
edges in k-CORE (k = δ) of G.

Proof: First, Algorithm 3 needs O(m) time to compute
the k-CORE Gc = (Vc, Ec) in G (line 2). For each node
in Vc, it takes O(|T |) time to invoke ComputeMSD (line 7),
O(log |T |) time to computeMSD (line 8), so the whole time
in lines 6-9 is O(α|T |). For each temporal edge (w, v, t) in Ec,
MDC+ will call procedure UpdateMSD for at most once, and
the cost for each update can be bounded by O(l) according to
Lemma 3.3. Therefore, the total cost for updating allMSD is
bounded by O(βl). Putting it all together, the time complexity
of Algorithm 3 is O(α|T |+ βl).

We need to maintain the graph and store collections of Q, D
and deg which consumes O(m). Except that, for each node
u in Vc, we need to store MSD[u],MT S[u],DS[u], which
consumes O(α|T |) in total. �

IV. ALGORITHMS FOR MINING POMDCs

In this section, we develop an efficient algorithm to record
all POMDCs. The basic idea of our algorithm is as follows.
The algorithm first only considers the l dimension, and
computes the maximal δ̂, among all the (l, δ)-maximal dense
cores. Then, the algorithm considers the δ dimension with
δ = δ̂ to compute the currently maximal l′ value. Using
the above method, we can find one POMDC which has the
maximal (l, δ) value of all the skyline communities. The
challenge is how to find the other POMDC iteratively. We
can tackle this challenge based on the following results.

Lemma 4.1: Let (l′, δ̂)-MDC be a POMDC which have the
largest δ̂ among all the POMDCs, if the node is not a (l, δ)-
dense node with l > l′, δ > 0, it can not be contained in
another POMDC.

Proof: Suppose that there exists (l, δ)-dense node v whose
maximal l < l′ in another POMDC (l∗, δ∗)-MDC. As v
is a (l, δ)-dense node with maximal l < l′, according to
Definition 5, l∗ ≤ l . Since δ̂ is largest among all the POMDC,
there holds δ∗ < δ̂. Therefore, l∗ ≤ l < l′; δ∗ < δ̂, (l∗, δ∗)-
MDC is not a POMDC, which is a contradiction. �

Lemma 4.2: Let (l′, δ′)-MDC be a POMDC. If l∗ > l′

and (l∗, δ∗)-MDC is another POMDC, (l∗, δ∗)-MDC must be
contained in an induced temporal subgraph from k-CORE of
G in which k = δ×l′

l∗ .
Proof: Let C = (l′, δ′)-MDC be a POMDC. According

to Definition 5, each node v ∈ C is an (l, δ)-dense node
in G(C). For each v, there exist S ⊆ C, T ∈ T , satisfying
that SD(v,GC) ≥ δ′ and |T | ≥ l′. If we enlarger l′ to l∗, in
the worst case, the newly added degrees are all zeros, each v
will have a segment density SD(v,GC) ≥ δ×l′

l∗ . The remained
proof is similar to that of Property 3.3, thus we omit it for
brevity. �

Based on Lemma 4.1 and Lemma 4.2, after computing one
POMDC (l, δ)-MDC, as l is integer, we can initialize l′ =
l + 1 to get the next POMDC. Furthermore, we can reduce
the considering graph by the following corollary.

Algorithm 4: POMDC(G)
Input: Temporal graph G = (V, E)
Output: POMDCs in G

1 Let G = (V,E) be the de-temporal graph of G;
2 l← 2; δ ← 0;R← [∅]; C ← V ;
3 while l ≤ |T | do
4 for u ∈ C do
5 (MT S[u],DS[u])← ComputeMSD∗(G, l, u, C);
6 MSD[u]← max(MT S[u]);
7 deg[u]← |Nu(G) ∩ C|;
8 (δ, C)← MaxDelta(G, l, C,DS,MT S,MSD, deg);
9 (l, C)← MaxL(G, l + 1, δ, C, deg);

10 R← R ∪ (l, δ,GC);
11 Let Gc = (Vc, Ec) be the k-CORE (k = δ×l

l+1) of G;
12 C ← Vc; l← l + 1;

13 return R;

14 Procedure MaxDelta(G, l, V ∗,DS,MSD,MT S, deg)
15 while True do
16 Q ← [∅];D ← [∅]; δ ← min(MSD); δ ← 2ndmin(MSD);
17 for u ∈ V ∗ do
18 if d[u] < δ or MSD[u] < δ then Q.push(u);

19 while Q 6= ∅ do
20 v ← Q.pop(); D ← D ∪ {v};
21 for w ∈ Nv(G) \D, s.t. deg[w] ≥ δ and MSD[w] ≥ δ do
22 deg[w]← deg[w]− 1;
23 if deg[w] < δ then {Q.push(w); continue;}
24 for t, s.t.(v, w, t) ∈ E do
25 DS[w][t]← DS[w][t]− 1;
26 MSD[w]← UpdateMSD(w, t, l,DS,MT S);

27 if MSD[w] < δ then {Q.push(w); deg[w]← 0;}

28 if D 6= V ∗ then
29 V ∗ ← V ∗ \D; for u ∈ D do MSD[u]← ∅ ;

30 else return (δ, V ∗);

31 Procedure MaxL(G, l, δ, V ∗, deg)
32 while l ≤ |T | do
33 Q ← [∅];D ← [∅];MSD ← [∅];MT S ← [∅];
34 for u ∈ V ∗ do
35 Lines 6-19 in Algorithm 3.

36 if D 6= V ∗ then
37 V ∗ ← V ∗ \D;
38 if l = |T | then return (l, V ∗);
39 l← l + 1;

40 else return (l, V ∗);

Corollary 4.1: Let (l, δ)-MDC and (l′, δ′)-MDC be two
POMDCs. If l′ > l, then nodes in (l′, δ′)-MDC must be
contained in a k-CORE of G in which k = δ×l

l+1 .
The detail of the POMDC algorithm is shown as follows.

First, Algorithm 4 initializes l = 2, δ = 0 to be default, R to
store the result and C to be the nodes of the considered dense
nodes (line 2). Then, the algorithm considers the l dimension
and grows l to find all the POMDCs. Next, it computes
MSD[u] and deg[u] in the induced graph from nodes C (lines
4-7). By the given l, the MaxDelta algorithm finds the maximal
δ and the corresponding core nodes (line 8). Next, given one
maximal δ, the MaxL algorithm finds the maximal l and the
final C (line 9). The induced temporal subgraph of C from G
is a POMDC and (l, δ,GC) is recorded as a result (line 10).
Based on Corollary 4.1, in the iteration of l← l+1, the new
POMDC must be contained in a induced temporal subgraph
from k-CORE of G in which k = δ×l

l+1 , so C is updated as Vc
for next loop(lines 10-11). The iterations will terminate when
l is increased to |T | (line 3).

Precedence MaxDelta describes the process of finding the
largest δ by parameter l. It is a loop until all the nodes have
been deleted (line 15). The algorithm maintains Q to be the
deleting queue and D to be the deleted nodes. Specifically, it
calculates the minimal δ and the second minimal δ of the
MSD[u] among all nodes (line 16). Then, the nodes are
deleted if deg[w] < δ or MSD[w] < δ (lines 19-27). This
process are much similar to that in Algorithm 3. Next, if the
deleted nodes set D is not equal to the remained nodes set V ∗,
the remained V ∗ is updated by V ∗ \ D and MSD will pop
all the MSD[u] for u in the deleted nodes’ set D (lines 28-
29). Else, if D = V ∗, then the remained nodes V ∗ will have
maximal δ (lines 30). Furthermore, precedence MaxL can use
the remained nodes set of MaxDelta and the known maximal
δ to find the maximal l. It grows l to find the largest l and it
will terminate if l increases to |T | (line 32). The unsatisfying
nodes are deleted same as that in Algorithm 3 (lines 34-35).
MaxL ends at the first time when all the V ∗ will be deleted or
l = |T |, and it returns l at this time and the remained nodes
set V ∗ (lines 36-40).

Complexity of Algorithm 4. The worst time and space
complexity of Algorithm 4 are O(m|T |2) and O(n|T | +m)
respectively. However, the pruning rule based on Corollary 4.1
can reduces the computation time greatly. We will show the
running time in practice at Section V.

V. EXPERIMENTS

In this section, we conduct extensive experiments to evaluate
the effectiveness and efficiency of the proposed algorithms.
We implement seven different algorithms for comparison:
KCORE, DENSEST [9], MDC-B, MDC, MDC+, POMDC,
POMDC-B. KCORE is a baseline which computes the k-
CORE (k = δ) of the de-temporal graph G. MDC-B is another
baseline which computes (l, δ)-MDC using the framework
shown in Algorithm 1, but it enumerates all subsequences
to compute maximum l-segment density. DENSEST [9] is
also a baseline algorithm which can find the densest subgraph
in a temporal graph. MDC is the implementation of Algo-
rithm 1 that uses Algorithm 2 to compute MSD. MDC+ is
the implementation of Algorithm 3 to compute (l, δ)-MDC.
POMDC can output all the POMDCs by Definition 6 and it
is an implementation of Algorithm 4. POMDC-B is a basic
implementation of POMDC without integrating the pruning
rules developed in Corollary 4.1.

All algorithms are implemented in Python and the source
code is available at https://github.com/VeryLargeGraph/MDC.
All the experiments are conducted on a server of Linux
kernel 4.4 with Intel Core(TM) i5-8400@3.80GHz and 32 GB
memory.

Datasets. We use 9 different real-world temporal networks
in the experiments. The detailed statistics of our datasets are
summarized in Table I, where dmax denotes the maximum
number of temporal edges associated with a node, and |T |
denotes the number of snapshots. All the snapshots are simple,

https://github.com/VeryLargeGraph/MDC

TABLE I
STATISTICS OF DATASETS

Dataset |V | = n |E| = m′ |E| = m dmax |T | Time scale
Chess 7,301 55,899 63,689 233 101 month
Lkml 26,885 159,996 328,092 14,172 96 month
Enron 86,978 297,456 499,983 2,164 48 month
DBLP 1,729,816 8,546,306 12,007,380 5,980 78 year
YTB 3,223,589 9,376,594 12,218,755 129,819 225 day
FLK 2,302,925 22,838,276 24,690,648 28,276 197 day

MO 24,759 187,986 294,293 5,556 2,351 day
AU 157,222 455,691 549,914 7,325 2,614 day
WT 1,094,018 2,787,967 4,010,611 214,518 2,321 day

undirected and unweighted graphs. Chess1 is a network that
represents two chess players playing game together from 1998
to 2006. Lkml1 is a communication network of the Linux
kernel mailing list from 2001 to 2011. Enron1 is an email
communication network between employees of Enron from
1999 to 2003. DBLP2 is a collaboration network of authors in
DBLP from 1940 to Feb. 2018. Youtube3 (YTB for short) and
Flickr1 (FLK) are friendship networks of users in Youtube and
Flickr, respectively. MathOverflow3 (MO), AskUbuntu3 (AU)
are temporal networks of interactions on the stack exchange
web site mathoverflow.net and askubuntu.com, respectively.
WikiTalk3 (WT) is a temporal network representing the
interactions among Wikipedia users.

Parameter settings. There are two parameters l, δ in the (l, δ)-
MDC model. For the parameter l, we vary it from 3 to 11 with
a default value of 3 in the testing. We vary δ from 3.0 to 11.0
with a default value of 3.0. Unless otherwise specified, the
values of the other parameters are set to their default values
when varying a parameter.

Goodness Metrics. Since most existing metrics (e.g., mod-
ularity) for measuring the community quality are tailored for
traditional graphs, we introduce two goodness metrics evaluat-
ing communities for temporal graphs, which are motivated by
density and separability [10]. Let C be a community computed
by different algorithms.

Average Density (AD) builds on intuition that good com-
munities are well connected. It measures the fraction of
the temporal edges that appear between the nodes in C:
AD , [

∑
vi∈C

degGC (vi)

|C|], where degGC (vi) denotes the number
of temporal edges that are associated with vi in the community
C.

Average Separability (AS) captures the intuition that
good communities are well-separated from the rest of
the network, meaning that they have relatively few
across edges between C and the rest of the network:
AS , [|{(u,v,t)∈E:u∈C,v∈C}|/|C|

|S={(u,v,t)∈E:u∈C,v/∈C}|/|S|], which measures the ratio
between the internal average density and external average
density.

1http://konect.uni-koblenz.de/networks/
2https://dblp.uni-trier.de/xml/
3http://snap.stanford.edu/data/index.html

ChessLkml
Enron

DBLPYTB FLK MO AU WT0
50

100
150
200
250
300
350 KCORE

DENSEST
MDC

(a) AD

ChessLkml
Enron

DBLPYTB FLK MO AU WT0
20
40
60
80

100
120

KCORE
DENSEST
MDC

(b) AS
Fig. 4. Effectiveness results of KCORE, DENSEST and MDC

3 4 5 6 7 8 9 10 11
10
20
30
40
50
60
70
80
90

AS
AD

(a) vary l (DBLP)

3 4 5 6 7 8 9 10 11
10
20
30
40
50
60
70
80
90

AS
AD

(b) vary δ (DBLP)

Fig. 5. Effectiveness of MDC with varying parameters on DBLP

A. Effectiveness Testing

Exp-1. Effectiveness of KCORE, DENSEST and MDC. Fig. 4
shows the qualities of the communities computed by different
algorithms under the default parameter setting. Similar results
can also be observed using the other parameter settings. As
can be seen in Fig. 4(a), DENSEST significantly outperforms
the others in terms of the AD metric. We also observe that
DENSEST obtains the subgraph with the largest density. Both
DENSEST and MDC perform much better than KCORE. We
can see that the AD values for both DENSEST and MDC
in WT is much larger than those in the other datasets. The
reason is that the maximum degree in WT is the largest one
among all datasets, thus there must exist a community with
higher density. In Fig. 4(b), the MDC community proposed
by us have higher AS value among all datasets. Compared
to the other datasets, the AD value on MO is high but the
AS value is low. The reason is that AS metric captures the
ratio between the internal average density and external average
density. Clearly, each node in MDC has a high internal average
density.

Exp-2. Effectiveness results with varying parameters.
Here we study how the parameters affect the effectiveness
performance of our algorithm. Fig. 5 shows the results of MDC
with varying parameters on DBLP. Similar results can also be
observed on the other datasets. As can be seen, both AS and
AD values increase with growing l and δ. The reason is that the
lasting time of the MDC increases when l increases, and the
average density of nodes in MDC increases when δ increases.

Exp-3. Results of POMDC. Fig. 6 shows the l, δ values for
each POMDC on DBLP and Lkml. Again, similar results can
also be observed on the other datasets. From Fig. 6(a), we
observe that when l = 2, an (l, δ)-MDC in DBLP achieves
the maximum l-segment density which is equal to 175. The δ
values of the POMDCs drop dramatically when l = 10. This

mathoverflow.net
askubuntu.com

0 10 20 30 40 50 60 70 80
l

0
25
50
75

100
125
150
175

(a) DBLP

0 20 40 60 80 100
l

8
10
12
14
16
18

(b) Lkml
Fig. 6. l, δ values of each POMDC on different datasets

0 20 40 60 80 100
l

66
68
70
72
74
76
78

AS

(a) AS

0 20 40 60 80 100
l

850
875
900
925
950
975

1000
1025

AD

(b) AD
Fig. 7. Effectiveness results of POMDCs in Lkml

is because most researchers in DBLP typically cooperate with
each others in a continuous time of 2-10 years. As desired,
both Fig. 6(a) and Fig. 6(b) exhibit a staircase shape because
of the parato-optimal property. Fig. 7 shows the AS, AD values
of POMDCs on Lkml. The results on the other datasets are
consistent. We can see that the AS and AD values increase as l
increases from 0 to 20, and then AS and AD change slightly as
l increases from 20 to 100. This is because real-world bursting
communities can only last in a short time.

Exp-4. Case study on Enron. The Enron dataset consists
of the emails sent between employees of Enron from 1999
to 2003. Enron was an energy-trading and utilities company
based in Houston, Texas, that perpetrated one of the biggest
accounting frauds in history. Enron’s executives employed ac-
counting practices that falsely inflated the company’s revenues
and, for a time, made it the seventh-largest corporation in
the United States. Once the fraud came to light, the company
quickly unraveled, and it filed for bankruptcy on Dec. 2, 2001.
Fig 8(a) shows the part of KCORE in a subgraph in which each
employee sends e-mails in year 2001. The model of KCORE
performs very bad, as the resulting community involves large
numbers of employees, so it is hard to find the employees
who are significant in the company. Fig 8(b) shows a part of
MDC with parameters (l = 3, δ = 3). We can see that the
employees in this subgraph are annotated by the l-segment
with maximum density which is a continuous time of at least
3 months. In addition, we can find that the actual timestamps
in the l-segment of nodes in MDC are around Dec, 2001.
Therefore, the employees in MDC must be the key persons in
Enron, and they are responsible for the bankruptcy of Enron.

B. Efficiency Testing

Exp-5. Running time of the algorithms. Table. II evaluates
the running time of KCORE, MDC-B, MDC, MDC+ with
parameters l = 3, δ = 3. Similar results can also be observed

(a) KCORE

2001.09-2001.12

2001.11-2002.06

2001.12-2002.04

2001.11-2002.02

2001.10-2001.12

2001.08-2001.12

2001.08-2001.12

(b) MDC
Fig. 8. Case study on Enron

TABLE II
RUNNING TIME (S) OF DIFFERENT ALGORITHMS WITH l = 3, δ = 3

Dataset KCORE MDC-B MDC MDC+
Chess 0.05 1.32 0.78 0.50
Lkml 0.06 2.4 1.02 0.36
Enron 0.19 13.41 3.54 1.25
DBLP 6.84 187.32 53.90 26.95
YTB 30.53 759.52 126.92 68.23
FLK 17.53 876.4 122.87 34.52
MO 0.11 1200.23 30.15 3.71
AU 0.52 2599.78 66.89 13.36
WT 2.15 11865.87 145.23 57.65

TABLE III
MEMORY OVERHEAD OF MDC AND MDC+

Graph in Memory Memory of MDC Memory of MDC+
Chess 3.5MB 9.2MB 44.2MB
Lkml 20.1MB 44.4MB 121.2MB
Enron 53.3MB 107.6Mb 303.2MB
DBLP 1,089.5MB 2,328.2MB 3,934.3MB
YTB 698.5MB 1,452.8MB 3,318.1MB
FLK 1,375.5MB 3,198.2MB 5,647.2MB
MO 13.23MB 45.23MB 92.75MB
AU 50.23MB 140.32MB 459.2MB
WT 324.5MB 1023.23MB 3,163.2MB

Exp-6. Running time of computing all POMDCs. Fig. 9
shows the running time of POMDC-B and POMDC with the
default parameter setting. We can see that POMDC is much
faster than POMDC-B on all datasets. For example, POMDC
needs around 5,320 seconds and 18,680 seconds to compute all
the POMDCs in MO and AU datasets which cuts the running
time over POMDC-B by 139% and 131%, respectively. Note
that both POMDC-B and POMDC cannot obtain results on
WT in 1 day. These results indicate that the pruning rule in
Corollary 4.1 is indeed very powerful in practice.

Exp-7. Running time with varying parameters. Fig. 10
shows the running time of KCORE, MDC and MDC+ with
varying parameters on DBLP. Similar results can also be
observed on the other datasets. As can be seen, MDC+ is
faster than MDC under all parameter settings. In Fig. 10(a),
the running times of KCORE and MDC remain unchanged, but
the running time of MDC+ increases slowly with an increasing
l. These results confirm that the time complexity of KCORE
and MDC is independent to l, and the time complexity of
MDC+ is linear w.r.t. l. We also see that the running time of
MDC+ and MDC decrease with an increasing δ, because all
of them need to reduce the graph by the k-CORE based on
Property 3.3 and the size of k-CORE decreases as δ increases.

Exp-8. Scalability. Fig. 11 shows the scalability of MDC and
MDC+ on WT dataset. Similar results can also be observed
on the other datasets. We generate ten temporal subgraphs by

Chess Lkml EnronDBLP YTB FLK MO AU WT0

10

20

30

40

50

R
un

ni
ng

 ti
m

e
(x

10
3 s)

0.25 0.68 1.32

10.23

24.56

13.25 12.23

38.23

0.12 0.35 0.61

4.81

11.65

6.60 5.32

18.68

> 1 day

POMDC-B
POMDC

Fig. 9. Running time of POMDC V.S. POMDC-B

3 4 5 6 7 8 9 10 110

20

40

60

80

R
un

ni
ng

 ti
m

e
(s

) MDC
MDC+
KCORE

(a) vary l (DBLP)

3 4 5 6 7 8 9 10 11

10

20

30

40

50

R
un

ni
ng

 ti
m

e
(s

) MDC
MDC+
KCORE

(b) vary δ (DBLP)
Fig. 10. Running time of different algorithms on DBLP with varying l, δ

randomly picking 10%-100% of the temporal edges or 10%-
100% of the timestamps, and evaluate the running times of
MDC and MDC+ on those subgraphs. As shown in Fig. 11,
the running time increases smoothly with increasing number of
edges or increasing size of |T |. These results suggest that our
proposed algorithms are scalable when handling large temporal
networks.

Exp-9. Memory overhead. Table III shows the memory usage
of MDC and MDC+ on different datasets. We can see that
the memory usage of MDC and MDC+ is higher than the
size of the temporal graph, because MDC only needs to
store deg[u] (for each node u) but MDC+ needs to store
MSD[u],MT S[u],DS[u] (for each node u). In practice, we
can free memory of MSD[u],MT S[u],DS[u] once u has
been added into the deleting queue Q. Therefore, on large
datasets, the memory usage of MDC+ is typically lower than
ten times of the size of the temporal graph. For instance, on
WT, MDC+ consumes 3,163.2MB memory while the graph
needs 324.5MB. These results indicate that MDC and MDC+
achieve near linear space complexity, which confirms our
theoretical analysis in Sections III.

VI. RELATED WORK

Dense subgraph mining in temporal graphs. Our work is
related to the problem of mining dense subgraphs in temporal
graph. Ma et al. [5] and Bogdanov et al. [11] investigated the
dense subgraph problem in weighted temporal graphs. Rozen-
shtein et al. [6] studied the problem of mining dense subgraphs
at different time intervals, and they also considered a problem
of finding the densest subgraph in a temporal network [9].
Liu et al. [12] proposed a novel stochastic approach to find
the densest lasting subgraph. Many other works [13], [14] aim
at maintaining the average-degree densest-subgraph in a graph
streaming scenario. Unlike all these studies, we focus mainly
on detecting bursting communities in temporal graphs. Note
that the above mentioned dense subgraphs are not bursting
communities because not all nodes in a dense subgraph are
bursting in a period of time.

(a) KCORE(a) KCORE

2001.09-2001.12

2001.11-2002.06

2001.12-2002.04

2001.11-2002.02

2001.10-2001.12

2001.08-2001.12

2001.08-2001.12

(b) MDC
Fig. 8. Case study on Enron

TABLE II
RUNNING TIME (S) OF DIFFERENT ALGORITHMS WITH l = 3, δ = 3

Dataset KCORE MDC-B MDC MDC+
Chess 0.05 1.32 0.78 0.50
Lkml 0.06 2.4 1.02 0.36
Enron 0.19 13.41 3.54 1.25
DBLP 6.84 187.32 53.90 26.95
YTB 30.53 759.52 126.92 68.23
FLK 17.53 876.4 122.87 34.52
MO 0.11 1200.23 30.15 3.71
AU 0.52 2599.78 66.89 13.36
WT 2.15 11865.87 145.23 57.65

TABLE III
MEMORY OVERHEAD OF MDC AND MDC+

Graph in Memory Memory of MDC Memory of MDC+
Chess 3.5MB 9.2MB 44.2MB
Lkml 20.1MB 44.4MB 121.2MB
Enron 53.3MB 107.6Mb 303.2MB
DBLP 1,089.5MB 2,328.2MB 3,934.3MB
YTB 698.5MB 1,452.8MB 3,318.1MB
FLK 1,375.5MB 3,198.2MB 5,647.2MB
MO 13.23MB 45.23MB 92.75MB
AU 50.23MB 140.32MB 459.2MB
WT 324.5MB 1023.23MB 3,163.2MB

Exp-6. Running time of computing all POMDCs. Fig. 9
shows the running time of POMDC-B and POMDC with the
default parameter setting. We can see that POMDC is much
faster than POMDC-B on all datasets. For example, POMDC
needs around 5,320 seconds and 18,680 seconds to compute all
the POMDCs in MO and AU datasets which cuts the running
time over POMDC-B by 139% and 131%, respectively. Note
that both POMDC-B and POMDC cannot obtain results on
WT in 1 day. These results indicate that the pruning rule in
Corollary 4.1 is indeed very powerful in practice.

Exp-7. Running time with varying parameters. Fig. 10
shows the running time of KCORE, MDC and MDC+ with
varying parameters on DBLP. Similar results can also be
observed on the other datasets. As can be seen, MDC+ is
faster than MDC under all parameter settings. In Fig. 10(a),
the running times of KCORE and MDC remain unchanged, but
the running time of MDC+ increases slowly with an increasing
l. These results confirm that the time complexity of KCORE
and MDC is independent to l, and the time complexity of
MDC+ is linear w.r.t. l. We also see that the running time of
MDC+ and MDC decrease with an increasing δ, because all
of them need to reduce the graph by the k-CORE based on
Property 3.3 and the size of k-CORE decreases as δ increases.

Exp-8. Scalability. Fig. 11 shows the scalability of MDC and
MDC+ on WT dataset. Similar results can also be observed
on the other datasets. We generate ten temporal subgraphs by

Chess Lkml EnronDBLP YTB FLK MO AU WT0

10

20

30

40

50

R
un

ni
ng

 ti
m

e
(x

10
3 s)

0.25 0.68 1.32

10.23

24.56

13.25 12.23

38.23

0.12 0.35 0.61

4.81

11.65

6.60 5.32

18.68

> 1 day

POMDC-B
POMDC

Fig. 9. Running time of POMDC V.S. POMDC-B

3 4 5 6 7 8 9 10 110

20

40

60

80

R
un

ni
ng

 ti
m

e
(s

) MDC
MDC+
KCORE

(a) vary l (DBLP)

3 4 5 6 7 8 9 10 11

10

20

30

40

50

R
un

ni
ng

 ti
m

e
(s

) MDC
MDC+
KCORE

(b) vary δ (DBLP)
Fig. 10. Running time of different algorithms on DBLP with varying l, δ

randomly picking 10%-100% of the temporal edges or 10%-
100% of the timestamps, and evaluate the running times of
MDC and MDC+ on those subgraphs. As shown in Fig. 11,
the running time increases smoothly with increasing number of
edges or increasing size of |T |. These results suggest that our
proposed algorithms are scalable when handling large temporal
networks.

Exp-9. Memory overhead. Table III shows the memory usage
of MDC and MDC+ on different datasets. We can see that
the memory usage of MDC and MDC+ is higher than the
size of the temporal graph, because MDC only needs to
store deg[u] (for each node u) but MDC+ needs to store
MSD[u],MT S[u],DS[u] (for each node u). In practice, we
can free memory of MSD[u],MT S[u],DS[u] once u has
been added into the deleting queue Q. Therefore, on large
datasets, the memory usage of MDC+ is typically lower than
ten times of the size of the temporal graph. For instance, on
WT, MDC+ consumes 3,163.2MB memory while the graph
needs 324.5MB. These results indicate that MDC and MDC+
achieve near linear space complexity, which confirms our
theoretical analysis in Sections III.

VI. RELATED WORK

Dense subgraph mining in temporal graphs. Our work is
related to the problem of mining dense subgraphs in temporal
graph. Ma et al. [5] and Bogdanov et al. [11] investigated the
dense subgraph problem in weighted temporal graphs. Rozen-
shtein et al. [6] studied the problem of mining dense subgraphs
at different time intervals, and they also considered a problem
of finding the densest subgraph in a temporal network [9].
Liu et al. [12] proposed a novel stochastic approach to find
the densest lasting subgraph. Many other works [13], [14] aim
at maintaining the average-degree densest-subgraph in a graph
streaming scenario. Unlike all these studies, we focus mainly
on detecting bursting communities in temporal graphs. Note
that the above mentioned dense subgraphs are not bursting
communities because not all nodes in a dense subgraph are
bursting in a period of time.

(b) MDC
Fig. 8. Case study on Enron

TABLE II
RUNNING TIME (S) OF DIFFERENT ALGORITHMS WITH l = 3, δ = 3

Dataset KCORE MDC-B MDC MDC+
Chess 0.05 1.32 0.78 0.50
Lkml 0.06 2.4 1.02 0.36
Enron 0.19 13.41 3.54 1.25
DBLP 6.84 187.32 53.90 26.95
YTB 30.53 759.52 126.92 68.23
FLK 17.53 876.4 122.87 34.52
MO 0.11 1200.23 30.15 3.71
AU 0.52 2599.78 66.89 13.36
WT 2.15 11865.87 145.23 57.65

with the other parameter settings. From Table. II, we can see
that MDC+ is much faster than MDC-B and MDC on all
datasets. Note that KCORE is the fastest algorithm, as it has
linear time complexity of [4]. But KCORE is ineffective to
find bursting communities. For example, on DBLP, KCORE
takes 6.84 seconds and our proposed MDC+ only consumes
26.95 seconds. On WT, we can see that MDC-B takes
11865.87 seconds to compute the (l, δ)-MDC and MDC+ only
takes 57.65 seconds. These results confirm that our proposed
algorithms are indeed very efficient on large real-life temporal
networks.

Exp-6. Running time of computing all POMDCs. Fig. 9
shows the running time of POMDC-B and POMDC with the
default parameter setting. We can see that POMDC is much
faster than POMDC-B on all datasets. For example, POMDC
needs around 5,320 seconds and 18,680 seconds to compute all
the POMDCs in MO and AU datasets which cuts the running
time over POMDC-B by 139% and 131%, respectively. Note
that both POMDC-B and POMDC cannot obtain results on
WT in 1 day. These results indicate that the pruning rule in
Corollary 4.1 is indeed very powerful in practice.

Exp-7. Running time with varying parameters. Fig. 10
shows the running time of KCORE, MDC and MDC+ with
varying parameters on DBLP. Similar results can also be
observed on the other datasets. As can be seen, MDC+ is
faster than MDC under all parameter settings. In Fig. 10(a),
the running times of KCORE and MDC remain unchanged, but
the running time of MDC+ increases slowly with an increasing
l. These results confirm that the time complexity of KCORE
and MDC is independent to l, and the time complexity of
MDC+ is linear w.r.t. l. We also see that the running time of
MDC+ and MDC decrease with an increasing δ, because all
of them need to reduce the graph by the k-CORE based on
Property 3.3 and the size of k-CORE decreases as δ increases.

Chess Lkml EnronDBLP YTB FLK MO AU WT0

10

20

30

40

50

R
un

ni
ng

 ti
m

e
(x

10
3 s)

0.25 0.68 1.32

10.23

24.56

13.25 12.23

38.23

0.12 0.35 0.61

4.81

11.65

6.60 5.32

18.68

> 1 day

POMDC-B
POMDC

Fig. 9. Running time of POMDC V.S. POMDC-B

3 4 5 6 7 8 9 10 110

20

40

60

80

R
un

ni
ng

 ti
m

e
(s

) MDC
MDC+
KCORE

(a) vary l (DBLP)

3 4 5 6 7 8 9 10 11

10

20

30

40

50
R

un
ni

ng
 ti

m
e

(s
) MDC

MDC+
KCORE

(b) vary δ (DBLP)
Fig. 10. Running time of different algorithms on DBLP with varying l, δ

TABLE III
MEMORY OVERHEAD OF MDC AND MDC+

Graph in Memory Memory of MDC Memory of MDC+
Chess 3.5MB 9.2MB 44.2MB
Lkml 20.1MB 44.4MB 121.2MB
Enron 53.3MB 107.6Mb 303.2MB
DBLP 1,089.5MB 2,328.2MB 3,934.3MB
YTB 698.5MB 1,452.8MB 3,318.1MB
FLK 1,375.5MB 3,198.2MB 5,647.2MB
MO 13.23MB 45.23MB 92.75MB
AU 50.23MB 140.32MB 459.2MB
WT 324.5MB 1023.23MB 3,163.2MB

Exp-8. Scalability. Fig. 11 shows the scalability of MDC and
MDC+ on WT dataset. Similar results can also be observed
on the other datasets. We generate ten temporal subgraphs by
randomly picking 10%-100% of the temporal edges or 10%-
100% of the timestamps, and evaluate the running times of
MDC and MDC+ on those subgraphs. As shown in Fig. 11,
the running time increases smoothly with increasing number of
edges or increasing size of |T |. These results suggest that our
proposed algorithms are scalable when handling large temporal
networks.

Exp-9. Memory overhead. Table III shows the memory usage
of MDC and MDC+ on different datasets. We can see that
the memory usage of MDC and MDC+ is higher than the
size of the temporal graph, because MDC only needs to
store deg[u] (for each node u) but MDC+ needs to store
MSD[u],MT S[u],DS[u] (for each node u). In practice, we
can free memory of MSD[u],MT S[u],DS[u] once u has
been added into the deleting queue Q. Therefore, on large
datasets, the memory usage of MDC+ is typically lower than
ten times of the size of the temporal graph. For instance, on
WT, MDC+ consumes 3,163.2MB memory while the graph
needs 324.5MB. These results indicate that MDC and MDC+
achieve near linear space complexity, which confirms our
theoretical analysis in Sections III.

20% 40% 80% 100%
20
40
60
80

100
120
140

R
un

ni
ng

 ti
m

e
(s

)

MDC
MDC+

(a) percents of edges

20% 40% 80% 100%
40
60
80

100
120
140

R
un

ni
ng

 ti
m

e
(s

) MDC
MDC+

(b) percents of |T |
Fig. 11. Scalability testings on WT

VI. RELATED WORK

Dense subgraph mining in temporal graphs. Our work is
related to the problem of mining dense subgraphs in temporal
graph. Ma et al. [5] and Bogdanov et al. [11] investigated the
dense subgraph problem in weighted temporal graphs. Rozen-
shtein et al. [6] studied the problem of mining dense subgraphs
at different time intervals, and they also considered a problem
of finding the densest subgraph in a temporal network [9].
Liu et al. [12] proposed a novel stochastic approach to find
the densest lasting subgraph. Many other works [13], [14] aim
at maintaining the average-degree densest-subgraph in a graph
streaming scenario. Unlike all these studies, we focus mainly
on detecting bursting communities in temporal graphs. Note
that the above mentioned dense subgraphs are not bursting
communities because not all nodes in a dense subgraph are
bursting in a period of time.

Temporal graph analysis. The problem of temporal graph
analysis has attracted much attention in recent years. Yang
et al. [15] proposed an algorithm to detect frequent changing
components in temporal graph. Huang et al. [16] investigated
the minimum spanning tree problem in temporal graphs.
Gurukar et al. [17] presented a model to identify the recurring
subgraphs that have similar sequence of information flow.
Wu et al. [18] proposed an efficient algorithm to answer the
reachability query on temporal graphs. Yang et al. [19] studied
a problem of finding a set of diversified quasi-cliques from a
temporal graph. Wu et al. [4] and Galimberti et al. [20] studied
the core decomposition problem in temporal networks. Li et al.
[7] developed an algorithm to detect persistent communities
in a temporal graph. More recently, Qin et al. [8] proposed
a periodic clique model to mine periodic communities in a
temporal graph. To the best of our knowledge, we are the
first to study the problem of mining bursting communities in
temporal graph.

Community mining on traditional and dynamic graphs.
Community mining is a problem of identifying cohesive
subgraphs from a graph. Notable cohesive subgraph models
include maximal clique [21], quasi clique [22], k-core [23],
[24] and k-truss [25], [26]. There are a number of studies
for mining communities on dynamic networks [27]. Lin et al.
[28] proposed a probabilistic generative model for analyzing
communities and their evolutions. Chen et al. [29] tracked
community dynamics by introducing graph representatives.
Agarwal et al. [30] studied how to find dense clusters ef-

ficiently for dynamic graphs in spite of rapid changes to
the microblog streams. Li et al. [23] devised an algorithm
which can maintain the k-core in large dynamic graphs.
Most community detection studies on dynamic graphs aims
to maintain communities that evolve over time. Unlike these
studies, we aim to detect bursting communities in temporal
graphs.

VII. CONCLUSION

In this work, we study a problem of mining bursting
communities in a temporal graph. We propose a novel model,
called (l, δ)-MDC, to characterize the bursting communities
in a temporal graph. To find all (l, δ)-MDCs, we first develop
an dynamic programming algorithm which can compute the
segment density efficiently. Then, we propose an improved
algorithm with several novel pruning techniques to improve
the efficiency. Subsequently, we develop an algorithm which
can compute the pareto-optimal bursting communities w.r.t.
the parameters l and δ. Finally, we conduct comprehensive
experiments using 9 real-life temporal networks, and the
results demonstrate the efficiency, scalability and effectiveness
of our algorithms.

REFERENCES

[1] A.-L. Barabsi, “The origin of bursts and heavy tails in human dynamics,”
Nature, vol. 435, no. 7039, p. 207, 2005.

[2] P. Holme and J. Saramaki, “Temporal networks,” Physics Reports, vol.
519, pp. 97–125, 2012.

[3] Q. Kong, R. M. Allen, L. Schreier, and Y. W. Kwon, “Myshake: A
smartphone seismic network for earthquake early warning and beyond,”
Science Advances, vol. 2, no. 2, pp. e1 501 055–e1 501 055, 2016.

[4] H. Wu, J. Cheng, Y. Lu, Y. Ke, Y. Huang, D. Yan, and H. Wu,
“Core decomposition in large temporal graphs,” in IEEE International
Conference on Big Data, 2015.

[5] S. Ma, R. Hu, L. Wang, X. Lin, and J. Huai, “Fast computation of dense
temporal subgraphs,” in ICDE, 2017.

[6] P. Rozenshtein, F. Bonchi, A. Gionis, M. Sozio, and N. Tatti, “Finding
events in temporal networks: Segmentation meets densest-subgraph
discovery,” in ICDM, 2018, pp. 397–406.

[7] R.-H. Li, J. Su, L. Qin, J. X. Yu, and Q. Dai, “Persistent community
search in temporal networks,” in ICDE, 2018.

[8] H. Qin, R. Li, G. Wang, L. Qin, Y. Cheng, and Y. Yuan, “Mining periodic
cliques in temporal networks,” in ICDE, 2019.

[9] P. Rozenshtein, N. Tatti, and A. Gionis, “Finding dynamic dense
subgraphs,” TKDD, vol. 11, no. 3, pp. 27:1–27:30, 2017.

[10] J. Yang and J. Leskovec, “Defining and evaluating network communities
based on ground-truth,” in ICDM, 2012.

[11] P. Bogdanov, M. Mongiovi, and A. K. Singh, “Mining heavy subgraphs
in time-evolving networks,” in ICDM, 2011.

[12] X. Liu, T. Ge, and Y. Wu, “Finding densest lasting subgraphs in dynamic
graphs: A stochastic approach,” in ICDE, 2019.

[13] A. Epasto, S. Lattanzi, and M. Sozio, “Efficient densest subgraph
computation in evolving graphs,” in WWW, 2015.

[14] S. Bhattacharya, M. Henzinger, D. Nanongkai, and C. E. Tsourakakis,
“Space- and time-efficient algorithm for maintaining dense subgraphs
on one-pass dynamic streams,” in STOC, 2015.

[15] Y. Yang, J. X. Yu, H. Gao, J. Pei, and J. Li, “Mining most frequently
changing component in evolving graphs,” World Wide Web, vol. 17,
no. 3, pp. 351–376, 2014.

[16] S. Huang, A. W. Fu, and R. Liu, “Minimum spanning trees in temporal
graphs,” in SIGMOD, 2015.

[17] S. Gurukar, S. Ranu, and B. Ravindran, “COMMIT: A scalable approach
to mining communication motifs from dynamic networks,” in SIGMOD,
2015.

[18] H. Wu, Y. Huang, J. Cheng, J. Li, and Y. Ke, “Reachability and time-
based path queries in temporal graphs,” in ICDE, 2016.

[19] Y. Yang, D. Yan, H. Wu, J. Cheng, S. Zhou, and J. C. S. Lui, “Diversified
temporal subgraph pattern mining,” in KDD, 2016.

[20] E. Galimberti, A. Barrat, F. Bonchi, C. Cattuto, and F. Gullo, “Mining
(maximal) span-cores from temporal networks,” in CIKM, 2018.

[21] J. Cheng, Y. Ke, A. W.-C. Fu, J. X. Yu, and L. Zhu, “Finding maximal
cliques in massive networks,” ACM Trans. Database Syst., vol. 36, no. 4,
pp. 21:1–21:34, 2011.

[22] C. Tsourakakis, F. Bonchi, A. Gionis, F. Gullo, and M. Tsiarli, “Denser
than the densest subgraph: extracting optimal quasi-cliques with quality
guarantees,” in KDD, 2013.

[23] R. H. Li, J. X. Yu, and R. Mao, “Efficient core maintenance in
large dynamic graphs,” IEEE Transactions on Knowledge and Data
Engineering, vol. 26, no. 10, pp. 2453–2465, 2014.

[24] F. Bonchi, A. Khan, and L. Severini, “Distance-generalized core
decomposition,” in SIGMOD, 2019.

[25] J. Cheng, Y. Ke, S. Chu, and M. T. Özsu, “Efficient core decomposition
in massive networks,” in ICDE, 2011.

[26] X. Huang, H. Cheng, L. Qin, W. Tian, and J. X. Yu, “Querying k-truss
community in large and dynamic graphs,” SIGMOD, 2014.

[27] G. Rossetti and R. Cazabet, “Community discovery in dynamic
networks: A survey,” ACM Comput. Surv., vol. 51, no. 2, pp. 35:1–
35:37, 2018.

[28] Y.-R. Lin, Y. Chi, S. Zhu, H. Sundaram, and B. L. Tseng, “Facetnet: A
framework for analyzing communities and their evolutions in dynamic
networks,” in WWW, 2008.

[29] Z. Chen, K. A. Wilson, Y. Jin, W. Hendrix, and N. F. Samatova,
“Detecting and tracking community dynamics in evolutionary networks,”
in ICDMW, 2010.

[30] M. K. Agarwal, K. Ramamritham, and M. Bhide, “Real time discovery
of dense clusters in highly dynamic graphs: Identifying real world events
in highly dynamic environments,” PVLDB, vol. 5, no. 10, 2012.

	I Introduction
	II Preliminaries
	III Algorithms For Mining (l,)-MDC
	III-A The MDC Algorithm
	III-B Dynamic Programming Procedure of ComputeMSD
	III-C An improved MDC+ algorithm

	IV Algorithms For Mining POMDCs
	V Experiments
	V-A Effectiveness Testing
	V-B Efficiency Testing

	VI Related Work
	VII Conclusion
	References

